
Hentschke et al. 2021

1	Establishment of the family Zarkiaceae (Oscillatoriales, Cyanobacteria) and
2	description of the new marine genera Zarkia (Zarkiaceae, Oscillatoriales) and
3	Romeriopsis (Leptolyngbyaceae, Synechococcales), from northern Portugal
4	
5	Guilherme S. Hentschke ^a , Ângela Pinheiro ^a , Vitor Ramos ^{a,b} , Aldo Barreiro ^a , M. Sofia
6	Costa ^a , Sébastien Brule ^a , Vitor M. Vasconcelos ^{a,c} , Pedro N. Leão ^{a*}
7	
8	^a Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR),
9	University of Porto, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
10	^b Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança,
11	Campus de Santa Apolónia, 5300-253 Bragança, Portugal
12	^c Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto,
13	Portugal
14	
15	*Corresponding author
16	Email address: <u>pleao@ciimar.up.pt</u> (Pedro N. Leão)
17	
18	

Hentschke et al. 2021

19 ABSTRACT

21

22 The morphology, 16S rRNA gene phylogeny and the 16S-23S rRNA gene ITS secondary structures of three strains of marine Cyanobacteria, isolated from inter- and 23 subtidal environments from north Portugal were studied, resulting in the description of 24 25 Zarkia subtidalensis gen. et. sp. nov. (Zarkiaceae fam. nov.) and Romeriopsis marina 26 gen. et. sp. nov (Leptolyngbyaceae). No diacritical morphological characters were found either for the new family or for the new genera. The 16S rRNA gene Maximum 27 28 Likelihood and Bayesian phylogenies supported that Zarkia and Zarkiaceae are 29 members of the Oscillatoriales, positioned close to Microcoleaceae genera, but distant from Microcoleus. Romeriopsis is positioned within the Leptolyngbyaceae and is 30 31 closely related to Alkalinema. The secondary structures of the D1-D1', Box B, V2 and V3 helices corroborate with the phylogenetic results. Furthermore, our study supports 32 previous observations of polyphyletic Oscillatoriales families and reinforces the need 33 34 for their taxonomical revision.

35

36 Keywords: subtidal, intertidal, phylogeny, taxonomy.

- 37
- 38

Hentschke et al. 2021

39 **1. Introduction**

40

41	Cyanobacteria are important primary producers in the world's oceans and shape
42	both planktonic and benthic marine communities (Hamilton et al., 2016). In addition,
43	they produce a plethora of secondary metabolites, such as alkaloids, polyketides, and
44	peptides with a great variety of biological activities with some being currently used to
45	treat cancer in the clinic (Leão et al., 2012; Calteau et al., 2014). Despite their global
46	and biotechnological importance, the diversity of marine Cyanobacteria is still
47	underestimated, and recently, many new genera of Cyanobacteria have been described,
48	such as Leptothoe Konstantinou et Gkelis, Marileptolyngbya Zhou et Ling,
49	Salileptolyngbya Zhou, Lusitaniella Ramos et al., Dapis Engene et al., Capillus and
50	Neolyngbya, for example (Brito et al., 2017; Caires et al., 2018a; 2018b; Engene et al.,
51	2018; Zhou et al., 2018; Konstantinou et al., 2019).
52	The growing number of new taxa descriptions, the availability of 16S rRNA
53	gene sequences for the respective type species, and the access to computational tools
54	that allow to expeditiously perform extensive phylogenetic reconstructions (Miller et
55	al., 2015), has brought to light that many cyanobacterial families from the classical,
56	morphological-based taxonomy are polyphyletic, warranting taxonomical revisions
57	(Jahodarová et al., 2017; Nowicka-Krawczyk et al., 2018; Mai et al., 2018). Up to now,
58	the only revision at the order level for Cyanobacteria, on the basis of robust
59	phylogenetic analysis and morphological descriptions, concerned the
60	Synechococcacales and was carried out by Mai et al. (2018). In that paper, the authors
61	describe two new families and six new genera containing 14 species. The authors
62	consider five families in the order, one of which (Trichocoleaceae) comprising a single
63	genus. The description of families with a single genus based on a single-gene

Hentschke et al. 2021

64	phylogenetic analysis is not a novelty (Hentschke et al., 2016) and is necessary for
65	monophyletic clades (Johansen and Casamatta, 2005), which are well supported and not
66	clustered in any already known family.
67	Against this backdrop, in this paper we describe the new family Zarkiaceae to
68	hold the new cyanobacterial genus Zarkia, and also describe the new genus Romeriopsis
69	(Leptolyngbyaceae), from intertidal and subtidal environments sampled in north
70	Portugal.
71	
72	
73	2. Materials and Methods
74	2.1. Sampling and sites
75	Two samples were obtained in the subtidal zone seafloor, at 13 m depth, by
76	collection of rocky substrate surfaces using 50 mL sterile polypropylene syringes, by
77	SCUBA diving at 'A Pedra', a diving spot in front of the São Francisco Xavier fort,
78	${\sim}200$ m off the coast, in the city of Porto, Portugal (41.185809 N 8.719079 W). The
79	samples were kept in 50 mL polypropylene tubes until being processed in the laboratory
80	at CIIMAR, Porto, Portugal. These samples led to the isolation of strains Zarkia
81	subtidalensis LEGE 11467 and Romeriopsis sp. LEGE 11480, while strain Romeriopsis
82	marina LEGE 06013 had been previously isolated from a wave-exposed rock, Praia da
83	Foz do Arelho, Caldas da Rainha (39.43327 N 9.230275 W), Portugal, as reported in
84	Brito et al. (2012) and was obtained from the LEGE Culture Collection (LEGE-CC) at
85	CIIMAR, Porto, Portugal (http://lege.ciimar.up.pt) (Ramos et al., 2017). The north
86	Portuguese coastal environments, a temperate climate region, where the studied strains
87	were collected are vulnerable to wave action, being under a strong tide and wave regime
88	especially in the winter (Coelho et al., 2009).

Hentschke et al. 2021

89

90 2.2. Isolation strategy

91	After arrival at the laboratory, subtidal samples were observed under a light
92	microscope. The environmental samples were not clearly dominated by cyanobacteria
93	and therefore they were inoculated in liquid medium, supplemented with 25 g L^{-1} sea
94	salts (Tropic Marine) and 10 μ g ml ⁻¹ vitamin B ₁₂ . The enrichment cultures were kept
95	under low light conditions ${<}10~\mu mol~m^{\text{-2}}~s^{\text{-1}}$ under a 14 hour light/ 10 hour dark regimen
96	and at 19 °C. As soon as consistent growth of cyanobacteria was detected, aliquots were
97	transferred onto solid Z8 medium plates with 1.5% agarose, supplemented with sea salts
98	and vitamin B_{12} as described above. Liquid and solid cultures were grown at 25 °C,
99	under a 14 hour light (approximately $30 - 40 \ \mu mol \ m^{-2} \ s^{-1})/10$ hour dark regimen.
100	When single colonies or filaments were detected, these were picked with an inoculating
101	loop and streaked onto a new medium plate. The streak plate technique was repeated
102	until unicyanobacterial cultures were obtained following inoculation in liquid medium.
103	The resulting unicyanobacterial strains have been deposited and since been kept in
104	LEGE-CC under controlled temperature between 19°C and 21°C, photoperiod 14h
105	light/10h dark, and light intensity 15–25 μ mol photons m ⁻² s ⁻¹ .
106	
107	2.3. Morphological analysis

108The morphological plasticity and cell measurements (n = 50 cells) of 50109individuals of Zarkia (LEGE 11467) and Romeriopsis strains (LEGE 06013, LEGE11011480) were examined using a Leica DMLB light microscope (Wetzlar, Germany) and111micrographs were acquired with an Olympus DP73 camera and the Leica Application112Suite V.4 software. The morphological characterization was made according to113Komárek and Anagnostidis (2005), observing the following characters: 1) macroscopic

Hentschke et al. 2021

114	aspect of the culture; 2) number of cells in trichomes; 3) trichome curvature and
115	constriction; 4) shape of cells and measurements; 5) cell content; 6) presence/absence of
116	aerotopes; 7) presence/absence of filaments sheaths or mucilage (using China Ink); 8)
117	reproduction. The measurements were tabulated and the cells length/width were
118	calculated for each of the new genera.
119	
120	2.4. DNA extraction, PCR amplification and sequencing
121	Total genomic DNA of the three studied strains (LEGE 06013, LEGE 11480 and
122	LEGE 11467) was isolated using MOBIO Ultraclean DNA Isolation Kit (Life
123	Technologies). To obtain the 16S rRNA gene and the 16S-23S Internal Transcribed
124	Spacer (ITS) of the strains LEGE 06013 and LEGE 11467, the PCR was performed
125	using the primers 27F1 (Neilan et al., 1997) and 23SR (Taton et al., 2003) in a Biometra
126	2 thermal cycler (Analytik Jena). The reaction contained 13 μl H ₂ O, 5 μl 5× Buffer
127	(Promega), 2 μ l MgCl ₂ (25mM), 1 μ l DNTPs (10 μ M), 1.25 μ l of each primer (10 μ M),
128	0.3 µl of GoTaq polymerase (Promega). The thermal cycling conditions used were:
129	initial denaturing 94°C (5 min) followed by 10 cycles of 94 °C (45 s), 57 °C (45 s), 72
130	°C (2 min), then 25 cycles of 92 °C (45 s), 54°C (45 s), 72°C (2 min) before a final
131	elongation step of 72°C (7min). The PCR products were cloned using the pGEM®-T
132	Easy Vector System (Promega, Madison, WI, USA), transformed by heat-shock into E.
133	coli cells and plated for blue-white screening (Sambrook & Russel 2001). Two colonies
134	were selected for each strain. After growth, plasmids were extracted from white
135	colonies using the NZYTech Miniprep Kit (NZYTech), and were prepared for
136	sequencing using the primers 27F (Neilan et al., 1997), 359F (Nubel et al., 1997), 781R
137	(Nubel et al., 1997), 1114F (Lane, 1991) and 23S30R (Neilan et al,. 1997). The
138	resulting sequences were assembled using Geneious 8.1.9. software package

Hentschke et al. 2021

139 (Biomatters) and analyzed for the presence of chimeras hidden in the rRNA sequences

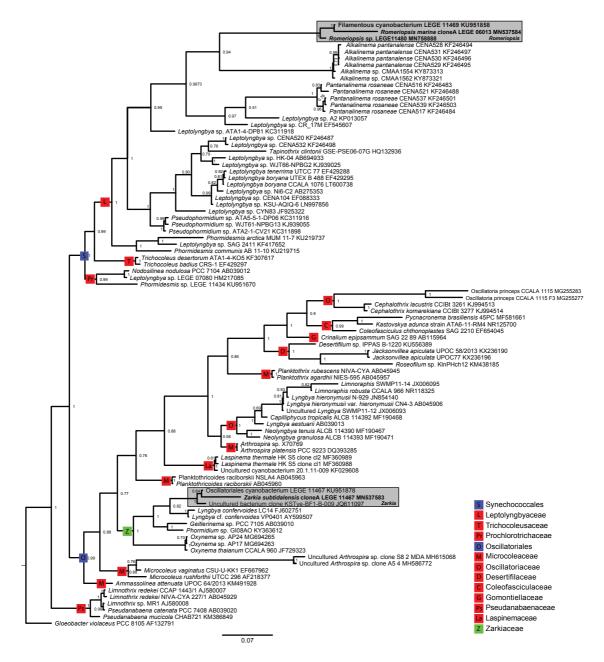
140 by DECIPHER web tool (Wright et al., 2012).

141 To obtain the sequence of the 16S rRNA gene of strain LEGE 11480, this gene 142 was amplified from its gDNA using two set of primers: 27F/781R and 359F/1494R 143 (Neilan et. al, 1997; Nubel et al., 1997) in a MyCycler (Bio-Rad laboratories Inc., Hercules, CA, USA) or T-Professional Standard (Analytik Jena) thermal cyclers, 144 145 following the methodology previously described (Tamagnini et al., 1997). For this set of 146 primers, the PCR reaction contained 7.9 µl H₂O, 4 µl 5× Buffer (Promega), 2 µl MgCl₂ 147 (25mM), 1 µl DNTPs (10 µM), 2 µl of each primer (10 µM), 0.1 µl GoTaq polymerase 148 (Promega) and 1 µl of template DNA. The thermal cycling conditions were: initial 149 denaturation at 95 °C for 2 min, followed by 35 cycles of denaturation at 95 °C for 1 min, annealing at 55 °C for 45 s, and extension at 72 °C for 1 min, and a final extension 150 151 step at 72 °C for 5 min. After PCR, to obtain the sequences, the PCR products were 152 purified using NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel, Düren, 153 Germany). Purified PCR products were cloned into pGEM®-T Easy Vector (Promega, 154 Madison, WI, USA), and transformed into OneShot TOP10 chemically competent 155 Escherichia coli cells (Invitrogen, Carlsbad, CA) by heat-shock. After blue-white 156 screening, plasmid DNA was isolated using GenElute TM Plasmid Miniprep Kit (Sigma-157 Aldrich) and sequenced using the M13 primers: reverse (22mer): 5'-d (TCACACAGGAAACAGCTATGAC)-3' and forward (24mer): 5'-d 158 159 (CGCCAGGGTTTTCCCAGTCACGAC)-3'. The resulting sequences were assembled 160 using Geneious 7.0. software package (Biomatters) and analyzed for the presence of 161 chimeras hidden in the rRNA sequences by DECIPHER web tool (Wright et al., 2012). 162

Hentschke et al. 2021

163 2.5. 16S rRNA gene phylogenetic analysis and 16S-23S rRNA intergenic spacer (ITS)

164 secondary structures


165 Phylogenies were constructed aligning Zarkia and Romeriopsis 16S rRNA gene 166 sequences with a set of 85 sequences of homocytous cyanobacterial strains retrieved from the GenBank using BLAST. Also, we added reference strains of Synechococcales 167 168 and Oscillatoriales genera and families. The total alignment length had 2384 nucleotide 169 positions with 936 informative sites. Then, to find the phylogenetic positions of our 170 sequences, we performed Maximum Likelihood (ML) and Bayesian Inference (BA) 171 analysis. A similarity matrix (p-distance) was also generated to compare taxa, using 172 MEGA version 6 (Tamura et al., 2013). All the alignments were performed using ClustalW (Thompson et al., 1994); ML 173 174 trees were performed using RAxML-HPC2 on XSEDE 8.2.10 (Stamatakis, 2014) with 175 bootstrap = 1000; BA tree was performed using MrBayes on XSEDE 3.2.6 (Ronquist et al., 2012), with two runs of 5×10^7 generations and NST = 6. The other parameters were 176 177 left as defaults. The standard deviation for split frequencies was 0.01. All of those were 178 ran on CIPRES Science Gateway (Miller et al., 2015). 179 The secondary structures of the D1-D1', Box B, V2 and V3 helices of 16S-23S 180 rRNA ITS were folded using Mfold (Zuker, 2003) using default parameters. The V2 181 helices were not found in Pantanalinema Vaz et al. sequences, because these ITS 182 sequences do not present tRNAs. 183 184 185 **3. RESULTS** 186 3.1. Phylogenetic analysis 187

Hentschke et al. 2021

188	The BA (Fig. 1) and ML (Fig. S1) phylogenies (91 OTUs, 936 informative sites)
189	show very identical topologies and strong statistical support in the backbones. Both
190	trees show Oscillatoriales (BA 0.99, ML 78) and Synechococcales (BA 1, ML 37) as
191	monophyletic orders, although Pseudanabaenaceae (traditionally Synechochoccales) is
192	positioned at the base of both trees, outside of Oscillatoriales or Synechococcales.
193	The phylogenies confirm <i>Romeriopsis</i> as a monophyletic clade (ML=100,
194	BA=1) in family Leptolyngbyaceae (Synechococcales), being closely related to
195	Alkalinema. The new genus Zarkia is also monophyletic, with strong phylogenetic
196	support (ML=100, BA=1), and is clustered with Lyngbya cf. confervoides (ML=79,
197	BA=0.8), "Phormidium" GI08AO and Oxynema clades in the Oscillatoriales. In these
198	phylogenetic trees, the order Synechococcales presents well-supported monophyletic
199	families. The order Oscillatoriales presents polyphyletic families, such as
200	Microcoleaceae and Oscillatoriaceae.
201	Although Zarkia is clustered with the Microcoleaceae genus Oxynema (ML=72,
202	BA=1), the new genus is phylogenetically distant to Microcoleus and cannot be
203	included in Microcoleaceae. Furthermore, Zarkia is not clustered with any other
204	reference strain of any already known family (e. g. Oscillatoria princeps CCALA 115
205	for Oscillatoriaceae). These observations, taken together with the polyphyletic
206	Oscillatoriales families, preclude the inclusion of the new genus Zarkia in any
207	previously described family. Consequently, we describe below the new monophyletic
208	family Zarkiaceae to encompass Zarkia, Oxynema Chatchawan and related clades.
209	The similarity matrix (p-distance) (Table S1) corroborates the phylogenetic
210	inferences and confirms Romeriopsis and Zarkia as new genera. This analysis shows
211	Romeriopsis with 98.4-99.7% of intra-clade similarity and only 89.6% of similarity to
212	Alkalinema, its phylogenetically most closely-related clade. The similarity between

Hentschke et al. 2021

- 213 Zarkia sequences is 99.1% and the similarity between this clade and Lyngbya
- 214 confervoides, its most closely-related clade, is only 86.3%. The similarity between
- 215 Zarkia and the clade of Phormidium GI08AO and Geitlerinema sp. PCC 7105 ranges
- 216 between 93.6-94.5%.

217

Fig. 1. Bayesian 16S rRNA gene phylogeny constructed with trees 91 OTUs and 936 informative sites. Nodes support are presenting BA posterior probabilities. The strains sequenced for this study

- are in bold. Blue squares represent order level nodes. Red squares represent family level nodes.
- 221

Hentschke et al. 2021

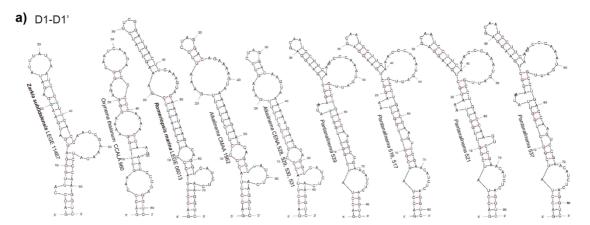
223 3.2. 16S-23S rRNA intergenic spacer (ITS) analysis

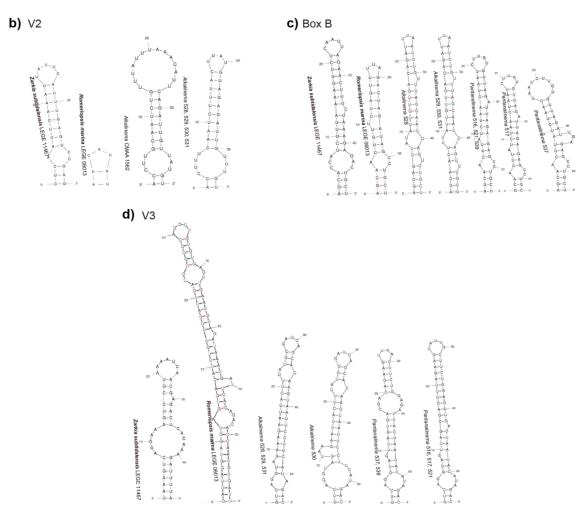
224 *3.2.1. Zarkia*

225 We compared the ITS secondary structure of Zarkia with that of its 226 phylogenetically closest related described genus with available ITS data, Oxvnema (Fig. 2). It was possible to compare only the D1-D1' helix, because of the short length of the 227 228 Oxvnema CCALA 960 JF729323 sequence. Between both genera, this helix is variable 229 in sequence, length and structure. Zarkia D1-D1' helix presents a long basal stem with 230 10 bp plus two residues, while Oxynema presents the typical 4 bp (⁵'GACC^{3'}/⁵'GGTC^{3'}) 231 D1-D1' cyanobacterial basal stem. The long basal stem of Zarkia is unique among 232 Cyanobacteria. Furthermore, the 5' side of Zarkia's molecule presents no residues opposing the first lateral bulge, while Oxynema presents three residues in this position. 233 234 These differences support the separation of both genera, which is in line with our 235 phylogenetic analysis. It was not possible to compare Zarkia with Lyngbya confervoides, "Phormidium" GI08AO and "Geitlerinema" PCC7105, because of the 236 237 lack of ITS data for these strains. 238 239 3.2.2. Romeriopsis 240 We compared the ITS secondary structures of *Romeriopsis* with those of its

241 phylogenetically closest related genera, *Alkalinema* and *Pantanalinema* (Fig. 2).

242 *Pantalinema*'s ITS sequences do not present the tRNAs, and because of that, the


comparisons among the V2 helices were not possible with this genus. The D1-D1' helix

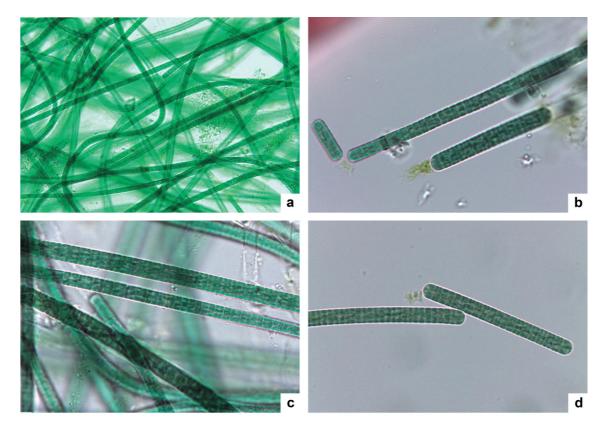

of *Romeriopsis* and *Alkalinema* are identical in the basal stem, lateral bulge and first

- loop, making the differentiation between genera impossible by this helix region. It is
- 246 possible to differentiate both genera by the terminal loop. Although Alkalinema's D1-
- 247 D1' helices are variable in the genus, the terminal loop is conserved (⁵'CUAG³') and

Hentschke et al. 2021

- 248 different from *Romeriopsis* (⁵'UUCG³'). The Box B, V2 and V3 helices are very
- 249 different in length, sequence and structure, supporting the separation of both genera.
- 250 Comparing *Romeriopsis* with *Pantanalinema*, the D1-D1' helix presents small
- 251 variations among the strains of the latter genus. Even so, these helices are different from

Fig. 2. 16S-23S rRNA gene ITS secondary structures of a) D1-D1' helices, b) V2 helices, c) Box B helices and d) V3 helices of *Zarkia*, *Romeriopsis* and phylogenetically related genera.


Hentschke et al. 2021

252	Romeriopsis helices by length, sequence and structure, remarkably by the presence of an
253	adenine opposing the first lateral bulge in Pantanalinema and absence of residues in this
254	position in Romeriopsis. The Box B, V2 and V3 helices are very different in length,
255	sequence and structure, also corroborating the separation of both genera.
256	
257	3.3. Descriptions of the new taxa
258	Oscillatoriales Schaffner
259	Zarkiaceae fam. nov. G.S. Hentschke & P. N. Leão
260	
261	Filaments isopolar, solitary or entangled. Sheaths present, firm or diffluent,
262	homogenous, opened at the ends, hyaline. Trichomes straight or wavy, cylindrical or
263	narrowed at the ends, constricted or not constricted at cross-walls, facultatively motile.
264	Cells isodiametric, longer than wide, shorter than wide, or discoid. Cell content
265	sometimes granulated, with or without aerotopes. Reproduction by hormogonia.
266	
267	Type: Zarkia subtidalensis G.S. Hentschke, A. Pinheiro, V. Ramos & P. N. Leão
268	
269	Zarkia subtidalensis gen. et sp. nov. G.S. Hentschke, A. Pinheiro, V. Ramos & P. N.
270	Leão
271	Fig. 3
272	
273	In culture, forming mats attached to the flask walls. Filaments isopolar, solitary
274	or entangled, straight or wavy. Sheaths firm, thin, homogenous and colourless.
275	Trichomes cylindrical, not constricted or slightly constricted (shorter cells) at cross-
276	walls, sometimes motile. Cells shorter than wide, rarely isodiametric or, rarely discoid

Hentschke et al. 2021

- 277 (only after division), 2.7-4 μm length, 5.6-7.6 μm wide, ratio l/w 1.4-2.3 for adult cells.
- 278 Apical cells rounded. Cell content homogenous, dark green, with aerotopes.
- 279
- 280 Holotype: PO-T4766 (unialgal population preserved lyophilized), University of Porto
- 281 Herbarium.
- 282 **Type locality:** 'A Pedra', diving spot in front of the fort 'Castelo do Queijo', Portugal:
- 283 (41.185809 N 8.719079 W)
- Habitat: marine, subtidal sample, epilithic (13 m depth), about 200 m off the shore.
- 285 Etymology: Zarkia, from Arabic-hispanic "zarco" means blue, the color of the ocean,
- and for Gonçalves Zarco Square, location of the fort near the collection site;
- 287 *subtidalensis* is for subtidal.

288 **Reference strain:** Zarkia subtidalensis LEGE 11467 (MN537583)

289

Fig. 3. Microphotographs of *Zarkia subtidalensis*. **a.** General view of the culture; **b-d.** Details of hormogonia and trichomes showing shorter than wide cells. Magnification: $3a = 40 \times$, $3b-d = 1000 \times$.

Hentschke et al. 2021

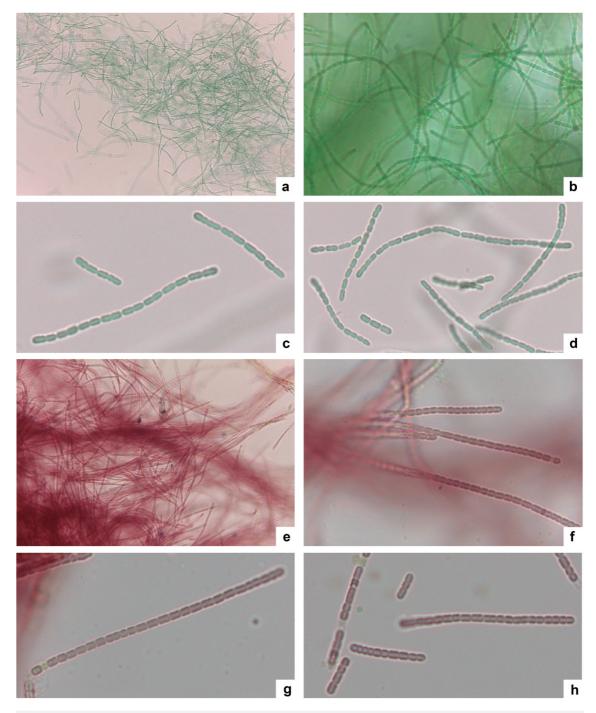
293 Synechococcales Hoffmann et al.

- 294 Leptolyngbyaceae (Komárek et Anagnostidis) Komárek et al. 2014
- 295 *Romeriopsis marina* gen. et sp. nov. G.S. Hentschke, A. Pinheiro, V. Ramos et P. N.
- 296 Leão
- 297 Fig. 4a-d

- 299 walls. Trichomes cylindrical, constricted, slightly curved or wavy, few celled (more
- 300 common) or long (>50 cells check other species). With very thin sheaths (visible only in
- 301 broken filaments) or without. Without mucilaginous envelope. Adult cells longer than
- 302 wide, cylindrical or rarely barrel shaped, 1.6-3 µm length, 1.5-2 µm wide, ratio
- 303 length/width 1.2-1.9. Terminal cells rounded. Cell content olive-green, not granulated,
- 304 without aerotopes. Reproduction by fragmentation of trichomes.
- 305

308 Type locality: Praia da Foz do Arelho, Caldas da Rainha, Portugal, (39.43327 N

309 9.230275 W)


- 310 Habitat: marine, intertidal zone, wave-exposed rock
- 311 Etymology: Romeriospsis, similar to Romeria, due to the short trichomes; marina is for
- 312 marine.
- 313 Reference strain: Romeriopsis marina LEGE 06013 MN537584

- 315 Notes
- 316 Differs from *Romeria* by the common presence of long trichomes (>50 cells),
- 317 which do not disintegrate easily, by the presence of sheaths and by the absence of

³⁰⁶ Holotype: PO-T4767 (unialgal population preserved lyophilized), University of Porto
307 Herbarium.

Hentschke et al. 2021

- 318 diffluent mucilaginous envelopes. Indistinguishable in morphology from
- 319 Pantanalinema and Alkalinema.
- 320 *Romeriopsis* sp. LEGE 11480 (Fig. 4, e-h) was identified only in generic level.
- 321 This strain is morphologically identical to *Romeriospsis marina* LEGE 06013 but

Fig. 4. Microphotographs of *Romeriopsis marina* (**a-d**) and *Romeriopsis* sp. (**e-h**). **a**, **b** – General view of the culture showing long and short trichomes; **c**, **d** – Details of short trichomes. **e** – General view of the culture showing long and short trichomes; **f-h** – Details of short trichomes. Magnification: 4a, $4e = 40 \times$; 4b-d and 4f-h = $1000 \times$.

Hentschke et al. 2021

322	presents reddish cell content and was collected in a different habitat. Romeriopsis sp.
323	LEGE 11480 was collected at the same location and habitat as Zarkia subtidalensis
324	LEGE 11467, on a rocky substrate at 13m depth and 200 m off the shore, being
325	subtidal, while R. marina LEGE 06013 was collected on a wave-exposed rock in the
326	intertidal zone. Although the 16S rRNA gene tree indicates that Romeriopsis sp. LEGE
327	11480 could be another species in Romeriopsis clade, we could not describe it, because
328	of the lack of ITS data and any morphological diagnostic character.

329

330 4. Discussion

The wave energy action and related environmental conditions from the north continental Portuguese coast (Coelho et al., 2009), where the studied marine strains were collected, are known drivers shaping the coastal biodiversity, including that of microbial communities (Witt et al., 2012). Along with the sampling effort, this may partially explain why this marine temperate region is being a rich source of novel cyanobacteria taxa, already described (Brito et al., 2017) or at least phylogenetically highlighted (Ramos et al., 2018).

338 In this paper we described the new genera *Romeriopsis* and *Zarkia*, and the new 339 family Zarkiaceae supported by 16S rRNA gene phylogeny and 16S-23S rRNA ITS 340 secondary structures. The family Zarkiaceae was named after Zarkia and encompasses a monophyletic clade containing Zarkia, as well as the strains Lyngbya confervoides 341 LC14 FJ602751, Lyngbya cf. confervoides VP0401 AY599507, Phormidim sp. GI08AO 342 343 KY363612, Geitlerinema sp. PCC 7105 AB039010 and the genus Oxynema. The strains identified as *Lyngbya confervoides*, were previously used as reference for *Lyngbya* by 344 345 Komárek et al. (2013) and Caires et al. (2018a), but although they are morphologically and ecologically similar to the type species description, they are not well characterized 346

Hentschke et al. 2021

347	(Komárek et al., 2013) and cannot be surely assigned to this genus, because of limited
348	available data (only one photo and not conclusive phylogeny in Sharp et al., 2009).
349	Many other papers show Lyngbya as a polyphyletic genus (Engene et al., 2018; Caires
350	et al., 2018b; Mühlsteinová et al., 2018) and to identify the true Lyngbya clade, a robust
351	revision of the genus is needed. This has been done, for example, by Mühlsteinová et al.
352	(2018) to establish the true Oscillatoria clade. According to this, we didn't include the
353	genus Lyngbya in Zarkiaceae and chose to consider the Lyngbya cf. confervoides clade
354	as still undefined, worthy to be revised., The monophyletic clade containing
355	"Phormidium" GI08AO and "Geitlerinema" PCC 7105 strains is another genus that has
356	to be described in the future.
357	Morphologically, Zarkiaceae is similar to Microcoleaeceae, presenting, in the
358	case of Zarkia, isodiametric or slightly shorter than wide adult cells, and is it also
359	similar to Oscilatoriaceae presenting discoid cells, in the case of Lyngbya cf.
360	confervoides strains. As for the descriptions of Ocullatelaceae and Trichocoleaceae
361	(Synechococcales) (Mai et al., 2018), no diacritical morphological markers were found
362	for Zarkiaceae. Although this lack of morphological diacritic characters, according to
363	our trees, we could not assign Zarkia to any already described family, considering that
364	this genus is phylogenetically unrelated to any reference strains for previously-described
365	families represented here by Desertifilum sp. IPPAS B-1220 KU556389
366	(Desertifilaceae), Coleofasciculus chthonoplastes SAG 2210 EF654045
367	(Coleofasciculaceae), Crinalium epipsammum SAG 22.89 NR_112218
368	(Gomontiellaceae), Microcoleus vaginatus CSU-U-KK1 EF66796 (Microcoleaceae)
369	and Oscillatoria princeps CCALA 1115 F3 MG255277 (Oscillatoriaceae). Furthermore,
370	it is evident that Oscillatoriales families are polyphyletic. Our trees show six clades
371	containing Microcoleaceae genera, five of which not related to Microcoleus. Likewise,

Hentschke et al. 2021

372	there is one additional Oscillatoriaceae clade (Capilliphycus and Neolyngbya clade) not
373	related to Oscillatoria. Although we find Oscillatoriales as a monophyletic order, our
374	phylogenies are in agreement with Ishida et al. (2001), Jahodarová et al. (2017) and
375	Nowicka-Krawczyk et al. (2018), which also show many polyphyletic Oscillatoriales
376	families, including Microcoleaceae and Oscillatoriaceae. We highlight also that the
377	family Pseudanabaenaceae (traditionally Synechococcales) is not included in
378	Oscillatoriales or Synechococcales clades, indicating that the phylogenetic position and
379	taxonomy of this family must be revised. The same result was found by Mai et al
380	(2018).
381	In this study we use the monophyletic species concept (Johansen and Casamatta,
382	2005) for delimitation of genera and families (Komárek et al., 2014; Mai et al., 2018).
383	As stated by Komárek et al. (2014), "morphological characters used to define higher
384	taxahave apparently arisen and/or been lost several times during the evolution of
385	modern species and genera". Considering this, we believe that in the near future, after
386	taxonomical revisions based on 16S rRNA gene, cryptic cyanobacterial families will be
387	more common. Mai et al. (2018) highlight the importance of finding new markers for
388	higher taxonomical levels; in order to describe Ocullatelaceae and Trichocoleaceae,
389	they have used molecular markers in the 16S rRNA gene secondary structures and
390	rpco1 gene phylogenies, which, however were not always in agreement with the 16S

rRNA gene phylogenies. Due to this, we considered the 16S rRNA gene phylogenies as

the current instrument to separate families, which, combined with the monophyletic

nature of Zarkiaceae, led to the description of a new family. The 16S-23S rRNA gene

394 ITS secondary structures support our proposal, since Zarkia presents a unique D1-D1'

395 helix among Cyanobacteria.

392

Hentschke et al. 2021

396	In the Synechococcales clade, our phylogenetic analysis (Fig. 1) is in agreement
397	with the revision of Mai et al. (2018) for the order, showing monophyletic families.
398	Romeriopsis is clearly monophyletic (ML=100, BA=1) and positioned in
399	Leptolyngbyaceae, clustered with Alkalinema and Pantanalinema. A smaller related
400	clade contains strains assigned to Leptolyngbya (Leptolyngbya sp. A2 KP01305 and
401	Leptolyngbya sp. CR_17M EF545607), which must be described as a new genus in the
402	future. The 16S-23S rRNA gene ITS secondary structures are also in agreement with
403	these findings, as explained in the results section.
404	The herein described new genera, Zarkia and Romeriopsis, are supported by 16S
405	rRNA phylogenies, 16S-23S rRNA gene ITS secondary structures and morphological
406	analysis. Zarkia is grouped with high phylogenetic support with Lyngbya cf.
407	confervoides, but these taxa are morphologically very different. Zarkia presents adult
408	cells mainly smaller than wide (ratio l/w 1.4-2.3), discoid only after division, while
409	Lyngbya cf. confervoides presents the typical Lyngbya discoid adult cells. The 16S-23S
410	rRNA gene ITS secondary structures of the D1-D1' helix of Zarkia are unique among
411	Cyanobacteria, as commented above. Romeriopsis is morphologically similar to
412	Romeria regarding a generally short trichome length but differs by the common
413	presence of long trichomes (>50 cells), which do not disintegrate easily as in Romeria,
414	by the presence of sheaths and the absence of diffluent mucilaginous envelopes. Up to
415	now, there is no available 16S rRNA gene sequence clearly assigned to Romeria in
416	public databases. For this reason, we have not included this genus in our phylogeny.
417	Romeriospsis is morphologically indistinguishable from Pantanalinema and
418	Alkalinema, but the phylogenies and the 16S-23S rRNA gene ITS secondary structures
419	in the current study confirm that these are three separate genera.

420

Hentschke et al. 2021

421

422 **5.** Conclusion

423	The 16S rRNA gene is still the most reliable molecular marker for taxonomical					
424	studies at the genus level and is proving to be useful also for family delimitation of					
425	Cyanobacteria, although additional markers must be tested. For that reason, a global					
426	effort from the research community is required to allow the reconstruction of the					
427	evolutionary history of these photosynthetic microorganisms. Traditional,					
428	morphological-based family taxonomy is in conflict with present molecular and					
429	phylogenetic data. By proposing the erection of a new family, this work is an additional					
430	contribution towards the long journey of resolving Cyanobacteria systematics. Based on					
431	the phylogenetic data presented herein, we also emphasize the need for a taxonomic					
432	revision of several Oscillatoriales families and genera.					
433						
434	Declaration of interest					
435	All authors declare no conflict of interest.					
436						
437	Statement of informed consent					
438	No conflicts, informed consent, human or animal rights applicable.					
439						
440	Funding					
441	This work was supported by the European Marine Biological Resource Centre Biobank					
442	-EBB (EAPA_501/2016) and by Fundação para a Ciência e a Tecnologia (FCT) grants					
443	PTDC/MAR-BIO/2818/2012, UID/Multi/04423/2019 and IF/01358/2014.					
444						
445	Declaration of the contributions of the authors					

Hentschke et al. 2021

446	GSH worked in collection and assembly of data, analysis and interpretation of the data					
447	and drafting the article. AP, VR, AB, MSC, SB, VV, PNL worked in conception and					
448	design, collection and assembly of data, obtaining of funding, analysis and					
449	interpretation of the data and critical revision of the article for important intellectual					
450	content. All authors read and approved the final version of the manuscript.					
451						
452	Supporting Information					
453	Fig. S1. Maximum Likelihood 16S rRNA gene phylogeny performed with 91 OTUs					
454	and 936 informative sites.					
455	Table S1. Similarity matrix (p-distance) comparing the 16S rRNA gene of Zarkia,					
456	Romeriopsis and related strains.					
457						
458						
459	References					
460	Brito, Â., Ramos, V., Mota R., Lima S., Santos, A., Vieira, J., Vieira, C. P., Kaštovsky,					
461	J., Vasconcelos, V. M., Tamagnini, P., 2017. Description of new genera and species of					
462	marine cyanobacteria from the Portuguese Atlantic coast. Mol. Phyl. Evol. 111, 18–34.					
463	https://doi.org/10.1016/j.ympev.2017.03.006.					
464						
465	Caires, T. A., Lyra, G. M., Hentschke, G. S., da Silva, A. M. S., de Araújo, V. L.,					
466	Sant'Anna, C. L., Nunes J. M. C., 2018a. Polyphasic delimitation of a filamentous					
467	marine genus, Capillus gen. nov. (Cyanobacteria, Oscillatoriaceae) with the description					
468	of two Brazilian species. Algae 33(4), 291-304.					
469	https://doi.org/10.4490/algae.2018.33.11.25					

- 471 Caires, T. A., Lyra, G. M., Hentschke, G. S., Pedrini, A. G., Sant'Anna, C. L., Nunes, J.
- 472 M. C., 2018b. Neolyngbya gen. nov. (Cyanobacteria, Oscillatoriaceae): A new
- 473 filamentous benthic marine taxon widely distributed along the Brazilian coast. Mol.
- 474 Phyl. Evol. 120, 196–211. https://doi.org/10.1016/j.ympev.2017.12.009

475

- 476 Calteau, A., Fewer, D. P., Latifi, A., Coursin, T., Laurent, T., Jokela, J., Kerfeld, C. A.,
- 477 Sivonen, K., Piel, J., Gugger, M., 2014. Phylum-wide comparative genomics unravel
- 478 the diversity of secondary metabolism in Cyanobacteria. BMC Genomics, 15(1), 977.
- 479 https://doi.org/10.1186/1471-2164-15-977
- 480
- 481 Coelho, C., Silva, R., Veloso-Gomes, F., Taveira-Pinto, F., 2009. Potential effects of
- 482 climate change on northwest Portuguese coastal zones. ICES Journal of Marine Science483 667, 1497-1507.
- 484 Engene, N., Tronholm, A., Paul, V. J., 2018. Uncovering cryptic diversity of *Lyngbya*:
- 485 the new tropical marine cyanobacterial genus *Dapis* (Oscillatoriales). J. Phycol. 54(4),
- 486 435-446. https://doi.org/10.1111/jpy.12752.

487

- 488 Hamilton, T. L., Bryant, D. A., Macalady, J. L., 2016. The role of biology in planetary
- 489 evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.
- 490 Environ. Microbiol., 18(2), 325–340. https://doi.org/10.1111/1462-2920.13118.
- 491
- 492 Hentschke, G. S., Johansen, J. R., Pietrasiak, N., Fiore, M. F., Rigonato, J., Sant'Anna,
- 493 C. L., Komárek, J., 2016. Phylogenetic placement of Dapisostemon gen. nov. and
- 494 Streptostemon, two tropical heterocytous genera (Cyanobacteria). Phytotaxa 245 (2),
- 495 129–143. https://doi.org/10.11646/phytotaxa.245.2.4.

Hentschke et al. 2021

496	
497	Ishida, T., Watanabe, M.M., Sugiyama, J. & Yokota A., 2001. Evidence for
498	polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales
499	as determined by 16S rDNA analysis. FEMS Microbiol. Lett. 201(1), 79-82.
500	https://doi.org/10.1111/j.1574-6968.2001.tb10736.x.
501	
502	Jahodářová, E., Dvořák, P., Hašler, P., Holušová, K., Poulíčková, A., 2017. Elainella
503	gen. nov.: a new tropical cyanobacterium characterized using a complex genomic
504	approach. Eur. J. Phycol. 53(1), 39-51. https://doi.org/10.1080/09670262.2017.1362591
505	
506	
507	Johansen, J. R., Casamatta, D. A., 2005. Recognizing cyanobacterial diversity through
508	adoption of a new species paradigm. Algol. Stud. 117, 71-93.
509	https://doi.org/10.1127/1864-1318/2005/0117-0071
510	
511	Komárek, J., Anagnostidis, K., 2005. Cyanoprokaryota 2. Teil Oscillatoriales, in: Büdel,
512	B., Krienitz, L., Gärtner, G., Schagerl, M. (Eds.), Süsswasserflora von Mitteleuropa,
513	vol. 19/2. Elsevier Spektrum Akademische, München, pp 1-759.
514	
515	Komárek, J., Zapomělová, E., Šmarda, J., Kopecký, J., Rejmánková, E., Woodhouse, J.,
516	Neilan, B. N., Komárková, J., 2013. Polyphasic evaluation of Limnoraphis robusta, a
517	water-bloom forming cyanobacterium from Lake Atitlán, Guatemala, with a description
518	of Limnoraphis gen. nov Fottea 13(1), 39-52. https://doi.org/10.5507/fot.2013.004
519	

Hentschke et al. 2021

520	Komárek, J.	., Kastovsky, J	, Mares, J.	Johansen, J.	R., 2014.	Taxonomic	classification
-----	-------------	-----------------	-------------	--------------	-----------	-----------	----------------

521 of cyanoprokaryotes (cyanobacterial genera), using a polyphasic approach, Preslia 86,

- 523
- 524 Konstantinou, D., Voultsiadou, E., Panteris, E., Zervou, S., Gkelis A. H. S., 2019.
- 525 Leptothoe, a new genus of marine cyanobacteria (Synechococcales) and three new
- 526 species associated with sponges from the Aegean Sea. J. Phycol. 55(4), 882-897.
- 527 https://doi.org/10.1111/jpy.12866.
- 528
- 529 Kotai, J., 1972. Instructions for Preparation of Modified Nutrient Solution Z8 for

530 Algae Publication B-11/69. Norwegian Institute for Water Research, Oslo.

531

532 Lane, D. J., 1999. 16S/23S rRNA sequencing, in: Stackebrandt, E., Goodfellow M.

- (Eds.), Nucleic Acid Techniques in Bacterial Systematics. Wiley, Chichester, pp. 115–
 175.
- 535

536 N	/Iai, T., Johansen	, J. R., Pietrasiak,	N., Bohunická, M.	., Martin, M. P.,	2018. Revision of
-------	--------------------	----------------------	-------------------	-------------------	-------------------

- 537 the Synechococcales (Cyanobacteria) through recognition of four families including
- 538 Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing
- 539 14 species. Phytotaxa 365(1), 1–59. https://doi.org/10.11646/phytotaxa.365.1.1.
- 540
- 541 Miller, M., Schwartz, T., Pickett, B., He, S., Klem, E., Passarotti, R. H., M., Kaufman,
- 542 S., O'Leary, M. A., 2015. A RESTful API for Access to Phylogenetic Tools via the
- 543 CIPRES Science Gateway. Evol. Bioinform. 11, 43–8.
- 544 https://doi.org/10.4137/EBO.S21501

^{522 295–335.} https://doi.org/10.1080/09670262.2016.1163738

Hentschke et al. 2021

```
545
```

- 546 Mühlsteinová, R., Hauer, T., De Ley, P., Pietrasiak, N., 2018. Seeking the true
- 547 Oscillatoria: A quest for a reliable phylogenetic and taxonomic reference point. Preslia
- 548 90, 151–169. https://doi.org/10.23855/preslia.2018.151.

549

- 550 Neilan, B. A., Jacobs, D., Dot, T. D., Blackall, L. L., Hawkins, P. R., Cox P. T.,
- 551 Goodman, A. E., 1997. rRNA sequences and evolutionary relationships among toxic
- and nontoxic cyanobacteria of the genus Microcystis. Int. Jour. Syst. Bact. 47, 693–697.
- 553 https://doi.org/10.1099/00207713-47-3-693
- 554
- 555 Nowicka-Krawczyk, P., Mühlsteinová, R., Hauer, T., 2019. Detailed characterization of
- 556 the *Arthrospira* type species separating commercially grown taxa into the new genus
- 557 Limnospira (Cyanobacteria). Nat. Scient. Rep. 9, 694. https://doi.org/10.1038/s41598-
- 558 018-36831-0.
- 559
- 560 Nubel, U., Garcia-Pichel, F., Muyzer, G., 1997. PCR primers to amplify 16S rRNA
- 561 genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327–3332.
- 562
- 563 Ramos et al., 2017. Cyanobacterial diversity held in microbial biological resource
- 564 centers as a biotechnological asset: the case study of the newly established LEGE
- 565 culture collection. Journal of Applied Phycology 30, 1437–1451.

566

- 567 Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D. L., Darling, A., Höhna, S.,
- 568 Larget, B., Liu, L., Suchard, M. A., Huelsenbeck, J. P., 2012. MrBayes 3.2: Efficient

Hentschke et al. 2021

- 569 bayesian phylogenetic inference and model choice across a large model space. Syst.
- 570 Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029.

571

- 572 Sambrook, J., Russell, D.W., 2001. Molecular Cloning, volume 1: a laboratory manual.
- 573 CSHL Press, New York.
- 574
- 575 Sharp, K., Arthur, K. E., Gu, L., Ross, C., Harrison, G., Gunasekera, S. P., Meickle, T.,
- 576 Matthew, S., Luesch, H., Thacker, R. W., Sherman, D. H., Paul, V. J., 2009.
- 577 Phylogenetic and chemical diversity of three chemotypes of bloom-forming Lyngbya
- 578 species (Cyanobacteria: Oscillatoriales) from reefs of southeastern Florida. Appl.
- 579 Environ. Microbiol. 75(9), 2879-2888. https://doi.org/10.1128/AEM.02656-08

- 581 Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-
- analysis of large phylogenies. Bioinf. 30, 1312–1313.
- 583 https://doi.org/10.1093/bioinformatics/btu033.
- 584
- 585 Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6:
- 586 molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.
- 587 https://doi.org/10.1093/molbev/mst197.
- 588
- 589 Taton, A., Grubisic, S., Brambilla, E., De Wit, R., Wilmotte, A., 2003. Cyanobacterial
- 590 diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry
- 591 Valleys, Antarctica): a morphological and molecular approach. Appl. Environ.
- 592 Microbiol. 69(9), 5157-5169. https://doi.org/10.1128/aem.69.9.5157-5169.
- 593

Hentschke et al. 2021

- 594 Thompson, J. D., Higgins, D. G., Gibson, T. J., 1994. CLUSTAL W: improving the
- sensitivity of progressive multiple sequence alignment through sequence weighting,
- 596 position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22(22),
- 597 4673-4680. https://doi.org/10.1093/nar/22.22.4673.
- 598
- 599 Witt, M. J., Sheehan, E. V., Bearhop, S., Broderick, A. C., Conley, D. C., Cotterell, S.
- 600 P., Godley, B. J., 2012. Assessing wave energy effects on biodiversity: the Wave Hub
- 601 experience. Philosophical Transactions of the Royal Society A: Mathematical, Physical
- and Engineering Sciences 370, 502-529.
- 603
- 604 Wright, E. S., Yilmaz, L. S., Noguera, D. R., 2012. DECIPHER, A Search-Based
- 605 Approach to Chimera Identification for 16S rRNA Sequences. Appl. Environ.
- 606 Microbiol. 78(3), 717-725. https://doi.org/10.1128/AEM.06516-11.
- 607
- 608 Zhou, W. G., Ding, D. W., Yang, Q. S., Ahmad, M., Zhang, Y. Z., Lin, X. C., Zhang, Y.
- 609 Y., Ling, J., Dong, J. D., 2018. Marileptolyngbya sina gen. nov., sp. nov. and
- 610 Salileptolyngbya diazotrophicum gen. nov., sp. nov. (Synechococcales, Cyanobacteria),
- 611 species of cyanobacteria isolated from a marine ecosystem. Phytotaxa 383, 075–092.
- 612 https://doi.org/10.11646/phytotaxa.383.1.4.
- 613
- 614 Zuker, M., 2003. Mfold web server for nucleic acid folding and hybridization
- 615 prediction. Nucl. Acids Res. 31, 3406-3415. https://doi.org/10.1093/nar/gkg595.
- 616
- 617