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Abstract  10 

Single-cell genomic technologies provide an unprecedented opportunity to define 11 
molecular cell types in a data-driven fashion, but present unique data integration challenges. 12 
Integration analyses often involve datasets with partially overlapping features, including both 13 
shared features that occur in all datasets and features exclusive to a single experiment. 14 
Previous computational integration approaches require that the input matrices share the same 15 
number of either genes or cells, and thus can use only shared features. To address this 16 
limitation, we derive a novel nonnegative matrix factorization algorithm for integrating single-cell 17 
datasets containing both shared and unshared features. The key advance is incorporating an 18 
additional metagene matrix that allows unshared features to inform the factorization. We 19 
demonstrate that incorporating unshared features significantly improves integration of single-cell 20 
RNA-seq, spatial transcriptomic, SHARE-seq, and cross-species datasets. We have 21 
incorporated the UINMF algorithm into the open-source LIGER R package 22 
(https://github.com/welch-lab/liger).   23 
 24 
Introduction  25 

Each cell type or state within an organism is distinguished by its gene expression, 26 
epigenetic regulation, and spatial location within a tissue. Single-cell sequencing technologies 27 
measure each of these features in individual cells, allowing researchers to classify cells in a 28 
data-driven manner. Determining what features are common, or different, between each cell 29 
type provides researchers insight into the function of the cell. Comparing the profiles of 30 
diseased cells with those of healthy cells also reveals disease-related aberrant features. An 31 
ideal characterization of a cell type goes beyond analyzing features such as epigenetic and 32 
gene expression individually, instead examining their relationships. Jointly examining cellular 33 
features holds promise for understanding gene regulatory mechanisms that control cell fates. 34 
 Current single-cell sequencing technologies cannot simultaneously measure all relevant 35 
aspects of cell state. In particular, emerging techniques such as the Multiome assay from 10X 36 
Genomics can measure gene expression and chromatin accessibility from the same cell1–6, but 37 
do not generally capture methylation or spatial features. Spatial transcriptomics, named Method 38 
of the Year 2020 by Nature Methods7, encompasses a rapidly growing suite of techniques8–11 39 
that interrogate gene expression patterns within intact tissue. However, protocols for spatial 40 
measurements of epigenomic state are not widely available.  41 
 The different types of features measured by different single-cell technologies create 42 
unique computational data integration challenges. Most existing computational approaches for 43 
multi-omic data integration are designed for either vertical or horizontal integration scenarios12. 44 
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Vertical integration approaches are useful for datasets measured across a common set of 45 
samples or cells. Well-established methods for multi-omic integration of bulk data such as 46 
similarity network fusion and iCluster13,14 fall into this category, as well as recent methods for 47 
single-cell datasets with multiple modalities per cell such as MOFA+, totalVI, and the Seurat 48 
weighted nearest neighbors algorithm15–17. Conversely, horizontal integration uses a set of 49 
common variables or features to integrate over multiple experiments, typically using shared 50 
genes as the basis of integration. Batch effect correction approaches originally designed for bulk 51 
sequencing data (e.g., RUV18,19 and ComBat20) solve a horizontal integration problem. Similarly, 52 
“dataset alignment” algorithms developed for single-cell data, such as Seurat, Harmony, and our 53 
previous method LIGER15,21,22 also rely on shared features and can thus be considered 54 
horizontal integration techniques. 55 

In short, LIGER, as well as Seurat and Harmony, is constrained to integrate across 56 
features shared between datasets. These methods require that the input matrices all contain a 57 
common set of genes or features that are measured in all datasets. Thus, these methods 58 
cannot incorporate features unique to one or more datasets, such as intergenic epigenomic 59 
information.  60 
 Restricting single-cell integration analyses to features shared across all datasets is 61 
problematic because it often necessitates discarding pertinent information. For instance, 62 
scRNA-seq measures transcriptome-wide gene expression within individual cells, but spatial 63 
transcriptomic protocols often measure only a chosen subset of all genes. Yet for many 64 
applications, we want to integrate scRNA-seq and spatial transcriptomic datasets, which have 65 
neither the same number of features (genes) nor the same number of observations (cells). By 66 
integrating the datasets using only shared features, we fail to capitalize on the higher resolution 67 
provided by the scRNA-seq modality. When integrating cross-species datasets, the integration 68 
is restricted to homologous genes, disregarding all genes without unambigious one-to-one 69 
relationships between species. Likewise, when integrating single-cell epigenomic data with 70 
single-cell transcriptomic data, horizontal integration approaches do not take into account the 71 
important epigenomic features from intergenic regulatory elements. As a final example, existing 72 
methods do not provide a way to leverage paired epigenomic information when integrating data 73 
types such as SNARE-seq1,4 or 10X Multiome with single-cell or spatial transcriptomic datasets. 74 
Such integration analyses do not fit neatly into either the horizontal or vertical integration 75 
paradigm, requiring the development of new methods. 76 
 The critical need to include unshared features in single-cell integration analyses 77 
motivated us to extend our previous approach. We developed UINMF, a novel nonnegative 78 
matrix factorization algorithm that allows the inclusion of both shared and unshared features. 79 
UINMF can integrate data matrices with neither the same number of features (e.g., genes, 80 
peaks, or bins) nor the same number of observations (cells). Furthermore, UINMF does not 81 
require any information about the correspondence between shared and unshared features, such 82 
as links between genes and intergenic peaks. By incorporating unshared features, UINMF fully 83 
utilizes the available data when estimating metagenes and matrix factors, significantly improving 84 
sensitivity for resolving cellular distinctions. 85 
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 86 
 87 
Figure 1: Overview of new nonnegative matrix factorization algorithm for integrating 88 
single-cell datasets with partially overlapping features. (a) Schematic representation of 89 
matrix factorization strategy (top) and optimization problem formulation (bottom). The addition of 90 
matrix 𝑈𝑈𝑖𝑖 allows for unshared features to be utilized in joint matrix factorization. Each dataset 91 
(𝐸𝐸𝑖𝑖)  is decomposed into shared metagenes (𝑊𝑊), dataset-specific metagenes (𝑉𝑉𝑖𝑖), unique 92 
metagenes (𝑈𝑈𝑖𝑖), and cell factor loadings (𝐻𝐻𝑖𝑖 ). The incorporation of the 𝑈𝑈 matrix allows features 93 
that occur in only one dataset to inform the resulting integration.  94 
(b)  UINMF can integrate data types such as scRNA-seq and snATAC-seq using both gene-95 
centric features and intergenic information. (c) UINMF can integrate targeted spatial 96 
transcriptomic with simultaneous single-cell RNA and chromatin accessibility measurements 97 
using both unshared epigenomic information and unshared genes.  98 
 99 
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Results 100 
 101 
New Integrative Nonnegative Matrix Factorization Algorithm for Partially Overlapping 102 
Feature Sets 103 

The key innovation of UINMF is the introduction of an unshared metagene matrix 𝑈𝑈 to 104 
the iNMF objective function, incorporating features that belong to only one or a subset of the 105 
datasets when estimating metagenes and cell factor loadings.  Previously, dataset integration 106 
using the iNMF algorithm operated only on features common to all datasets. Each dataset (𝐸𝐸𝑖𝑖) 107 
was decomposed into dataset specific metagenes (𝑉𝑉𝑖𝑖), shared metagenes (𝑊𝑊), and cell factor 108 
loadings (𝐻𝐻𝑖𝑖), and the optimization problem was solved iteratively. By including an unshared 109 
metagene matrix (𝑈𝑈𝑖𝑖), we provide the capability to include unshared features during each 110 
iteration of the optimization algorithm (Fig. 1a). The new optimization algorithm does not 111 
introduce significant computational complexity compared to our previous iNMF algorithm (see 112 
Methods). 113 

The unshared feature matrix can include extra genes, intergenic features, non-114 
homologous genes, or any other data type that is measured in one of the datasets. Importantly, 115 
UINMF makes no assumptions about the relationship between the unshared features and the 116 
shared features; for example, no prior knowledge about linkages between intergenic peaks and 117 
genes is required. Instead, such covariance among features is learned during the optimization 118 
process, as both shared and unshared features contribute to the reconstruction of the original 119 
data through the inferred latent factors. These properties allow for the use of the UINMF 120 
algorithm across diverse contexts. For example, 𝑈𝑈𝑖𝑖 can incorporate intergenic information when 121 
integrating single cell transcriptomic and epigenetic datasets (Fig. 1b). When analyzing spatial 122 
transcriptomic datasets measuring only a few targeted genes, 𝑈𝑈𝑖𝑖can be used for genes that are 123 
not in the targeted panel but are measured in transcriptome-wide scRNA-seq data. With the 124 
advent of multi-omic datasets, the flexible nature of 𝑈𝑈𝑖𝑖 is a particular advantage. We can jointly 125 
integrate single-modality data with multimodal data, using all of the features present in the 126 
multimodal dataset when performing the integration. In this scenario, the 𝑈𝑈𝑖𝑖 matrix can be used 127 
for the unshared multimodal data type, such as chromatin accessibility, when integrating 128 
SNARE-seq data with spatial transcriptomic or scRNA data (Fig. 1c). Another application of the 129 
unshared matrix is the ability to include non-homologous genes into cross-species analysis, 130 
leveraging species-specific genes in dataset integration. We demonstrate the functionality of the 131 
UINMF algorithm in each of these four possible scenarios, and anticipate that the approach will 132 
prove useful for a wide variety of future applications.   133 
 134 
Including Intergenic Peak Information Improves Integration of scRNA and snATAC 135 
Datasets 136 

We first investigated how the inclusion of additional features might impact integration of 137 
scRNA and snATAC datasets. In our previous work, we summed ATAC reads that fell within a 138 
gene to provide gene-centric ATAC profiles, then used these shared features for integration, 139 
neglecting intergenic information. In contrast, UINMF uses the unshared feature matrix to 140 
incorporate the ATAC reads present between genes—intergenic peaks—when estimating the 141 
metagenes (Fig. 2a). Single-nucleus ATAC-seq datasets are extremely sparse, with only 1-10% 142 
of peaks detected per cell, compared to the 10-45% of genes captured per cell in scRNA-seq 143 
methods23. Including the intergenic ATAC data allows more of the detected regions—those not 144 
associated with any gene—to be used in each cell, a distinct advantage in such sparse 145 
datasets. Additionally, the intergenic chromatin peaks provide information about the chromatin 146 
state of important cis-regulatory elements, such as promoters and enhancers. We hypothesized 147 
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that the inclusion of this additional information would better resolve molecular distinctions 148 
among cells when integrating single-cell transcriptomic and epigenomic datasets. 149 

To quantify how leveraging intergenic features improves dataset integration, we 150 
analyzed a SNARE-seq dataset1, which provides gene expression and chromatin accessibility 151 
information from the same barcoded cell. Because the RNA and ATAC information is measured 152 
within the same single cells, the joint profiles provide ground truth cell correspondence 153 
information for assessing integration performance. The RNA and ATAC profiles can be 154 
preprocessed and integrated as if they come from separate datasets. Subsequently, the 155 
success of the integration can be measured by how closely the ATAC and RNA profiles for the 156 
same cell are aligned.  157 

We evaluated the quality of SNARE-seq integrations using the Fraction of Samples 158 
Closer Than the True Match (FOSCTTM)2 metric. The FOSCTTM metric assesses how closely 159 
the RNA barcoded cell is placed to its corresponding ATAC barcode in the latent space. Lower 160 
FOSCTTM scores are better, indicating that the RNA and ATAC profiles from the same cells 161 
have been correctly placed near each other. We also calculated an alignment metric; because 162 
the RNA and ATAC datasets come from identical cells, perfect alignment is theoretically 163 
achievable and thus the ideal performance is an alignment score of 1.  164 

We assessed the benefit of incorporating intergenic peaks by comparing the UINMF 165 
algorithm with our previously published iNMF algorithm22, which uses only gene-centric 166 
features. Over multiple random initializations, iNMF obtained an average FOSCTTM score of 167 
0.2984 and an average alignment score of 0.761 (Fig. 2b).  168 

In contrast, UINMF achieved a significantly lower average FOSCTTM score of 0.2822 169 
(𝑃𝑃 =  0.0064, paired one-sided Student T-test), as well as a significantly  higher average 170 
alignment score of 0.8005 (𝑃𝑃 =  6.945 × 10−6, paired one-sided Student T-test). These findings 171 
indicate that incorporating unshared features in the chromatin accessibility data improves the 172 
integration of scRNA and scATAC datasets.  173 

We also confirmed that the RNA and ATAC profiles were mapped to similar cell types. 174 
To do this, we manually annotated the cell type labels using marker genes from the scRNA data 175 
only. Before integration, the clusters separated much more clearly from gene expression data 176 
alone than from chromatin accessibility data alone (Fig. 2 c-d). After UINMF integration, the 177 
cluster labels aligned well across datasets (Fig. 2 e-f), indicating that UINMF identified 178 
corresponding cell types even though the single-cell correspondence information was not used 179 
by the algorithm. In summary, including intergenic chromatin accessibility information in the 180 
integration of scRNA and snATAC data significantly improved the integration results. 181 
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 182 
Figure 2. Addition of Intergenic Peak Information Improves Integration of RNA and ATAC 183 
Datasets. (a) Schematic illustrating how the UINMF algorithm incorporates intergenic peaks 184 
when separately integrating the RNA and ATAC measurements from a SNARE-seq dataset. We 185 
treat each data type as if it came from an independent source, and perform an integration using 186 
regular iNMF and our proposed UINMF method, which incorporates intergenic peaks. (b) 187 
Average FOSCTTM and alignment scores over thirty initializations of the two algorithms. UINMF 188 
achieves significantly better values of both metrics. We factorize and cluster the cells using their 189 
RNA transcripts (c) and chromatin accessibility measures (d) separately. After integration, we 190 
use the known cell correspondences to separately plot the gene expression (e) and chromatin 191 
accessibility datasets (f) from SNARE-seq, colored by the same cell type labels. 192 
 193 
Leveraging Additional Genes Improves Integration with Targeted Spatial Transcriptomic 194 
Technologies.  195 

We expect the UINMF algorithm to be especially effective for integrating targeted spatial 196 
transcriptomic datasets, as the number of genes measured in such datasets is often limited. 197 
Integrating such datasets with scRNA-seq provides the opportunity to pair transcriptome-wide 198 
profiles from dissociated cells with spatial transcriptomic data. This mitigates loss of sensitivity 199 
for distinguishing cell types while mapping cell types to their spatial positions within a tissue.  200 

To explore the utility of the UINMF algorithm for integrating targeted spatial 201 
transcriptomics and scRNA-seq datasets, we analyzed STARmap data9 and scRNA-seq data24. 202 
We used a STARmap dataset that contains spatial position and transcription level for 28 genes 203 
across 31,294 cells within a 3D block of tissue from the mouse frontal cortex. To our knowledge, 204 
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this dataset is unique in that it is the only dataset of spatially resolved gene expression for 205 
multiple genes within a 3D tissue block. 206 

Even though the 28 genes are selected to distinguish among cell types, the STARmap 207 
data fails to separate cortical cell types as clearly as scRNA-seq data. We observe improved 208 
cluster resolution using iNMF with only shared genes to integrate the STARmap dataset with the 209 
scRNA-seq dataset from Saunders (Fig. 3c), but some distinct cell types are still mixed 210 
together, while others are arbitrarily split. The original cluster labels of the scRNA-seq data are 211 
not very well-preserved in the resulting clusters. For example, no distinct boundaries are 212 
apparent between the Layer 6, Layer 5, and Layer 5B excitatory neurons. The mural cells are 213 
likewise ill-defined. Using UINMF to incorporate 3,525 more genes into the integration allows 214 
the metagenes to be estimated from a broader array of genes.  Consequently, the addition of 215 
these unshared features results in dramatically clearer clusters that much better reflect the 216 
ground truth labels (Fig. 3d). The distinction between the excitatory neurons subtypes becomes 217 
clear, and a defined population of mural cells also becomes distinguishable. Thus, using the 218 
unshared features, it is possible to identify cell types that would not be otherwise 219 
distinguishable. 220 

To quantify the advantage of the UINMF method, we calculated Adjusted Rand Index 221 
(ARI) and purity metrics for multiple initializations of the UINMF and iNMF algorithms across a 222 
range of different Louvain resolution parameters (Fig. 3e,f). The UINMF algorithm achieves 223 
significantly (𝑃𝑃 = 3.895 × 10−10, paired one-sided Wilcoxon test) higher ARI and cluster purity 224 
compared to the iNMF algorithm across the range of resolution parameters. UINMF also 225 
significantly outperforms Seurat in both ARI and purity metrics (𝑃𝑃 = 3.895 × 10−10, paired one-226 
sided Wilcoxon test). In short, the addition of the unshared genes significantly improves the 227 
integration of STARmap and single-cell RNA-seq data. 228 
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229 
Figure 3. Incorporating additional genes improves integration with STARmap data. (a) 230 
Schematic of UINMF integration of the spatial transcriptomic data with the scRNA-seq data, in 231 
which U incorporates unshared genes that are captured in scRNA-seq but not targeted 232 
STARmap data. (b) UMAP of STARmap data alone. (c) UMAP of STARmap and scRNA 233 
integration performed with iNMF using only shared genes. (d) UMAP of UINMF integration, 234 
which incorporates both shared and unshared genes. (e)-(f) Comparison of adjusted rand index 235 
(e) and purity (f) metrics from iNMF, Seurat, and UINMF for a range of clustering resolutions.  236 
 237 

To verify that corresponding cell types were clustered together across technologies, we 238 
examined the expression of several key marker genes for each labeled cell type by dataset 239 
(Fig. 4a). Generally, marker genes highly elevated in the cell types of the STARmap dataset are 240 
also highly elevated in the corresponding scRNA-seq cell type, indicating that the metagene 241 
definitions reflect biological distinctions significant for both datasets. The cell clusterings are not 242 
reflective of technical artifacts specific to an individual dataset, nor are they formed 243 
overwhelmingly by a single dataset. Rather, the clusters reflect divisions significant to both 244 
datasets jointly. Additionally, as we previously noted22, there is evidence that the STARmap 245 
gene capture is somewhat non-specific compared to scRNA-seq for some genes, such as Sulf2 246 
and Mgp.  247 

A key advantage of refining cell types in the STARmap dataset is the ability to use these 248 
cell labels within a 3D tissue sample, providing greater insight about how transcriptomic profiles 249 
are arranged in vivo. Consequently, we used the newly derived cell type labels within the 250 
context of 3D space, allowing us to assess their validity on the basis of concordance with known 251 
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tissue architecture (Fig. 4b). This analysis confirms that our cell type annotations accord well 252 
with the known structure of the cortex, such as clear laminar arrangement of excitatory neurons 253 
(Fig. 4c). It has also been previously established that MGE interneurons originate from the more 254 
rostral region of the brain, and the CGE neuron center lies caudal to the MGE center25. 255 
Likewise, the MGE and CGE determined cell types establish a gradient such that the CGE 256 
interneurons increase as in more cranial regions of the cortex slice (Fig. 4d). The region of 257 
white matter that lies beneath the cortex, composed primarily of oligodendrocyte cells, is also 258 
identifiable (Fig. 4e). Playing a significant role in supporting the brain’s vascular systems (7), 259 
endothelial cells compose portions of the blood brain barrier, and the UINMF results indicate 260 
that endothelial tip cells are located near the outer surface of the brain (Fig. 4f).  261 
 262 

 263 
 264 
Figure 4. Incorporating additional genes locates fine cellular subtypes within 3D spatial 265 
volume. (a) Dot plot showing marker gene expression in STARmap and scRNA datasets for 266 
each joint cluster. The datasets have similar marker expression, indicating that they are well 267 
aligned. Plots of three-dimensional spatial locations for different classes of cells colored by cell 268 
type: (b) all cell types; (c) excitatory neurons; (d) inhibitory neurons; (e) polydendrocytes and 269 
oligodendrocytes; and (f) endothelial cells. 270 
 271 
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We further demonstrate the advantages of UINMF for spatial transcriptomic datasets by 272 
integrating the osmFISH dataset (5,185 cells and 33 genes)11 from the mouse somatosensory 273 
cortex with the DROPviz scRNA-seq dataset from frontal cortex (71,639 cells). Using iNMF to 274 
integrate the osmFISH and DROPviz datasets utilizes the 33 genes measured in the osmFISH 275 
protocol as the shared features (Fig. 5a). The iNMF integration successfully aligns the two data 276 
types, but, similar to the STARmap analysis, leads to both mixing and oversplitting of cell types. 277 
The intermixing of cell types, especially the excitatory neurons, fails to resolve a distinct cluster 278 
for the Layer 5B Excitatory neurons. Using UINMF to incorporate an additional 2,000 variable 279 
genes from the scRNA-seq dataset allows the metagenes to be estimated from many more 280 
features, resulting in much more clearly resolved clusters (Fig. 5c). A distinct cluster of Layer 281 
5B Excitatory neurons can now be distinguished. Including additional features into the 282 
integration not only categorizes broad cell types more effectively, but also identifies more minute 283 
subclasses of cells.  284 

As with the STARmap data, we then plotted the UINMF labels within their corresponding 285 
spatial context (Fig. 5d). The excitatory cells again show clear laminar arrangement, with layer 286 
6 excitatory neurons forming the innermost layer of the cortex, and layers 5 and layer 2/3 287 
neurons above. Interestingly, layer one contains a number of cells identified as astrocytes, a 288 
finding that has previously been observed experimentally and which has been proposed as 289 
evidence for the interaction of glial cells in neuronal signaling26. The white matter region, located 290 
inferior to layer 6 and known to be composed of oligodendrocytes and polydendrocytes27,28, is 291 
likewise observable. Lastly, the presence of the caudoputamen and internal capsula region can 292 
be identified by the small grouping of inhibitory neurons lateral to the white matter11.  293 

To quantify the advantage of using UINMF, we measured the ARI and purity scores for 294 
both UINMF and iNMF over multiple initializations and multiple clustering resolutions (Fig. 5 e,f). 295 
UINMF performed significantly in terms of both ARI (𝑃𝑃 < 2.2 × 10−16, paired one-sided Wilcoxon 296 
test) and purity (𝑃𝑃 = 7.078 × 10−8paired one-sided Wilcoxon test) metrics across the whole 297 
range of clustering resolutions. A similar improvement was observed when comparing the 298 
UINMF performance to Seurat. UINMF performed significantly better in both ARI (𝑃𝑃 =299 
 3.946 × 10−6)and purity (𝑃𝑃 < 2.2 × 10−16)   metrics. 300 

 301 
 302 
 303 
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 304 
Figure 5. Incorporating additional genes improves integration with osmFISH data. (a) 305 
Schematic of data matrices from osmFISH and scRNA-seq. The osmFISH dataset measures 306 
only 33 genes, while the scRNA-seq dataset has many unshared genes that are incorporated 307 
during UINMF integration. (b) UMAP plot of osmFISH and scRNA integration with iNMF using 308 
only shared genes. (c) UMAP using UINMF to incorporate an additional 2,000 genes. (d) The 309 
spatial arrangement of cell types matches the known tissue structure of the cortex (e)-(f) ARI (e) 310 
and purity (f) metrics for iNMF, UINMF, and Seurat. 311 

 312 
UINMF Improves Integration of Multimodal and Spatial Transcriptomic Datasets 313 

Single-cell multimodal technologies measure epigenomic and transcriptomic profiles 314 
from the same cell, providing an exciting opportunity to define cell types from multiple molecular 315 
modalities. However, many applications require integrating such multimodal measurements with 316 
single-modality datasets. In such applications, the ability of UINMF to incorporate unshared 317 
features allows us to capitalize on the multimodal information, rather than using only shared 318 
features.  319 

To demonstrate the advantages of such an approach we used UINMF to integrate 320 
STARmap and SNARE-seq data. The STARmap dataset provides gene expression data for 321 
2,522 cells across 1,020 genes while preserving the 2D spatial coordinates for each cell. The 322 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.09.439160doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.09.439160


12 

SNARE-seq dataset (10,309 cells) provides simultaneous chromatin accessibility and gene 323 
expression levels from the same barcoded cells.  324 

We first integrated the STARmap data and SNARE-seq gene expression measurements 325 
only by performing iNMF on the 944 genes shared between the datasets, omitting the unshared 326 
genes and completely neglecting the chromatin information. We annotated the cells by using the 327 
original annotations from both datasets to jointly define the resulting clusters (Fig. 6a). When 328 
integrating the datasets with UINMF, we were able to add an additional 2,688 highly variable 329 
genes present in the SNARE-seq dataset. Because the SNARE-seq data is multi-omic, we also 330 
incorporated the available chromatin accessibility information by including the top 1,431 variable 331 
chromatin accessibility features within the U matrix (Fig. 6b). Thus, the UINMF integration 332 
incorporated a total of 4,119 features not measured in the STARmap dataset (Fig. 6c).  333 

Next, we confirmed that the integrity of each individual dataset had been maintained by 334 
examining the STARmap and SNARE-seq cells individually by their original labels (Fig. 6d,e). 335 
There is clear alignment between the original cell labels of each dataset, indicating that the 336 
integration defined the metagenes relevant to specific cell populations for both datasets. This 337 
suggests that the unshared features can be included into the integration without unduly 338 
dominating the metagene calculations.  339 

To quantify the derived benefit of including the additional features into the analysis, we 340 
then calculated the purity and ARI scores for ten initializations (Fig. 7a,b). UINMF significantly 341 
outperformed the iNMF algorithm on both ARI (P = 5.934 × 10−15, paired one-sided Wilcoxon 342 
test) and Purity (𝑃𝑃 = 1.046 × 10−11, paired one-sided Wilcoxon test)  and purity. The iNMF 343 
algorithm has an ARI competitive with that of UINMF at only a single louvain resolution (0.7). At 344 
this resolution, UINMF still has a superior purity score, substantiating the benefit of including 345 
additional features using the UINMF algorithm. UINMF also has a significantly better ARI score 346 
than Seurat across resolutions  (𝑃𝑃 =  0.001562). Additionally, the UINMF also has superior 347 
purity over Seurat at all tested resolutions (𝑃𝑃 =  3.016 × 10−16, paired one-sided Wilcoxon test). 348 
Taken together, these results show that the use of UINMF to incorporate added features to the 349 
data integration significantly improves integration of single-cell multimodal data and spatial 350 
transcriptomic data.   351 

 352 
 353 
 354 
 355 
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 356 
 357 

Figure 6. Incorporating unshared chromatin and gene features to integrate spatial 358 
transcriptomic and multimodal data. (a) UMAP for iNMF integration of STARmap spatial 359 
transcriptomic data and SNARE-seq RNA data only. (b) Schematic of how unshared gene and 360 
chromatin accessibility data is incorporated into the integration analysis of STARmap and 361 
SNARE-seq using UINMF. (c) The integration is improved significantly by the inclusion of ATAC 362 
gene-centric features in the U matrix. (d)-(e) The original cell type labels of STARmap cells (d) 363 
and SNARE-seq cells (e) show clear correspondence after UINMF integration. 364 
 365 

Because a key motivation for integrating the multimodal and spatial transcriptomic data 366 
was bringing enhanced resolution within the context of spatial coordinates, we next plotted the 367 
results of the UINMF integration in space. Applying the cell type labels from UINMF to 368 
STARmap replicate one (973 cells, Fig. 7c) and replicate two (1,549 cells, Fig. 7d), we found 369 
that the UINMF results accord well with the cortical structure. The excitatory neurons are 370 
arranged in layers, with L6, L5, and L2/3 clearly visible. Likewise, we also can identify the 371 
oligodendrocyte-rich white-matter below the cortex. Additionally, the vascular cell population, 372 
which contains endothelial and mural cells comprise the outermost group of cortical cells. 373 
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 374 

375 
Figure 7. Incorporating unshared chromatin and gene features improves integration of 376 
spatial transcriptomic and multimodal data. We compared UINMF results with those from 377 
iNMF and Seurat using purity (a) and ARI (b) metrics. We also confirmed that the spatial 378 
arrangement of predicted cell types in both STARmap replicate one (c) and replicate two (d) 379 
matches the known organization of the cortex. 380 

 381 
The Inclusion of Non-Homologous Genes Improves the Integration of Cross-Species 382 
Data. 383 
 Previous integrations of cross-species datasets have been limited to genes that are 384 
homologous between species, as non-homologous genes, by definition, are not shared between 385 
datasets. Yet, non-homologous genes can be key marker genes within a species, providing 386 
crucial information for distinguishing cell populations. Using UINMF, we were able explore the 387 
potential benefits of including non-homologous genes in cross-species integration. For this 388 
cross-species analysis, we integrated scRNA data (4,187 cells) from the pallium of the bearded 389 
dragon lizard (Pogona vitticeps)29 with scRNA data from the mouse frontal cortex (71,639 390 
cells)24. We first selected 1,979 variable genes that were annotated as one-to-one homologs 391 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.09.439160doi: bioRxiv preprint 

https://paperpile.com/c/DhrRg0/xlwu
https://paperpile.com/c/DhrRg0/laXJ
https://doi.org/10.1101/2021.04.09.439160


15 

between the two species. Then we selected 166 non-homologous variable genes from the lizard 392 
dataset, and an additional 1,110 non-homologous variable genes from the mouse dataset.  We 393 
integrated the datasets using UINMF, with the one-to-one homologs as shared features, and the 394 
non-homologous genes as unshared features (Fig. 8a). UINMF successfully aligned the two 395 
datasets, as illustrated by the overlapping distributions of the two datasets within the UMAP 396 
space (Fig. 8b). To confirm correspondence between the cell types of the two species, we 397 
plotted only the mouse cells (Fig. 8c) and only the lizard cells (Fig. 8d), colored by their 398 
originally published labels. Strong correspondence between cell types, including excitatory 399 
neurons, inhibitory neurons, and non-neuronal cells, can be observed.  400 
 To examine the additional benefit of including non-homologous genes when performing 401 
cross-species integration, we performed the integration using iNMF to establish a baseline. The 402 
baseline iNMF integration was limited to the 1,979 homologous genes, and resulted in a lower 403 
quality integration (Supplementary Figure 5). The mural cell populations had decreased 404 
alignment between the two species, and many of the astrocytes were misaligned to the 405 
excitatory neuron clusters. Furthermore, the lizard’s excitatory neuron subtypes were less 406 
distinctly separated. 407 

In order to quantify the advantage of UINMF over iNMF in cross-species integrations, we 408 
compared the purity and ARI scores of the two algorithms across ten initializations. Including the 409 
non-homologous genes using UINMF resulted in a significant increase in both the ARI  (P = 410 
3.626 × 10−9, paired one-sided Wilcoxon test) and the purity  (P = 6.258 × 10−4, paired one-411 
sided Wilcoxon test) of the mouse dataset (Fig. 8e,f). We also noted a significant increase in 412 
the ARI  (P = 1.145 × 10−6, paired one-sided Wilcoxon test) of the lizard data set (Fig. 8g). 413 
Although UINMF does not show a statistically significant increase in the purity  (P = 0.07157, 414 
paired with one-sided Wilcoxon test) of the lizard dataset, UINMF is able to achieve a higher 415 
maximum purity scores at most resolutions (Fig. 8h). This more modest effect observed for the 416 
lizard dataset may be because it had many fewer non-homologous variable genes (166) than 417 
the mouse dataset (1,110), likely due to a less complete set of gene annotations for the lizard 418 
genome. 419 
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 420 
Figure 8. The inclusion of non-homologous genes improves the integration of 421 

cross-species data. We demonstrate the alignment between the two datasets (a), after using 422 
UINMF to include both homologous and non-homologous genes when integrating the datasets 423 
(b).  We also confirmed cell type correspondence by examining only the mouse cells (c) and 424 
only the lizard cells (d), both labeled with their published cell labels. To show the advantage of 425 
including the non-homologous genes, we show the difference in ARI (e) and purity (f) scores 426 
using the originally published mouse. We also confirm a similar trend in the ARI (g) and purity 427 
(h) scores using the original lizard labels.  428 
 429 
Discussion 430 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.09.439160doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.09.439160


17 

 We have extended our previous integrative nonnegative matrix factorization algorithm by 431 
adding an unshared feature matrix. This addition accommodates features that are not present in 432 
all datasets and increases the amount of information that is used to define the metagenes. We 433 
showed that inclusion of unshared features provides clear advantage across four different types 434 
of integration analyses. First, UINMF can be used to incorporate intergenic information when 435 
integrating transcriptomic and epigenomic datasets. Second, UINMF can incorporate genes not 436 
measured in targeted spatial transcriptomic datasets, allowing better resolution of fine cellular 437 
subtypes within a spatial coordinate frame. Third, UINMF can utilize all of the information 438 
present in single-cell multimodal when integrating with single-modality datasets. Additionally, 439 
UINMF can accommodate non-homologous genes in cross-species integration analyses.  440 

With the rapid development of multimodal and spatial transcriptomic technologies, we 441 
anticipate that the UINMF algorithm will prove useful for a wide variety of analyses. As the 442 
additional 𝑈𝑈 matrix can incorporate any type of cellular features, with no assumptions about 443 
their relationship to gene-centric features, the algorithm is inherently flexible to accommodate a 444 
variety of data types and modalities. Future applications could examine the incorporation of data 445 
types such as Hi-C30 measurements, as well as the potential to use UINMF on a diverse 446 
collection of in situ hybridization and immunohistochemistry datasets with limited numbers of 447 
genes. We expect that, as additional experimental methods for single-cell measurement are 448 
developed, our approach will prove increasingly useful for a broad variety of single-cell 449 
integration tasks. 450 
 451 
Methods 452 

We extend our previously published ANLS algorithm for solving the iNMF problem22 so 453 
that we can now incorporate unshared features when integrating across datasets. The unshared 454 
feature matrix can in principle accommodate any type of unshared feature, whether gene-centric 455 
or otherwise. In this paper, we incorporated intergenic peaks from snATAC-seq data and 456 
additional genes not measured in all datasets, although many other applications are possible. 457 

For each data set 𝐸𝐸1,𝐸𝐸2, . . . .𝐸𝐸𝑛𝑛, we normalize the data, and select 𝑚𝑚variable genes 458 
(shared across all datasets), and 𝑧𝑧𝑖𝑖 variable features, such that after scaling 𝐸𝐸𝑖𝑖  𝜖𝜖 𝑅𝑅+(𝑚𝑚+𝑧𝑧𝑖𝑖) ×𝑛𝑛𝑖𝑖 459 
(𝑖𝑖 = 1, . . . . ,𝑁𝑁). For a given 𝐾𝐾and 𝜆𝜆𝑖𝑖, the optimization problem can be defined as  460 

 461 
 462 

We then solve the UINMF factorization problem with a realization of the coordinate block 463 
descent (BCD) approach31. The BCD approach divides the parameters into blocks, and then 464 
finds the optimal parameters by updating each block while holding the others fixed. Because 465 
each block-wise optimization sub-problem is convex, iterating these updates is guaranteed to 466 
converge to a local minimum31 . To solve the UINMF optimization problem, we use matrix 467 
blocks, one block for each of 𝐻𝐻𝑖𝑖  𝜖𝜖 𝑅𝑅+𝑘𝑘×𝑛𝑛𝑖𝑖, 𝑊𝑊 𝜖𝜖 𝑅𝑅+𝑚𝑚 × 𝑘𝑘, 𝑉𝑉𝑖𝑖  𝜖𝜖 𝑅𝑅+𝑚𝑚 × 𝑘𝑘, and 𝑈𝑈𝑖𝑖  𝜖𝜖 𝑅𝑅+𝑧𝑧𝑖𝑖× 𝑘𝑘(𝑖𝑖 =468 
1, . . . . ,𝑁𝑁). Each sub-problem is a nonnegative least squares optimization, which we solve 469 
numerically using an efficient C++ implementation of the block principal pivoting algorithm32. To 470 
update 𝐻𝐻𝑖𝑖, we solve  471 
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 472 
while holding the other parameters fixed. Similarly, to update the other parameters, we solve the 473 
following subproblems:  474 

 475 

 476 
 477 

We iterate these updates until convergence, which we determine by calculating the 478 
decrease in the objective function at the conclusion of each iteration. We consider the algorithm 479 
to have converged when the decrease in the objective value function between the previous and 480 
current iteration, weighted by dividing by their mean, is less than the epsilon parameter set by 481 
the user. For all UINMF analysis in this paper, we set the convergence threshold to 𝜀𝜀 =482 
 1.0 × 10−10and set the maximum number of iterations to 30 for each analysis.  483 

Note that iNMF uses a constant penalty term 𝜆𝜆 for all datasets. When implementing 484 
UINMF, however, we introduced a separate 𝜆𝜆𝑖𝑖 parameter for each dataset, such that the penalty 485 
applied to 𝐸𝐸 is weighted by 𝜆𝜆1, 𝐸𝐸2 has a regularization weight of 𝜆𝜆2, etc. The inclusion of 𝜆𝜆𝑖𝑖 486 
allows for the tuning of dataset penalization at the user’s discretion. However, we simply used 487 
𝜆𝜆𝑖𝑖 = 5 (the default value in our iNMF and UINMF implementations) for all analyses except the 488 
STARmap and DROPviz integration. The STARmap and DROPviz integration does achieve the 489 
best results with different 𝜆𝜆 values for each dataset.  490 

 491 
Increase in Computational Complexity 492 
 The difference in computational complexity between UINMF and iNMF increases with 493 
the number of unshared features used in UINMF, but the difference between the runtime of the 494 
two algorithms is not prohibitive in practice (Supplemental Figure 4). To assess the theoretical 495 
difference in computational complexity between the algorithms, assume the same total number 496 
of features is present in datasets input to each algorithm. Let iNMF operate on a dataset that 497 
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has 𝑔𝑔 shared features, and let 𝑔𝑔 = 𝑚𝑚 +  𝑧𝑧, where 𝑚𝑚 is the number of shared features and 𝑧𝑧 is 498 
the number of unshared features of the UINMF dataset.  Let 𝐾𝐾 be the user-defined number of 499 
metagenes. For each iteration, UINMF solves for 𝑈𝑈𝑧𝑧×𝐾𝐾 and 𝑉𝑉𝑖𝑖𝑚𝑚 ×𝐾𝐾  separately, but iNMF 500 
performs the same number of calculations to solve for 𝑉𝑉𝑖𝑖𝑔𝑔 × 𝐾𝐾, since 𝑔𝑔 = 𝑚𝑚 +  𝑧𝑧. When solving 501 
for the shared metagene matrix, 𝑊𝑊, iNMF solves the optimization problem for a 𝑔𝑔 ×  𝐾𝐾 matrix, 502 
whereas UINMF must only solve a 𝑚𝑚 × 𝐾𝐾 matrix. Because the shared metagene matrix has 503 
less features in UINMF (𝑚𝑚 < 𝑔𝑔), each iteration of the algorithm actually constitutes less 504 
computational complexity than iNMF given the same total number of features. 505 

 506 
Evaluation Metrics 507 

The alignment score, based on Butler et. al (9), is a measure that captures how well two 508 
samples align uniformly within a latent space. A score closer to zero indicates a poor alignment, 509 
or mixing of the two samples, whereas a score closer to one is indicative of uniformly mixed 510 
datasets.  511 

Fraction of Samples Closer Than the True Match (FOSCTTM) scores measures how 512 
closely two measurements of the same cell are placed within the latent space2. We calculate the 513 
FOSCTTM score by finding the distance between the scRNA-seq cell and the scATAC-seq label 514 
for each barcode. We then divide by the total number of barcoded cells to derive the average 515 
FOSCTTM score.  516 

Cluster purity is calculated based on a reference clustering. Each cluster is assigned a 517 
type based on the predominant label for that cluster. The cells that correspond correctly to this 518 
label are counted. We calculate purity by summing the correct number of labels across all 519 
clusters, and dividing by the total number of labeled cells present. Consequently, a score closer 520 
to 0 indicates that the cells are not being accurately grouped into clusters by cell types, and a 521 
score of 1 indicates perfect grouping by cell type. Adjusted Rand Index (ARI) is another 522 
measure of similarity between two clusterings. The ARI score can range from 0 (no match) to 1 523 
(perfect match). 524 

 525 
Integration of RNA and ATAC Profiles from SNARE-seq 526 

For a baseline, we integrated the scRNA and scATAC datasets using iNMF, using the 527 
top 2,589 variable genes and their associated scATAC peaks. The optimization was performed 528 
with 𝐾𝐾 =  30 and 𝜆𝜆 =  5. We performed quantile normalization with parameter knn_k = 100. We 529 
then calculated the average FOSCTTM and alignment scores across thirty random 530 
initializations. To assess the additive properties of including the intergenic peaks into the 531 
integration, we used the 𝑈𝑈-matrix to hold the top 2,000 variable peaks. We performed UINMF 532 
with 𝐾𝐾 =  30, 𝜆𝜆 =  5, and knn_k = 20. We calculated FOSCTTM and alignment scores over 533 
thirty random initializations. We performed one-sided paired Student T-tests on the resulting 534 
FOSCTTM and Alignment scores. To cluster just the RNA and ATAC cells, we similarly used 535 
𝐾𝐾 =  30, 𝜆𝜆 =  5, knn_k = 100, and a Louvain resolution of 1. We annotated the cell clusters 536 
using marker genes and used the same labels for each UMAP presented in Figure 3.  537 
 538 
Integration of scRNA-seq and STARmap  539 
 We integrated the STARmap spatial transcriptomic dataset (32,845 cells) and a scRNA-540 
seq dataset (71,639 cells) using iNMF. For this iNMF analysis, we were limited to the 28 genes 541 
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measured in the STARmap dataset. Both iNMF and CCA/PCA (used by Seurat) are limited to 542 
no more components than the number of genes, while UINMF can estimate more dimensions 543 
because it also incorporates unshared genes. We thus used 𝐾𝐾 =  27 dimensions for both iNMF 544 
and Seurat. For iNMF we also used 𝜆𝜆 =  5, and a quantile normalization with K-nearest 545 
neighbors of 20. Using UINMF, we included an additional 2,775 of the most variable genes. The 546 
parameters for the UINMF integration were 𝐾𝐾 =  40and  𝜆𝜆 =  10 for the STARmap data and  𝜆𝜆 =547 
 1 for the scRNA-seq data; knn_k=20 for the quantile normalization; and Louvain resolution of 1.  548 
For both iNMF and UINMF, we performed 5 initializations with the same random seed and 549 
picked the best one. We calculated the cluster purity for both algorithms using the scRNA-seq 550 
labels, and use the highest number of cells present to annotate the clusters by cell type. These 551 
annotations were then applied within the context of 3D space using the originally provided 552 
STARmap coordinates.  For five different random seeds, we measured the difference between 553 
the cluster purity (𝑃𝑃 = 3.895 × 10−10) and ARI (𝑃𝑃 = 3.895 × 10−10) of iNMF and UINMF using a 554 
paired, one-sided Wilcoxon test. 555 
For Seurat, we similarly used the 28 shared genes and a PCA dimension of 27. We then 556 
calculated the Purity and ARI scores at each Louvain resolution from 0.1 to 1, in increments of 557 
0.1. We performed a paired, one-sided Wilcoxon test to assess the difference between UINMF 558 
and Seurat performance quantified by purity (𝑃𝑃 = 3.895 × 10−10) and ARI (𝑃𝑃 = 3.895 × 10−10). 559 
 560 
Integration of scRNA-seq and osmFISH  561 

Using the osmFISH dataset (33 genes, 6,471 cells) we excluded hippocampal cells and 562 
cells from the top left of the tissue slice originally labeled “excluded” in the original osmFISH 563 
publication, as well as cells with zero detected genes. A total of 5,185 cells passed these 564 
filtering criteria. We ran the iNMF algorithm using the 33 shared genes, 𝜆𝜆 = 5, and 𝐾𝐾 = 32, and 565 
took the best optimization of 5 random initializations for each of 10 seeds. Note that, as with 566 
STARmap data, iNMF and Seurat are limited to no more components than the number of 567 
genes, while UNIMF can estimate more factors due to the use of unshared genes. Using 568 
UINMF, we integrated the osmFISH spatial transcriptomic data with the scRNA-seq (71,639 569 
cells) using the 33 shared genes as well as the 2,000 most variable unshared genes. We used 570 
10 different random seeds, with 𝜆𝜆 = 5 and 𝐾𝐾 = 40, and took the best optimization of 5 random 571 
initializations for each seed. We calculated the Purity and ARI for each algorithm at Louvain 572 
resolutions 0.1 through 1.0, in 0.1 increments. We used the published DROPviz labels as our 573 
reference clustering, and assessed the significance of our findings using a paired, one-sided 574 
Wilcoxon test, resulting in a significant difference being observed in both purity (𝑃𝑃 =575 
7.078 × 10−8) and ARI score(𝑃𝑃 ≤ 2.2 × 10−16). We used knn_k=150 for the quantile_norm 576 
function, n_neighbors=150 for the runUMAP function, and a resolution of 0.5 for Louvain 577 
clustering.  578 

For Seurat integration, we also used the 33 shared genes and a PCA dimension of 32. 579 
Using louvain resolutions from 0.1 to 1.0 in 0.1 increments, we assessed the performance of 580 
Seurat using purity and ARI scores. Comparing Seurat and UINMF using a paired, one-sided 581 
Wilcoxon test showed a significant difference in purity (𝑃𝑃 <= 2.2 × 10−16) and in ARI (𝑃𝑃 =582 
 3.946 × 10−6). 583 
 584 
Cross-Species Integration 585 
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 The Lizard Pallium dataset29 originally had 4,202 cells, but we limited the cells used to 586 
the 4,187 cells deemed high quality in the original publication. We integrated this dataset with 587 
the scRNA-seq dataset from the mouse brain24 (71,639 cells). We used the original publications 588 
1-to-1 homolog labels to select homologs common to both the mouse and lizard datasets. Using 589 
these as our shared features, we normalized and scaled the data. We then selected 1,979 590 
shared genes, using a variance threshold of 0.3. For UINMF, we used the same variance 591 
threshold to select 166 non-homologous genes from the lizard, and 1,110 non-homologous 592 
genes from the mouse. We optimized UINMF and iNMF with 𝐾𝐾 = 30, 𝜆𝜆 = 5,and took the best of 593 
5 random initializations for 10 random seeds. We performed quantile normalization for each 594 
optimized object using the mouse dataset as a reference. To ensure that any differences in 595 
purity and ARI score were not driven by a single species, we calculated the ARI and Purity 596 
scores using both the lizard and the mouse cell labels separately as ground truth. We performed 597 
these calculations for each of the ten seeds at louvain resolutions from 0.1 to 1.0 in increments 598 
of 0.1. To examine the difference between UINMF and iNMF performance, we performed a 599 
paired, one-sided Wilcoxon test between the  ARI (𝑃𝑃 = 3.626 × 10−9, 𝑃𝑃 = 1.145 × 10−6) and 600 
Purity (𝑃𝑃 = 6.258 × 10−4, 𝑃𝑃 = 0.07157) values, for the mouse and lizard labels, respectively. 601 
When generating the UMAPs shown, we used the default louvain resolution of 0.25, and the 602 
default nearest neighbors of 10.  603 
 604 
Integration of SNARE-seq and STARmap  605 

To integrate the multi-omic SNARE-seq dataset (10,309 cells) with the spatial 606 
transcriptomic STARmap dataset (2,522 cells), we used the number of shared genes (944 607 
genes), as well as 4,119 unshared features. To generate the unshared features, we selected 608 
genes with a variance threshold higher than that of 0.1, and then removed genes shared 609 
between datasets, for a total number of 2,688 unshared genes. We selected the chromatin 610 
accessibility peaks with a variance greater than 0.01 (1,431 peaks). For iNMF benchmarking, 611 
we used only the 944 shared genes. We optimized UINMF and iNMF with 𝐾𝐾 = 30, 𝜆𝜆 = 5, and 612 
took the best of 5 random initializations for 10 random seeds. We performed quantile 613 
normalization for each optimized object using the SNARE-seq dataset as a reference. Using the 614 
SNARE-seq cell labels as ground truth, we calculated the ARI and Purity scores for each of the 615 
ten seeds at louvain resolutions from 0.1 to 1.0 in increments of 0.1. We set nearest neighbors 616 
to 100 when generating the UMAPs shown, and the louvain resolution to 1. To assess the 617 
difference between UINMF and iNMF functioning, we performed a paired, one-sided Wilcoxon 618 
test between the ARI (P = 5.934 × 10−15) and Purity (𝑃𝑃 = 1.046 × 10−11) values. The UMAPs 619 
shown have a louvain resolution of 1.0, are labeled by jointly examining the original STARmap 620 
and SNARE-seq cell labels. 621 

To assess the performance of Seurat, we used the 944 shared genes, and set the PCA 622 
dimensions equal to 30. We then calculated the Purity and ARI scores for each Louvain 623 
resolution from 0.1 to 1.0, in increments of 0.1. We conducted a paired, one-sided Wilcoxon test 624 
between UINMF and Seurat performance in terms of ARI (P = 0.001562) and Purity scores 625 
(𝑃𝑃 =  3.016 × 10−16).  626 
 627 
Selecting 𝑲𝑲 and 𝜆𝜆 628 
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 The default parameter settings for iNMF are  𝐾𝐾 =  30 and 𝜆𝜆 =  5. To allow for a fair 629 
comparison between iNMF and UINMF, we used these parameters settings for both algorithms 630 
when performing the SNARE-seq integration with intergenic peaks, the SNARE-seq integration 631 
with the 1,020 gene STARmap dataset, and the cross-species analysis.  For the spatial 632 
transcriptomic dataset integrations using osmFISH (33 genes) and STARmap (28 genes, iNMF 633 
required the selected 𝐾𝐾 to be less than the number of genes. Since one of the advantages of 634 
our algorithm is that it does not have this constraint, we selected a value of 𝐾𝐾 =  40 for both 635 
spatial transcriptomics integrations, the largest 𝐾𝐾 we could select without severely impacting the 636 
alignment scores (Supplementary Fig. 2). To select 𝜆𝜆 for the spatial transcriptomics datasets, 637 
we selected 𝜆𝜆 = (10,1) for the STARmap integration with the scRNA-seq data. The higher 638 
penalty is assigned to the STARmap data, and the use of the vectorized lambda showed 639 
improved alignment scores over 5 initializations (Supplemental Figure 3). In order to highlight 640 
that the default choice of lambda still provides statistically significantly improvement, and that 641 
the improved results were not driven by the use of a vectorized 𝜆𝜆, we selected 𝜆𝜆 = 5 for the 642 
osmFISH dataset (Supplementary Fig. 3). 643 
 644 
Statistical Analysis  645 
All statistical analyses were performed using R (4.0.0). P-values were calculated using one-646 
sided paired Student T-tests or one-sided paired Wilcoxon Rank Sum Tests, as indicated. P-647 
values are reported throughout, with statistical significance considered P < 0.05. All error bars 648 
represent standard error.  649 
 650 
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