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ABSTRACT

In this study we report on a field test where we asked if it is feasible to deliver a scalable,
commercial-grade solution for brain-based authentication currently given available head wearables.
Sixty-two (62) participants living across the United States in autumn 2020 completed four (4)
at-home sessions over a single (1) week. In each session there were six (6) authentication events
consisting of rapid presentation of images (10Hz) that participants watched for 10 seconds while
recording their brain signal with an off-the-shelf brain signal measuring headband. The
non-stationary nature of the brain signal, and the fact that the signal results from a superposition of
hundreds of simultaneous processes in the brain that respond to context makes the data unique in
time, unrepeatable, and unpredictable. Even when a participant watched identical stimuli, we find no
two periods of time to be alike (Fig. 4B) and furthermore, no two combinations of time periods are
alike. Differences within people (intra-) and across people (inter- participant) from session to session
were found to be significant, however stable processes do appear to be underlying the signal
complexity and non-stationarity. We show a simplified brain-based authentication system that
captures distinguishable information with reliable, commercial-grade performance from participants
at their own homes. We conclude that noninvasively measured brain signals are an ideal candidate
for biometric authentication, especially for head wearables such as headphones and AR/VR devices.

1. Introduction

Authentication confirms that users are who they say they are. A simple example of an authentication
method is an alphanumeric password, ‘abc123,’ while a complex example is a digital fingerprint, as is
captured by scanners found in most smartphones today. Effective authentication is critical to
security for both consumers and enterprises. Because of the high frequency of use of authentication
systems, methods need to be convenient in addition to secure. That balance - between convenience
and security - is a defining characteristic of authentication systems. Strong authentication systems
that are very secure are often very cumbersome to implement and maintain, while weak
authentication methods are convenient but have been responsible for countless data breaches
because of their equivalent ease of being hacked (in any number of ways). The “password chaos” of
modern life seems to have reached a boiling point and it is clear that future personal and
professional computing systems will need improved methods that both deliver increased security
along with an increased convenience that insures adherence to the security protocols.

Biometric authentication is any method that uses natural occurring information, such as fingerprints,
faces, palm veins, irises, and brain signals, to verify one’s identity. Biometrics are always innate,
intrinsic measures to the individual, although there are many variations. For example fingerprints are
static, and most people only have 10: so if fingerprints are stolen, the victim has a biometric issue for
life. Unlike fingerprints or other visible biometrics that can be surveilled by cameras or microphones,
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like eye irises, faces, gait, and speech, brain signals are invisible and are thus one of the more unique
biometric signatures.

Brain-based authentication is the process of verifying an individual’s identity by using their brain
signal. Since at least the late 1980’s1 neuroscientists have observed that noninvasively measured
human brain signals carry personally identifying information2,3 that differentiates between family
members and across a broad population.4,5 Brain signals are always changing and extremely complex,
and therefore make an ideal candidate for use as a biometric.6,7,8 Indeed, many groups have
attempted to build biometric authentication systems based on these signals.9,10,11,12,13,14,15,16,17,18,19 The
overall usability of systems in the literature has been reported to be increasing since 2010,20 however
most are still far from proving field-viability and having utility for existing authentication
providers.21,22 Brain data is commonly collected in a laboratory under controlled conditions where a
trained technician was an essential part of the brain measurement procedure, and often tests of
performance are only done with a small number of people, with all measurements taking place in a
single session which maps poorly to normal daily consumer electronics use-cases where individuals
take off  and put back on the brain measurement devicebetween authentication events.23,24,25,26

While brain biometric identity appears to be one of the most natural, powerful methods for head
wearables, its robustness has not been sufficiently vetted in real world conditions that parallel the
end use cases such as:

● Professionals who work remotely and wear headsets as part of their daily work and need to
be authenticated across applications throughout the day.

● Gamers in VR who want a seamless, hands-free and voice-free way of authorizing in-game
purchases and having their profile load on different devices.

● e-Commerce consumers whose check-out experience can be smoother and more secure
without all the chaos of  current passwords and 2-factor authentication systems.

● Medical and other high-strain environments where the ability to authenticate using a minimal
sensor that only needs minimal contact provides extra utility.

● Air gapped security systems where there are strict demands on performance and all
biometric processing needs to be performed on-edge.

We set out to perform here a generalizable field test of brain-based authentication using brain signals
measured noninvasively from people in their regular, real world contexts, that would speak to the
use-cases. This feasibility test “in the wild” advances the applied science of brain biometric analysis
towards practicality and scalable implementations since here all participants were completely new
(naïve users) to the system, enrolled themselves from home using a self-guided calibration, used a
comfortable head wearable for hours at a time with minimal data and battery requirements, and
performed repeated authentication measures across several different days, simulating the need for
authentication to work regardless of time of day and to be robust to changes in brain state and
ambient noise inherent to the measurements.
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Fig. 1. Schematic illustration of  the brain-basedauthentication process. Brain signal is recorded while participants
watch images (“Prompt”). The brain response (e.g. “John’s brain signal”) is fed into a trained classifier of  that participant.
The classifier decides if  the brain pattern matches the participant (authenticates “John”) or not (rejects).

2. Methods

a. Participants. Sixty-two (62) participants completed four (4) sessions over a single (1) week at their
own home. Adult participants were recruited from an opt-in screening panel and came from all five
(5) major regions of the continental United States (Northeast, Southwest, West, Southeast, and
Midwest). Only participants who reported, normal vision, or vision that was corrected to normal
with contact lenses were included. We excluded volunteers who reported using medication that
might influence the experiment or other neurological or psychiatric conditions that could influence
the results. Written informed consent was obtained from all participants before screening and the
main experimental sessions. Thirteen (13) participants were ultimately excluded for problematic
survey response patterns within the study and/or invalid brain data, leaving 49 participants (mean
age= 36, SD=8.25, 16 females) enrolled and eligible to be included in the analysis.

b. Sessions. Individuals participated in the study from their own homes where they recorded sessions
at their own pace, over one week as detailed in Haruvi et al 2021.27 Each participant received a kit
that included headphones (Sony), a brain signal measuring headband (InteraXon) and a tablet
computer (Samsung) with a designated app (Arctop) to perform the experiment. Each participant
recorded four sessions, one hour long each. Towards the end of each session, six (6) authentication
events were presented. Each authentication event started with a message declaring the upcoming
event and instructing the participant to stay steady, a fixation period which enables the participant
time to get prepared (2 seconds) and then presentation of rapid images at 10Hz for 10 seconds (Fig.
2).

Fig. 2. Time course of authentication using rapid serial visual presentation (RSVP) prompts. At each
authentication event a sequence of images rapidly (10Hz) changes for 10 seconds while the brain response is recorded.
In each session, six RSVP events were presented to each participant.
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c. Data Acquisition. While participants were engaging in a variety of tasks, their electrical brain activity
was recorded using InteraXon’s Muse-S device, a portable, noninvasive electroencephalography
(EEG) device weighing 41 grams. The device includes four dry fabric EEG sensors (sampling rate:
256 Hz), photoplethysmography (PPG) sensors (for heart rate) and motion sensors (gyroscope and
accelerometer). The EEG sensors are located on the scalp, two frontal channels (AF7 and AF8) and
two temporals which rest behind the ears (TP9 and TP10), with the reference channel at Fpz. The
headbands were put on by participants themselves with the assistance of a Quality Assurance screen
that started each session by showing participants in real-time their signal quality, making it easy to
adjust the headband properly for optimal signal quality (Fig. 3).

d. Preprocessing and feature extraction. Data analysis was performed only within the RSVP event, where
the filtered signal was segmented into epochs of 2 seconds in length, using a sliding window with a
stride of 250ms (4Hz) such that an event included 31 epochs. A band-pass filter (0.5-46Hz) was
applied on each channel. Comprehensive feature extraction and engineering was not the goal of this
current study. Here we aimed for effective information capture without deeper optimization to first
test the core principles. Accordingly, for each EEG epoch, the following features were calculated:
power spectrum features - each segment was transformed to the frequency domain using Welch
method, and for each channel, the average power for each of the traditional frequency bands (Alpha,
Beta, Gamma, Delta, Theta) was calculated. Power spectrum interactions, time domain features such
as averages, standard-deviations, kurtosis, entropy and number of zero-crossing points. Pairwise
correlations between channels in the different frequency bands were calculated as well. For each
epoch, a total of  140 features were extracted.

Fig. 3. Schematic illustration of the processing pipeline. Data acquisition included at home EEG recordings of 4
sessions, each on a different day. Each session included 6 RSVP videos (Fig 2). EEG processing included filtering the
signal, feature extraction and training a machine learning authentication classifier per participant. The classifier decided if
the input belongs to the participant (Genuine) or not (Imposter).

e. Models training. For each participant we had a total of 24 RSVP events (Supp. Video 1), which we
collected over the 4 sessions. For each participant, three sessions (18 events), were chosen randomly
to be used for training. The fourth session was used for testing (6 events). The authentication
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prediction works on two levels for each event, once at the epoch level, and second is the final
conviction regarding the whole event identity (genuine or imposter).

Figure 4. Event epoching. A. The RSVP authentication event is a normalized filtered EEG signal composed of four
channels, 9.5 seconds long. Each event signal is segmented into 31 epochs (where each epoch carries 4 channels), 2
seconds in length, and with a sliding window of 0.25 sec stride. B. Channel-1 of epochs #5, and #28 (top, bottom) are
shown for demonstration. Note, that the shaded areas colored in green and red in panel A correspond for these epochs
respectively. C. The epochs of the event signal in A, can be rearranged into an image (here again just channel-1 is
shown). Where each row is an epoch, and the epochs are time ordered vertically. In C and D, events which were taken
from the same participant (#39), but from different sessions are shown. E, F the corresponding features of the epochs
presented in C, D are presented. Note that the calculation of epoch features involves all epoch channels. While the
non-stationary nature of the EEG data dictates that the events (as shown in C, D) are totally not resembled to each
other. The features images (E, F) demonstrates high similarity.

For each participant an authentication model was trained first at the epoch level. Model classification
was done with XGBoost classifier (binary classification). Epochs (feature space, 140 features per
epoch) of genuine identity were labeled as one (186 epochs), while epochs from the rest of the
participants were of imposter identity, and labeled as zero (26784 epochs). Thirty percent of training
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data (random and equal split) was dedicated for validation and to determine epoch thresholding.
Standardization procedure over the training epochs was applied. Later, the training features means
and standard deviation values were used to normalize the validation and testing data. Epoch’s
threshold for classification was optimized to minimize false acceptance rate (FAR), while maximizing
true rejection rate (see Supp. Fig. 3). Epochs prediction for the validation data after thresholding
exhibited high accuracy for all participants (average accuracy=0.9865, STD=0.00929). A final
decision about participant identity was given at the event level. Event threshold, as before, was
determined by an optimization algorithm, but here it was done over the validation data.

After thresholding, mean event accuracy for the validation data was 0.9965, with STD=0.00041. The
number of events in the validation data is 294, suggesting that after thresholding all events were
identified correctly except one. For the epoch level at the test data we have used the same epoch
thresholding as calculated in the training process, while for the event threshold we applied a
constraint which demands a minimum of 40% of epochs to pass in order to declare the event as
genuine.

3. Results

Using brain signals captured during discrete RSVP events (10 seconds of brain data sampled at
256Hz, containing 2 forehead region and 2 ear region brain data channels), we computed
brain-based identities. We found that the non-stationary nature of the signal reflecting the
superposition of hundreds of simultaneous processes in the brain makes the signal unique in time,
unrepeatable, and unpredictable: even when the brain is stimulated by identical stimuli, no two
epochs are alike (Fig. 4B). Furthermore, no two events are alike: in Fig. 4C & 4D, the epochs of an
event (EEG signal space) are aligned vertically, ordered in time, creating an identity image. This
representation showcases how none of the epochs are identical, nor are the full identities at the
event level. In contrast, epochs of the same events as previous at the feature space level are on the
average highly correlated (Fig. 4E & 4F).

The performance of our authentication system is summarized in Fig. 5. The averaged false
acceptance rate (FAR) is 9% and the false rejection rate (FRR) is 13%, making the solution sufficient
for certain commercial authentication use-cases, but not all. The averages shown here are the means
over the individuals’ FAR, FRR. Out of the total number of participants in this experiment (49), 37
participants have FRR=0, where 24 participants have FRR=0 and FAR<=9% (Supp. Table 1).
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Figure 5. Summary of model performance. Forty nine participants were included in the final test. Each participant
had six genuine events, and 287 imposter events. All together in this experiment we used 294 genuine events, and 14063
imposter events. In A, and B histograms of authentication system performance at the participant level is present. In A,
the performance regarding imposters (true rejection rate, and false acceptance rate). In B, the performance regarding
genuines identities (true acceptance rate, and false rejection rate). These values were first calculated per each participant,
and then distribution was calculated. C, A confusion matrix summary, showing the averaged performance over all
participants. A detailed performance summary per each participant can be found in supp. Table 1.

In Fig. 6(A-D), four examples of participants' brain identities are presented. Indeed, it is apparent
that each brain identity carries a unique pattern that is distinguishable from the others. We would
like to generalize the idea of brain identity over all the participants in our experiment, and of course
for this reason the human eye is inadequate to define the important characteristics and their
weightings. So we proceed in a more mathematically forward manner, with a rigorously and
quantified method where we posit that if the RSVP events are going to be used in our authentication
system as the brain identity, two criteria must be fulfilled:

1. Similarity between different events of the same person is kept high: even and especially, for
events which were recorded at different occasions.

2. Events of  different people are distinguishable.
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Figure 6. Similarity among intra and across inter participants events. Panels A, B, C, and D show the features of
single event for different participants (#23, #35, #,39, and #34 respectively). The pattern of an event appears more
robust, as the features values are repeatedly conserved across many epochs . On the other hand, it looks like for each
participant the pattern is specific. The similarity (or dis-smilarity) between events can be measured by a correlation
coefficient. In E we present the event correlation matrix, where element Eij, is the average pairwise correlation across all
training events of participant i and participant j. Note that the intra-correlation coefficients (diagonal) are usually higher
than inter-correlation (off-diagonal), suggesting that for the same participant the pattern of different events is conserved,
and patterns of different participants are different. This understanding leads us to the idea of an authentication system
by events. Also note that the order of the participants in E, is in accordance with the hierarchy cluster tree shown in
Supp. Fig. 1. The matrix here is normalized.
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The similarity between two events (at the feature space) can be measured by the Pearson correlation
coefficient between the means of the events giving the similarity between two participants as the
mean of all pairwise events correlations of these participants. In Fig. 6E, the normalized correlation
matrix across all participants is presented. Values are represented by colors (colorbar 0.2-1), higher
values suggest higher similarity. The participants' order along the axes was determined using a
hierarchical clustering algorithm (see Supp. Fig. 1). The averaged similarity between events belonging
to one participant (intra correlation) is the diagonal element of the correlation matrix, while the
averaged similarity between events of two different participants (inter correlation), is the off diagonal
matrix. In general, we have found that for all participants, the similarity of intra correlation is higher
than the inter correlation (Fig. 6E, Supp. Fig 2).

The histograms in Supp. Fig. 2, shows that most of the inter- and intra-participant correlation are
indeed separated: the intra-correlation of more than half of the participants is higher than 0.7, where
most of the inter-correlations are lower than 0.35. The inset in Supp. Fig. 2 suggests a linear relation
between the mean inter-correlation of a participant and its intra correlation. Namely, participants
having relatively low intra-correlation (~0.5), their inter-correlations will be low as well (~0.25).

For the trained model, a brain identity probability above the threshold was determined to be a
genuine identity, while those below the threshold were judged imposters. In Fig. 7A,B,&C, one can
find an explicit example for this thresholding step. In our system the final identity is regarding the
full RSVP event. Here, only events where more than 40% of epochs were passing the epoch
threshold will be regarded as belonging to genuine identity, otherwise it is an imposter Fig.
7A1,B1&C1.
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Figure 7. Event prediction. The events are segmented into 31 epochs. The probability of each epoch to be of a
genuine identity or of an imposter one is determined by a model. Probabilities above the threshold (black dash line)
belong to genuine identity, and if below the threshold, to an imposter. Threshold was determined previously in the
training process (see Supp. Fig. 3). A, B, C the predictions of three models trained for three participants (sub #23, # 35,
#34 respectively) are presented. Here the epochs under test are only of genuine identity (black dots). While in A, and C
all predictions are above threshold, in B some of the predictions are below the threshold. The final decision whether the
event is of genuine identity is determined only if more than 40% of epochs are above the threshold. In A1, B1, C1 full
test prediction is shown for the same three participants. The test included 294 events, where each participant has 6
genuine events. Events of genuine identity are marked in black dots and imposter events are in red dots. In all three cases
all genuine events were identified correctly, having zero false rejection rate (FRR=0). As for the imposters, only in C1, all
imposter events are below the threshold, with zero false acceptance rate (FAR=0). The final FRR and FAR of each
participant is shown in the yellow windows.

We asked what will be the performances of the authentication system when only certain brain signal
information is considered. Explicitly, we repeated the training procedure (Methods) but this time
with only the power spectrum features of the following brainwave modes: Delta(0.5-4Hz),
Theta(4-8Hz), Alpha(8-12.5), Beta(12.5-30Hz) and Gamma(30-48), and with some combinations
(Alpha-Beta, and Theta-Alpha-Beta). We found, Fig. 8, that usually for these features FRR can reach
low values while the FAR is high. The system can never reach low values for both quantities. As the
number of  features is increasing the better the performancesof  the authentication system.
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Features type False acceptance rate False rejection rate

Delta 0.83 0.02

Theta 0.82 0.02

Alpha 0.75 0.03

Beta 0.36 0.17

Gamma 0.28 0.22

Alpha Beta 0.30 0.14

Theta Alpha Beta 0.27 0.13

All PSD brain waves 0.17 0.16

All features 0.09 0.13

Figure 8. Model performance as function of feature types. The same training and testing datasets were used for all
models. The power spectrum density (PSD) of the following frequency bands were used as features. Delta(0.5-4Hz),
Theta(4-8Hz), Alpha(8-12.5), Beta(12.5-30Hz) and Gamma(30-48). Each bandpass has four features, corresponding to
the number of eeg channels. When using only one type of brainwave, the averaged FRR may reach low levels, but the
FAR always remains high. Even when all brain signal PSD features are used, both FAR and FRR do not cross 0.85.

Given that the goal of this current field test was to evaluate feasibility of a scalable,
commercial-grade brain-based authentication system, advanced data engineering methods were not
applied to boost performance further. Future field tests will report on our use of other feature sets
in concert with different machine-learning architectures to deliver superior, product level
authentication performance.

4. Discussion

We set out to perform a generalizable field test of a brain-based authentication method using
noninvasively measured brain signals, where all participants were completely new (naive users) to the
system, enrolled themselves from home, used a comfortable head wearable for hours at a time with
minimal data and battery requirements, and performed repeated authentication measures across
several different days. In whole, this amounted to a reasonable simulation of the real contexts
authentication methods need to operate in to be commercially viable. Specifically, these methods
must work regardless of time of day and to be robust to changes in brain state (before coffee, after
coffee, etc.) and ambient noise inherent to measurements made outside of controlled laboratory
conditions.

In the current test we used a simplified feature set and simplified machine learning methods to
evaluate the basic premise that brain-based authentication was approaching commercial-grade levels.
Many variations on the approach taken here are possible and based on the results several questions
may arise. For example, because high correlation was visible not just among epochs of the same
event, but also between the events themselves, one could argue that the epoch level is all that is
needed - why not use it as the brain identity? It’s possible, but the correlation among epochs is high
on the average, and therefore the use of a few epochs instead of only one increases both the
sensitivity (true acceptance rate) and specificity (true rejection rate) of the authentication system in
our findings here. These are all tunable parameters depending on the demands of the authentication
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task, and future research will clarify the timescales at which the optimal information for
identification verification occurs.

Wearables that touch the head, such as headphones or AR/VR devices, are a natural form factor for
brain-based authentication. The demand for both strong and convenient authentication solutions
drove our design of the paradigm for prompt-response analysis, and it is notable that the rapid image
prompt-response paradigm evaluated here (with users watching images on a tablet while wearing a
headband) has been validated in AR (Supp. Video 2) using a Microsoft Hololens.

Given the performance observed here and ease-of-use of this method for head wearables,
brain-based authentication appears to be one of the most intuitive and powerful authentication
solutions for next generation headworn computers. Brain identities, like any other biometric identity,
will need to conform to privacy standards and be offered within protected software and chip
architectures such as those pioneered for fingerprint scanners and face recognition.

Biometrics are uniquely comfortable and convenient to use because they do not require the user to
remember anything (like a password), and carry anything (like a physical key). Biometrics offset the
cognitive load of password management plus the risks associated with alphanumeric passwords, and
offer the promise of obviating passwords altogether in future computing ecosystems. For now, brain
identity is at a nascent stage of adoption and the solution presented here represents one of the more
scalable designs, since we can easily increase the dataset to more participants and more events within
the principled framework of forcing divergences in inter-participant data and convergences
intra-participant data.

Furthermore, the wearable headband that people put on themselves in this test to measure their
brain signal is a consumer device that is currently available and shipping worldwide, highlighting the
lack of need for exotic or rare materials to acquire sufficient brain signal, nor specialized laboratories
or facilities. More information in the brain signal remains unexplored here being outside the scope
of the current field test and report. Future research will develop out concepts related to the
information boundary in the signal further, the takeaway here is primarily related to the applied goal
of passwordless authentication: for which brain-based authentication was found to be a comfortable,
natural method. For head wearables in particular, brain biometric identity warrants continued testing
across expanded participant populations and implementation in commercial devices that can benefit.

5. Conclusion

Here we showed that a relatively simple brain-based authentication system could use noninvasively
measured brain signals from consumer quality head wearable devices to differentiate between users
with high degree of certainty. Authentication using noninvasively-measured brain signals in this way
was found to not only be feasible, but robust: the correlation matrices derived from the current test
find our computed brain identities to be readily distinguishable between different participants and
consistently similar among participants, satisfying the core requirements of a commercial-grade
biometric authentication system. The complexity inherent to human brain signals was, therefore,
found to not be too volatile to be leveraged for steady, reliable use as a passwordless authentication
method.
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We built and validated a scalable software infrastructure for brain-based authentication at a
commercial-grade, where the framework here provides easily for continual performance
improvement with additions of new participants. As the methods were designed around
generalizable patterns observable during limited windows of time, at any time, it is clear that there is
value to continued data collection at larger scales and across additional contexts. For both
inter-subject variability and to further clarify the invariant patterns underlying intra-participant
variability, expanded data collection can be beneficial, however the present sample is sufficient to
conclude that brain-based authentication is already a viable method for commercial use.
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SUPPLEMENTARY MATERIALS

Supp. Fig. 1. Brain biometric ID cluster tree. The mean overall training events were calculated for each participant.
Mean event correlation matrix between participants was then calculated by pairwise correlation.  Using this matrix,
hierarchical cluster tree (dendrogram) algorithm creates the linkage distance between participants (y-axis).

Supp. Fig. 2. Histograms of intra-participant and inter-participants events correlations. Intra-participant events
correlation is the mean of pairwise correlation between all training events of a participant with themselves.
Inter-participant correlations are the mean of pairwise correlation of all training events of a participant with the events of
another participant. The diagonal elements in the event correlation matrix (Fig. 2E), represents the intra-participant
correlations while the inter-participants correlations are the off-diagonal elements of the matrix. It is clearly seen that
intra-participant correlations are generally higher than the inter-participants correlation. Meaning, a higher similarity
within intra events patterns compared with inter-participants events. Although there is an overlap between the two
histograms, it does not necessarily mean that perfect separability at the authentication event level is not feasible, as
suggested by the inset.
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Supp. Fig. 3. Epoch predictions and threshold determination. Three sessions per participant are contributing to the
training data. Out of it, 30% are devoted for model validation, and to determine the model threshold. In panels A, B, C
the prediction of three models trained for three participants (sub #23, # 35, #34 respectively) are presented for the
validation data. Here, epochs predictions of genuine identity are marked in black dots, and epochs predictions of
imposters are marked in red. The threshold (black dashed line), discernmenting between genuine and imposter epochs is
determined by an optimization algorithm. The algorithm finds a threshold probability in which the false acceptance rate
(FAR) is minimal while the true acceptance rate (1-FRR) is maximal. This is under the condition for TAR>90%, and
FAR<3%. This is demonstrated in panels A1, B1, C1. FAR, TAR functions are plotted in red and black respectively, the
threshold which was found is marked in black dashed-dot line, y-axis is in logarithmic scale.
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Supp. Table 1. A detailed performance of the authentication system for each participant. The coefficients of the
confusion matrix per each participant is presented.

Supp. Video 1. Rapid Serial Visual Presentation (RSVP) Stimuli. Example of a stream of images watched by
participants while brain signals were recorded by their headband. https://youtu.be/TWUzbX3Q8sk

Supp. Video 2. Brain-based Authentication: Living Room Demo. Microsoft HoloLens 1, retrofitted with BCI
sensors, delivers passwordless authentication. https://youtu.be/n6v9z3lNs2M

16

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.09.439244doi: bioRxiv preprint 

https://youtu.be/TWUzbX3Q8sk
https://youtu.be/n6v9z3lNs2M
https://doi.org/10.1101/2021.04.09.439244

