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ABSTRACT

Advances in bioengineering have enabled numerous bio-
based commodities. Yet most traditional approaches do
not extend beyond a single metabolic pathway and do not
attempt to modify gene regulatory networks in order to
bu↵er metabolic perturbations. This is despite access to near
universal technologies allowing genome-scale engineering.
To help overcome this limitation, we have developed a
pipeline enabling analysis of Transcription Regulation
Integrated with MEtabolic Regulation (TRIMER).
TRIMER utilizes a Bayesian network (BN) inferred
from transcriptomic data to model the transcription factor
regulatory network. TRIMER then infers the probabilities
of gene states that are of relevance to the metabolism
of interest, and predicts metabolic fluxes resulting from
deletion of transcription factors at the genome scale.
Additionally, we have developed a simulation framework
to mimic the TF-regulated metabolic network, capable
of generating both gene expression states and metabolic
fluxes, thereby providing a fair evaluation platform for
benchmarking models and predictions. Here, we present
this computational pipeline. We demonstrate TRIMER’s
applicability to both simulated and experimental data and
show that it outperforms current approaches on both data
types.

INTRODUCTION

There has been extensive research in in silico modeling
and prediction of genome-scale metabolic reaction networks,
mostly focusing on mutant strain design (1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11). However, living systems involve complex
and often stochastic processes arising from interactions
between different types of biomolecules. For more accurate
and robust prediction of target metabolic behavior under
different conditions or contexts, not only metabolic reactions,
but also the integration of genetic regulatory relationships
involving transcription factors (TFs) that may regulate
metabolic reactions, should be appropriately modeled. Due
to the increasing computational complexity when considering
multiple types of biomolecules in one computational system
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model, there have not been many “validated” computational
tools for this purpose.

Probabilistic Regulation Of Metabolism (PROM) (12)
introduced conditional probabilities, inferred from annotated
(transcription factor)–(target gene)-reaction interactions and
microarray data analysis, to incorporate transcriptional
regulation information in genome-scale metabolic network
analysis, especially aiming to better model condition-
specific metabolism. Consequently, PROM can be considered
as one of the existing integrated transcriptional-metabolic
network models. IDREAM (13), an updated version of
PROM, additionally allowed modeling subtle growth defects.
Recently, an algorithm called OptRAM was developed based
on IDREAM for designing optimized strains for ethanol
overproduction in yeast (14).

The essential idea of PROM and its extensions is to
infer conditional probabilities of the form Pr(gene=ON/OFF|
TF=ON/OFF) so that metabolic reactions regulated by
specific genes – for example, through the specific enzymes
manifested as gene-protein-reaction (GPR) rules – can be
modeled dependent on either genotypic or environmental
changes by adjusting the flux constraints in the flux balance
analysis (FBA) for metabolic modeling. Although it is
computationally desirable to simplify the TF regulatory roles
by introducing TF-gene conditional probabilities estimated
by local frequentist estimates based on gene expression
profiles, global TF-gene dependency structures may not be
well captured. The existing models are also limited in the
sense that only conditional probabilities based on univariate
conditions were modeled. More flexible modeling that enables
predictions with more complicated condition changes, for
example, multiple TF knockouts when designing mutant
strains, is still lacking in the literature.

c� 2021 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.09.439167doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.09.439167
http://creativecommons.org/licenses/by-nc-nd/4.0/


“manuscript” — 2021/4/9 — 13:52 — page 2 — #2i
i

i
i

i
i

i
i

2 Nucleic Acids Research, , Vol. , No.

FVA

Identify max/min of fluxes, 
Given:Stoichiometric constraints
           Wild-type growth rate 

FVA

Identify max/min of fluxes, 
Given:Stoichiometric constraints
           Wild-type growth rate 

Reg_const

Construct flux constraints 
Given:  Conditional probabilities
           GPR rules

Reg_const

Construct flux constraints 
Given:  Conditional probabilities
           GPR rules

KO_pred

Predict altered fluxes by TF knock-outs
Given:  flux constraints
Predict altered fluxes by TF knock-outs
Given:  flux constraints

KO_pred

Predict altered fluxes by TF knock-outs
Given:  flux constraints

Output

Predicted KO fluxes  and KO phenotypesPredicted KO fluxes  and KO phenotypes

Output

Predicted KO fluxes  and KO phenotypes

Find_infeasible_RulesRefine the flux constraints via given phenotypes
Given: flux constraints with 
           corresponding knock-out TFs 

Refine the flux constraints via given phenotypes
Given: flux constraints with 
           corresponding knock-out TFs 

Find_infeasible_RulesRefine the flux constraints via given phenotypes
Given: flux constraints with 
           corresponding knock-out TFs 

Input

Knock-out TFs
Model parameter settings.

Input

Knock-out TFs
Model parameter settings.

Output=max/
min of fluxes

Pr
ob

ab
ili

st
ic

 P
ar

t
M

et
ab

ol
ic

 P
ar

t

Cond_est

 Estimate  the conditional 
probabilities by counting 
Given: interaction list 
           expression data

Cond_est

 Estimate  the conditional 
probabilities by counting 
Given: interaction list 
           expression data

BN learning Module

 Estimate  the conditional probabilities 
based on Bayesian network
Given: interaction list 
           expression data

BN learning Module

 Estimate  the conditional probabilities 
based on Bayesian network
Given: interaction list 
           expression data

Figure 1. TRIMER flow-chart. The major computational modules in TRIMER and their interconnections are illustrated in the diagram.

The main aim of this paper is to introduce a new flexible
analysis pipeline, TRIMER—Transcription Regulation
Integrated with MEtabolic Regulation, for integrative
systems modeling of TF-regulated metabolism. Specifically,
a Bayesian network, instead of TF-gene conditional
probabilities, will be first inferred based on gene expression
profiles. Based on the inferred Bayesian network, given
a condition (for example, multiple TF knockouts), we
can infer the corresponding probabilities of gene states
and consequently flux predictions can be performed by
corresponding in silico metabolic models.

In addition to the modeling and analysis pipeline in
TRIMER, we have also developed a simulator that simulates
the TF-regulated metabolic network, which can generate both
gene expression states and metabolic fluxes from a given
hybrid model. Such a simulator provides a fair performance
evaluation platform to help better benchmark new model
inference and flux prediction methods.

MATERIALS AND METHODS

We first introduce the main components of TRIMER
organized in two major modules – namely, the transcription
regulation network module and the metabolic regulation
model – that are integrated within a unified interacting
framework. The proposed hybrid model enables condition-
dependent transcriptomic and metabolic predictions for
both wild-type and TF-knockout mutant strains, through
general Bayesian network (BN) modeling of transcriptional
regulations. We also provide the details of our TF knockout
experiments from which the experimentally observed fluxes
validate the in silico flux predictions made by TRIMER.

Transcription Regulation Inference in TRIMER

Gene expression data preprocessing: The gene expression
data need to be discretized for BN learning as in TRIMER,
the TF-Regulated gene Network (TRN) concerns ‘ON/OFF’
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states of TFs and genes in the network. In our implementation,
quantile normalization is first applied to raw data. Then the
threshold for a given quantile value is computed and data
is binarized according to the threshold. The choice of the
quantile value can be either set manually or be similarly
determined as in PROM. In other words, we search for the
best value based on the prediction performance of the learned
BN. Based on the results of our experiments, the suggested
quantile value for thresholding is in the range of [0.3,0.4].

BN learning: The key component of TRIMER is to model
the genome-scale TF-regulated gene network (TRN) by
a Bayesian network (BN) learned from discretized gene
expression. This TRN is expected to capture the interactions
between regulators (TFs) and target genes. For this purpose,
we have integrated bn-learn, a Bioconductor package for
Bayesian network modeling of biological networks (15). A
naive way to learn a BN from available observed gene states
is to search over the space of all possible directed acyclic
graphs (DAGs) and identify the one which optimizes a given
objective function evaluating the goodness of fit. However,
the search space of BN model structures grows exponentially
with the number of variables (nodes in the BN). Without
restricting the BN structures, the BN learning can easily
become infeasible when considering even less than a dozen
variables. In our experiments, we implement two structure
learning strategies, tree-based search for learning tree-based
BN in a restricted family of Chow-Liu trees and greedy
search for learning general BNs. After finding the desired BN
structure, BN model parameters are estimated by maximum
likelihood estimates (MLEs).

To further restrict the search space of BN structure
learning, only experimentally confirmed interactions are
considered as candidate edges in BNs. In this paper, for
Escherichia coli, we have employed the interactions archived
in RegulonDB (16). When needed, separate interaction
inference and validation methods, such as GENIE3 (17),
TIGRESS (18), or Inferelator (19), can also serve as
the prior knowledge to extend the search space for structure
learning.

Tabu search, a modified hill-climbing optimization strategy,
is implemented in bn-learn as the search method based
on a chosen score function, for example, either Bayesian
information criterion (BIC) or Akaike information criterion
(AIC). In our implementation, we further explore the proposed
bootstrap resampling in (20) to increase the exploration
space and learn a more robust structure. Specifically, we
search for high-score BN structures by bootstrapping multiple
expression samples from the given total samples (simulated
or from expression databases). The inferred edges present in
at least N% of the learned BNs are finally included in the
final structure. N is a threshold value, which is determined
automatically as described in (20). Such a model averaging
strategy helps to establish the significance of the edges in the
final “average” structure for robustness against the potential
data uncertainty and scarcity. In addition to learning general
BNs by a greedy Tabu search, we have also implemented
Chow-Liu-tree-based BN learning in TRIMER.

Gene state inference: Once we have learned a BN,
we can infer all the relevant conditional probabilities

Pr(Gene(s)|TF (s)) that regulate the genome-scale
metabolic network (iAF1260 for E. coli for example) so
that for TF-knockout mutants, the conditional probabilities
P (genes|TFs) can model the effect of TF knockouts over
the regulated target genes and therefore the corresponding
metabolic fluxes at the genome scale. To do that in TRIMER
without incurring high computational cost to exhaust all
potential P (genes|TFs) for metabolism regulation, we only
focus on the TF-target interaction list to determine which
genes can be affected (annotated as target genes) when a TF is
knocked out. Generally speaking, due to potential I-equivalent
classes when learning BNs from data, determining the exact
causal relationships from the learned BN structure is difficult.
We again rely on the annotated TF-gene interaction list (in
RegulonDB for example). The Kolmogorov-Smirnov test (21)
is performed to select significantly coupled TF–target pairs in
the interaction list. Then the filtered list is further pruned by
removing the pairs that are d-separated in the learned BN. In
cases when multiple TFs are knocked out at the same time, the
list of the affected genes is the union of the target gene lists
corresponding to each knockout TF in TRIMER. In addition,
we only care about the probabilities that will affect metabolic
reactions so that only the target genes that are associated with
the metabolic reactions as described by the gene-protein-
reaction (GPR) rules will be considered. Given this pruned
interaction list, TRIMER infers corresponding conditional
probabilities by BN inference algorithms. In TRIMER, exact
inference is performed by the integrated package gRain (22)
and approximate inference in bn-learn (15) can also be
directly utilized for computational efficiency.

Metabolic Flux Prediction in TRIMER

Construct transcriptional constraints over flux variables:
Metabolism regulation in TRIMER is done by constructing
constraints for corresponding metabolic reaction fluxes due
to corresponding gene states based on GPR rules. From
the BN learning and inference module, we derive a list of
conditional probabilities associated with the corresponding
metabolic reactions in the metabolic network model. Similar
as in PROM, these probabilities together with the maximum
fluxes estimated via flux variability analysis (FVA) (23) are
used to constrain the reaction flux bounds through GPR
rules. In the metabolic models, GPR rules are represented as
Boolean expressions associated with corresponding reactions
to describe the nonlinear relationships between genes and
reactions. In TRIMER, we have implemented a general
platform as in TIGER (7) to convert the conditional
probability values into linear constraints over flux variables
and integrate them with the metabolic model in COBRA (24)
for flux prediction. The workflow of connecting the BN
inference and metabolic flux prediction modules is illustrated
in the flowchart shown in Figure 1.

We have adopted two ways to derive the updated reaction
flux constraints according to the two ways of inferring
conditional probabilities based on the learned BN. The first
way is similar as the one adopted in PROM. Suppose there
are M genes denoted as G={g1,...,gm,...,gM} that are
regulated by the corresponding TF(s). Then via the provided
GPR rules in the COBRAmodel, we can find the corresponding
affected reactions denoted as R={r1,...,rn,...,rN}. For

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.09.439167doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.09.439167
http://creativecommons.org/licenses/by-nc-nd/4.0/


“manuscript” — 2021/4/9 — 13:52 — page 4 — #4i
i

i
i

i
i

i
i

4 Nucleic Acids Research, , Vol. , No.

each rn2R, we can find a subset of regulating genes in G,
denoted as G(rn), based on the corresponding GPR rules.
With the corresponding TF knockout mutants, the reaction
flux bounds are then adjusted in the following way:

ubrn = min
g2G(rn)

{p(g=1|TF =0)}⇥Vmax(rn);

lbrn = min
g2G(rn)

{p(g=1|TF =0)}⇥(�Vmax(rn)), (1)

where Vmax(r) are estimated by FVA for reaction r. An
example is given in the Supplemental Data to better illustrate
this operation.

In TRIMER, we have also implemented a more general way
for integrating both the probabilities and the GPR rules into
the flux constraints, so we can obtain the joint probabilities
of the states of multiple genes regulating the same reaction.
The reaction flux bounds can be set by directly multiplying
the maximum flux with the sum of all probabilities with
the corresponding gene states that affect the corresponding
reaction according to the GPR rules:

ubrn =
X

Bool(⇡)=1

p(G(rn)=⇡|TF =0)⇥Vmax(rn);

lbrn =
X

Bool(⇡)=1

p(G(rn)=⇡|TF =0)⇥(�Vmax(rn)), (2)

where Bool(⇡)=1 denotes that the corresponding GPR
rules between the genes and the reaction are satisfied
with ⇡ representing the corresponding states of genes. One
illustrative example is given in the Supplemental Data.

In the remaining content, we use TRIMER-C to denote
the TRIMER implementations including the flux constraints
computed in the first way and TRIMER-B for the second way.
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Figure 2. Metabolic models represented as Matlab data structures: Boxes
indicate size and orientation of the fields. Black text denotes the
corresponding field names. Gray areas contain data from the metabolic model,
with white text indicating the relevant field names.

Data structure for metabolic reaction network: TRIMER
adopts a data structure organized in a similar way as that
in the TIGER package (7) to represent the TF-regulated
metabolic reaction network. In this data structure, constraints,
lower/upper bounds, variable types of the reaction flux
variables provided in the model files from the COBRA

toolbox, together with the corresponding information for
additional variables are represented and stored in a unified
framework. As shown in Figure 2, in the data structure
representation, fields obj, varnames, vartype, lb, and
ub correspond to the coefficient vector used in the objective
function of the corresponding metabolic network model
formulations, such as FBA and ROOM; descriptive names of
involved variables; variable types; and lower/upper bounds.
Fields A, b, ctype store all the information about constraints
over variables. Stoichiometry constraints S~v=0 for flux
variables v and all the other additional linear constraints
over variables in the data structure specified by users are
collected into matrix A and vector b and represented as a
single expression A ~var op b, where ~var denotes all the
variables included in TRIMER and op is a vector constituting
{0>0,0<0,0=0} stored in the field ctype. In TRIMER, build-
in functions are implemented to provide a standardized way
to build the data structure mentioned above. For example, if
we want to add three additional vectors ~a, ~b and ~c2RN with
constraints, Q~a�U~b=~c (U,Q2RN⇥N ) to a data structure
trimer, it can be simply achieved by the following command
lines:
trimer = add column(trimer,

[A;B;C],vartype’, ’c’);
trimer = add constraint(trimer,

linalg(Q,A, U,B, ’=’, C)).

Metabolic flux prediction: Flux Balance Analysis (FBA) has
been widely adopted for steady-state metabolic flux analyses
by assuming the balance of production and consumption
fluxes of metabolic network models (1, 9, 25). For wild-
type microbial species, the corresponding steady-state fluxes
can be computed by maximizing the biomass growth
rate as detailed in the Supplemental Data. For modeling
metabolic fluxes of mutant strains, different formulations,
including minimization of metabolic adjustment (MOMA) (4)
regulatory on/off minimization (ROOM) (6), OptKnock (5)
and other extensions (8, 10), have been developed.

In TRIMER, we have implemented two variations of the
FBA formulations for metabolic flux prediction, in addition
to the standard FBA formulation with biomass as the
objective function as detailed in the Supplemental Data. When
predicting corresponding reaction fluxes of knockout mutants
for all these formulations, let ~v,~v0,ub,lb2Rm and I , denote
the flux variables, wild-type optimal flux vector (the fluxes
obtained by performing the standard FBA with the initial flux
bounds given by the COBRA model), flux upper bounds and
lower bounds, as well as the set of reactions affected by the
corresponding TF knockout(s). For each affected reaction, the
reaction flux bounds are modified as described previously.
With that, the optimization formulation for mutants with the
biomass objective and slack variables allowing violating flux
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bound constraints, denoted as sFBA, is as follows:

max
~v,~↵,~�

biomass(~v)�~T(~↵+~�)

s.t. S~v=0;

lbi�↵iviubi+�i, 8i;

i

8
><

>:

=
biomass(~v0)

max(|vmax(i)|,vthresh)
, 8i2I;

=0, otherwise,

where vi,1 iM denotes the flux value for the ith
metabolic reaction of the total M reactions in the metabolic
network and S a M⇥N stoichiometric matrix with
N metabolites in total. The biomass production flux:
biomass(~v)=

P
j2Ibiom

cjvj is based on the annotated set of
reaction indices, Ibiom, involving the metabolite precursors
that contribute to the biomass production in FBA with the
corresponding given weights cj (4). Each reaction flux is
bounded by lbi and ubi’s. Here, ~↵ and ~� can be considered as
slack variables and ~i is a coefficient vector controlling which
reactions are allowed to exceed the upper/lower bounds and
the penalty for exceeding the bounds.

We have also implemented ROOM (6), which is believed
to better model mutant strains. In the ROOM formulation,
the objective is to minimize the number of reactions with
significant changes from the wild-type fluxes ~v0. TRIMER
solves the following optimization problem:

min
y

X

i

(yi)

s.t. S~v=0;

lbiviubi, 8i2I;

vi�(ubi�wi)yiwi, 8i;
vi�(lbi�wi)yi�wi, 8i;

wi=v0i +�|v0i |+✏, 8i,

where � and ✏ are two hyperparameters used in the original
ROOM formulation to define the allowed flux changes from
the wild type fluxes ~v0.

Following TIGER (7), TRIMER builds a customized
Matlab CMPI (Common Mathematical Programming
Interface) for metabolic flux prediction based on the data
structure detailed above. This CMPI defines a consistent
structure for mathematical programming solvers, including
CPLEX and GLPK.

Datasets and Software Packages

TRIMER integrates several existing packages. For the
BN learning and inference module, bn-learn (15) and
gRain (22) are adopted for Bayesian network learning
and inference respectively. For the metabolic flux prediction
module, TRIMER supports CPLEX and GLPK as solvers
for the three aforementioned FBA formulations. Besides,
TRIMER is also compatible with the CMPI module in that
TIGER package (7) to interface with the corresponding FBA
solvers.

EcoMAC dataset: We have focused on the analyses with
E. coli in TRIMER. To infer the TF regulation network and
determine the ‘ON/OFF’ gene states, quantile normalization is
performed over the archived microarray data in EcoMAC (26)
as described previously.

TF-gene interaction annotations for E. coli: We have used
the interaction set previously reported (26). These data
comprise all archived interactions in RegulonDB v8.1 (16)
that were experimentally validated to support the existence
of regulatory interactions, and total 3,704 pairs of regulatory
interactions. Serving as prior knowledge, those interaction
pairs helped to learn the BN from microarray data and
derive the TF-target list for metabolism regulation as detailed
previously.

Metabolic model: In general, TRIMER can take any
metabolic model in the COBRA format based on the organism
under study. We have used the iAF1260 model for E. coli
from the COBRA toolbox (24) throughout all the current
experiments as the lab experimental data are collected from
E. coli wild-type strains and knockout mutants.

GPR rules: In COBRA (24), the GPR rules are provided for
most of the metabolic reactions, including iAF1260. TRIMER
takes these GPR rules from COBRA directly.

Experimental Data Collection

E. coli mutants and validation: Strains deleted for genes
encoding transcription factors used in this study were obtained
from the Keio collection of E. coli mutant library. All
comparisons were made to BW25113, the parent strain of the
collection. Mutants were validated with internal gene-specific
primers by colony PCR.

Kovac’s Assay for indole quantification: The amount of
indole produced by each mutant of interest was quantified
by Kovac’s assay as described in (27). Briefly, total indole
concentrations were determined by growing strains at 37�C
overnight in LB or M9 minimal media and normalized to
an OD600 of 0.3 the following morning. 60 ul of Kovac’s
reagent (comprised of 150 ml isoamyl alcohol (IAA), 50
ml concentrated hydrochloric acid (HCl) and 10 g of para-
dimethylaminobenzaldehyde (DMAB)) was added per 200
ul of normalized culture and incubated for 2 minutes. 10 ul
were subsequently removed and added to 200 ul of an HCl-
IAA solution, and the absorbance measured at 540 nm. Indole
concentrations were then calculated using an indole standard
curve prepared in the same manner as described above.

RESULTS AND DISCUSSION

TRIMER: Transcription Regulation Integrated with

MEtabolic Regulation

We provide a brief overview of our proposed hybrid TF-
regulated metabolic network model, TRIMER: TRIMER
differs from the existing methods in the way of systematic
prediction of effective intervention strategies when applied
to the transcription regulatory network for regulation of
metabolism. Specifically, TRIMER is based on a Bayesian
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Figure 3. Illustrative overview of TRIMER. Gene expression data are used to infer the Bayesian network (BN) modeling the transcriptional regulations. The
impact of transcription factor knock-out on downstream target genes that affect metabolic pathways are inferred using the BN. The estimated probability that a
given target gene being turned on modulates the constraints in the flux variability analysis (FVA), resulting in probabilistic metabolic predictions.

Network (BN) for learning transcription regulation from
gene expression data. Instead of utilizing simple conditional
probabilities of the form Pr(gene=on/off|TF =on/off) as in
PROM (12), the BN can be used to determine a probabilistic
inference of the effect of alterations (e.g., gene deletions
or modulated expression levels) of multiple TFs (or genes).
While the framework presented is independent of the nature
of TF engineering, we focus herein on gene deletions (i.e.
knockouts (KO)). Furthermore, BN modeling enables intuitive
incorporation of prior knowledge (e.g., pathways or pairwise
regulatory relationship between genes) for learning the TRN
(such as learning its topology). There exist efficient tools for
learning BNs from data, which could be utilized and adapted
for our purpose.

In TRIMER, a BN is trained from the gene expression
data to model the joint distribution for all the relevant TFs
and genes, where the resulting BN can be subsequently used
to infer the steady-state conditional probabilities of the form
Pr(Genes|TFs) – i.e., the probability of gene states given
the states of TFs of interest. For example, we can use the BN to
estimate the probability that a target gene known to regulate a
specific metabolic pathway is induced given that expression of
one or more TFs is abolished by gene deletion. The estimated

probabilities can be used to constrain the metabolic reaction
fluxes of interest, based on which the flux changes of selected
metabolites resulting from the genetic alteration (e.g., TF gene
deletion) can be predicted via flux balance analysis (FBA).
The gene-protein-reaction (GPR) rules, which inform us of the
respective metabolic pathways regulated by different genes,
are used to link the translation regulation modeled by the BN
with the metabolic regulation simulated by FBA.

TRIMER, which jointly models transcription regulation and
metabolic regulation via the aforedescribed hybrid approach,
allows us to assess the efficacy of potential TF engineering
strategies and identify the optimal strategy for modulating the
metabolic fluxes of interest. The desirability of a given genetic
alteration can be assessed in silico using TRIMER, which
can be validated through actual TF deletion and screening
experiments in the laboratory.

Figure 3 provides a high-level overview of TRIMER,
illustrating its main workflow. As shown in this diagram,
TRIMER consists of two main modules: (1) the BN module
for modeling and inference of transcription regulation and
(2) the metabolic flux prediction module for estimating the
impact of alterations in the TRN on the metabolic outcomes.
The two modules are linked to each other by the GPR rules.
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Detailed description of each component can be found in
the MATERIALS AND METHODS section. Furthermore,
Figure 1 depicts the overall workflow in TRIMER, including
the interconnections among the computational modules that
comprise TRIMER.

Simulation of E. coli Transcription Regulatory Network

Pipeline for simulating integrated transcription and

metabolic regulations: The microarray gene expression
data from EcoMAC (26) are used to identify the potential
target genes of 12 transcription factors studied in the
aforementioned TF knockout experiments. In the current
simulation experiments, we have taken these TFs and the
selected target genes as the backbone nodes, in which there
are 12 TFs and 32 target genes (i.e. the combined regulons).
We first simulate a BN as the ground-truth TF regulation
network, in which there are 137 edges in total. The interactions
corresponding to these edges in this ground-truth BN are
initialized with the following restrictions: 1) only the nodes
corresponding to the TFs can serve as parent nodes of the
nodes corresponding to other TFs or target genes; 2) the
maximum number of edges between one TF parent node
and all the other TF nodes is restricted to be half of the
total number of TFs, and the maximum number of edges
between one TF parent node and all the other target gene nodes
is restricted to be half of the total number of target genes
in the simulating TF regulation network; 3) the edges are
randomly generated between every valid pair of nodes with the
corresponding values of conditioning probability table (CPD)
for each node being initialized randomly according to the
uniform distribution Unif(0,1).

The gene expression data are first generated by sampling
based on the simulated BN. Ten sample sets of 2000 binary
gene expression profiles are drawn via the forward sampling
procedure on the simulated BN. For each sample set of
2000 generated samples, five subsets of 100, 200, 400, 800,
and 1600 samples are randomly selected to construct the
corresponding training sets for performance evaluation. In this
way, 50 datasets in total with sizes ranging from 100 to 1600
are obtained.

On the other hand, from the simulated BN, we can infer
the probability of the corresponding gene states for different
TF deletions as well as the wild-type. Based on the inferred
probabilities and the gene-reaction relationships, the flux
constraints in FBA can be adjusted to predict corresponding
reaction fluxes of TF knockout mutants and the wild-type. For
both the simulating ground-truth BN and the inferred BNs
based on the simulated expression data, the corresponding
metabolic fluxes can be simulated based on this procedure
for performance evaluation. Note that all of our simulation
experiments are based on the E. coli iAF1260 metabolic
network model for FBA.
BN structure inference based on simulated gene expression

data: Given the simulated gene expression data, the first
task is to learn the BN structure that best fits the given
data for performance evaluation of discovering the regulatory
interaction between TFs and target genes. In our experiments,
we have used score-based structure learning methods for this
task, where the quality of the learned BN structure is measured
by the Bayesian Information Criterion (BIC) score. We have

tested two BN structures: Chow-Liu tree search algorithm
for identifying the global optimal tree-based BN structure
and Tabu search algorithm for more general BN structure
learning. Tabu search only finds the local optimal structure.
In order to guarantee the quality of the predicted solutions in
our experiments, the Tabu length is set to be 100 where the
best structural changes in every 100 iterations are iteratively
updated as a reference for future search.

Once the BN structure is inferred based on the expression
data, the corresponding conditional probabilities capturing
the regulation relationships can be inferred by maximum
likelihood estimates (MLEs). Finally, the corresponding
probabilities of gene states given TF states can be inferred
by the network message passing algorithm. It should be noted
that the original PROM estimates the conditional probabilities
of gene states given TF states by MLE (relative frequencies)
directly based on the expression data, while the authors stated
that they only adjust FBA constraints by investigating only the
“experimentally verified” TF-gene pairs. In our experiments,
the underlying dependency between pairs of nodes in the
simulating ground-truth BN is considered as the actual TF-
gene pairs for PROM, to some extent in favor of PROM since
it does not learn the regulation network structure.

In Table 1, we have shown the average numbers of false
positive and false negative edges in the inferred general BN
models by Tabu search from different numbers of training
gene expression profiles. With the increasing number of
training gene expression profiles, it is clear that the BN
learning module in TRIMER can derive the BN model closer
to the ground-truth network that is used to simulate the
expression profiles as expected. Figure 4 shows the exemplar
BN models learned with different numbers of training
expression profiles. We have also checked the structure
learning performance when we infer Chow-Liu tree based BN
models, whose results are provided in Table 2. As expected,
due to the imposed constraints to allow optimal search for
the tree-based BN models, the true negatives are much larger
compared to the results in Table 1. Nevertheless, both false
positives and false negatives decrease with the increasing
number of training expression profiles.

Evaluation of flux prediction using TRIMER based on

the inferred network: In this section, we compare the
flux prediction results by TRIMER-C with Chow-Liu tree
(tree-TRIMER) and general BN structure (BN-TRIMER) to
the results by PROM, based on simulated gene expression
data. Note that we focused on applying the flux constraints
based on (1) (TRIMER-C) for fair performance comparison
with PROM. We computed the correlation between the
simulated biomass and indole fluxes based on the ground-
truth network model and the predicted biomass and indole
fluxes based on the inferred networks of both wild-type and
the mutant strains deleted for TFs in the regulation network.
For 10 simulated datasets of the same number of gene
expression profiles, the average correlation and its standard
deviation (std) are computed. Tables 3 and 4 summarize the
performance comparison of TRIMER and PROM for biomass
and indole flux prediction respectively, with different numbers
of simulated gene expression data.

As shown in Table 3, from simulated expression data,
BN-TRIMER consistently gives the closest biomass flux
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(a) (b)

(c) (d)
Figure 4. Examples of learned BNs from (a) 100, (b) 200, (c) 800, and (d) 1600 simulated expression profiles. The blue edges denote the accurately learned
edges, the red edges are false positives, and the green edges are false negatives.

Table 1. False negative/positives for learned BN structures by Tabu search

Training dataset size 100 200 400 800 1600
False positive (avg± std) 39.2± 3.7 23.6± 6.0 17.0± 3.2 11.8±2.9 10.4±2.5
False negative (avg± std) 55.8± 3.8 36.6± 5.4 24.4± 2.2 15.6± 2.5 13.8± 2.3
1 The total number of edges in the ground-truth simulated Bayesian network is 137.

prediction to the simulated fluxes based on the ground-
truth model. It is clear that with more expression data, the

predicted fluxes can get better and vary less with different
simulated expression data. With small training expression
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Table 2. False negative/positives for learned tree-based BN structures

Training dataset size 100 200 400 800 1600
False positive (avg± std) 21.8± 3.4 16.6± 3.1 13.5± 2.1 10.1±1.0 9.4±1.2
False negative (avg± std) 107.8± 3.4 102.6± 3.1 99.5± 2.1 96.1± 1.0 95.4.± 1.2
1 The total number of edges in the ground-truth simulated Bayesian network is 137.

Table 3. Biomass flux prediction comparison between TRIMER and PROM with different numbers of training expression profiles

average/std 100 200 400 800 1600
BN-TRIMER 0.631±0.199 0.847±0.181 0.936±0.062 0.978±0.015 0.986±0.005
tree-TRIMER 0.432±0.276 0.565±0.170 0.661±0.117 0.605±0.145 0.599±0.178
PROM 0.125±0.275 0.488±0.362 0.775±0.133 0.659±0.145 0.788±0.163

Table 4. Indole flux prediction comparison between TRIMER and PROM with different numbers of training expression profiles

average/std 100 200 400 800 1600
BN-TRIMER 0.873±0.086 0.949±0.071 0.979±0.019 0.921±0.221 0.917±0.248
tree-TRIMER 0.863±0.053 0.902±0.030 0.914±0.030 0.911±0.034 0.913±0.035
PROM 0.382±0.253 0.303±0.253 0.485±0.227 0.699±0.155 0.786±0.232

data, PROM’s flux prediction can have quite weak correlation
while with increasing size of expression data, the prediction
can improve. For tree-TRIMER, as the model class deviates
from the ground-truth model, the prediction performance
saturates when the number of training expression profiles is
400. On the other hand, with small training sets, tree-TRIMER
performs better than PROM.

Table 4 provides a comparison for the indole flux
predictions. Note that the ground-truth BN models are
simulated based on the core subnetwork centering around
indole-related reactions. We observe that both versions of
TRIMER-C have better indole flux prediction performance,
especially with small training data, compared to the results in
Table 4. The tree-TRIMER shows much better performance,
which suggests that good prior knowledge on what to model
for the TF regulation network may significantly enhance flux
predictions. On the other hand, unlike TRIMER, PROM only
models local dependency instead of global dependency, and its
indole and biomass flux prediction performances are similar.
In Figures 5 and 6, we provide the bar plots based on the
comparison previously discussed.
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Figure 5. Biomass flux prediction comparison between TRIMER and PROM
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Figure 6. Indole flux prediction comparison between TRIMER and PROM

Experimental validation of metabolic flux predictions

made by TRIMER

To further demonstrate the utility of TRIMER in in silico
metabolic flux prediction for TF knockout mutants, we have
taken the archived microarray gene expression data and the
experimentally verified TF-gene interactions in EcoMAC (26)
to infer the corresponding Bayesian network for modeling the
TF regulation network using the general BN inference module
of TRIMER. Based on the inferred BN, the conditional
probabilities of corresponding gene states when given TF
knockouts were computed. Taking these inferred probabilities,
the metabolic network flux prediction module in TRIMER was
run to predict biomass and indole fluxes for corresponding TF
knockout mutants.

We first compared the in silico flux predictions by TRIMER
and PROM with the experimental measurements from the
knockout experiments in (28), for which the prediction results
by PROM were reported in (12). For the biomass objective, we
took Ec biomass iAF1260 core 59p81M in iAF1260
as done in PROM. Three FBA formulations, standard FBA,
sFBA, and ROOM in TRIMER were implemented. In our
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Table 5. Predicted biomass flux comparison between TRIMER and PROM for the knockout experiments in (28).

TF KO Actual TRIMER-C TRIMER-B PROM
FBA sFBA ROOM FBA sFBA ROOM FBA PROM ROOM

WT +O2 0.71 0.7077 0.7077 0.7077 0.7077 0.7077 0.7077 0.7077 0.7077 0.7077
arcA+O2 0.6900 0.1006 0.5828 0.0977 0.2784 0.6091 0.2538 0.1967 0.2722 0.0418
fnr +O2 0.6300 0.4109 0.5227 0.3557 0.3852 0.5363 0.3852 0.3994 0.5256 0.3557
arcA fnr +O2 0.6500 0.1006 0.4109 0.0863 0.2784 0.5363 0.2653 0.1967 0.2722 0.0399
appY +O2 0.6400 0.7077 0.7077 0.6714 0.7077 0.7077 0.6714 0.7077 0.7077 0.6714
oxyR +O2 0.6400 0.7077 0.7077 0.6714 0.7077 0.7077 0.6714 0.7077 0.7077 0.6714
soxS +O2 0.7200 0.6524 0.7063 0.6524 0.6476 0.7062 0.6476 0.6493 0.7073 0.6493
WT -O2 0.49 0.4914 0.4914 0.4914 0.4914 0.4914 0.4914 0.4914 0.4914 0.4914
arcA -O2 0.3800 0.0193 0.0193 0.0097 0.0535 0.0535 0.0482 0.0378 0.0378 0.0278
fnr -O2 0.4100 0.2853 0.3629 0.2853 0.2674 0.3724 0.2674 0.1421 0.2773 0.1224
arcA fnr -O2 0.3000 0.0193 0.0193 0.0088 0.0535 0.0535 0.0484 0.0378 0.0378 0.0373
appY -O2 0.4800 0.4914 0.4914 0.4658 0.4914 0.4914 0.4658 0.4914 0.4914 0.4658
oxyR -O2 0.4800 0.4914 0.4914 0.4658 0.4914 0.4914 0.4658 0.4914 0.4914 0.4658
soxS -O2 0.4600 0.4529 0.4914 0.4529 0.4496 0.4914 0.4496 0.4508 0.4902 0.4508
correlation - 0.5063 0.8377 0.5019 0.6557 0.8843 0.6537 0.6086 0.6793 0.4767
1 In the FBA formulations, substrate (glucose) and oxygen uptake rates for aerobic conditions are set to be 8.5 and 14.6 mmol/gDCW/hr,

respectively. They are set to 0 and 21.2 mmol/gDCW/hr for anaerobic conditions.
2 The optimization is by the CPLEX solver.

Table 6. Predicted indole flux comparison between TRIMER and PROM for our TF knockout (KO) experiments in M9 minimal media.

TF KO Actual TRIMER-C TRIMER-B PROM
FBA sFBA ROOM FBA sFBA ROOM FBA sFBA ROOM

fnr 0.0427 0.0231 0.0293 0.0427 0.0216 0.0301 0.0427 0.0224 0.0295 0.0427
soxS 0.0387 0.0366 0.0397 0.0386 0.0364 0.0397 0.0374 0.0365 0.0397 0.0367
crp 0.0397 0.0197 0.0197 0.0383 0.0193 0.0200 0.0367 0 0 0.0367
lysR 0.0400 0.0372 0.0372 0.0392 0.0370 0.0370 0.0380 0.0370 0.0370 0.0370
fucR 0.0390 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377
malI 0.0403 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377
phoB 0.0390 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377
cpxR 0.0393 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377
creB 0.0383 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377
trpB 0 0 0 0 0 0 0 0 0 0
trpD 0 0 0 0 0 0 0 0 0 0
trpE 0 0 0 0 0 0 0 0 0 0
paaX 0.0393 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377
trpA 0 0 0 0 0 0 0 0 0 0
tnaA 0.0380 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377
trpL 0.0393 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377
tnaC 0.0397 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377
tnaB 0.0400 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377
dhaR 0.0403 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377 0.0397 0.0397 0.0377
correlation - 0.9270 0.9448 0.9988(7) 0.9203 0.9478 0.9988(8) 0.8305 0.8481 0.9987
1 In the FBA formulations, substrate (glucose) and oxygen uptake rates are set to be 9.5 mmol/gDCW/hr and 13.0 mmol/gDCW/hr, respectively.
2 The optimization is by the CPLEX solver.

experiments, the parameters � and ✏ in the ROOM formulation
were set to be 0.05 and 0.001. Table 5 provides the comparison
of the experimental and predicted fluxes by TRIMER-C,
TRIMER-B, and PROM for different TF knockout mutants
as well as the overall Pearson’s correlation coefficients.
TRIMER-B consistently achieved the highest correlation with
the experimental results for three FBA formulations, among
which TRIMER-B with sFBA obtained the highest correlation
with the experimental results among all the model choices.

We further validated the predicted fluxes by TRIMER
with our experimentally-generated data from TF-knockout

experiments for indole production as described previously. We
took TRPS3 in iAF1260 for indole flux prediction. Table 6
provides the comparison of the experimental and predicted
fluxes by TRIMER-C, TRIMER-B and PROM for different TF
knockout mutants grown in M9 minimal media and the overall
Pearson’s correlation coefficients between experimental and
predicted fluxes. In this set of experiments, TRIMER again has
achieved consistently better correlation with the experimental
results. The prediction performance of TRIMER-B is better
with the sFBA and ROOM formulations. It should be also
noted that TRIMER with the ROOM formulation has achieved
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the highest correlation values, which are significantly better
than the other FBA formulations for both TRIMER and
PROM. The overall superiority of TRIMER over PROM is
due to the effective modeling of the global dependency in TF
regulations through the BN learning and inference, in contrast
to using simple conditional probability estimates adopted in
PROM.

DATA AVAILABILITY

TRIMER: Source Code and Instructions

The developed package TRIMER is available online in an
open-source GitHub repository (29). All the implemented
functions in TRIMER are documented using Matlab’s help
function. Code for the reported experiments in this paper can
also be found in the GitHub repository.

Experimental Data

Experimental data for total indole concentrations of the TF-
knockout deletants and the parental strain in LB and M9 media
are provided as Supplementary Tables 1 and 2, respectively.
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SUPPLEMENTAL DATA

We here provide the brief review on the basics of flux
balance analysis (FBA) (9, 25) and probabilistic regulatory
network modeling including both simplistic conditional
probability models as adopted in Probabilistic Regulation Of
Metabolism (PROM) (12) and more general Bayesian network
(BN) modeling (30). We also present some examples of
potential conditional probabilities inferred from the learned
BNs. Finally, we introduce, with additional experimental
results, the phenotype prediction functions of TRIMER with
integrated modules from TIGER (7).

Flux Balance Analysis and metabolic engineering for

mutant strain design

Since it has been proposed in (1, 9, 25), Flux Balance
Analysis (FBA), as a simplified network analysis model for
metabolic flux analysis, has been widely adopted for steady-
state flux analyses by assuming the balance of production
and consumption fluxes of metabolic network models.
Mathematically, with the prior stoichiometry knowledge, FBA
assumes that the weighted sum of network fluxes, denoted
by the vector ~v, based on stoichiometric coefficients S is
0: S~v=0. Such a steady-state flux analysis is performed by
assuming that the corresponding wild-type microbial species
always optimizes for its growth:

max
~v

biomass(~v)

s.t. S~v=0;

lbiviubi, 8i.

For wild-type microbial strains, a common assumption is that
their steady-state flux values follow an optimal distribution
that maximizes the biomass production rate. Often, the
steady-state flux distribution is approximately solved as a
linear programming (LP) problem to maximize the biomass
production flux: biomass(~v)=

P
j2Ibiom

cjvj subject to the
FBA stoichiometry constraints. Here, cj is the corresponding
given weighting coefficients and Ibiom is the set of reaction
indices involving the metabolite precursors that contribute to
the biomass production in FBA (4).

When modeling mutant strains, the researchers found
that the biomass maximization assumption for wild-type
strains may not approximate the steady-state fluxes well.
To achieve better agreement with experimental observations,
approximation formulations of knockout metabolic fluxes
undergoing a minimization of metabolic adjustment (MOMA)
process (4) or by the regulatory on/off minimization
(ROOM) (6) have been proposed to address the long-term post
knockout metabolic flux distribution predication problem.

Existing microbial strain design formulations are mostly
in the framework of FBA without considering changing
conditions or contexts. They search for the knockouts to
optimize the desired flux predictions by bi-level optimization
formulations to make sure about the mutant survival at
the same time. One of such representative methods is
OptKnock (5). However, when modeling condition/context
dependency in hybrid models involving transcriptional
regulations, such methods are not directly applicable.

PROM: A brief review

PROM aims to predict metabolic fluxes of the knockout
mutants in transcription factor (TF)-regulated metabolic
networks. Specifically, PROM is built upon the FBA
framework. PROM first estimates the probability of
“reaction-targeted” gene expression (ON/1 or OFF/0) given
transcription factor (TF) expression PR(gene=1|TF =0)
based on a certain set of microarray expression data using
annotated TF-gene-reaction interactions. Based on that,
PROM solves the following LP problem given transcription
factor knockout (KO) perturbations:

max
~v,↵,�

biomass(~v)�(↵+�)

s.t. S~v=0;

lb0i�↵viub0i+�, 8i,
↵�0; ��0,

where ↵ and � can be considered as slack variables and lb0i
and ub0i are perturbed flux bounds based on transcriptional
regulations. In particular, Flux Variability Analysis (FVA) (23)
is performed together with network-based metabolic behavior
prediction (31) to get the minimum and maximum fluxes. The
inferred conditional probabilities due to a specific TF KO will
then be multiplied based on the transcriptional regulations
on the corresponding metabolic reactions, for which the
metabolic models from either the KBase (32) or COBRA

toolbox (24) can be used.
PROM consists of multiple steps from microarray data

analysis, flux bound manipulations, and FBA based on these
steps with the aim to have their model prediction to better fit
with the flux measurements at different conditions.

Modeling transcription regulations using Bayesian

Network

A Bayesian network (BN) is a probabilistic graphical model
(PGM) that can be used to represent the joint probability
distribution of a set of variables X={X1,··· ,Xn}, whose
dependencies are described by a directed acyclic graph (DAG)
G. Each node in the DAG corresponds to a variable XiinX
of interest, and a directed edge Xj!Xk represents the
possible causal relationship between the variables Xj and Xk.
Following the topology of the DAG, the joint distribution of X
can be written as a product of conditional probabilities:

P (X)=
nY

i=1

P (Xi|Pa(Xi)) (3)

where P (Xi|Pa(Xi)) is the conditional distribution function
of Xi given the set of variables Pa(Xi), which denote the
set of its parent nodes in G. In BN, graph topology captures
the complex dependencies among the variables, resulting in
a compact representation of the joint probability distribution
of X by factorizing it into a product of local probability
models as in (3). This compact representation reduces data
requirements for learning the distribution from data and
also greatly enhances the computational efficiency of making
probabilistic inference based on the distribution (30).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.09.439167doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.09.439167
http://creativecommons.org/licenses/by-nc-nd/4.0/


“manuscript” — 2021/4/9 — 13:52 — page 14 — #14i
i

i
i

i
i

i
i

14 Nucleic Acids Research, , Vol. , No.

The main novelty of the hybrid models in TRIMER is
to model the TF-regulated network (TRN) using the more
general Bayesian network model to better capture regulatory
relationships. Unlike PROM, in which TF-regulations are
represented simply by inferring the maximum likelihood
estimates (MLEs) of the involved conditional probabilities
PR(gene=1|TF =0), TRIMER adopts a full-fledged BN to
capture the transcription regulations. Based on the available
gene expression data, we can infer the BN by first inferring
the structure of the network and then estimating the
parameters of the local probability model (i.e., conditional
probability distributions). In this manner, TRIMER can better
capture both the local and global dependencies between
TFs and genes, thereby better model the TF knockout
effects on metabolic fluxes. Furthermore, the BN enables
the incorporation of available prior knowledge regarding TF
regulations, enhancing the quality of the inferred network
compared to a solely data-driven inference approach.

Examples of inferring conditional probabilities given BN

In this subsection, we provide two examples for the two ways
of applying transcriptional regulations based on BN-inferred
conditional probabilities as explained in the main text.

We provide an example to illustrate the operation based
on (1). In this example, the reaction r is catalyzed by two
genes A and B according to the GPR rules in the metabolic
model.When their regulating TF is knockout, we can obtain a
probability vector: (P (A=1|TF =0),P (B=1|TF =on))T.
The corresponding reaction flux upper/lower bounds for
reaction r are set to be:

ubr = min{P (A=1|TF =0),P (B=1|TF =0)}
⇥ Vmax(r), if V0(r)>0;

lbr = min{P (A=1|TF =0),P (B=1|TF =0)}
⇥ (�Vmax(r)), if V0(r)<0,

where V0(r) is the wild-type flux for reaction r.
We now give the example to illustrate the operation based

on (2). In this example, the reaction r is associated with a GPR
rule, (A and B)orC. The corresponding GPR rule values and
three gene states are illustrated in Table A1. We can see that
only four of the sixteen possible state combinations render that
the GPR rule to be false. Thus, the upper or lower bounds with
respect to r will be computed as:

ubr=(P (A=0,B=0,C=0|TF =0)

+P (A=0,B=1,C=0|TF =0)

+P (A=1,B=0,C=0|TF =0))

⇥Vmax(r), if V0(r)>0;

lbr=(P (A=0,B=0,C=0|TF =0)

+P (A=0,B=1,C=0|TF =0)

+P (A=1,B=0,C=0|TF =0))

⇥(�Vmax(R)), if V0(R)<0.

Table A1. GPR rules for gene state profiles of three genes: A,

B, and C.

GPR value 0 1 0 1 0 1 1 1
A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 1 0 1 0 1 0 1

Refine TRIMER with given phenotypes

In TRIMER, we provide a way to refine the current metabolic
model given a minimum growth rate. This can help to remove
or adjust regulatory bounds that over-constrain the prediction
model when TFs are knocked out. These bounds can be
decided by solving the following optimization problem:

min
y

X

i2I
(yi)

s.t. S~v=0;

biomass(~v)>vgrowth

lbiviubi, 8i2I

vi�(ubiniti �ubi)yiubi, 8i

vi�(lbiniti �lbi)yi� lbi, 8i,

where ubinit and lbinit are the initial bounds from the original
wild-type model in COBRA and vgrowth is the minimum
growth-rate requirement specified by the user. Suppose the
threshold for a lethal KO is marked with 0.05 times the wild-
type biomass flux. In the experiments of biomass prediction
based on the experimental data in (28), we predict that the
phenotype of arcA KO is lethal when we have sFBA with the
TRIMER-C model. However, the actual phenotype of arcA
KO is non-lethal according to the experimentally measured
fluxes. This may indicate that some estimated conditional
probabilities for constructing flux constraints are too small
and some reactions affected by arcA KO are over-constrained.
Via the optimization problem above, we can identify which
reactions are over-constrained for TF(s) knockouts for given
non-lethal phenotypes. Based on this, we can further adjust
the values of conditional probabilities corresponding to these
reactions to make the predicted phenotypes to better match the
experimentally observed phenotypes and also, the predicted
fluxes to be closer to the experimentally observed fluxes. The
name abbreviations of the reactions that are over-constrained
and their corresponding condition probabilities for arcA KO
is shown in Table A2. It is clear that these probability values
are all small and result in the predicted phenotype to be lethal.
We adjust all these probabilities to be 0.9 and the predicted
biomass flux becomes 0.4027, which is very close to the
experimentally measured flux.

Integrating TRIMER with TIGER

In TRIMER, we have also programmed a simulation pipeline
that can simulate knockout mutant metabolic fluxes in
various growth conditions by borrowing the modules in
TIGER (7), instead of only being capable simulating aerobic
and anaerobic glucose minimal medium conditions as in
PROM (12). We adopt a Boolean model to simulate the
feedback regulatory rules as implemented in TIGER. As
TRIMER adopts the similar data structure as TIGER, which
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Table A2. Reactions that are over-constrained with
the corresponding inferred and adjusted probabilities

reaction index probabilities probabilities adjusted
ACONTa 0.0393 0.9
ACONTb 0.0393 0.9
CS 0.1534 0.9
biomass flux 0.0193 0.4027

is known to be a platform to integrate COBRA models with
these Boolean transcription regulations, TRIMER allows the
user to build a hybrid model that integrates probabilistic
TRN, Boolean feedback rules, and COBRA metabolic models
into a single unified pipeline, making it possible to simulate
knockout mutants in various growth conditions. We have
simulated 125 growth conditions for 15 TF KOs based on the
E. coli iAF1260 model and compared the performance of this
hybrid model and that by PROM using the phenotype datasets,
originally given in (12), as the ground truth. The parameter
settings of growth conditions can be found in (28). For the
TIGER part of the hybrid model to model Boolean regulations
interfacting the TRN and metabolic model, we have adopted
the iMC1010 Boolean network in (28).The TRIMER part of
the hybrid model is the same as PROM. Figure A1 shows
the results. The best performance of the hybrid model and
PROM implentations are both achieved when the threshhold
for lethal phenotypes is set to be 0.15 times the WT growth
rate. As we can see, the predictions mainly differ in the
growth condition with the growth media, 1,2-Propanediol L-
Tartaric Acid, L-Tartaric Acid, and Guanine. With additional
constraints introduced from the Boolean rules, many predicted
phenotypes become lethal.

TF-knockout experimental data

Total indole concentrations for the TF-knockout deletants and
the parental strain used in this study are provided in the
separate Supplementary Tables 1 and 2.
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Growth Media tdcR crp malT glpR gntR xylR asnC rbsR ilvY glnG rhaS cpxR cytR soxR melR
1,2-Propanediol '-/-/+' '-/-/-' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '+/-/-' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '-/-/+'
2-Deoxy Adenosine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
a-D-Glucose '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
a-D-Lactose '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
a-Keto-Glutaric Acid '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Acetic Acid '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Acetoacetic Acid '+/+/+' '-/-/-' '-/+/+' '-/+/+' '+/+/+' '-/+/+' '+/+/+' '-/+/+' '-/-/-' '-/+/+' '-/+/+' '+/+/+' '+/+/+' '-/+/+' '-/+/+'
Adenosine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Citric Acid '-/-/+' '-/-/-' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '+/-/+' '-/-/+'
D,L-Malic Acid '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
D-Alanine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
D-Fructose '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
D-Galactose '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
D-Galacturonic Acid '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
D-Gluconic Acid '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
D-Glucose-6-Phosphate'+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
D-Glucuronic Acid '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
D-Mannitol '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
D-Mannose '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
D-Melibiose '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+'
D-Ribose '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
D-Serine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
D-Sorbitol '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
D-Trehalose '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
D-Xylose '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Formic Acid '+/-/-' '+/-/-' '-/-/-' '-/-/-' '+/-/-' '+/-/-' '+/-/-' '+/-/-' '+/-/-' '+/-/-' '+/-/-' '+/-/-' '+/-/-' '+/-/-' '+/-/-'
Fumaric Acid '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Glycerol '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Glycolic Acid '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Inosine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Alanine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Arabinose '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Asparagine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '-/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '-/+/+' '+/+/+' '+/+/+'
L-Aspartic Acid '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Fucose '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Glutamic Acid '-/+/+' '-/-/-' '-/+/+' '+/+/+' '-/+/+' '-/+/+' '+/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+'
L-Glutamine '+/+/+' '+/-/-' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/-/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Lactic Acid '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Malic Acid '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Proline '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Rhamnose '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Serine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Threonine '+/+/+' '+/-/-' '-/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+'
Maltose '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Maltotriose '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
N-Acetyl-b-D-Mannosamine'+/+/+' '+/-/-' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
N-Acetyl-D-Glucosamine'+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Pyruvic Acid '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Succinic Acid '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Sucrose '-/+/+' '-/-/-' '+/+/+' '+/+/+' '-/+/+' '-/+/+' '-/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '-/+/+' '-/+/+' '+/+/+' '-/+/+'
Thymidine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Uridine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Butyric Acid '-/-/-' '-/-/-' '+/-/-' '+/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-'
D,L-Carnitine '-/-/-' '+/-/-' '+/-/-' '+/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-'
Dihydroxy Acetone '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '-/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
g-Amino Butyric Acid '-/+/+' '-/-/-' '+/+/+' '+/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/-/-' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '+/+/+'
Glycine '+/+/+' '-/-/-' '+/+/+' '+/+/+' '-/+/+' '-/+/+' '+/+/+' '-/+/+' '+/-/-' '-/+/+' '-/+/+' '+/+/+' '-/+/+' '-/+/+' '+/+/+'
L-Arginine '-/+/+' '+/-/-' '+/+/+' '+/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '+/+/+' '-/+/+' '-/+/+' '-/+/+' '+/+/+'
L-Histidine '-/-/-' '-/-/-' '+/-/-' '+/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '+/-/-' '+/-/-'
L-Isoleucine '-/-/-' '-/-/-' '+/-/-' '+/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-'
L-Leucine '-/-/-' '-/-/-' '+/-/-' '+/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '+/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-'
L-Lysine '-/-/-' '-/-/-' '+/-/-' '+/-/-' '-/-/-' '-/-/-' '+/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '+/-/-'
L-Methionine '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '+/-/-'
L-Ornithine '-/+/+' '-/-/-' '+/+/+' '+/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+'
L-Phenylalanine '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-'
L-Tartaric Acid '-/-/+' '-/-/-' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '-/-/-' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '+/-/+'
L-Valine '-/-/-' '-/-/-' '+/-/-' '+/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-'
N-Acetyl-Neuraminic Acid'+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Putrescine '+/+/+' '-/-/-' '-/+/+' '+/+/+' '-/+/+' '-/+/+' '+/+/+' '-/+/+' '-/-/-' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+'
Adenine '-/+/+' '-/-/-' '+/+/+' '+/+/+' '-/+/+' '-/+/+' '+/+/+' '+/+/+' '-/+/+' '-/+/+' '-/+/+' '+/+/+' '-/+/+' '-/+/+' '-/+/+'
Adenosine '+/+/+' '-/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Ala-Asp '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Ala-Gln '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Ala-Glu '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Ala-Gly '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Ala-His '+/+/+' '-/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Ala-Leu '-/+/+' '+/-/-' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '-/-/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Ala-Thr '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Allantoin '-/+/+' '-/-/-' '+/+/+' '+/+/+' '-/+/+' '-/+/+' -/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+'
Ammonia '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Cytidine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Cytosine '+/+/+' '-/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
D-Alanine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
D-Glucosamine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
D-Serine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Gly-Asn '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Gly-Gln '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Gly-Glu '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Gly-Met '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Glycine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Guanine '-/-/+' '-/-/-' '+/-/+' '+/-/+' '-/-/+' '+/-/+' '-/-/+' '+/-/+' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '-/-/+' '+/-/+'
Guanosine '-/+/+' '+/-/-' '+/+/+' '+/+/+' '-/+/+' '-/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+'
Inosine '-/+/+' '-/-/-' '+/+/+' '+/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+'
L-Alanine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Arginine '-/+/+' '-/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Asparagine '+/+/+' '-/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Aspartic Acid '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Cysteine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Glutamic Acid '-/+/+' '-/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '-/+/+' '+/+/+'
L-Glutamine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/-/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Histidine '-/-/-' '-/-/-' '+/-/-' '+/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-'
L-Isoleucine '-/-/-' '-/-/-' '+/-/-' '+/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-'
L-Leucine '-/-/-' '-/-/-' '+/-/-' '+/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-'
L-Lysine '-/-/-' '-/-/-' '+/-/-' '+/-/-' '-/-/-' '+/-/-' '+/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '+/-/-' '+/-/-' '+/-/-' '+/-/-'
L-Methionine '-/-/-' '-/-/-' '+/-/-' '-/-/-' '-/-/-' '+/-/-' '+/-/-' '-/-/-' '-/-/-' '+/-/-' '-/-/-' '+/-/-' '+/-/-' '+/-/-' '+/-/-'
L-Ornithine '-/+/+' '-/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Phenylalanine '-/-/-' '-/-/-' '+/-/-' '-/-/-' '+/-/-' '+/-/-' '+/-/-' '+/-/-' '+/-/-' '+/-/-' '+/-/-' '+/-/-' '+/-/-' '+/-/-' '+/-/-'
L-Proline '+/+/+' '-/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Serine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Threonine '-/+/+' '-/-/-' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '-/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Tryptophan '-/+/+' '-/-/-' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+'
L-Tyrosine '-/-/-' '-/-/-' '-/-/-' '+/-/-' '-/-/-' '-/-/-' '+/-/-' '+/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-'
L-Valine '-/-/-' '-/-/-' '+/-/-' '+/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-'
Met-Ala '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
N-Acetyl-D-Glucosamine'+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
N-Acetyl-D-Mannosamine'-/+/+' '-/-/-' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '+/+/+' '-/+/+' '-/+/+' '-/+/+'
Nitrate '-/+/+' '-/-/-' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/-/-' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+'
Nitrite '-/+/+' '-/-/-' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '+/+/+' '-/+/+' '-/-/-' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '-/+/+' '+/+/+'
Putrescine '+/+/+' '-/-/-' '-/+/+' '+/+/+' '-/+/+' '+/+/+' '+/+/+' '+/+/+' '-/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Thymidine '-/-/-' '-/-/-' '+/-/-' '+/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-'
Uracil '-/-/-' '-/-/-' '+/-/-' '+/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-'
Urea '-/-/-' '-/-/-' '+/-/-' '+/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-'
Uridine '-/-/-' '-/-/-' '+/-/-' '+/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-' '-/-/-'
Xanthine '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/-/-' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+' '+/+/+'
Xanthosine '-/+/+' '-/-/-' '+/+/+' '+/+/+' '-/+/+' '-/+/+' '+/+/+' '-/+/+' '+/+/+' '-/+/+' '-/+/+' '+/+/+' '-/+/+' '-/+/+' '-/+/+'

'+/+/+' Non Lethal, both TRIMER,PROM are right '-/-/-' Lethal, both TRIMER,PROM are right
'+/-/+' Non Lethal, TRIMER wrong ,PROM right '-/-/+' Lethal, TRIMER right ,PROM wrong
'+/-/-' Non Lethal, both are wrong '-/+/+' Lethal, both are wrong

Using iAF1260 metabolic model - overall accuracy :TRIMER- 80.11%, PROM - 78.03%

Figure A1. Phenotype prediction comparison between TRIMER and PROM
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