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Abstract

Quantifying the proportion of the different cell types present in tumor biopsies remains a
priority in cancer research. So far, a number of deconvolution methods have emerged for
estimating cell composition using reference signatures, either based on gene expression or
on DNA methylation from purified cells. These two deconvolution approaches could be
complementary to each other, leading to even more performant signatures, in cases where
both data types are available. However, the potential relationship between signatures based
on gene expression and those based on DNA methylation remains underexplored.

Here we present five new deconvolution signature matrices, based RNAseq data or on DNA
methylation, which can estimate the proportion of immune cells and cancer cells in a tumour
sample. We test these signature matrices on available datasets for in-silico and in-vitro
mixtures, peripheral blood, cancer samples from TCGA, and a single-cell melanoma dataset.
Cell proportions estimates based on deconvolution performed using our signature matrices,
implemented within the EpiDISH framework, show comparable or better correlation with
FACS measurements of immune cell-type abundance and with various estimates of cancer
sample purity and composition than existing methods.

Using publicly available data of 3D chromatin structure in haematopoietic cells, we expanded
the list of genes to be included in the RNAseq signature matrices by considering the
presence of methylated CpGs in gene promoters or in genomic regions which are in 3D
contact with these promoters. Our expanded signature matrices have improved performance
compared to our initial RNAseq signature matrix. Finally, we show the value of our
signatures in predicting patient response to immune checkpoint inhibitors in three melanoma
cancer cohorts, based on bulk tumour sample gene expression.

We also provide GEM-DeCan: a snakemake pipeline, able to run an analysis from raw
sequencing data to deconvolution based on various gene expression signature matrices,
both for bulk RNASeq and DNA methylation data.
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Background
The tumor microenvironment (TME) is defined as the collection of cells and extracellular
matrix that surround cancer cells inside a tumor. It affects tumor development through
interactions between the different cells. This impacts the probability for cancer cells to
escape immune-control, grow and metastasize, and plays an important role in therapy
response and resistance (DeBerardinis, 2020).

Much of the recent progress in cancer treatment derives from the exploitation and
reactivation of immune cells, such as lymphocytes, that infiltrate the TME and fight cancer
cells. Despite the great potential of immuno-oncology, there is a considerable difference in
efficacy of these therapies across tumor types and patients. It is thus of paramount
importance to develop tools to identify the different types of immune cells present in biopsy
samples, as this could aid personalized therapy approaches.

More specifically, recent findings about the importance of myeloid cells in hampering the
response to immunotherapies make the development of macrophage signature matrices an
important goal for immuno-oncology (Engblom et al., 2016). CD8+ T cells are normally
responsible for killing cancer cells through their cytotoxic activity. Traditional
immunotherapies rely on the concept that these killer CD8 cells are already infiltrated in the
tumor region, where their interaction with the cancer cells can disable their cytotoxic activity
(O’Donnell et al., 2019). Unfortunately, a high percentage of patients (Sharma et al., 2017)
do not seem to respond durably to these treatments and recent findings implicate some
types of myeloid cells in the TME of these patients in these response failures.

In particular, tumor-associated macrophages (TAMs) can be found in the microenvironment
of solid tumors in high numbers. Depending on their phenotypes, TAMs can promote tumor
progression, by suppressing antitumor immunity, or directly protecting cancer cells
(Anderson et al., 2017) and they are important treatment targets in cancer, especially in
tumors which do not present high lymphocyte infiltration (Mantovani et al., 2017; Pathria et
al., 2019).

TAMs can be differentiated from circulating monocytes upon entering the tumor area or
pre-existent tissue resident cells and they acquire different phenotypes that can be
indicatively distributed along a spectrum of polarization states going from M1 polarization,
promoting inflammation, to M2, with a pro-tumor character (Lawrence & Natoli, 2011).
However, these cells are extremely plastic and our knowledge on their behaviour comes
from in-vitro experiments that are not fully representative of conditions inside tumors
(Lawrence & Natoli, 2011; Murray, 2017).
Since macrophages are not present in blood and have very plastic phenotypes, developing
fingerprint signatures to identify them from bulk tumour samples has proven challenging.
(Lawrence & Natoli, 2011; Murray, 2017).

A common approach to identify and quantify the presence of specific cell types in bulk
samples after cell separation from tissues or cultures based on their surface markers is
Fluorescence Activated Cell Sorting (FACS). This technique can become cumbersome and
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multiple algorithms have recently become available to computationally estimate cell type
proportions or tumour purity from bulk RNAseq data (Finotello, Rieder, et al., 2019) in
complex cellular mixtures (Aran et al., 2015), a procedure generally referred to as
deconvolution. Deconvolution methods can be classified as “reference-based” (Houseman
et al., 2012) or “reference-free” (Houseman et al., 2014; Zou et al., 2014), depending on
whether a specific signature matrix is used to identify the cell types, or clustering is used to
directly infer the different cell types present (Visvader, 2011) and can exploit gene
expression or methylation data.
DNA methylation (DNAm) profiles are cell-type specific and an excellent alternative to
transcriptomes to perform cell-type deconvolution (Titus et al., 2017) since the methylome
can be thought of as a record of the cell’s past history and is less affected by transient
perturbations of the cell’s environment (Cavalli & Heard, 2019).

In this paper, we exploited a large collection of haematopoietic epigenomes of reference
produced by the BLUEPRINT project (Stunnenberg et al., 2016), and other public data sets
(Additional file 1) to establish a series of novel signature matrices for gene expression
and/or methylation based deconvolution approaches and estimation of sample purity.

Specifically, we further hypothesized that genes that are not present in the gene
expression-based signature matrix but associated with CpGs that are in the methylation
signature matrix, should also be included in the gene-expression deconvolution signature
matrix. We use chromatin structure in haematopoietic cells (Javierre et al., 2016) to identify
genes whose expression might be impacted by methylation locally and through 3D contacts,
and were able to show that our expression-based signature matrix is improved when
including these genes.
We further explore the combination of DNA methylation-based and gene expression based
deconvolution results, showing that the combination can provide more robust estimates of
cellular proportions in the case in which both data-types are available on the same samples.

Whereas the performance of our approach is in most cases comparable to others on
benchmark datasets, we note that our signatures for TAMs perform particularly well as
biomarkers of response to anti-PD1 treatment in multiple published datasets

Finally, we provide the GEM-DeCan pipeline to the community to process gene expression
and DNA methylation data and apply several deconvolution methods using pre-existing or
user-generated signature matrices.

Methods

RNAseq data processing
The TCGA expression data normalized as Fragments Per Kilobase of transcript per Million
(FPKM) were taken from public datasets (Wang et al., 2018). The transcripts per millions
(TPM) expression datasets for WB were downloaded from GTEx portal
(https://gtexportal.org/home/). 9 purified blood-derived immune cells TPM expression
datasets on GRCh38 (Additional file 1: Table SA) were collected from the Blueprint project
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portal (Stunnenberg et al., 2016). The expression value FPKM was first converted to TPM
using the following formula:

(2)𝑇𝑃𝑀
𝑖
 =  (

𝐹𝑃𝐾𝑀
𝑖

∑𝐹𝑃𝐾𝑀
𝑗
) ∗  106

We then merged all the samples together (adjacent non-tumour samples, tumor, WB and
immune). The final expression value TPMbl for each gene b in the sample l was calculated
from TPM with the following formula:

(3)𝑇𝑃𝑀
𝑏𝑙

  =  
𝑇𝑃𝑀

𝑏𝑙
 ∗ 106

∑
𝑡
 𝑇𝑃𝑀

𝑡𝑙

Development of RNAseq expression signatures for deconvolution

To generate a RNAseq expression signature for cancer cells. We generated first an immune
cell type signature using CD4+ T cells (N=12), CD8+ T cells (N=3), B cells (N=5), Monocytes
(N=7), M0 Macrophages (N=4), M1 Macrophages (N=4), M2 Macrophages (N=5), NK cells
(N=2) and Neutrophils (N=10) and filtering out Treg cells due to low number of samples (N=1).
The files were parsed into R using the limma (Ritchie et al., 2015) Bioconductor package
and were using the voom function to remove heteroscedasticity by log2(TPM + 1). A series
of linear models and empirical Bayes methods were then used to derive the candidate
signature features between the given cell types using all pairwise comparisons. The
candidate signature features from this analysis were restricted to genes overexpressed that
showed a logFC > 2 at a Benjamini-Hochberg corrected p-values < 0.05, with a maximum of
150 genes overexpressed per pairwise comparison (BPRNA signature, Additional File 3:
Table S1).

Generation of the CCLE_TIL10 signature matrix

To develop this signature matrix we started from the TIL10 (170 genes) one proposed in the
quanTIseq method (Finotello, Mayer, et al., 2019), which includes 10 immune cell types (B
cells, M1 and M2 macrophages, monocytes (Mono), neutrophils (Neu), natural killer (NK)
cells, non-regulatory CD4+ T cells, CD8+ T cells, Treg cells, and myeloid dendritic cells
(DC)).

FASTQ files of all samples used for generating the TIL10 signature matrix (170 genes) were
downloaded, preprocessed and gene expression was quantified as described in (Finotello,
Mayer, et al., 2019). An expression matrix, for 10 immune cell types, was constructed,
consisting of 19,423 genes and 51 samples. We then constructed a cancer signature matrix
(“CCLE”) by considering differential expression between cancer cell line samples from CCLE
(eliminating blood cancer cell lines) (Ghandi et al., 2019) and healthy tissues and blood
samples from GTEx (GTEx Consortium, 2013). Briefly, we used a bootstrap approach by
which 50 samples were randomly taken from each of the three datasets to construct the
complete dataset (150 samples in total) for the analysis of differential expression by limma.
The mean-variance relationship was modeled with the voom function and the
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Benjamini-Hochberg method was used for multiple hypothesis testing. lfc > 2.5 and FDR <
0.005 were used to select differentially expressed genes. Only genes which are highly
expressed in cancer cells compared to normal tissues and compared to blood samples were
selected as “UP” genes. This procedure was repeated 30 times and only the UP genes
which are present in each iteration are selected as cancer cell specific genes (Fig 1a). The
expression profile of cancer cells was computed as the median of the expression values
over all samples for all UP genes in the CCLE dataset, resulting in the CCLE signature
matrix (138 genes).

To build the combined CCLE_TIL10 signature matrix, we simply considered the union of
genes from the TIL10 and CCLE signature matrices (Fig. 1a). The expression profiles in the
matrix were computed as the median of the expression values over all samples belonging to
each cell type (Additional file 3: Table S2).

6

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2023. ; https://doi.org/10.1101/2021.04.09.439207doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.09.439207
http://creativecommons.org/licenses/by-nc/4.0/


7

Figure 1: Schematic description of the proposed deconvolution approach. (a) To
deconvolve the exact proportion of cancer cells as well as immune cells, the TIL10 signature
matrix(Finotello, Mayer, et al., 2019) was combined with a list of genes that differs between
cancer cell lines, normal tissues and whole blood, generating the CCLE_TIL10 signature
matrix. (b) Workflow to generate CCLE_TIL10, BPRNACan and BPmetCan signature
matrices, through combining TIL10, BPRNA and BPmet immune signature matrices, and
cancer signature genes and CpGs (See methods for further details).

Generation of the BPRNACan signature matrix

We also built an alternative cancer signature matrix using normal and cancer samples
collected from TCGA for different cancer types with normal adjacent tissue and WB from
GTEx, using the same procedure as creating the immune cell type signature, selecting
logFC > 3 at a FDR < 0.05, with a maximum of 100 genes overexpressed per pairwise
comparison. Samples from TCGA were from 18 cancer types: Bladder, Cholangiocarcinoma,
Thyroid carcinoma, Liver hepatocellular carcinoma, Colon adenocarcinoma, Kidney
Chromophobe, Kidney Renal Clear Cell Carcinoma, Kidney renal papillary cell carcinoma,
Lung Squamous Cell Carcinoma, Lung Adenocarcinoma, Stomach adenocarcinoma,
Cervical squamous cell carcinoma and endocervical adenocarcinoma, Uterine Corpus
Endometrial Carcinoma, Head-Neck Squamous Cell Carcinoma, Breast invasive carcinoma,
Rectum adenocarcinoma, Esophageal carcinoma. The final BPRNACan signature matrix
was generated by merging BPRNA and this cancer signature, and includes 1403 genes
(BPRNACan Additional file 3: Table S3, Fig. 1b).

Collection of WGBS data
To build the Blueprint signature matrix, we collected 52 samples generated from
whole-genome bisulfite sequencing (WGBS) of 10 purified blood-derived immune cells on
GRCh38 (human genome) (Additional file 1: Table S2). Bigwig files including methylation
signal and coverage of methylation signal were downloaded from Blueprint epigenome level
3 data (http://www.blueprint-epigenome.eu). In addition, we also downloaded 7 cancer
datasets, 4 WB and 11 normal tissues (Additional file 1: Table S3) via Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) and Brinkman et al. (Brinkman et al.,
2019).

WGBS data processing
The files were parsed into R data structures, we then discarded bases that have coverage
below 10X (Ziller et al., 2015) and also have more than 99.9th percentile of coverage in each
sample. Methylation signal (WGBS𝛽) was calculated with the following formula:

                         𝑊𝐺𝐵𝑆
β
 = 𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑𝐶𝑜𝑢𝑛𝑡𝑠

𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑𝐶𝑜𝑢𝑛𝑡𝑠 + 𝑢𝑛𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑𝐶𝑜𝑢𝑛𝑡𝑠                              (1)

The hg19 coordinates of WGBS from GEO were converted to GRCh38 with the liftOver R
package. To map the common methylated cytosines from GEO and Blueprint datasets by
genomic position to the Illumina 850K Methylation Array CpG sites, we used the Infinium
MethylationEPIC v1.0 B5 Manifest (https://support.illumina.com/downloads). After the
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coordinate transformation, the missing values on the beta matrix were imputed with impute R
package version 1.66.0 (Hastie et al., 2001) to generate the final beta matrix without missing
values.

A beta-value matrix was generated from the WGBS dataset, including 409,103 CpGs (48%
overlap with EPIC’s 850k CpGs) measured across a total 107 samples (Normal=17, WB=4,
Cancer=34, and Immune=52).

Generation of the DNA methylation signature matrix (BPmet) for blood
We started from WGBS public datasets from the Blueprint project to generate a methylation
based signature matrix (BPmet), which we used for immune cell decomposition in blood from
healthy donors. Datasets for purified immune cells of 6 types were considered: CD4+ T cells
(N=8), CD8+ T cells(N=8), B cells (N=9), Monocytes (N=4), NK cells (N=2) and Neutrophils
(N=7) (Stunnenberg et al., 2016). The signature features only took differentially methylated
CpGs (DM-CpGs) using a limma-based wrapper function with a series of linear models and
Bayes methods for all pairwise comparisons between candidate cell types that showed an
absolute logFC > 2 at an FDR < 0.05, with a maximum of 100 DM-CpGs per pairwise
comparison (BPmet Additional file 3: Table S4).

Generation of the enhanced DNA methylation signature matrix for cancer
samples (BPmetCan)
To identify cancer cells, normal cells and immune cells in tumour samples, we used firstly a
set of Normal (tissues), Whole Blood (WB) and cancer (solid tumours) WGBS samples
(Normal: N=17, WB: N=4, Cancer: N=34) via GEO and Brinkman et al. (Brinkman et al.,
2019) to generate a signature matrix that can recognize the three groups of cells (Additional
File 1: Table SC). To identify the CpGs we needed to include in this signature matrix, we
chose CpGs that were highly methylated in cancer cells compared to Normal as well as WB
samples with an absolute logFC > 2 at an FDR of 0.05, selecting a maximum of 100
DM-CpGs per pairwise comparison. Specifically In the tumor microenvironment, additional
populations of immune cells can be detected compared to blood: macrophages, ranging on a
continuum of macrophage polarization that can be exemplified by three macrophage states
(M0, M1, M2) (Farha et al., 2020) and Treg cells (Binnewies et al., 2018). For this reason, we
extended the BPmet signature matrix with those 4 new immune cell types to generate a new
BPmet signature matrix, following the previously detailed signature matrix construction
process. We used an absolute logFC > 0.3 at an FDR of 1e-05, with a maximum of 300
DM-CpGs per pairwise comparison.

To build the final BPmetCan signature matrix, which can identify cancer cells and also
specific immune types, we merged the above described signature matrix for
cancer/normal/blood cells with the BPmet signature matrix extended with macrophages and
Tregs (Fig. 1b). The final significant CpGs are the union of CpGs presented in those two
signature matrices, respectively, whereas the profiles of CpGs in each cell type were
calculated through the median of methylated values over all samples belonging to that cell
type. The BPmetCan signature matrix includes 1896 CpGs (Additional file 3: Table S5).
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Generation of gene expression signature matrices expanded according to the
methylation signature matrix (BPRNACanProMet) and 3D chromatin contact maps
(BPRNACan3DProMet)

Our BPRNACan signature matrix contains 1403 genes which we call sig genes, whereas the
1896 CpGs from the BPMetCan signature matrix are denoted as sig CpGs. To take into
account the potential involvement of genes that are important for each cell type, as
evidenced by methylation, but not sufficiently differentially expressed to be sig genes, we
created a set of expanded gene expression signature matrices.

We considered 3D chromatin contact networks for all immune cells included in Javierre et al.
(Javierre et al., 2016), detected by the Promoter Capture Hi-C technique and filtered using
CHiCAGO (Cairns et al., 2016). First, we combined BPRNACan sig genes with the genes
that have a BPMetCan sig CpG in their promoter (according to promoter definitions based on
promoter capture libraries in (Javierre et al., 2016)), leading to the “BPRNACanProMet”
signature matrix (Additional file 3: Table S6). Additionally, we generated the
“BPRNACan3DProMet” signature matrix by filtering the added genes to take only the ones
that have both a sig CpG in the promoter and also a 3D contact with a fragment containing a
sig CpG, (Additional file 3: Table S7).

RNAseq processing and deconvolution pipeline
In order to test the different signature matrices we present in this paper, we provide an
RNAseq analysis pipeline, built with snakemake (Köster & Rahmann, 2018) and conda. It
allows the user to choose from various tools and options (Supplementary Fig. S1). The
pipeline can start from raw Illumina sequencing data (.bcl format) or from already processed
and normalized TPM data and runs a selection of tools performing deconvolution with the
methods used in this paper (quanTIseq and EpiDISH) and all signature matrices mentioned
in the paper. It is freely available on the GEM-DeCan repository. To compare our results to
those obtained with the CIBERSORTx method (Newman et al., 2019) we ran the algorithm
using the default parameters with the Docker image available at
https://cibersortx.stanford.edu/download.php upon request.

Validation datasets

Different datasets were used to test our new signatures, see Additional file 2: Table S1 for
details. Briefly, these included

● in-silico mixtures from (Finotello, Mayer, et al., 2019), consisting of 1700 samples
created by in-silico mixing of reads from immune-cells and cancer cell lines in
different proportions, simulating different tumor purity (0 to 100%)

● 13 individuals PBMCs with Flow Cytometry estimates: CD4+ and CD8+ T cells,
monocytes,  B cells, NK cells (GSE107011, Monaco et al. 2019)

● 19 primary tumor samples from non-metastatic melanoma patients from GSE72056
(Tirosh et al., 2016)

● TCGA Cancer samples with methylation and gene expression profiles as well as
cancer and immune cell type experimental estimates. To test the BPmetCan and
BPRNACan signature matrices, 16 different TCGA datasets from solid tumors were
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downloaded in level 3 (beta-value, 450k Illumina array) as well as their corresponding
gene expression profiles measured by RNAseq from LinkedOmics
(http://linkedomics.org/login.php#dataSource). We added 0.5 to formalize the beta
value of methylation data between 0 to 1 due to this methylation being based on
zero-centered values.

To estimate the proportion of cancer cells inside tumor samples, a consensus approach
integrated four different methods (ABSOLUTE, ESTIMATE, LUMP and IHC) as previously
proposed on TCGA samples (Aran et al., 2015) as described in Additional file 2: Table S2.
Since H&E estimates of cell types only include 2 broad cell lineages (lymphoid, myeloid) and
neutrophils, cell types were aggregated as follows:

Lymphocytes = B cells + NK cells + CD4+ and CD8+ T cells, and Treg cells
Macrophages = Monocytes + M0 Macrophages + M1 Macrophages + M2
Macrophages

Whole blood methylation datasets

For validating and assessing the performance of the BPmet signature matrix, we used two
independent public datasets (Additional file 2: Table S1): 100 WB samples from the Grady
Trauma Project (GSE132203) profiled using IlluminaHumanMethylationEPIC and another 6
WB samples using the 450k methylation array from Koestler et al. (GSE77797) (Koestler et
al., 2016). Flow-cytometry estimates of the proportion of blood cell types were available for
the two WB datasets. The estimated fraction of cells obtained by deconvolution using the
EpiDISH (RPC: robust partial correlation) method (Teschendorff et al., 2017) was compared
to the flow-cytometry estimated proportions using Pearson Correlation.

Comparison between proportions estimated by deconvolution and other methods
We used Pearson’s correlation coefficients to compare our estimates of deconvolved
proportions to either FACS data or alternatively estimated proportions (Additional file 2:
Table S2).

Regression models to predict response to immunotherapy

Three public melanoma datasets with response to anti-PD1 (Gide et al., 2019; Hugo et al.,
2016; Riaz et al., 2017) were considered. ElasticNet (Friedman et al., 2010) penalized
logistic regression models were run using the results from different deconvolution methods
and signature matrices as features.

For each combination of signature matrix and deconvolution method, 4 models were trained,
including 3 models trained by leave-one-dataset-out (lodo) and one model trained by 5-fold
cross-validation (standard CV). The training includes a hyperparameter search for the l1
ratio and penalty strength. For the lodo training this search is performed by 5-fold CV on
training datasets, and models are evaluated on the remaining test dataset. For the standard
CV, one fourth of samples is kept as a hold-out test set, and the hyperparameter search is
performed by 5-fold CV on the remaining samples, the model is then evaluated on the
hold-out test set. Models’ performance were evaluated with the Area Under the Receiver
Operating Characteristic Curve (ROC AUC).
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Results

New immune and cancer cell gene expression signature matrices
To provide an overview of composition of the tumour microenvironment, our main goal was
to develop a deconvolution signature that would identify the proportions of immune cells of
different types and cancer cells. We started by developing a novel immune cell type
deconvolution signature matrix based on RNAseq expression data from primary samples for
6 immune cell types ( CD4+ T cells, CD8+ T cells, Monocytes, B cells, NK cells and
Neutrophils) derived from blood (Stunnenberg et al., 2016), which we called BPRNA (see
methods, and Additional file 2: Supplementary text S1, Figures S2a Table S1). We then
proceeded to test the BPRNA signature matrix using two deconvolution methods for which
signature matrices can be specified by the user (EpiDISH (Teschendorff et al., 2017) and
deconRNASeq (Gong & Szustakowski, 2013)) implemented in our GEM-DeCan pipeline
(Figure S1) on peripheral blood mononuclear cell (PBMC) samples (Additional file 2: Table
S1). Additionally, we benchmarked our signatures against two methods that come with their
own signature: MCP-counter (Becht et al., 2016), which is a scoring method based on
marker genes, and quanTIseq (Finotello, Mayer, et al., 2019), which is based on constrained
least squares regression and can estimate immune cell fractions and fractions of unknown
cells with high accuracy (Additional file 2, Supplementary text S1, Figure S2b).

Since our main interest is to apply these methods to cancer samples, we set out to extend
this initial RNA-based signature matrix for immune cells to detect cancer cells as well
(estimating tumour purity). We considered two ways of designing a signature matrix that
would estimate tumor purity based on bulk RNAseq expression data, adding Tregs and
specific M0, M1 and M2 macrophage signatures to identify the presence of these cell types
that are relevant in cancer samples. In the first case, we constructed a signature matrix
(CCLE_TIL10, see methods, Figure 1A and Additional file 3: Table S2) based on RNAseq
data for over a thousand cancer cell lines (Ghandi et al., 2019) and a large number of
healthy tissue and blood RNAseq samples from the GTEx (GTEx Consortium, 2013).

Aware of the difference between cancer cell lines and cancer cells, we also developed a
signature matrix for detecting cancer and specific immune cells starting from expression data
in cancer, adjacent normal tissues and immune cells. To this end, we considered samples
with RNAseq data for tumor and adjacent non-tumor tissues and whole blood, readily
available through TCGA and GTEx, and integrated the resulting signature matrix with the
BPRNA immune cell signature matrix. The new integrated signature matrix, which we called
BPRNACan, consists of 1403 genes (see Methods, Fig. 1B and Additional file 3: Table
S3). We used the CCLE_TIL10 and BPRNACan signature matrices with the EpiDISH
method to estimate cell composition in different samples with gene expression datasets
(Additional file 2: Table S1). We benchmarked our approaches on multiple datasets against
MCP-counter, quanTIseq and a recently developed deconvolution method that exploits
signatures derived from tumour sample scRNAseq datasets: CIBERSORTx (Newman et al.,
2019) (Additional file 2: Table S2).
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Validation of the CCLE_TIL10 and BPRNACan signatures on tumor samples
After estimating performance of the signatures and methods on in-silico samples in which
true cell proportions are known (Additional File2: Supplementary Text S2, Figures S3a,b),
we investigated whether these deconvolution signature matrices would be able to estimate
tumor purity from real biological samples, namely tissue samples from TCGA (Additional
File 2, Table S1). We therefore analysed the results obtained with the 2 signature matrices
(CCLE_TIL10 and BPRNACan) on TCGA-LUAD samples (Additional File 2, Figure S4).
We first compared the estimation of cancer cell proportions in the samples to values
estimated from 4 different methods (ABSOLUTE, ESTIMATE, LUMP and IHC, see methods).
We found that the tumor purity estimates derived using BPRNACan were better than those
derived from CCLE_TIL10 signature matrix on the TCGA-LUAD dataset, with correlations
with the ESTIMATE method reaching Pearson’s R = 0.72 ( Additional File 2, Figure S4).

As far as different immune cell types are concerned, we compared our deconvolved
proportions using different methods and signatures to estimations of lymphocytes,
macrophages and neutrophils based on H&E images (Saltz et al., 2018) (Additional file 2:
Table S1). (Fig. 2). Generally, the best estimates for lymphocytes and macrophages over all
cancer types were produced by the CIBERSORTx and BPRNACan signatures using either
the CIBERSORTx method or EpiDISH. For neutrophils estimates, we observed the
correlation with different signatures was very variable, probably due to the presence of
neutrophils inside tumors of specific types having a specific phenotype not captured by all
signatures. Overall, the best signature for neutrophils was the LM22 signature with our
BPRNACan signatures capturing neutrophils specifically in Rectum Adenocarcinoma.
quanTIseq estimates showed particularly low correlations with H&E estimates for neutrophils
(Fig. 2).

Figure 2 Comparison of different signatures for estimation of different cell types proportions
across TCGA datasets. The heatmaps show Pearson correlation of deconvolved estimates
and H&E imaging based estimates. Lymphocytes (left), Macrophages (center) and
Neutrophils (right).
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A Novel DNA methylation-based signature matrix for immune and cancer cell
deconvolution
Aiming to ultimately quantify the proportion of cancer and immune cells in a bulk sample
from DNA methylation, we exploited the WGBS methylation datasets that were produced for
bulk samples of purified cells as part of the Blueprint project (Farlik et al., 2016) to generate
a signature matrix of 502 CpGs identifying 6 major immune cell types in blood (see
Additional File 1: Table B). We named this signature matrix BPmet (Additional File 2,
methods, Additional file 3: Table S4). To test this newly generated signature matrix, we
performed deconvolution with the EpiDISH R package (Teschendorff et al., 2017), using our
BPmet signature matrix, and choosing the RPC method as well as other available methods
(Additional file 2: Table S2). We tested our BPmet new signature matrix on various
datasets (Additional file 2: Table S1) identifying equal or better performance compared to
other existing methods with a Pearson correlation between estimates and FACS
measurements above 0.93 (Additional file 2: Supplementary figure S5,6).

Confident of the satisfying performance of the BPmet signature matrix in identifying cell type
proportions in whole blood samples, we turned towards applying deconvolution to cancer
tissues, extending the BPmet signature matrix to also estimate the proportion of cancer cells.
We combined data from the immune samples that were used for the development of BPmet
(see methods) with 17 normal and 34 cancer samples to derive a combined signature (see
Methods for details). This signature matrix, called BPmetCan (see Methods, Fig. 1b and
Additional file 3: Table S5), allowed us to estimate the proportion of cancer cells as well as
of 10 immune cell types in bulk tumor samples.

To test the performance of BPmetCan in a realistic scenario, we used it to estimate the
proportion of cancer cells in a subset of TCGA datasets with DNA methylation (15 cancer
types, see Additional file 2: Table S1). Firstly, we retrieved publicly available estimates of
the proportion of cancer cells in these samples (purity) produced using the ABSOLUTE,
ESTIMATE, LUMP and IHC methods. When comparing purity estimates using BPMetCan
with ABSOLUTE results, we obtained a Pearson correlation of R = 0.78 and P < 2.2e-16,
proving that our signature matrix is able to identify the proportion of cancer cells in a tumor
sample (Additional file 2: Figure S7a).

Validation of the BPmetCan signature matrices on tumor samples
In order to assess our ability to determine the proportions of other immune cell types in the
sample, the estimated fraction of immune cells using BPmetCan or MethylCIBERSORT
signature matrix and the EpiDISH or CIBERSORT methods were compared to quantification
of lymphocytes, macrophages and neutrophils estimated from H&E images also in the same
samples from TCGA (Saltz et al., 2018). We observed that BPmetCan and
MethylCIBERSORT have very similar performances, as measured by the correlation of
deconvolved immune cell types compositions with H&E estimates (Fig. 3). Investigating
macrophages (Monocytes/Macrophages lineage) showed that the prediction of macrophage
abundance derived from MethylCIBERSORT was more accurate than that derived using the
BPmetCan signature matrix (R = 0.48 against R = 0.33) (Additional File 2: Figure S7b ).
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Nevertheless, it appears that the MethylCIBERSORT reference profiles do not capture all
macrophages (some samples are on the x-axis indicating no estimated abundance while
non-zero values are clearly detected by H&E images). This could be due to the classification
of macrophages by the MethylCIBERSORT signature matrix that only includes monocytes
(CD14+ cells), whereas our signature matrix can potentially classify monocytes, M0, M1 and
M2 separately (all these types were merged for making this comparison).

Figure 3 Comparison of different signatures and methods for estimation of different cell
types proportions across TCGA datasets using DNA methylation. The heatmaps show
Pearson correlation of deconvolved estimates and H&E imaging based estimates.
Lymphocytes (left), Macrophages (center) and Neutrophils (right).

Gene expression and methylation based cell type signatures are significantly
associated

As we have seen, expression and methylation data can contain complementary information
that can be useful to deconvolve cell type proportions. Thinking about practical situations
and in particular translational applications in the clinic, these two data types are rarely
available for the same samples. At first, we thought of considering whether we could improve
our gene expression based signatures by considering our knowledge of DNA methylation
specificities of the different cell types that are reflected by the CpGs included in the DNA
based signatures. We therefore investigated what could be the relation between the genes
that are included in the BPRNACan signature matrix gene set (1403 sig genes) and the
CpGs from the BPMetCan signature matrix (1896 sig CpGs) to assess whether they referred
to the same or different genes. We calculated the number of sig genes that are associated
with the sig CpGs. To associate CpGs to genes we first used Illumina annotation, which
provides gene associations for each CpG on their array, based on genomic proximity
between the gene and the CpG. Out of 169 genes associated with sig CpGs, 24 were
included in the 1403 sig genes (Fisher's exact test p-value =1e-5) (Additional File 2: Table
S3a).
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Exploiting 3D chromatin interactions maps to combine methylation and
expression based signature matrices
Inspired by the availability of 3D chromatin contact maps for haematopoietic cells produced
by the Blueprint project (Javierre et al., 2016) and by known relations between 3D
conformation, methylation and expression levels (Madrid-Mencía et al., 2020), we decided to
re-evaluate CpGs annotation to genes and consider 3D chromatin contacts between these
CpGs and gene promoters, as identified by Promoter-Capture Hi-C (PCHi-C). Briefly, this
method involves a step of hybridization to a promoter library during a traditional Hi-C
experiment, resulting in chromatin contact maps that contain either contacts amongst
promoters or between a promoter and a regulatory region (denoted as OE for Other end or
PIR for Promoter Interacting Region), where chromatin fragments have a median size of 5kb
(Schoenfelder et al., 2015). The total PCHi-C network for haematopoietic cells consists of
249,511 chromatin fragments, of which 20,582 are promoter fragments (including 1127
fragments of sig gene promoters) and 228,929 other ends, (including 1131 fragments
containing sig CpGs) (Additional file 2: Table S4).

We first mapped sig CpGs to their corresponding gene promoters, according to the definition
of promoters used in the PCHi-C datasets. We found 645 genes that have sig CpGs in their
promoter, of which 52 were already identified in sig genes and 314 were not in sig genes and
had expression profiles in our reference datasets. Moreover, the comparison of the mapping
between sig CpGs and genes harboring sig CpGs in their promoter shows that the PCHiC
based annotation of CpGs to promoters reveals a higher overlap than Illumina annotation,
Fisher's exact test p-value  = 7.34e-08 (Additional File 2: Table S3b), suggesting that
associating CpGs to only the closest promoter could be limiting.

We reasoned that genes whose promoter methylation is cell-type specific should be
important, even if they are not included in the gene expression signature. We therefore
created an expanded gene expression deconvolution signature matrix by adding these 314
genes, that had sig CpGs in their promoters but were not sig genes, to the BPRNACan
signature, leading to the BPRNACanProMet signature (Figure 4, Additional file 3: Table
S6).
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Figure 4: Strategy of integration of BPRNACan and BPmetCan signature matrices via
3D chromatin contact networks. (a) The BPRNACan signature is expanded including
genes that have sig CpGs in their promoters (BPRNACanProMet), genes that have sig
CpGs only in 3D regions in contact with their promoters (BPRNACan3DMet) and genes that
have sig CpGs in both promoter and 3D contacting regions (BPRNACan3DProMet). (b) The
expanded signatures and more particularly BPRNACan3DProMet is composed of 63 new
genes some of whom are connected in a 3D chromatin contact map. C) The number of
contacts amongst the 48 genes that are unique to our BPRNACan3DProMet and
BPRNACanProMet signature compared to the number of contacts in random gene lists of
equal size. D) UpsetR plot showing overlap between different gene signatures. Inset:
heatmap of expression of those 48 genes investigated in C. E) Comparison of correlation
between FACS estimates and the deconvolved proportion of macrophages using
BPRNACan (red) and BPRNACan3DProMet (cyan). F) Functional interaction network of the
6 genes that are uniquely present in our BPRNACan3DProMet signature and discriminative
of the M1 and M2 subtypes generated by String.
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Given the importance of gene regulation by genomically distal regulatory elements that are
brought into 3D contact with the promoter, having sig CpGs in both the promoter and a
distal interacting fragment could increase the benefit of including the gene in the gene
expression deconvolution signature. We therefore considered a more stringent expansion of
our BPRNACan signature matrix to include only the genes that have sig CpGs both inside
their promoter and in regions that contact their promoter in 3D (BPRNACan3DProMet,
Additional File 3: Table S7).
The principle of gene inclusion in these 3 signatures is detailed in Fig. 4a, where we also
show that genes newly included in our signature tend to connect in 3d (Fig. 4b) more than
expected at random (Fig. 4c) and the expression of a subset of these genes found by
studying overlaps between the different signatures (Fig. 4d) can clearly separate
macrophage subtypes (Fig. 4d inset).

We found the BPRNACanProMet and the BPRNACan3DProMet signature matrices to have
better performance in estimating macrophage proportions compared to the original
BPRNACan signature matrix, especially (Fig. 4e, Fig. 2 center). Intrigued by what could be
the impact of considering these genes with altered epigenome in their promoter and distal
interacting regions, we looked for genes that are exclusively present in the
BPRNACan3DProMet signature. In the extra 63 genes that are added to the signature in this
fashion, there are some genes involved in immune processes like HLA-E, CD4, P4HB
(interacting w/ Th2 T Cells), TYK2, NCK2 (interleukin 23 signaling), or genes involved in
hematopoiesis such as PTPN6, LMBR1L. Other genes are markers of cancer like
ARHGDIA, CYTH1. Some of these genes present in the BPRNACan3DProMet signature
were already present either in the BPRNA signature or in others that we have investigated in
this paper. However 48 genes are uniquely present in the BBRNACan3DProMet signature
(Fig. 4f). The biggest impact of the expansion of gene lists based on 3D contacts is on the
macrophage signature, suggesting that potentially some of the genes captured by
considering DNA methylation changes in their neighbourhood could distinguish tumour
associated macrophages of different types.

The 6 macrophage specific genes, namely SPIDR, ERI1, PSENEN, MIP, ZNF668 and
LBX2 were found to interact with NOTCH1(PSENEN) and DICER (ERI1) we thus
investigated whether the NOTCH pathway and RNA silencing had been associated to
specific macrophage subtypes. NOTCH has been associated with macrophage
polarization and phagocytosis, while DICER conditional deletion has been recently
implicated in loss of M2 polarization, via hyperactivation of IFNg. Interestingly these
findings suggest that our signature could be specific to tumour protective M2-like
macrophages, which play an important role in resistance to immunotherapy in patients.

Combining deconvolved proportions based on gene expression and DNA
methylation data
Since deconvolution can be performed using both expression and methylation data, we next
worked on combining results using these two data types, assessing whether the
performance of the combined analysis was better. This approach could be particularly useful
in the cases for which both gene expression and DNA methylation data are available on the
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same samples or patients, where we can simply use a combined estimate for cell type
abundance.

Figure 5: Performance on TCGA datasets of DNA methylation based, expression based and
combined deconvolution. Correlation of estimates based on H&E staining is shown as cell
colour, significance is indicated by asterisks.

Exploiting the availability of both DNA methylation and gene expression data in TCGA, we
evaluated the performance of our combined approach on these data. As shown in Figure 5,
the correlation between deconvolved lymphocyte proportions and H&E estimations is much
higher using DNA methylation than using RNAseq data (an average across cancer types of
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Pearson’s r = 0.86 vs 0.65), but it is still marginally improved when using an average
between the two estimates (r=0.87). As far as macrophages are concerned, performances
are less uniform across cancer types, but the estimations provided by deconvolution based
on RNAseq, especially the BPRNACan3Dpromet signature, are better than those resulting
from DNA methylation data in all cancer types but SKCM and are not improved by taking the
average of methylation and expression based estimates. For neutrophils, the performance is
again very variable across cancer types but overall it is improved in most cases when
considering a combination of estimates based on DNA methylation and expression.

Benchmarking different methods and signatures in tumour samples with
known composition

To overcome the limitation of using only rough estimates of cell types composition (namely
identifying lymphocytes, macrophages and neutrophils ignoring all the important cellular
subtypes), we turned towards datasets for which the composition was ascertained by either
single cell sequencing of the tumour samples.

We examined an scRNAseq dataset including 19 primary melanoma non metastatic samples
(Tirosh et al., 2016) and aggregated reads to produce an in-silico bulk sample for each
patient to compare deconvolved proportions to the corresponding cell fractions estimated by
counting single cells of each type from Racle et al. (Racle et al., 2017) (CD8 T cells,
macrophages, B cells and NK cells). We ran deconvolution using all combinations of
methods and signature matrices.

We observed that for three separate methods (EpiDISH, CIBERSORTx and DeconRNAseq)
the signature derived from single-cell melanoma data performs the best on average across
cell types. The BPRNACan signatures (specifically in order BPRNACan, BPRNACanProMet
and BPRNACan3DProMet) are the next most performing ones. Interestingly, for almost all
specific cell types the BPRNACan signatures perform the best, their correlations being lower
than the CIBERSORTx signatures only for Macrophages and NK cells. Since macrophages
are broadly defined including both M1 and M2 polarised cells, we could not test the ability of
our signatures to distinguish these two important cell subtypes.
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Figure 6: Performance of different methods and signature combinations on an RNAseq
dataset from 19 melanoma samples for which cell type composition was estimated by
scRNAseq performed on the same sample (Tirosh et al. 2016).

Using deconvolution to predict response to immune checkpoint inhibitors
We have so far compared performances of different deconvolution methods and signatures
based on cell type composition estimates provided by FACS, H&E image quantification of
specific markers or single-cell data. All of these methods, however, carry their own biases in
estimating composition. One of the main reasons that we are interested in quantifying cell
types in the TME is to better understand and predict response to immune check-point
inhibitors in a personalized medicine framework. This remains challenging and biomarkers of
response are needed to achieve better outcomes in immunotherapy. We therefore decided
to test the pertinence of our signature matrices to produce features for models that predict
response to immunotherapy based on bulk transcriptomics (Fig. 6a).
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Figure 7: Evaluation of predictive power of deconvolution features. (a) Each
combination of signature and deconvolution method was used alone to estimate cell types
proportions for all samples. This data was used to train and test an elasticnet penalized
logistic regression model (Friedmann et al. 2010) to predict response to immunotherapy.
Performance of models can then be compared across signatures and training methods. (b)
Left: The first training method is standard cross validation, during which a fourth of all
samples is held-out as a test set. The remaining samples are used for training, with a 5-fold
CV search for the hyperparameters that includes successive training sets (blue) and
validation sets (green). Right: An alternative training method is leave-one-dataset-out (lodo),
where one dataset is used for testing (orange) and the other ones are used for training
(blue). During each training phase, hyperparameters for the l1 ratio and regularization
strength were searched for by 5-fold cross validation (CV), where the training set is
subdivided in 5 parts, each one of them being used as a validation set (green) while the
other ones are used for training. At the end of the CV search the model is re-trained on all
training samples, and tested on the test set. (c) Table of models’ performances by
combinations of signatures and deconvolution methods and by training methods. The
performance is assessed with the ROC AUC score computed on test sets, which is indicated
by the name of the dataset for the lodo training. For the standard CV, a fifth of samples was
held out as a test set.

To this end, we made predictors of response to anti-PD1 antibodies using different
deconvolution results as features and evaluated their performance on 3 public melanoma
datasets (Gide et al., 2019; Hugo et al., 2016; Riaz et al., 2017) with response to anti-PD1
through ElasticNet penalized logistic regression (see Methods and Fig. 7).
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Predictive models trained from cell type proportions produced by EpiDISH in combination
with our signatures were the top performing models, followed closely by CIBERSORTx used
in combination with the CBSX signature of NSCLC (Fig 7c). These models are also the top
performing ones when considering AP and MCC as performance metrics (data not shown).

Our signature matrices in combination with EpiDISH or DeconRNASeq allowed us to train
models with a performance that was better than random in a classification task (Receiving
Operator Characteristic (ROC) Area Under the Curve (AUC) score above 0.5 on the
standard Cross Validation (CV) training for 10 models among 12). On specific datasets
unseen during training (see Methods) our signatures reached AUC=0.77, while training on
all samples (standard CV), the BPRNACanProMet signature used by EpiDISH was the top
performing model, with a ROC AUC score of 0.703 (Fig. 7c).

We then inspected the top 4 performing models’ coefficients, positive coefficients being
associated to progressive disease. Models trained on cell type proportions estimated by our
3 signatures with EpiDISH have identical top 3 coefficients: M2 are strongly associated with
progressive disease, whereas M0 and B cells are associated with response to
immunotherapy. The remaining coefficients are smaller, and models agree on M1 being
slightly associated with progressive disease, but the role of NK cells and neutrophils differs
between models. The 4th top performing model, based on features produced by
CIBERSORTx with the CBSX NSCLC signature, shows CD4 cells strongly associated with
response to immunotherapy, and monocytes associated to progressive disease. In this
model, NK cells are also associated with progressive disease, which is in contradiction with
previous models.

Looking at the coefficients in our regression models we can estimate which variables are
associated with either progressive diseases or response to therapy. The coefficients of the
model trained with the combination of the BPRNACanProMet signature and the EpiDISH
method show that B cells (presumably indicative of the presence of tertiary lymphoid
structures) and M0 macrophages proportions are associated with patient response, whereas
M2 macrophages, CD4, CD8 and NK cells associated with progressive disease in this
model. Proportions of cancer cells, M1 macrophages, monocytes and neutrophils were not
significantly associated with either of the two outcomes. We can also consider the
combination of the BPRNACan signature with deconRNASeq that always produced models
performing better than a random predictor, and that is the second best when the Snyder
dataset was used as a test set. The coefficients of this model indicate that B cells, M0 and
M1 macrophages proportions are associated with response of patients, whereas CD4 and
CD8 cells, Nk cells, monocytes and M2 macrophages are associated with progressive
disease in this model. Like the previous model, proportions of cancer cells and neutrophils
were not strongly associated with any of the two outcomes. Thus, the two models differ in
the importance of M1 macrophages and monocytes for predicting response or progressive
disease.
.
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Discussion
Numerous reference-based deconvolution methods using DNA methylation or gene
expression can be used to estimate the proportion of cell types in bulk datasets from cell
mixtures, such as EpiDISH, MethylCibersort (for DNAm) and CIBERSORT, MCP-counter,
quanTIseq, DeconRNASeq (for GE). Moreover, there are methods that can accurately
predict the proportion of cancer cells in tumor samples (purity). However, for application in
immuno-oncology it can be important to estimate the proportions of cancer and specific
immune cells at the same time.

Recently, Chakravarthy et al. (Chakravarthy et al., 2018) have reported that deconvolution
methods based on gene expression or DNA methylation could be complementary to each
other in cases where both data types are available. Despite this, they did not further explore
if the reference signature matrices for each type of data can be related. Often in the clinic
only gene expression data is available, so the integration of the two approaches is not
common. Here, we present novel signature matrices for reference-based deconvolution:

BPmetCan: which is able to deconvolve the proportion of cancer and immune cell types
from DNA methylation data (Illumina Arrays or WGBS), based on WGBS signature matrices,
which we validate against MethylCIBERSORT, EpiDISH and various methods to estimate
tumor purity in blood and especially in tumor samples.
CCLE_TIL10: which combines the TIL10 signature matrix (Finotello et al. 2019) for immune
cell types with a new list of genes identified to be cancer-cell specific using data from GTEx
and CCLE, which displays excellent performance on in-vitro and in-silico mixtures of cancer
cell lines and immune cells.
BPRNACan: which combines our Blueprint derived immune cell signature matrix (BPRNA)
with genes that are discriminant of cancer tissues compared to normal and outperforms or
equals quanTIseq and MCP-Counter on cancer samples for many of the cell types.
BPRNACanProMet: which is an enhancement of the BPRNACan signature matrix by
adding genes that have a sig CpG contained in their promoter, with demonstrated
improvement in performance on many datasets
BPRNACan3DProMet: which is an enhancement of the BPRNACan signature matrix by
adding genes that have a sig CpG in their promoter and whose promoters also have a 3D
contact with a fragment containing a sig CpG.

We performed extensive validation using previous studies, such as whole blood mixtures,
solid tumor-TCGA, PBMC, multiple myeloma patient bone marrow samples and melanoma
non metastatic and metastatic samples. We compared the available DNAm or GE signature
matrices to demonstrate that our novel signature matrices could faithfully estimate the
fraction of cancer and specific immune cell compositions from DNA methylation and bulk
gene expression data. Our signature matrices can be applied to solid tumors, as confirmed
by the validations presented above, but they are likely to have limited use for hematological
malignancies, in which the presence of cancerous immune cells could confound the
estimations, and for which more targeted signature matrices should be developed.
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We also showed that our DNAm signature matrix BPmet is more robust than others for
estimating the proportions of cell types in Whole Blood samples. Moreover, our new gene
expression signature matrix BPRNACan displayed higher accuracy on the predicted cell
fractions on in-vivo cancer samples. Additionally, application of our GE signature matrices to
publicly available data using our predicting model in this study revealed several important
biological insights on predicting response to immunotherapy.

Despite the overall accuracy of our signature matrices, we found that the performance in the
estimation for some cell types is lower than what we expected, probably due to the number
or condition of the cell types used for establishing the reference profiles. For instance, we
observed that the correlation of NK cells was lower than expected using both BPmet and
BPRNA. This may be explained as we had only n = 2 samples to create the NK reference
expression profile. Moreover, we observed a very low performance in predicting M2
macrophages in the in-silico tumor samples using BPRNACan. This may be explained by the
fact that this M2 state in-vitro is artificially induced by cytokines to mimic the context of the
TME, thereby the GE reference profiles corresponding to M2 cells might not capture the M2s
that are found, albeit at low frequency (Shen-Orr and Gaujoux 2013), in artificial in-silico
mixtures of purified cells. As opposed to NK and M2 cells, CD8 T cells and Macrophages
were better predicted using GE signature matrices on cancer samples. This could be
explained by the differences in cell proportions and cell states between the tumor
microenvironment and circulating blood. For example, only a few activated CD8 T cells and
no macrophages can be found in circulating blood, but their detection in tumors is key.

We also found a low performance in detecting neutrophils according to proportions derived
by H&E (Fig. 2). This may be explained by the fact that the reference profiles of neutrophils
used to build the signature matrix are unlikely to capture all the phenotypes that neutrophils
can display, especially inside tumors. Like macrophages, Tumor Associated Neutrophils
(TANs) can display at least two different phenotypes - one characterised by proinflammatory
programs and antitumorigenic functions and the second characterised by a protumorigenic
activity (Shaul and Fridlender 2019; Teijeira et al. 2020). Indeed neutrophils’ gene
expression and methylation were found to be extremely variable across individuals (Ecker et
al. 2017), time of the day, as well as across the different parts of the body in which they are
found, highlighting their extreme plasticity (Giese, Hind, and Huttenlocher 2019; Sagiv et al.
2015).

Another important novel insight of our study is that the GE signature matrix can be improved
by incorporating specific genes that are associated with CpGs included in the DNA
methylation signature matrix. This can be done by either identifying genes that harbor
signature matrix CpGs (sig CpGs) in their promoter, or those genes whose promoters also
have a 3D contact with a fragment containing a sig CpG. We are thus able to expand the list
of genes to be used in performing RNAseq-based deconvolution using information gathered
from the DNA methylation signature matrix we have generated (Additional file 2: Table S2).
Importantly, this expanded GE signature matrix can be applied to improve deconvolution of
samples for which only RNAseq data is available (Figure 5).
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Despite our DNAm and RNAseq reference-based signature matrices displaying comparable
to or better performance than existing methods in whole blood or cancer samples, several
issues will require further investigation. We are limited by the number of samples available
for specific cell types (such as NK cells) and by the fact that these profiles are generated
from purified cells that are isolated from their natural environment. This is especially true for
cells that acquire specific phenotypes in a TME context, such as TAMs and TANs. The
availability of single-cell RNAseq datasets from cancer samples, especially from
technologies that also provide protein marker quantification such as CITEseq, will greatly
improve our chances of generating relevant signature matrices for any cell type of interest.
For this reason we provide code for the generation of new reference signature matrices in
our openly available repository. As a step in this direction, we have included the
CIBERSORTx method using 3 scRNAseq derived signatures in our benchmark, despite the
difficulty of integrating it in our openly available pipeline.

Importantly, one of the main applications of deconvolution in immuno-oncology will be the
prediction of response to immunotherapy, which can be made based on the inferred cell type
proportions. We therefore benchmarked our new signature matrices and methods by
evaluating their accuracy in predicting response to anti-PD1 agents in 3 public datasets. This
type of exercise is aimed at identifying which signature matrices and methods uncover the
presence of specific cell subtypes that can impact immune checkpoint blocker response.
These important subtypes might not correspond easily to literature definitions or FACS
derived populations defined by specific markers. M2 macrophages are known to impair
response to immune checkpoint blockade (Ceci et al., 2020) and we confirm their
association with negative prognosis despite the discrepancy between our quantification of
M2s and FACS estimates. This could be due to our signature capturing specific phenotypes
that are not entirely determined by traditional cell surface markers used in FACS.
Interestingly, B cells and M1 macrophages have recently been proposed as potential
predictors of response to immunotherapies (Cabrita et al., 2020; Helmink et al., 2020;
Petitprez et al., 2020; Zeng et al., 2020). To our knowledge, the proportion of M0 (naïve)
macrophages has not been reported as a predictor of response to immunotherapies, but
both of our models suggest it is a potentially relevant subtype in this respect associated with
response. For NK cells and neutrophils we do not reach a consensus amongst our different
models. One of the top performing models using scRNAseq based signatures with the
CIBERSORTx method suggests CD4 cells as associated with response, while monocytes
and strangely NK cells would promote disease progression. These results have to be
considered with caution, as response to immunotherapy was shown to depend on the
proportion of sub-cell types like memory, effector, and senescent phenotypes or defined by
the presence or absence of several proteins like PD-1, PD-L1, CTLA-4, LAG-3 or TIGIT on
these cells’ surfaces, which are not captured by our signatures.

In summary, we have shown the potential of our gene expression signature matrices to
estimate the presence of immune populations that can be predictive of the response to
checkpoint blockade, bringing us closer to personalized approaches and revealing
resistance mechanisms.
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Conclusion
We have presented and thoroughly validated novel deconvolution approaches using DNA
methylation or gene expression data or a combination of the two. Our signatures show
comparable performances in estimating the proportion of cell types from blood and tumor
samples according to multiple benchmark datasets. Simultaneously, we have also shown
that our signature matrices are more robust to estimate cell fractions compared to the other
available signature matrices. We also showed how expanding a gene expression signature
matrix using information regarding methylation patterns and 3D chromatin contacts between
promoters and regulatory elements we can improve our signatures performance, especially
for the detection of tumour associated macrophages. This improved macrophage signature
has predictive power for estimating response to anti-PD1 agents in 3 publicly available
melanoma datasets. We make the signature matrices and all the code available to the
community through a user-friendly snakemake pipeline that can use any given reference
signature matrix to apply a variety of reference-based deconvolution methods. Additionally,
the code to generate a signature matrix following the method used in this paper is also
available, as well as a script to generate all the figures.
Finally, we provide a user-friendly pipeline to apply our approach and make the code
available to the research community, to promote the development of new, more specific
deconvolution signatures (https://github.com/VeraPancaldiLab/GEMDeCan). Despite the
increasing availability of single cell RNAseq data, we propose that deconvolution of cell
types and subtypes from bulk transcriptomics will be a valid strategy to target
immunotherapies to specific patients in a clinically relevant context and at an affordable cost.

Abbreviations

BRCA: Breast invasive carcinoma

CCLE: Cancer Cell Line Encyclopedia

DHS: DNAse hypersensitivity sites

DNAm: DNA methylation

FACS: fluorescence-activated cell sorting

FPKM: Fragments Per Kilobase of transcript per Million

GE: gene expression

GEO: Gene expression omnibus

H&E: Hematoxylin and eosin

IHC: Immunohistochemistry

LUAD: Lung adenocarcinoma

26

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2023. ; https://doi.org/10.1101/2021.04.09.439207doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.09.439207
http://creativecommons.org/licenses/by-nc/4.0/


27
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