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Abstract:

Recent population studies are ever growing in size of samples to investigate the diversity of a

given population or species. These studies reveal ever new polymorphism that lead to

important insights into the mechanisms of evolution, but are also important for the

interpretation of these variations. Nevertheless, while the full catalog of variations across

entire species remains unknown, we can predict which regions harbor additional variations

that remain hidden and investigate their properties, thereby enhancing the analysis for

potentially missed variants.

To achieve this we implemented SVhound (https://github.com/lfpaulin/SVhound), which

based on a population level SVs dataset can predict regions that harbor novel SV alleles. We

tested SVhound using subsets of the 1000 genomes project data and showed that its

correlation (average correlation of 2,800 tests r=0.7136) is high to the full data set. Next, we

utilized SVhound to investigate potentially missed or understudied regions across 1KGP and

CCDG that included multiple genes. Lastly we show the applicability for SVhound also on a

small and novel SV call set for rhesus macaque (Macaca mulatta) and discuss the impact and
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choice of parameters for SVhound. Overall SVhound is a unique method to identify potential

regions that harbor hidden diversity in model and non model organisms and can also be

potentially used to ensure high quality of SV call sets.

Introduction

The advent of next generation sequencing has enabled us to characterize genomic variations

between and within species on an unprecedented scale (Lappalainen et al. 2019; Goodwin et

al. 2016). This has produced various novel insights based on sequence complexity and

previously underestimated genomic variability between individuals within the same species

(Sudmant et al. 2015). Since then, reports have described an ever-increasing number of novel

genomic variations and their associated allele frequency estimates (Sedlazeck et al. 2020;

Collins et al. 2020; Sudmant et al. 2015; Ebert et al. 2021; Audano et al. 2019; Warren et al.

2020). These findings are important for many fields in research and clinical applications,

ultimately providing a better understanding of phenotype to genotype relationships

(Lappalainen et al. 2019; Mahmoud et al. 2019; Ho et al. 2020).

Over the past years, genomic studies emerged targeting even higher sample numbers to obtain

deeper insights into allele frequencies and diversity (genomic variation) among humans or

other species (Collins et al. 2020; Sedlazeck et al. 2020; Sudmant et al. 2015; Abel et al.

2018). One of the spearheading projects in the past years was the 1,000 Genomes Project

(1KGP), which cataloged single nucleotide variations (SNV) and structural variations (SV)

among 2,504 individuals from different ethnicities around the world (Sudmant et al. 2015).

While it is clear that the 1KGP catalog is incomplete, it is still one of the most valuable

datasets and it is widely used as control data (Sudmant et al. 2015). More recent initiatives

such as gnomadSV investigated the presence of SVs across 14,891 human genomes and thus

deepened our knowledge of human genome diversity (discovering ~445k SVs) and allele

frequencies that are important for multiple aspects (Collins et al. 2020), such as ranking and

annotating variations or identifying population structure. However, even larger studies are
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underway (e.g. Topmed (Taliun et al. 2019), CCDG (Abel et al. 2018)) that will identify many

new SNVs/SVs in presumably healthy individuals and lead to even more robust ethnicity

specific allele frequencies and also to a better understanding of variability with respect to

diseases.

The detection of genomic variations is often promoted by technological and methodological

advances in computational methods (Mahmoud et al. 2019; Wenger et al. 2019). As an

example, microarrays enabled the first identification of so-called large copy number

variations (CNV), in the range of kbp to Mbp, at scale (Sebat 2004). Subsequently, short read

sequencing technologies (whole exome or whole genome sequencing) detected these large

alterations and SNVs simultaneously. Many developments in computational methods led to a

better characterization of large events (e.g. CNV of multiple kbp) and identification of even

more complex structural variations (Mahmoud et al. 2019). The continuous advance of better

benchmark datasets (e.g. GIAB (Zook et al. 2020)) and software will lead to many newly

identified variations in currently hard to assess regions (e.g. dark regions) of the genome.

Despite these developments and the increased number of studies sequencing hundreds to

thousands of humans, we still expect an unknown number of undetected genomic variations

including rare or even common alleles. This is especially true for ethnicities that have not yet

been extensively sequenced (e. g. non-European) (Audano et al. 2019).

Thus, the questions arise: which genomic regions carry novel yet undetected variations in our

enlarged datasets? Can we predict such genomic regions based on existing sequencing data,

and if so where are these regions located in the genome and what else can we learn about the

mechanisms generating SVs?

To address these questions, we utilized large genomic SV datasets from the 1KGP (Sudmant

et al. 2015) and CCDG (Sedlazeck et al. 2020) cohorts and applied a population genetic

approach that computes the likelihood to observe novel genomic variations, if we had
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sequenced more individuals. To this end we developed SVhound, which scans the genome for

regions of hidden diversity. In the following we demonstrate the predictive power of SVhound

based on the analysis of the 1KGP dataset. Next, we applied SVhound to the CCDG cohort

composed of a collection of 19,652 human samples (Sedlazeck et al. 2020). Finally, SVhound

is applied to uncover regions of undetected genomic variability in genomes from 150 rhesus

macaques (Macaca mulatta), an important model species for human diseases and evolutionary

studies. Currently, little is known about SVs in rhesus macaques (Brasó-Vives et al. 2020;

Thomas et al. 2020). SVhound introduces a novel prediction framework to identify genomic

regions that are lacking genotypes from current large-scale sequencing and studies the

properties of these regions and their potential role. Finally, we provide an easy to use R

package freely available at https://github.com/lfpaulin/SVhound.

Results

Statistical identification of highly variable genomic regions in the human

population

Here we present SVhound, a tool to predict regions where additional Structural Variation (SV,

defined as genomic variation greater 50bp) can be expected if more genomes were sequenced.

In short, SVhound partitions a genome into non-overlapping windows with a user-defined

length. For each window, SVhound counts the number of different SV-alleles that occur in a

sample of n genomes. Based on the number of different SV-alleles, SVhound then estimates

the probability of observing a new SV-allele (see Methods).

Figure 1A exemplifies this for three windows and a sample of n=100 genomes. In windows

w1, w2, w3, we detected k=3, 5, 2 SV-alleles, leading to diversity parameter estimates

and the probabilities to find a newθ 𝑤
1( ) = 0. 430,  θ 𝑤

2( ) = 0. 948,  θ 𝑤
3( ) = 0. 204

SV-allele in the respective windows, if an additional genome or sequence from the respective
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window is sequenced, equal 𝑝
𝑛𝑒𝑤

𝑤
1( ) = 0. 00430,

𝑝
𝑛𝑒𝑤

𝑤
2( ) = 0. 009390,  𝑝

𝑛𝑒𝑤
𝑤

3( ) =  0. 00205.

To further investigate the power of SVhound to predict new SV-alleles and to study the

influence of the window-length, we randomly selected 50 (2.00%), 100 (4.00%), 500

(19.97%) and 1000 (39.34%) human genomes from the 2,504 genomes of the 1KGP (1000

Genomes Project Consortium et al. 2015) and varied the window size (5, 10, 50, 100, 200,

500 and 1000 kb). For each of the 28 combinations of window size and sample size we

compared the estimates with the fraction of SV-alleles that do not occur in the𝑝
𝑛𝑒𝑤

𝑓
𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

random sample but were observed in the full 1KGP data (see Methods).

Figures 1B display the association between and for a sub-sample size of𝑝
𝑛𝑒𝑤

 𝑓
𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

n=100 (Figure 1B top panel) and a sub-sample size of n=1000 genomes (Figure 1B bottom

panel) and window lengths of 10kb and 100kb, respectively. We observed that the window

size had a bigger impact on the performance of ; for example the correlation coefficient𝑝
𝑛𝑒𝑤

(r) for 10kb window is r=0.3976 and r=0.1698 for 100 and 1,000 genomes respectively

(Figure 1B top panel), while for 100kb window the performance of SVhound greatly

improves with r=0.8519 for 100 genomes and r=0.9524 for 1,000. We also noticed that the

sample size only improved the correlation coefficient for window sizes of at least 50kb. The

scatterplots of the 28 window-sample size combinations are shown in Supplementary Figure

1.

While the above analysis was based on one simulation, we performed 100 simulations for

each of the 28 parameter combinations. Supplementary Figure 3 and 4 show the distribution

of the correlation coefficients, the coefficients of determination ( ) and the slopes for the 100𝑟2

simulations and the observations exemplified in Figure 1B are corroborated.

Supplementary Table 1.1 shows the average correlation coefficients for the 100 simulations

for each of the 28 window-sample size combinations. If the window size is large and the
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sample size is large then we observe a high correlation between and . Since𝑝
𝑛𝑒𝑤

𝑓
𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

large windows harbor more SV-alleles, the infinite allele assumption is almost met and thus

the predictions improve. For short windows the model assumptions (infinitely many alleles)

are more likely violated and thus the correlation is weaker. But not only the correlation is high

for large windows, also the slope of the regression line approaches one with increasing sample

size and window length (Table 1.2). This indicates that is indeed a good predictor of𝑝
𝑛𝑒𝑤

𝑓
𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

.

We note, that with increasing window length increases (see also Figure 1C), while the𝑝
𝑛𝑒𝑤

increase in sample size has the opposite effect (Supplementary Figure 5). This can also be

explained with the infinite allele assumption almost being met and thus the probability to find

new SV-alleles increases. With increasing window length the chances also increase to find

many SV-alleles that occur exactly once, high numbers of such singletons will increase the

diversity parameter, and subsequently (see methods). However, with larger windowθ, 𝑝
𝑛𝑒𝑤

sizes the resolution and thus the genomic location of the predicted additional SV-alleles is

reduced.
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Figure 1: Overview and evaluation of SVhound based on 1000 genomes data set. A)

Computing the probabilities of detecting new SV-alleles in a window. First, the chromosome is

divided into non overlapping windows. For each window the number of distinct observed

SV-alleles is counted and the diversity parameter is estimated equation 2 (see methods).

Finally, the probability of detecting a new SV-allele ( ) for each particular window is𝑝
𝑛𝑒𝑤

computed using equation 3 (see methods). B) Scatterplots showing predictive power

(correlation) between and the fraction of undetected SV for a 10kb and 100kb window𝑝
𝑛𝑒𝑤

and two sample sizes 100 genomes (top panels) and 1,000 genomes (bottom panels),

sub-sampled from the 1KGP data. The x-axis shows the prediction made by SVhound

(probability of new SV-allele, ) and the y-axis shows the proportion of undetected𝑝
𝑛𝑒𝑤

SV-alleles in the non-sampled individuals ( ). Note that regardless of sample size,𝑓
𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

SVhound performs better in the 100kb window when comparing both window sizes. C)

Distribution of the probabilities of detecting a new SV-allele ( ) for different window sizes.𝑝
𝑛𝑒𝑤
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Identification of polymorphic candidate regions across 2,504 human genomes

from the 1,000 genome project

We applied SVhound to the 2,504 genomes of 1KGP SV calls to identify likely regions (loci)

with undetected SV variations. Based on the previous analysis we opted for a window size of

100kb. The human genome was then partitioned into 18,397 windows and we analyzed the

top candidate loci, representing 1% of the windows with the highest probability of detecting a

new SV-alleles ( ). Figure 2A shows the probability distribution of detecting a𝑝
𝑛𝑒𝑤

≥ 0. 34%

new SV-allele for each window. The red dots mark the top 1% (188) windows with the

highest (here thereafter candidate windows). The remaining windows with𝑝
𝑛𝑒𝑤

(considered as background noise) are gray. We observed an outlier on𝑝
𝑛𝑒𝑤

 <  0. 34% 

chromosome 15 with a 𝑝
𝑛𝑒𝑤

 =  25. 77%.

We were particularly interested where in the human genome the 188 candidate windows

occur. First, we investigated whether these candidate windows are identified only in

intergenic regions or if these windows are actually preferentially selected for certain genes

(e.g. immune response). We found 107 candidate windows that overlapped with protein

coding genes (204, Supplementary table 2), 148 overlapping non coding genetic elements

(Supplementary figure 6) and 24 windows in intergenic regions. To understand the

biological role of the 204 genes we performed an enrichment analysis with PANTHER (Mi et

al. 2019), and found enrichment for biological processes related to: cellular detoxification of

nitrogen compound, xenobiotic catabolic process, interferon-gamma-mediated signaling

pathway, regulation of immune response and sensory perception of smell (Supplementary

table 2 and 3). The outlier we observed on chromosome 15 contains two olfactory receptor

proteins and four olfactory receptor pseudogenes (Figure 2A).

Next, we investigate whether SVhound is suggesting regions containing repeats that are

known to show many structural variants (Mahmoud et al. 2019). For this we analyzed whether
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the candidate windows harbored repeat elements (Tarailo-Graovac and Chen 2009) or simple

tandem repeat elements (Benson 1999). We found that the LINE and LTR repeat families

were the most often observed in the candidate windows, with the L1-LINE repeat (Benson

1999) being the most abundant (Supplementary tables 4.1 and 4.2). Because simple tandem

repeat elements occur frequently in the human genome, we found all but one window

overlapped with at least one simple tandem repeat. Furthermore, we investigated whether

these ubiquitous elements were present more abundantly within the candidate windows.

Supplementary Figure 7 shows the distribution of the number of simple tandem repeats in

the candidate windows and in a random selection of windows for comparison. We performed

a two sample T-test of difference in means and a Kolmogorov-Smirnov test of difference in

the distribution to compare the distribution of simple repeats in these two sets of windows.

Both tests reject the hypothesis of the distribution being different (Kolmogorov-Smirnov test

p-value = 0.2378) or the means being different (T-test p-value = 0.314), and thus there is no

significant difference in abundance of simple repeats in candidate windows when compared to

the rest of the genome.

We further analyzed the proportion of candidate windows that overlap with segmental

duplications (Bailey et al. 2002) and found that 101 candidate windows overlap with at least

one segmental duplication (Supplementary table 5). In fact, we identified several candidate

windows that overlapped with more than one segmental duplication.

Next we wondered if SVhound actually only identifies regions with repeats that likely harbor

undetected SV. To assess this we analyzed the proportion of the candidate windows

overlapping with the “high-confidence” or benchmark regions defined by the Genome in a

Bottle Consortium (GIAB, (Zook et al. 2016, 2020)) representing reliable regions for

structural variation detections using short reads (e.g. outside of segmental duplications, low

mapping quality regions) and thus potential targets for experimental validation. We found that

170 out of the 188 candidate windows overlapped with at least one of the reported regions

(Supplementary table 6). Therefore, SVhound indeed reports windows with biological
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significance rather than enriching for artifacts or only regions known to be variable in the

genome (e.g. intergenic).

Next, we applied SVhound to identify differences across multiple ethnicities in the 1000

genomes project. We split the 2,504 genomes into their five ethnic groups according to the

1KGP super-population structure (661 African (AFR), 347 Admixed American (AMR), 503

European (EUR), 504 East Asian (EAS), 489 South Asian (SAS)) and extracted the candidate

windows by ethnic group repeating the previous analysis for each ethnicity. Supplementary

Figure 8 shows the candidate windows (top 1 % with highest ) for each of the five ethnic𝑝
𝑛𝑒𝑤

groups. From the collection of all top 1% candidate windows (total number of distinct

windows: 468) we investigated those present in a single ethnic group (ethnicity-specific

windows) and thus identified potential regions of high polymorphism specific to a particular

ethnic group; and those that occurred in all ethnic groups (ubiquitous windows) and thus

represent regions of high polymorphism in the all humankind (Figure 2B, Supplementary

Table 7).

We detected 45 (9.62%) ubiquitous windows, whereas 264 (56.41%) windows were

ethnicity-specific, which break down as follows: South Asian, 61; African, 60; European, 57;

East Asian, 53; Admixed American, 33. Finally, the remaining 159 (33.97%) candidate

windows occurred in two to four ethnic groups.

Next, we investigated the role of the genes in the ubiquitous and the ethnicity-specific

windows (Supplementary table 8). For the genes in the ubiquitous windows, we found

enrichment in biological processes also found in the 1KGP full data set (nitrobenzene

metabolic process, cellular detoxification of nitrogen compound, xenobiotic catabolic process,

interferon-gamma-mediated signaling pathway, antigen processing) (Supplementary table

9.1). When analyzing the ethnicity specific windows, we only found gene enrichment in the
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South Asian ethnic group for 8 biological processes related to keratinization (tissue

development, Supplementary table 9.6).

Finally, we analyzed if repeat elements overlap with ubiquitous and ethnic specific candidate

windows. Here, the L1 (LINE), ERV1 (LTR) and ERVL-MaLR (LTR) repeats were the most

abundant among both ubiquitous and ethnic specific candidate windows (Supplementary

table 10.1). Next, when analyzing the repeat elements present in a single ethnic group, LTR

Gypsy-like is an example that overlaps with the ethnicity specific windows of the African

population (Havecker et al. 2004). Similarly, an ERVL-like (LRT) repeat is restricted to

ethnicity specific windows for European population, the TcMar-Tc2 (DNA repeat) was found

in ethnicity specific windows for the Admixed American population and Satellite-telo in the

South Asian population (Supplementary table 10.2).
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Figure 2. A) Genome wide distribution of for the 2504 genomes (100 kb𝑝
𝑛𝑒𝑤

window) from the 1KGP data set. Red dots show the 188 candidate windows (

) along the 22 human autosomes (hg19), gray/black (alternating shades𝑝
𝑛𝑒𝑤

≥ 0. 34%

by chromosome) dots display the for the remaining windows. Please, note the𝑝
𝑛𝑒𝑤

window on chromosome 15 with a , contains two olfactory receptor𝑝
𝑛𝑒𝑤

= 25. 77%

proteins, four olfactory receptor pseudogenes, multiple CNVs and an LINE1 insertion.

B) Distribution of 468 candidate windows when decomposing the 1KGP data set into

the five super-population: African, AFR; Admixed American, AMR; European, EUR;

East Asian EAS; South Asian, SAS. The black dots below each bar display the

occurrences of the candidate windows in the ethnic groups. Ethnicity specific

windows, i.e present in one ethnic group are blue, ubiquitous windows are red.

Identification of polymorphic candidate regions across 19,652 human genomes

in the USA

To extend our work further, we applied SVhound to detect regions with undetected SVs in

19,652 genomes of US residents (CCDG data) that include 8,969 European-American, 8,099

Hispanic or Latino-American and 2,584 African-American genomes (Sedlazeck et al. 2020).

Again, we considered as candidate windows those representing 1% with the highest

probability of detecting a new SV-alleles ( ). Figure 3 shows the distribution of𝑝
𝑛𝑒𝑤

≥ 5. 7%

the probabilities to detect a new SV-allele when splitting the genomes in 23,554 windows,

highlighting in red the 236 the candidate windows.
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Figure 3. Genome wide analysis of the CCDG data set. Red dots display the top 1%

candidate windows (236) along the 22 autosomes of the human genome (hg38), the

gray (alternating shades by chromosome) show the discovery probabilities for the

remaining windows.

Next, we used a similar annotation strategy to the 1KGP over the 236 candidate windows. We

found 156 candidate windows that overlapped with protein coding genes (344,

Supplementary table 11), 186 overlapping non coding genetic elements (Supplementary

figure 9) and 33 windows in intergenic regions. Again, we performed an enrichment analysis

with PANTHER using the 344 genes and found gene enrichment for 43 biological processes,

all of them related to immune response, e.g. phagocytosis, B cell receptor signaling pathway,

Fc-gamma receptor signaling pathway involved in phagocytosis, complement activation,

positive regulation of B cell activation, innate immune response (Supplementary table 12).

Next, we analyzed the repeat elements that lay within the candidate windows

(Supplementary table 13). We observed an overall increase in the number of repeats

overlapping with candidate windows. The LINE and LTR families were found in 98.7% and

89% of the candidate windows, which represent an increase of 45% for the LINE and 24% for

the LTR when compared to the 1KGP data. In addition, the DNA repeats were found in

60.17% of the candidate windows, while the SINE elements in 49.15% of them, representing

an increase of 49% and 45% respectively.
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Next, we analyzed the presence of simple tandem repeats within the candidate windows of the

CCDG dataset. Here we found significant differences in the average number and the

distribution simple tandem repeats across the 236 candidate windows (T-test p-value <

1.24e-13, Kolmogorov–Smirnov test p-value < 2.2e-16, Supplementary figure 10). This

result again deviates from our analysis of 1KGP data. These results highlight again that the

candidate windows that overlapped with centromeric and pericentromeric regions, which tend

to be abundant in highly repetitive sequences (Aldrup-Macdonald and Sullivan 2014) and

repeats elements and were likely inaccessible/filtered from the 1KGP dataset.

Finally, we noticed consecutive runs of candidate windows along some genomic regions

(Supplementary table 14). We found such clusters of candidate windows in chromosomes 7

(cluster size 8), 9 (cluster size 5), 11 (cluster size 5) and 16 (cluster size 6). All clusters were

located near pericentromeric regions, which have a high density of simple repeats, satellite

repeats, and repeat elements in general (LINE, LTR, etc). These results coincide with the

instability of the centromeric and telomeric regions in genome assemblies, which are known

to be hard to resolve due to their repetitive nature. Thus, these top scoring candidate genomic

regions (average in clusters = 43.24%) are confirming already well known to be highly𝑝
𝑛𝑒𝑤

variable.

We then focused on segmental duplications overlapping candidate windows. Here, we

observed a slight increase in the number of candidate windows overlapping with a segmental

duplication (64.4%) when compared to the 1KGP (53.7%) (Supplementary table 15). We

identified the candidate windows that overlapped with the GIAB high confidence regions that

exclude regions where short reads cannot reliably identify SV. Overall, 86% (203) of

candidate windows overlapped with these “high-confidence” regions and thus indicate that

reliable SV calling can be achieved in such regions (Zook et al. 2020). (Supplementary table

16).
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Finally, we compared the results of the two independent human datasets, (1KGP, CCDG) that

we analyzed with SVhound to examine the similarities in the prediction. Surprisingly, we

found only 26 genes present in candidate windows of both the 1KGP and CCDG data sets,

representing approx 5% of the 522 genes associated with at least one of the candidate

windows from the 1KGP or CCDG data (Supplementary table 17). This small intersection

may be related to the fact that the CCDG dataset focuses on the US population while the

1KGP dataset comprises 26 different ethnicities (1000 Genomes Project Consortium et al.

2015), coupled with the difference in number of candidate windows (188 in the 1KGP dataset

to 236 in the CCDG dataset, see Supplementary figure 12).

Identification of SV and further polymorphic candidate regions across 150

Rhesus Macaques

To provide a novel test of its utility, we applied SVhound to whole genome sequences from

the rhesus macaques (Macaca mulatta), a widely used primate model of human disease that

has not been well studied with respect to SV (Brasó-Vives et al. 2020; Thomas et al. 2020).

For this we created a novel catalog of SV for rhesus macaques by comparing 150 genomes to

the newly established reference Mmul_10 (see methods, (Warren et al. 2020)). We identified

SVs among the genomes of these 150 rhesus macaques that came from several US research

colonies (see methods for details). The largest proportion of SVs were deletions (45.84%)

followed by insertions (36.88%), inversions (11.45%) and tandem duplications (5.82%)

(Supplementary table 18.1 and 18.2). This follows roughly the distribution expected from

human SV datasets (Mahmoud et al. 2019). Interestingly, we found a high number of SVs on

chromosomes 19 (Supplementary table 18.3). Chromosome 19 includes tandem repeats of

olfactory receptors, KIR (killer cell immunoglobulin-like receptor) loci and other

immunology genes and was previously shown to have a higher rate of both CNV and SNV

polymorphism than other macaque chromosomes (Brasó-Vives et al. 2020; Harris et al. 2020).

Figure 4A shows the minor allele frequency (MAF) spectrum. The MAF spectrum for the

genome wide SVs follows the expected exponential distribution, with the majority of the
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102,572 SVs (53.7%) exhibiting low frequency (MAF<0.05). We observe 5,946 SV having an

MAF >45%, which might be because the reference genome contains an array of low

frequency SVs. Interestingly, we noticed a profound peak for Alu insertions (Figure 4B) that

highlights Alu activity in this species.

We applied SVhound to identify candidate regions that may contain undiscovered variation.

First, we observed that the rhesus raw data contained a larger number of SVs per window

when compared to the human dataset (Supplementary table 23.1), even though the number

of genomes was an order of magnitude smaller when compared to the 1KGP and two orders

of magnitude smaller when compared to the CCDG. Supplementary Figure 11 shows the

candidate windows (top 1% windows with highest ) for window sizes of 5, 10, 50 and𝑝
𝑛𝑒𝑤

100 kb. The distribution of the rhesus genome is more spread out relative to the human𝑝
𝑛𝑒𝑤

data. Remarkably the 1% are typically much higher than in humans (Supplementary𝑝
𝑛𝑒𝑤

table 23.2). Starting from 50kb and for larger window sizes, we observed a more widespread

distribution of the discovery probabilities which made the selection of candidate𝑝
𝑛𝑒𝑤

windows more dif�icult. Non-candidate windows had non-negligible values (e.g𝑝
𝑛𝑒𝑤

). Furthermore, with the larger window sizes the number of regions showing𝑝
𝑛𝑒𝑤

> 20%

high values increased. In the 100kb window dataset, 24 had the maximum value of𝑝
𝑛𝑒𝑤

𝑝
𝑛𝑒𝑤

dictated by reaching 150 SV-alleles and 1,056 windows had , whereas in the𝑝
𝑛𝑒𝑤

>  50%

10kb window dataset only two windows had a . With this in mind, we decided to𝑝
𝑛𝑒𝑤

> 50%

use 10kb windows for the analysis of the rhesus macaque dataset.

We extracted the top 1% candidate windows from the 108,939 10kb windows (𝑝
𝑛𝑒𝑤

 ≥ 3. 57%

, Figure 4C). Then, we extracted 403 annotated rhesus genes that overlap with a candidate

window and performed an enrichment analysis with PANTHER (unmapped ID not counted,

Supplementary tables 19). We found enrichment for divalent metal ion transport related

processes and intracellular signal transduction (Supplementary table 20).
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Figure 4. A) Frequency distribution of the SV called in 150 rhesus macaque

genomes for all SV types. B) length distribution of the insertions (positive) and

deletions (negative) called in the rhesus macaque genome (truncated at ±1,000 bp,

see the full binned table in Supplementary table 19). C) Genome wide analysis of

the rhesus macaque (Macaca mulatta, rheMac8) data set. In red are shown the

1,101 candidate windows ( ) along the 20 autosomes of the macaque𝑝
𝑛𝑒𝑤

≥ 3. 57%

genome , in gray (alternating shades by chromosome) are shown the rest of the

windows.

Discussion

We developed SVhound to investigate regions along the genome that are likely to harbor

undetected SV, exemplifying the method with an analysis of human and rhesus genomes. We

were able to demonstrate that these regions harbor genes and are not simply enriched for

repeats or intergenic regions along the genome. This indicates their likely importance in

evolution and in medicine. SVhound utilizes a sampling scheme approach derived from

population genetics (Ewens 1972) to model the SV-allele distribution and to predict genomic

regions with high probability of observing new SV-alleles.
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SVhound showed a high accuracy over the 1KGP data when assessing its prediction power

with a high correlation coefficient across multiple parameters (median correlation across 24

tested parameters = 0.913, best r = 0.993) and slopes close to 1. Apart from the obvious

observation that increasing the window size would increase the probability of detecting a new

SV-allele (for a 100Mbp window size of course there will be a new SV-allele), we found that

small windows (5kb) lead to imprecise predictions, likely due to violations of the model

assumptions. Across the human datasets, the method performed well for 100kbp windows

(average correlation of 0.894 of 400 evaluations) and even better when considering the

windows of 100kb and larger (100kb, 200kb, 500kb, 1mb) where the average correlation was

> 0.95 for more than half the evaluations (min. correlation = 0.8189). Remarkably the

prediction to find new SV-alleles is sample dependent. The CCDG data with a large sample of

19,000 human genomes exhibited higher values compared to 1KGP (Supplementary𝑝
𝑛𝑒𝑤

table 21.2). This difference is resolved if the data processing procedures of the datasets are

taken into account. For the CCDG dataset 304,533 SVs were determined, compared to 68,818

SVs for the 1KGP. This difference might reflect the way SVs were called in the 1KGP

project, where the majority of genomes had low coverage (3-5x) and likely suffered from a

low SV sensitivity, thus leading to an underestimation of the general variability. A

conservative SV-calling approach will lead to an underestimation of and thus the probabilityθ

to detect new SVs is also reduced.

The SV-calling procedure in the CCDG project used genomes with a much higher read

coverage, thus had more power to detect SVs. These two data sets are hard therefore to

compare and clearly shows that SVhound accuracy also relies on the experimental design of

the underlying data. The difference might be reduced in the recently posted 1KGP data set

where all samples had ~30x coverage (Byrska-Bishop et al. 2021). For rhesus macaques we

modified our initial strategy given that, even when we had a smaller cohort (only 150

genomes), a high number of SVs were identified (493,188 SVs), with a different composition

(e.g. we identified an abundance of SV especially insertions). Thus, SVhound was run with a
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smaller window size (10kbp) compared to the human data (100kbp). We have provided

guidelines to optimally execute SVhound given different properties of SV cohorts such as the

size and the power to detect SV. We anticipate that defining the window size based on the

average number of SVs contained in a window may be the path to follow, although more

research is needed with a wider number of datasets. Future work will include the

automatization of this for SVhound.

Nevertheless, SVhound successfully identified for all three genome projects (1KGP, CCDG,

rhesus) genomic regions with a substantial probability to harbor additional SV-alleles. It is

noteworthy that SVhound does not require any other annotations than SV coordinates in a

region. The candidate regions we found were not confined to well-known regions of high

genomic diversity like immune regulatory genes for antigen processing and antigen binding

genes (HLA), olfactory genes, regions overlapping repeat elements (LINE, LTR) and regions

with an overrepresentation of simple repeat elements (telomeric and pericentromeric regions).

Other genomic regions that contained nitrogen related metabolic genes, cellular detoxification

related genes and epithelial development genes were also suggested within high probability

windows.

It is of course not only interesting which regions SVhound predicts will likely harbor

additional not yet observed SV. We can also ask what are the implications? After sequencing

hundreds of thousands of genomes, the question might arise whether whole genome

sequencing is indeed the most efficient strategy to obtain a more complete set of variations

within a particular population of a species. An alternative strategy would be to use a capture

design to investigate the identified regions that provide the largest likelihood of containing

additional SV-alleles. However, it remains challenging to design these panels for certain

regions (e.g. MHC). Nevertheless, it would indeed represent a more efficient strategy to

design capture reagents for certain regions and use them to perform targeted sequencing in

additional samples to improve the catalog of human population variations. The obvious
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downside of such an approach is of course that we would likely miss other (rare) SV-alleles in

the regions outside of these panels and we don't know yet if SNV would follow the same

trend that we observed for SV. Thus, the challenge remains to obtain a full catalog of common

variations across the human population, and also for other important research species.

SVhound can assist with prioritizing these regions independently of the organism that is being

studied (e.g. non model organism). In addition, SVhound can also indicate that a given

population is under-investigated for SV (eg. rhesus data in this manuscript). While this may

be obvious given our sample size of 150, it might not be as obvious when the sample size

reaches thousands. Here SVhound can again assist in estimating the quality of an SV call set

for a given population.

Overall, SVhound shows high prediction accuracy for highlighting regions of the genome

where additional SV should be found. This can be resolved either via additional sequencing or

improved analysis methods across the data sets in these regions.

Methods

Summarization of the structural variants (SV)

We study the genomic variation of a sample of completely sequenced individuals in disjoint

fixed windows and analyse each window as follows.

To simplify wording, think of a window as a locus, then each distinct SV (particular set of SV

present in a given window) is considered as SV-allele. For a sample of n individuals from this

window, we count how often individuals with exactly the same SV in the window occur. With

we count the number of different SV-alleles, that occur exactly -times, where𝑎
𝑖

𝑖

We call SV-occupancy vector. describes the number of
𝑖=1

𝑛

∑ 𝑖𝑎
𝑖

= 𝑛. 𝑎 = 𝑎
1
, 𝑎

2
, …, 𝑎

𝑛( ) 𝑎
1

different SV-alleles each occurring exactly once in the sample. If , then all individuals𝑎
𝑛

= 𝑛
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carry the same SV-allele in the window. Finally describes the number of
𝑖=1

𝑛

∑ 𝑎
𝑖

= 𝑘

different SV-alleles in the window.

We notice that the SV-occupancy vector assumes the role of the allele frequency spectrum

(AFS) in population genetics (Ewens 1972). However, the AFS is computed for alleles from a

gene, whereas the SV-occupany vector is computed from the different SV-alleles in a window.

Since the potential number of SV-alleles in a window is large, the infinite allele assumption is

not severely violated and the celebrated Ewens Sampling Formula (Ewens 1972) that

describes the probability to observe a SV-occupancy vector:

(1)

holds, where θ is a measure for the genetic diversity of the population. Although Ewens

(1972) developed the theory to understand the sampling theory of neutral alleles, we note that

the EWS is relevant in very diverse scientific disciplines (see: Harry Crane (2016) The

ubiquitous Ewens sampling formula. Statistical Science 31:1-19). Equation (1) and the

SV-occupancy vector can be used to compute a maximum likelihood estimator for , sinceθ

this is numerically challenging, we used a simpler approach.

To estimate parameter θ based on a sample of n individuals, it suffices to apply the method of

moment by replacing , the expected number of SV-alleles by the observed number of𝐸 𝐾( )

alleles and then numerically solve the next equation𝑘

(2)𝐸 𝐾( ) = θ
θ + θ

θ+1 +... + θ
θ+𝑛−1

for . In fact, is the maximum likelihood estimate for the data.θ θ
^

Having an estimate, we use this value to compute the “predictive” probability to find a newθ
^

,

SV-allele if a new window from an individual is sequenced as:
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, (3)𝑝
𝑛𝑒𝑤

= θ
^

θ
^

+𝑛

equation 18 in Ewens (Ewens 1972).

Please, note that if is small we expect a small number of SV-alleles, a large implies thatθ  θ

each SV-allele occurs once. However, for such cases to occur must be extremelyθ

small/large. Finally, notice that when a single SV-allele is observed (k=1) in the𝑝
𝑛𝑒𝑤 

= 0

particular window.

To validate SVhound, we partitioned the human genome in non-overlapping windows of size

5, 10, 50, 100, 200, 500, and 1,000 kb. For each window, we randomly re-sampled

individuals without replacement from the 2,504 individuals in the𝑛 = 50,  100,  500,  1, 000

1,000 human genome project (1000 Genomes Project Consortium et al. 2015) version

hg19.This re-sampling was repeated 100 times.

For each subsample, we estimated from equation (2) and then estimated the probability toθ
^

find a new SV-allele, , based on equation (3). was subsequently compared to the𝑝
𝑛𝑒𝑤

𝑝
𝑛𝑒𝑤

proportion of individuals that were not in the subsample and that carried SV-alleles not yet

detected SV-alleles, that is we computed.

(4)𝑓
𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

= # 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑤𝑖𝑡ℎ 𝑆𝑉−𝑎𝑙𝑙𝑒𝑙𝑒𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒
# 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒

Identifying SV variability hotspots in the human genomes

We performed a genome-wide analysis to identify genomic regions with a high probability of

harboring new SV-alleles. We used two human datasets: a sample of 2,504 individuals for the

case of the 1KGP dataset and 19,652 individuals from the Centers for Common Disease
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Genomics project dataset (Sedlazeck et al. 2020). For both datasets we estimated for eachθ
^

window using equation 2 to then calculate the probability of observing a new allele in the next

individual using equation 3.

We used a window size of 100kb, which was based on the performance of SVhound

prioritizing smaller window sizes. We then selected candidate windows as the 1% windows

with the highest probability of detecting a new SV-allele in the next sequenced individual

. From these regions we extracted genomic features information from the proper(𝑝
𝑛𝑒𝑤

)

annotation of the human genome (Harrow et al. 2012; Tarailo-Graovac and Chen 2009;

Karolchik et al. 2009) (depending on the reference used) to detect what type of genetic

elements may be affected.

We performed the enrichment analysis with panther (Mi et al. 2019). We also used data of the

position of repeat elements, simple tandem repeats (Benson 1999), segmental duplications

(Bailey et al. 2002) and reference “high-confidence” regions form the GIAB project (Zook et

al. 2016, 2020).

Identifying SV variability hotspots in the macaque genomes

We performed a genome-wide analysis to identify genomic regions with a high probability of

harboring new SV-alleles. We used a rhesus macaque dataset composed of 150 genomes, for

which we estimated for each window using equation 2 to then calculate the probability ofθ
^

observing a new allele in the next individual using equation 3.

We used a window size of 10 kb, which was based on the performance of SVhound

prioritizing smaller window sizes. We then selected candidate windows as the 1% windows

with the highest probability of detecting a new SV-allele in the next sequenced individual (

). From these regions we extracted genomic features information from the rhesus𝑝
𝑛𝑒𝑤

macaque genome annotation Ensembl release 97 (rheMac8, (Yates et al. 2020). We used a list
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of ortholog genes of rhesus macaque and humans in order to improve the gene enrichment

analysis.

Annotation for the human genome

We used the respective gencode annotation for each of the two versions of the human

genomes: genocode 19 for hg19 and genocode 29 for hg38. We complemented the annotation

of the genes with the information provided by PANTHER utilizing the Ensemble ID as the

gene identifier. We removed all annotated elements (present in gencode) that were not found

in Panther (labeled as unmapped IDs).

Upset plot

All top candidate windows from the five populations (African, American, European, East

Esian, South Asian) were pooled. Then for each window its presence/absence was computed

for each population (Supplementary table 7). Finally for each window the intersection was

computed based on the presence/absence binary table. This table was then fed to the upset

function of the UpSetR library (Conway et al. 2017) according to the reference manual and

example.

Rhesus macaque

We mapped the reads for 150 individuals to the reference of rhesus macaque rheMac8 using

bwa mem with default parameter. Subsequently, we identified candidate SVs using Manta

(Chen et al. 2016) for each of the bam files separately. Next we computed the region of low

mapping quality by extracting reads with MQ<5 and generated a per sample region file by

requiring 5 reads of MQ<5 in order to define an interval. The per sample VCF was

subsequently filtered by these intervals to account for mapping artifacts and repetitive

regions. The resulting VCF files were analyzed and merged using SURVIVOR (Jeffares et al.)
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merge requiring a SV to be at least 50bp long and up to 1000bp wobble on the start or stop

breakpoint.

DATA ACCESS

Rhesus VCF files (https://github.com/lfpaulin/SVhound) and the R package contain the

information of the sources used. 1000genomes VCF file is available at:

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/ALL.wgs.mergedSV.v8.2

0130502.svs.genotypes.vcf.gz . CCDG VCF file is available over dbVar: nstd160
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