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Abstract 21 

Mutations in the tumour suppressor gene BRCA2 are associated with predisposition to breast 22 

and ovarian cancers. BRCA2 has a central role in maintaining genome integrity by facilitating 23 

the repair of toxic DNA double-strand breaks (DSBs) by homologous recombination (HR). 24 

BRCA2 acts by promoting RAD51 nucleoprotein filament formation on resected single-25 

stranded DNA, but how BRCA2 activity is regulated during HR is not fully understood. Here, 26 

we delineate a pathway where ATM and ATR kinases phosphorylate a highly conserved 27 

region in BRCA2 in response to DSBs. These phosphorylations stimulate the binding of the 28 

protein phosphatase PP2A-B56 to BRCA2 through a conserved binding motif. We show that 29 

the phosphorylation-dependent formation of the BRCA2-PP2A-B56 complex is required for 30 

efficient RAD51 loading to sites of DNA damage and HR-mediated DNA repair. Moreover, we 31 

find that several cancer-associated mutations in BRCA2 deregulate the BRCA2-PP2A-B56 32 

interaction and sensitize cells to PARP inhibition. Collectively, our work uncovers PP2A-B56 33 

as a positive regulator of BRCA2 function in HR with clinical implications for BRCA2 and 34 

PP2A-B56 mutated cancers.  35 
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Main text 36 

Homologous recombination (HR) is an essential cellular process that repairs severe DNA 37 

lesions such as DNA double-strand breaks (DSBs) to ensure genome integrity1. Women 38 

inheriting monoallelic deleterious mutations in the central HR components BRCA1 and BRCA2 39 

are highly predisposed to breast and ovarian cancers2,3. HR-mediated repair takes place 40 

during S and G2 phases of the cell cycle and uses a homologous DNA sequence, most often 41 

the sister chromatid, as a template to repair DSBs in a high-fidelity manner1.   42 

 BRCA2 plays a central role in HR by facilitating the formation of RAD51 nucleoprotein 43 

filaments on resected RPA-coated single-stranded DNA ends, which can then search for and 44 

invade a homologous repair template4–6. BRCA2 binds monomeric RAD51 through eight 45 

central BRC repeats7–9 and binds and stabilizes RAD51 filaments through a C-terminal 46 

domain10,11. An N-terminal PALB2 interaction domain recruits BRCA2 to sites of DNA damage 47 

as part of the BRCA1-PALB2-BRCA2 complex12.  48 

HR is a highly regulated process yet many aspects of this regulation are not fully 49 

understood13.  Phosphorylation of BRCA2 and other HR components by DNA damage kinases 50 

(ATM/ATR) and cyclin-dependent kinases has been shown to play a role1,13–15. In contrast, a 51 

direct role of protein phosphatases in HR is less clear in part due to a lack of understanding 52 

of how protein phosphatases recognize their substrates16–18. Recent discoveries of consensus 53 

binding motifs for protein phosphatases19–21 now allows for precise dissection of their roles in 54 

DNA repair processes. 55 

 56 

BRCA2 binds PP2A-B56 through a conserved LxxIxE motif and recruits it to DSBs 57 

We previously identified a putative binding site for the serine/threonine protein phosphatase 58 

PP2A-B56 in BRCA2, which is of unknown significance20. PP2A-B56 is a trimeric complex 59 

consisting of a scaffolding subunit (PPP2R1A-B), a catalytic subunit (PPP2CA-B), and a 60 

regulatory subunit of the B56 family (isoforms a, b, g, d, and e). PP2A-B56 achieves specificity 61 

by binding to LxxIxE motifs in substrates or substrate-specifiers through a conserved binding 62 
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pocket present in all isoforms of B5620,22 (Fig. 1A-B). The LxxIxE motif in BRCA2 is embedded 63 

in a hitherto uncharacterized region between BRC repeat 1 and 2 spanning residues 1102-64 

1132, which is highly conserved spanning more than 450 million years of evolution (190 full 65 

length vertebrate BRCA2 protein sequences analyzed by Clustal Omega multiple sequence 66 

alignment) (Fig.1B and Table S1).To further explore this binding site, we first validated the 67 

interaction in human cells, focusing on the main nuclear isoform of B56, B56g23. In HeLa cells, 68 

Myc-tagged fragments of BRCA2 spanning BRC repeat 1 and 2 (Myc-BRCA21001-1255) co-69 

purified with Venus-B56g (Fig. 1C), and reciprocally, all components of the trimeric PP2A-B56 70 

complex co-purified with Venus-BRCA21001-1255 (Fig. S1A, Table S2). Additionally, BRCA2 co-71 

purified with both B56a and B56g in Xenopus egg extracts (Fig. 1D), consistent with an 72 

evolutionarily conserved interaction. Mutation of two of the central residues of the LxxIxE motif, 73 

L1114 and I1117, to alanines (referred to as the 2A mutant, Fig. 1B) abrogated the interaction 74 

to Venus-B56g (Fig. 1C), showing that the interaction depends on the LxxIxE motif. The direct 75 

and LxxIxE motif-dependent interaction between BRCA2 and B56 was confirmed in vitro by 76 

isothermal titration calorimetry (ITC) (Fig. 1E, Fig. S1B) and gel filtration chromatography (Fig 77 

S1C). The KD is low micromolar, which might explain why the interaction has not been reported 78 

previously. Consistent with our binding data, we detected BRCA2 and the BRCA1-PALB2-79 

BRCA2 complex partner BRCA1 in proximity to B56g in camptothecin (CPT) treated HeLa 80 

cells using a biotin proximity labelling approach with TurboID24-tagged B56g coupled to mass 81 

spectrometry (Fig. S1D, Table S2).  82 

 To determine if BRCA2 could recruit PP2A-B56 to DSBs, we exploited the Xenopus 83 

egg extract system that allows direct monitoring of proteins binding to DSBs. Either closed 84 

circular or linearized DSB-containing plasmids were added to Xenopus egg extracts, and 85 

proteins co-purifying with the DNA were analyzed by Western blotting following plasmid 86 

pulldown. We found that B56g was enriched on DSB-containing plasmid DNA, and that 87 

immuno-depletion of BRCA2 from the extracts diminished the recruitment of B56g to the same 88 
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damaged plasmid (Fig. 1F). Taken together, our results show that BRCA2 binds PP2A-B56 89 

through a highly conserved LxxIxE motif and recruits it to DSBs. 90 

 91 

PP2A-B56 binding is required for BRCA2 function in DNA repair by HR 92 

We next asked whether the interaction between BRCA2 and PP2A-B56 is required for the 93 

function of BRCA2 in DNA repair. To address this, we constructed an RNAi knockdown and 94 

complementation set-up in HeLa DR-GFP Flp-In cells25 and U2OS Flp-In T-REx cells. This 95 

setup allowed transient depletion of endogenous BRCA2 using siRNA-mediated knockdown 96 

and complementation with stably expressed siRNA-resistant cDNA constructs of mCherry- or 97 

Venus-MBP-tagged full-length BRCA2 WT or 2A (referred to as BRCA2 WT and 2A). Efficient 98 

depletion of endogenous BRCA2 and similar expression levels and chromatin association of 99 

the complementation constructs were confirmed by immunoblotting (Fig. S2A-C). We then 100 

utilized the DR-GFP reporter assay26 (Fig. 2A, left) to assess HR-mediated DSB repair. 101 

Strikingly, complementation with BRCA2 WT but not 2A suppressed the loss of HR-mediated 102 

repair resulting from BRCA2 depletion (Fig. 2A, right), suggesting that PP2A-B56 binding is 103 

required for the function of BRCA2 in HR. Consistent with this result, we found that expression 104 

of a genetically encoded inhibitor of PP2A-B56 binding to LxxIxE motifs similarly diminished 105 

HR-mediated repair in the DR-GFP reporter assay26,27 (Fig. S2D). 106 

 BRCA2 is considered essential in most contexts at least in part due to its function in 107 

HR and its deletion or depletion leads to lethality28–32. To assess the importance of the BRCA2-108 

B56 interaction for cell viability, we performed colony formation assays and determined plating 109 

efficiencies for BRCA2 WT and 2A complemented U2OS cells (Fig. 2B). Consistent with the 110 

results for HR-mediated repair, expression of BRCA2 WT but not 2A suppressed the 111 

diminished viability resulting from BRCA2 depletion (Fig. 2B).  112 

Due to impaired DNA repair, loss of BRCA2 function causes hypersensitivity to various 113 

DNA damaging agents including DNA interstrand crosslinking (ICL) agents33, topoisomerase 114 

I inhibitors34, and Poly-(ADP-ribose) polymerase (PARP) inhibitors35,36, which is exploited 115 

therapeutically37. Accordingly, BRCA2 depletion resulted in hypersensitivity to Mitomycin C 116 
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(MMC), CPT, and Olaparib (Fig. 2C-E). Consistent with a role for the BRCA2-PP2A-B56 117 

complex in DNA repair, BRCA2 2A expressing cells were significantly more sensitive to these 118 

DNA damaging agents than BRCA2 WT expressing cells (Fig. 2C-E).  119 

 To investigate the mechanistic basis for the impaired DNA repair in BRCA2 mutant 120 

cells, we looked at MMC-induced nuclear RAD51 repair foci in S-phase by 121 

immunofluorescence microscopy. BRCA2 depletion abolished the ability to form RAD51 foci 122 

(Fig. 2F, Fig. S2E), consistent with the central role of BRCA2 in loading RAD51 to sites of 123 

DNA damage33,38. Expression of BRCA2 WT but to a lesser extent 2A rescued loss of RAD51 124 

foci resulting from BRCA2 depletion (Fig. 2F). The impairment in RAD51 focus formation 125 

observed in the 2A expressing cell line did not arise from significant changes in BRCA2-126 

RAD51 interaction, as similar amounts of RAD51 co-purified with BRCA2 WT and 2A in 127 

immunoprecipitation assays (Fig. 2G).  128 

Similar results were obtained when we deleted the entire conserved region, which 129 

contains the LxxIxE motif (BRCA2 D1100-1131). This also caused a significant decrease in 130 

cell viability, DNA damage tolerance, and RAD51 foci formation (Fig. S3A-E), in line with the 131 

results of the 2A mutation. We conclude that the interaction to PP2A-B56 is central to the 132 

function of BRCA2 in HR-mediated DNA repair. 133 

 134 

BRCA2-PP2A-B56 complex formation is stimulated by ATM/ATR-mediated 135 

phosphorylation  136 

In several instances, PP2A-B56 interacts with substrate specifiers in a manner regulated by 137 

phosphorylation of neighboring sites flanking the LxxIxE motif to allow cross-talk between 138 

kinases and phosphatases20. The LxxIxE motif of BRCA2 is surrounded by three fully 139 

conserved SQ/TQ sites (Fig, 3A, Fig. 1B, Table S1), which are putative consensus 140 

phosphorylation sites for the DNA damage response kinases14. To validate these 141 

phosphorylation sites, we raised phospho-specific antibodies against the first and the last 142 

phosphorylation site, S1106 and T1128 (Fig. 3A, Fig. S4A-B for antibody validation). For the 143 

pS1106 phosphorylation site, the epitope included phosphorylation of T1104 which is a 144 
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putative CDK site. We found that both pT1104/pS1106 and pT1128 phosphorylation are 145 

stimulated by CPT-induced DNA damage in S-phase (Fig. 3B). Inhibition of ATM and to a 146 

lesser extent ATR kinase reduced the phosphorylation, while inhibition of both fully abrogated 147 

it (Fig. 3B, Fig. S4C). To dissect the kinetics of BRCA2 phosphorylation in a more synchronous 148 

model system, we turned to Xenopus egg extracts, taking advantage of the evolutionary 149 

conservation of the region surrounding T1128 (X. laevis T1196) (Fig. 3A), which allowed us to 150 

use the antibody raised against human BRCA2 pT1128. In this system, addition of a linearized 151 

DSB-containing plasmid, but not an intact one, resulted in rapid ATM-dependent T1196 152 

phosphorylation (Fig. S4D-E), which could also be detected on resected linearized DNA (Fig. 153 

S4F). Likewise, during the replication-coupled repair of a cisplatin ICL containing plasmid39, 154 

T1196 was also phosphorylated at the time of DSB formation (Fig. 3C). Collectively, these 155 

results demonstrate that the SQ/TQ sites in BRCA2 flanking the LxxIxE motif are 156 

phosphorylated rapidly by ATM/ATR in response to DSBs. 157 

Next, to directly assess whether phosphorylation of these sites affects the binding to 158 

PP2A-B56, we measured the binding affinity between B56 and various phosphorylated 159 

BRCA2 peptides by ITC (Fig. 3D, Fig. S5). Phosphorylation of S1123 and S1128 increased 160 

the binding affinity four- and two-fold, respectively, while the double phosphorylated peptide 161 

(S1123/S1128) had an eight-fold increase in binding affinity (Fig. 3D). In contrast, 162 

phosphorylation of S1106 slightly weakened the interaction (Fig. 3D). 163 

To investigate how the phosphorylation status of BRCA2 affects PP2A-B56 binding in 164 

cells, we constructed mutants of BRCA2 with all SQ/TQ sites mutated to AQ or DQ (referred 165 

to as BRCA2 3AQ and 3DQ), constituting unphosphorylated and phosphorylation-mimetic 166 

versions of the protein, respectively (Fig. 3A). We observed that Myc-BRCA21001-1255 3AQ co-167 

purified less with Venus-B56g than Myc-BRCA21001-1255 WT, whereas Myc-BRCA21001-1255 3DQ 168 

co-purified more with Venus-B56g in immunoprecipitation assays (Fig. 3E), consistent with a 169 

two-fold increase in binding affinity of a 3DQ peptide measured by ITC (Fig. 3D). Our results 170 

argue that collectively these phosphorylations stimulate the binding to PP2A-B56 in cells.  171 
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Next, to address whether these phosphorylation sites are important for the function of 172 

BRCA2, we investigated the viability, DNA damage tolerance and RAD51 focus formation of 173 

cells expressing BRCA2 3AQ and 3DQ in our RNAi and complementation system in U2OS 174 

cells (Fig. S2B-C, Fig. 3F-J). Expression of both BRCA2 3AQ and 3DQ resulted in decreased 175 

viability and MMC hypersensitivity compared to BRCA2 WT (Fig. 3F-G). Surprisingly, while 176 

expression of BRCA2 3AQ led to CPT and Olaparib hypersensitivity and a reduction in RAD51 177 

foci, BRCA2 3DQ was indistinguishable from BRCA2 WT in these assays, suggesting that 178 

mimicking phosphorylation is sufficient to sustain some aspects of functionality (Fig. 3H-J). 179 

Collectively, these results show that conserved ATM/ATR phosphorylation sites flanking the 180 

LxxIxE motif control the interaction to PP2A-B56 and are required for BRCA2 function. 181 

 182 

BRCA2 cancer mutations deregulate the interaction to PP2A-B56 and sensitize cells to 183 

PARP inhibition.  184 

We next asked whether our findings would be clinically relevant to BRCA2 mutation carriers. 185 

Several BRCA2 missense variants of uncertain clinical significance, which are reported in 186 

individuals with a hereditary cancer predisposition, localize to the highly conserved B56-187 

interacting region (ClinVar database, NIH). We selected three of them c.3318C>G (S1106R), 188 

c.3346A>C (T1116P), and c.3383C>T (T1128I), which localize to the B56-regulating 189 

phosphorylation sites or the LxxIxE motif itself (Fig. 4A). Notably, BRCA2 S1106R was 190 

recently suggested to be likely benign using a multifactorial likelihood quantitative analysis40. 191 

We first determined whether these mutations interfere with PP2A-B56 binding. We observed 192 

that Myc-BRCA21001-1255 S1106R and T1116P co-purified more with Venus-B56g than Myc-193 

BRCA21001-1255 WT, whereas Myc-BRCA21001-1255 T1128I co-purified less with Venus-B56g in 194 

immunoprecipitations assays (Fig. 4B). The increased binding of the S1106R mutant was 195 

reflected in a two-fold increase in binding affinity as determined by ITC measurements, 196 

whereas BRCA2 T1116P and T1128I had KD values similar to BRCA2 WT (Fig. S6A-B). The 197 

stimulatory effect of S1106R likely arise from the generation of a positively charged motif 198 
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upstream of the LxxxIxE motif (Fig. 4A) that strengthen binding of PP2A-B5641. T1116P 199 

generates a putative proline-directed phosphorylation site at position two of the LxxIxE motif 200 

(Fig. 4A), which is known to stimulate interaction to PP2A-B56 when phosphorylated20. Finally, 201 

T1128I likely prevents the stimulatory effect of T1128 phosphorylation.  202 

 To address whether these cancer mutations impact on the function of BRCA2, we 203 

investigated the cell viability and DNA damage tolerance of cells expressing BRCA2 S1106R, 204 

T1116P, and T1128I in our RNAi and complementation system in U2OS cells (Fig. S6C). 205 

Expression of BRCA2 S1106R and T1128I resulted in diminished viability compared to 206 

expression of BRCA2 WT, and expression of all mutants led to a mild sensitivity to the clinically 207 

relevant PARP inhibitor Olaparib (Fig. 4C-D). Collectively, these results suggest that BRCA2 208 

cancer mutations located in the B56-interacting region can deregulate the interaction to PP2A-209 

B56 and sensitize cells to PARP inhibition.  210 

 211 

 212 

Here, we provide to our knowledge the first example of a protein phosphatase regulating HR 213 

by directly binding to an HR component through a specific substrate recognition motif. We 214 

propose a model (Fig. 4E) in which ATM/ATR-mediated phosphorylation of BRCA2 in 215 

response to DSBs stimulates the recruitment of PP2A-B56 to BRCA2 at the site of the lesion 216 

via a conserved LxxIxE motif. The complex of BRCA2 and PP2A-B56 is required for efficient 217 

RAD51 loading and HR-mediated repair. This mechanism elegantly enables crosstalk 218 

between the DNA damage response and BRCA2-PP2A-B56 complex formation, possibly to 219 

ensure proper spatiotemporal formation of the complex.  220 

A major question arising from our findings is what the functional substrate(s) of 221 

BRCA2-bound PP2A-B56 are at the site of the DNA lesion. Our results clearly illustrate that 222 

PP2A-B56 does not act as a mere off switch for DNA damage response signaling once repair 223 

is completed. Rather, the observation that the PP2A-B56 non-binding mutant is deficient in 224 

RAD51 focus formation and HR-mediated DSB repair demonstrates that PP2A-B56 plays an 225 

active role during HR. BRCA2-bound PP2A-B56 may act to dephosphorylate protein 226 
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substrates to positively moderate their functions in HR. It is also possible that BRCA2-bound 227 

PP2A-B56 is required for dynamic phosphorylation/dephosphorylation cycles of protein 228 

substrates at the site of the DNA lesion to drive repair. We anticipate that PP2A-B56 have 229 

multiple substrates controlling RAD51 nucleoprotein filament formation and possibly also 230 

substrates controlling BRCA2 functions in other processes such as fork protection and cohesin 231 

dynamics42–44. Interestingly, during mitosis, PP2A-B56 appears to regulate BRCA2 function 232 

through an alternative recruitment mechanism45, suggesting that PP2A-B56 might be a 233 

general regulator of BRCA2 functionality throughout the cell cycle. 234 

 Importantly, our discovery raises the possibility that mutations in PP2A-B56 235 

components, which are common in human cancers46, result in HR deficiencies that may be 236 

targeted therapeutically37 237 
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Methods 413 
 414 

Cell culture 415 

U2OS cells, HeLa cells, and derived cell lines from these were cultured in Dulbecco's Modified 416 

Eagle Medium with GlutaMAX (Life Technologies) supplemented with 10% fetal bovine serum 417 

(Gibco) and 10 units/mL of penicillin and 10 μg/mL of streptomycin (Gibco) at 37°C with 5% 418 

CO2. Expression from the CMV-TetO2 promoter in Flp-In T-REx cells was induced by 419 

treatment with 10 ng/mL doxycycline (Clontech) for 24 hours. To synchronize cells to S phase, 420 

cells were incubated in growth medium with 2.5 mM thymidine (Sigma) for 24 hours unless 421 

otherwise indicated. Cells were released from thymidine by washing twice in PBS and adding 422 

growth medium. Mitomycin C (MMC, Sigma), camptothecin (CPT, Sigma), Olaparib 423 

(AZD2281, Selleckchem), KU55933 (ATM kinase inhibitor, Selleckchem) and AZ20 (ATR 424 

kinase inhibitor, Selleckchem) were added at the indicated doses to the growth medium.  425 

 426 

Cloning 427 

A vector for stable high-level expression of BRCA2 in human cells, 428 

pcDNA5/FRT/hCMV/Venus-MBP-BRCA2, was generated by swapping the tetracycline-429 

regulated CMV-TetO2 promoter in pcDNA5/FRT/TO with the high-level expression hCMV 430 

promoter from phCMV1 using MluI and BspTI restriction sites. To further increase the stability 431 

of BRCA2, Venus and MBP where inserted using HindIII and KpnI restriction sites. Finally, 432 

full-length BRCA2 was PCR amplified from pHA-BRCA2 (generous gift from Tina Thorslund) 433 

and inserted using KpnI and NotI restriction sites to generate pcDNA5/FRT/hCMV/Venus-434 

MBP-BRCA2. To facilitate site-directed mutagenesis of full-length BRCA2, two cloning 435 

cassettes were generated using the internal NheI restriction site in combination with either 436 

KpnI or NotI encompassing BRCA2 CDS nucleotide positions 1-4584 and 4578-10257, 437 

respectively. These fragments were used as templates to introduce mutations in the PP2A-438 

B56 binding region and silent mutations to obtain siRNA-resistance, respectively, and then 439 

reintroduced into pcDNA5/FRT/hCMV/Venus-MBP-BRCA2. For generation of 440 
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pcDNA5/FRT/hCMV/mCherry-MBP-BRCA2, a synthetic cDNA of mCherry-MBP was 441 

synthesized (GeneArt) and swapped for Venus and MBP using HindIII and KpnI restriction 442 

sites. A vector for inducible expression of BRCA2 fragments in human cells for biochemistry, 443 

pcDNA5/FRT/TO/Myc-BRCA21001-1255, was generated by PCR amplifying BRCA21001-1255 with 444 

Myc tag-encoding overhangs and subsequent subcloning into pcDNA5/FRT/TO using BamHI 445 

and NotI restriction sites. Site-directed mutagenesis was performed to introduce mutations in 446 

the PP2A-B56 binding region. Similarly, pcDNA5/FRT/TO/3xFLAG-Venus-BRCA21001-1255 was 447 

generated by PCR amplification of BRCA21001-1255 and subsequent subcloning into 448 

pcDNA5/FRT/TO/3xFLAG-Venus using BamHI and NotI restriction sites. 449 

pcDNA5/FRT/TO/HA-TurboID-B56g was generated by cloning B56g into 450 

pcDNA5/FRT/TO/HA-TurboID. Primer sequences are enclosed in Table S4. Additionally, 451 

pcDNA5/FRT/TO/Venus-B56g147, pcDNA5/FRT/TO/mCherry-B56 inhibitor, and 452 

pcDNA5/FRT/TO/mCherry-Ctrl inhibitor (3A)48 were used in this study.  453 

 454 

Generation of stable Flp-In T-REx cell lines 455 

U2OS Flp-In T-Rex (a kind gift from Helen Piwnica-Worms), HeLa Flp-In-T-Rex (a kind gift 456 

from Stephen Taylor), or HeLa DR-GFP Flp-In (a kind gift from Jeffrey Parvin) cells were grown 457 

in medium supplemented with 100 µg/mL Zeocin (Invitrogen). To generate stable cell lines in 458 

the Flp-In system, cells were co-transfected with pOG44 (Invitrogen) and a pcDNA5/FRT 459 

plasmid of interest using the Fugene 6 transfection kit (Promega) or Lipofectamine 2000 460 

(Invitrogen). After transfection, Flp-In T-REx cells were selected in medium supplemented with 461 

200 µg/mL Hygromycin B (Invitrogen). Individual clones were selected and analyzed for 462 

expression. For T-REx cells, selection included 5 µg/mL blasticidin S HCl (Sigma). 463 

 464 

Transfection 465 

For transient protein expression, cells were transfected with Lipofectamine 2000 (Invitrogen) 466 

and the plasmid of interest and incubated for 48 hours unless otherwise stated. For BRCA2 467 
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knockdown, cells were transfected twice with 10 nM Silencer Select BRCA2 s2084 siRNA and 468 

10 nM Silencer Select BRCA2 s2085 siRNA (Ambion) using Lipofectamine RNAiMAX 469 

(Invitrogen) 24 and 48 hours before the experiment. A luciferase oligo (5’-470 

CGUACGCGGAAUACUUCGAdTdT-3’, Sigma) was used for control (Ctrl).  471 

 472 

DR-GFP reporter assay 473 

To analyze HR efficiency for full-length BRCA2 constructs, HeLa DR-GFP Flp-In cells parental 474 

or stably expressing siRNA resistant mCherry-MBP-BRCA2 were transfected with Ctrl or 475 

BRCA2 siRNA as described above. The second siRNA transfection was combined with 476 

transient transfection with or without an I-SceI-encoding plasmid. After 48 hours, cells were 477 

trypsinized, dissolved in 2% BSA in PBS, stained with 1 µg/mL DAPI, and analyzed on a BD 478 

LSRFortessa flow cytometer (BD biosciences) for FSC (A, W, H), SSC (A), DAPI (A), and GFP 479 

(A). Debris and doublets were excluded by gating. Living cells were gated by excluding DAPI 480 

positive cells. The fraction of GFP positive cells was quantified and the background (without 481 

I-SceI endonuclease) was subtracted for each condition. Graphs were constructed in PRISM. 482 

For the B56 inhibitor experiment, HeLa DR-GFP Flp-In cells were transiently transfected with 483 

a plasmid encoding an mCherry-tagged version of the B56 substrate inhibitor or a control 484 

version of the inhibitor described previously48 either with or without an I-SceI-encoding 485 

plasmid. After 48 hours, cells were prepared and analyzed as described above but using 486 

mCherry (A) to gate transfected cells. The fraction of GFP positive cells in the mCherry positive 487 

population was quantified, and the background (without I-SceI endonuclease) was subtracted 488 

for each condition. Graphs were constructed in PRISM, and a Student’s t-test was performed 489 

to determine the p-value.  490 

 491 

Colony formation assay 492 

U2OS Flp-In T-REx cells parental or expressing siRNA-resistant venus-MBP-BRCA2 493 

constructs were transfected with Ctrl or BRCA2 siRNA as described above. Then, cells were 494 

either treated with 0, 3, or 10 ng/mL Mitomycin C for 24 hours followed by reseeding into 495 
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normal growth medium or reseeded directly and either treated for 24 hours with 0, 5, or 15 nM 496 

CPT or continuously maintained in medium containing 0, 5.6, 16.7, or 50 nM Olaparib. 497 

Reseeding was performed by trypsinizing the cells, dissolving into growth medium, and 498 

counting the number of cells using the Scepter Cell Counter (Merck), followed by seeding a 499 

known number of cells into 6-well plates containing growth medium. After 11 days, the cells 500 

were fixed and stained in 0.5% methylviolet, 25% methanol. The plates were scanned on a 501 

GelCount (Oxford Optronix), and the number of colonies were quantified using the GelCount 502 

software. The plating efficiency (%) for each well was calculated as the number of colonies 503 

divided by the number of cells seeded times 100. The surviving fraction for each dose of drug 504 

was calculated by normalizing the plating efficiency to that of the unperturbed condition. 505 

Graphs were constructed in PRISM (Graphpad), and one-way ANOVA analyses with 506 

Dunnett’s multiple comparison tests were performed comparing the averages of each 507 

condition to the siBRCA2 + WT condition for a minimum of three independent experiments. 508 

 509 

Immunofluorescence microscopy 510 

U2OS Flp-In T-REx cells parental or expressing siRNA-resistant venus-MBP-BRCA2 511 

constructs were seeded in µ-Slide 8-well dishes (Ibidi). Alongside Ctrl or BRCA2 siRNA 512 

transfection as described above, cells were synchronized to S phase with a single 24-hour 2 513 

mM thymidine block. Cells were released from the block, treated with 3 µM MMC for 1 hour, 514 

and then allowed to recover for 8 hours in normal growth medium. Cells were fixed and 515 

permeabilized by incubation in 4% formaldehyde for 10 minutes, 0.1% Triton-X-100 in PBS-T 516 

for 10 minutes, and 25 mM glycine for 20 minutes, followed by blocking in 3% BSA (Sigma) in 517 

PBS-T for 30 minutes. Cells were incubated with primary antibody, rabbit-anti-RAD51 518 

(Bioacademia 70-001) 1:1000 in blocking solution, for 90 minutes, followed by washing in TBS-519 

T and incubation with secondary antibody, AlexaFluor 546 nm Goat-anti-rabbit IgG (Life 520 

Technologies, A-11010) 1:1000 and 1 µg/mL DAPI, in blocking solution for 45 minutes. Finally, 521 

cells were washed in PBS-T and analysed on a Deltavision Elite microscope using a 40X oil 522 
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objective. Images were deconvoluted using SoftWoRx (GE healthcare), and Z stacks 523 

combined using the Quick projection function. The number of RAD51 foci in each nucleus was 524 

quantified using the polygon finder function. Graphs were constructed in PRISM. 525 

 526 

Antibodies 527 

Commercially available antibodies against the following proteins were used for Western 528 

blotting in the indicated dilutions: BRCA2 (OP95, Calbiochem, 1:1000), RAD51 (70-001, 529 

Bioacademia, 1:1000), mCherry (RFP) (PM005, MBL International, 1:1000), Myc (Sc-40, 530 

Santa Cruz, 1:750), PALB2 (A301-246A – M, Bethyl, 1:1000), GAPDH (Sc-25778, Santa Cruz, 531 

1:5000), tubulin (Ab6160, Abcam, 1:5000), histone 3 (Ab1791, Abcam, 1:1000), pS345-CHK1 532 

(#2341, Cell signaling, 1:1000), pS1981-ATM (MAB3806, Millipore, 1:2000), PP2A-C (05-421, 533 

Sigma-Aldrich, 1:1000). Additionally, an antibody against GFP was used (Serum produced by 534 

Moravian, affinity purified against full-length GFP). Phospho-specific polyclonal antibodies 535 

against BRCA2-pT1104/pS1106 and BRCA2-pT1128 were raised in rabbits using 536 

phosphorylated peptides of BRCA2 for immunization, affinity purification, and validation 537 

(SNHNL(pT)P(pS)QKAEI for BRCA2-pT1104/pS1106 (21st Century Biochemicals) and 538 

CQFEF(pT)QFRKPS for BRCA2-pT1128 (Moravian)).  539 

Antibodies against Xenopus MCM649, BRCA250, BRCA251 (Fig. S4D), RAD5152, 540 

RPA53, and ORC254 were described previously. Additional antibodies against the following 541 

Xenopus proteins were raised in rabbits against the following peptides: BRCA2 (Ac-542 

KPHIKEDQNEPESNSEYC-amide, New England Peptide) as described previously51, WRN 543 

(H2N-MTSLQRKLPEWMSVKC-amide, New England Peptide), B56a 544 

(MSAISAAEKVDGFTRKSVRK, Peptide Speciality Laboratories GmbH), and B56g 545 

(MPNKNKKDKEPPKAGKSGKS, Peptide Speciality Laboratories GmbH). The antibody 546 

against Xenopus BRCA2-pT1196 was raised against human BRCA2-pT1128 (see above).  547 

 548 

Whole cell extracts, immunoprecipitation, and Western blotting. 549 
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For whole cell extracts, cells were lysed in ice-cold RIPA buffer (10 mM Tris, pH 7.4, 150 mM 550 

NaCl, 1 mM EDTA, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS), and cell lysates were 551 

cleared by centrifugation at 20000 g at 4°C. Protein concentrations in cell lysates were 552 

determined using Bradford protein assay kit (Bio-Rad) or Pierce BCA protein assay kit 553 

(Thermo Fisher Scientific). 554 

For GFP-trap immunoprecipitation of Venus and Venus-B56g, HeLa Flp-In T-Rex cells 555 

stably expressing doxycycline-inducible Venus or Venus-B56g were transiently transfected 556 

with the indicated constructs of pcDNA5/FRT/TO/Myc-BRCA21001-1255, induced with 10 ng/mL 557 

doxycycline, and incubated with 3 ng/mL MMC for 24 hours prior to cell harvest. Cells were 558 

lysed in ice-cold low salt lysis buffer (50 mM Tris, pH 7.4, 50 mM NaCl, 1 mM EDTA, 0.1% 559 

Igepal). Cell lysates were cleared by centrifugation at 20000 g at 4°C, and proteins were 560 

purified by GFP-trap (ChromoTek) immunoprecipitation for 1 hour at 4°C. Beads were washed 561 

in ice-cold no salt wash buffer (50 mM Tris pH 7.4, 20% glycerol, 1 mg/mL BSA) prior to elution.  562 

For GFP-trap immunoprecipitation of Venus and Venus-BRCA21001-1255, HeLa cells 563 

were transiently transfected with pcDNA5/FRT/TO/Venus or pcDNA5/FRT/TO/Venus-564 

BRCA21001-1255, synchronized to S phase as described above, released for 2 hours and then 565 

treated for 2 hours with 100 nM CPT prior to cell harvest. Cells were lysed and proteins purified 566 

by GFP-trap immunoprecipitation in low salt lysis buffer as described above. Beads were 567 

washed in low salt lysis buffer prior to elution. 568 

For GFP-trap immunoprecipitation of Venus-MBP-BRCA2, U2OS Flp-In T-REx stably 569 

expressing constructs of Venus-MBP-BRCA2 were lysed and proteins immunoprecipitated as 570 

described above but in a standard salt lysis buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 1 mM 571 

EDTA, 0.1% Igepal). 572 

For immunoprecipitations of endogenous BRCA2, U2OS Flp-In T-REx cells were 573 

synchronized to S-phase as described above, released for 1 hour, and treated for 1 hour with 574 

2 µM CPT in presence or absence of 25 µM KU55933 (ATM kinase inhibitor) and 5 µM AZ20 575 

(ATR kinase inhibitor). Cells were lysed in RIPA buffer, and proteins were immunoprecipitated 576 

23

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.10.439193doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.10.439193
http://creativecommons.org/licenses/by-nc-nd/4.0/


on BRCA2 antibody-conjugated (OP95, Calbiochem) Rec-protein G Sepharose 4B beads 577 

(Invitrogen) for 1 hour at 4°C and washed in RIPA buffer prior to elution.  578 

All buffers were supplemented with 1 mM DTT, Complete protease inhibitor cocktail 579 

(Roche), and PhosSTOP phosphatase inhibitor cocktail (Roche). For l phosphatase treatment 580 

experiments, immunoprecipitants on beads were washed in buffer without phosphatase 581 

inhibitor and incubated with l phosphatase (Sigma Aldrich) in the applied buffer for 20 minutes 582 

at 30°C before elution. Immunoprecipitants were eluted in 2X NuPage LDS sample buffer 583 

(Invitrogen). Whole cell extracts and immunoprecipitations were analyzed by SDS-PAGE and 584 

Western blotting or mass spectrometry analysis. For Western blotting, samples were boiled 585 

for 5 minutes in NuPage LDS sample buffer and run on NuPage Bis-Tris 4-12% protein gels 586 

(Invitrogen), and proteins were transferred to PVDF membranes (Immobilon-FL, Merck). For 587 

dot blots, the indicated peptides were spotted onto nitrocellulose membranes (Hybond-C 588 

extra, Amersham Biosciences) in 5-fold dilutions (highest amount 2 µg). Xenopus samples 589 

(see below) were prepared in 2X Laemmli sample buffer, boiled for 5 min, run on 4–12% 590 

Criterion XT Bis-Tris Protein Gels (Bio-rad), and proteins were transferred to Polyscreen (R) 591 

PVDF transfer membranes (PerkinElmer). All membranes were blocked in 5% skim milk or 592 

BSA, incubated in primary antibody solution overnight at 4°C, washed in TBS-T, incubated in 593 

secondary antibody for 1 hour, washed again in TBS-T, and imaged with the Odyssey® CLx 594 

(LI-COR) or incubated with ECL reagent and imaged on an ImageQuant LAS4000 (Cytiva). 595 

Quantification of Western blots were carried out in Image Studio Lite (LI-COR).  596 

 597 

Fractionation assay 598 

U2OS Flp-In T-REx cells stably expressing Venus-MBP-BRCA2 were transfected with BRCA2 599 

siRNA as described above prior to lysis in low salt lysis buffer. Upon clearing of the lysates, 600 

supernatants were stored as the soluble fractions. The pellets were resuspended and lysed in 601 

RIPA buffer supplemented with benzonase nuclease (Merck Millipore). Lysates were 602 
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centrifuged again, and the supernatants were stored as the chromatin fractions. The soluble 603 

and chromatin fractions were analyzed by SDS-PAGE and Western blotting.  604 

 605 

Biotin proximity labeling assay 606 

HeLa Flp-In T-Rex encoding doxycycline-inducible TurboID-B56g were induced with 4 ng/mL 607 

doxycycline alongside synchronization to S phase as described above. Cells were released 608 

for 2 hours in presence of 100 nM CPT, and 50 µM biotin (Sigma) was added 30 minutes 609 

before harvest. Biotinylated proteins were purified on High Capacity Streptavidin Agarose 610 

beads (Thermo Scientific) in RIPA buffer and proteins were identified by mass spectrometry. 611 

 612 

Protein expression 613 

BRCA21089-1143 WT and 2A (L1114A-I1117A) were cloned into pGEX-4T-1 to generate N-614 

terminally GST-tagged fusion proteins. Constructs were transformed into E. coli BL21 (DE3) 615 

cells and expression was induced by addition of 0.5 mM IPTG at 37°C for 3 h. Bacterial pellets 616 

were resuspended in ice-cold lysis buffer (50 mM Tris-HCl pH 7.4, 300 mM NaCl, 10% 617 

glycerol, 5 mM β-mercaptoethanol, 1 mM phenylmethyl sulfonyl fluoride, and complete EDTA-618 

free Protease Inhibitor Cocktail tablets (Roche)) and lysed in an EmulsiFlex-C3 High Pressure 619 

Homogenizer (Avestin). Lysates were cleared at 26,200g for 30 min at 4°C and supernatants 620 

were incubated with pre-washed Glutathione Sepharose 4 Fast Flow beads (GE Healthcare) 621 

for 90 min at 4°C with mixing. Beads were washed six times in ice-cold lysis buffer, and GST-622 

fusion proteins were eluted at 22°C for 30 min, 1250 rpm in elution buffer (50 mM Tris pH 8.8, 623 

300 mM NaCl, 10% glycerol, 5 mM β-mercaptoethanol, 20 mM reduced glutathione). Eluates 624 

were further purified by gel filtration on a Superdex 75 10/300 GL column. His-tagged B56a 625 

was expressed in the E. coli strain BL21 Rosetta2 (DE3) R3 T1 at 18°C for 20 hours using 0.5 626 

mM IPTG. The bacterial pellets were resuspended in ice-cold buffer L (50mM NaP, 300mM 627 

NaCl, 10% Glycerol, 0.5 mM TCEP, pH 7.5) containing complete EDTA-free Protease Inhibitor 628 

Cocktail tablets and lysed with an EmulsiFlex-C3 High Pressure Homogenizer. The lysate was 629 
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centrifuged at 18500 g for 30 minutes and the supernatant filtered through a 0.22 µm PES 630 

filter and loaded onto a 1 mL Ni column (GE healthcare) in buffer L with 10 mM immidazole, 631 

washed and eluted. The eluate was loaded on a Superdex 200 PG 16/60 equilibrated with 632 

SEC buffer (50 mM NaP, 150 mM NaCl, 0.5 mM TCEP, 10% Glycerol, pH 7.50) and fractions 633 

analyzed by SDS-PAGE and verified by mass spectrometry.  634 

 635 

Isothermal titration calorimetry (ITC) 636 

Peptides were purchased from Peptide 2.0 Inc. (Chantilly, VA, USA). The purity obtained in 637 

the synthesis was 95 – 98% as determined by high performance liquid chromatography 638 

(HPLC) and subsequent analysis by mass spectrometry. Both recombinant B56α and 639 

synthetic BRCA2 peptides were extensively dialyzed prior to ITC experiments against the ITC 640 

buffer (50 mM sodium phosphate pH 7.5, 150 mM NaCl, 0.5 mM TCEP). All experiments were 641 

performed on a MicroCal Auto-iTC200 (Malvern Panalytical) instrument at 25°C. Both peptide 642 

and B56α concentrations were determined using a spectrophotometer by measuring the 643 

absorbance at 280 nm and applying values for the extinction coefficients as computed from 644 

the corresponding sequences by the ProtParam program (http://web.expasy.org/protparam/). 645 

The BRCA2 peptides were loaded into the syringe and titrated into the calorimetric cell 646 

containing B56α. The reference cell was filled with distilled water. Control experiments with 647 

the peptides injected in the sample cell filled with buffer were carried out under the same 648 

experimental conditions. These control experiments showed negligible heats of dilution in all 649 

cases. The titration sequence consisted of a single 0.4 μl injection followed by 19 injections, 650 

2 μl each, with 150 s spacing between injections to ensure that the thermal power returns to 651 

the baseline before the next injection. The stirring speed was 750 rpm. The heats per injection 652 

normalized per mole of injectant versus the molar ratio [BRCA2 peptide]/[B56α] were fitted to 653 

a single-site model. Data were analysed with MicroCal PEAQ-ITC (version 1.1.0.1262) 654 

analysis software (Malvern Panalytical). 655 

 656 

Gel filtration 657 
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To analyze the binding between BRCA2 and B56a by gel filtration, 100 µg of B56a was 658 

incubated with 40 µg of GST or GST-BRCA21089-1143 in buffer G (150 mM NaCl, 25 mM Tris 659 

8.0, 10% glycerol, 1mM DTT) in a total volume of 525 µl. Following incubation, the sample 660 

was loaded on a Superdex 200 10/300 column (GE Healthcare) and fractions were analysed 661 

by SDS-PAGE and Coomassie blue staining. 662 

 663 

Label-free LC-MS/MS analysis 664 

Pull-downs were analyzed on a Q-Exactive Plus quadrupole or Fusion Orbitrap Lumos mass 665 

spectrometer (ThermoScientific) equipped with Easy-nLC 1000 or 12000 (ThermoScientific) 666 

and nanospray source (ThermoScientific). Peptides were resuspended in 5% methanol / 1% 667 

formic acid and analyzed as previously described48.  668 

Raw data were searched using COMET (release version 2014.01) in high resolution mode55 669 

against a target-decoy (reversed)56 version of the human proteome sequence database 670 

(UniProt; downloaded 2/2020, 40704 entries of forward and reverse protein sequences) with 671 

a precursor mass tolerance of +/- 1 Da and a fragment ion mass tolerance of 0.02 Da, and 672 

requiring fully tryptic peptides (K, R; not preceding P) with up to three mis-cleavages. Static 673 

modifications included carbamidomethylcysteine and variable modifications included: oxidized 674 

methionine. Searches were filtered using orthogonal measures including mass measurement 675 

accuracy (+/- 3 ppm), Xcorr for charges from +2 through +4, and dCn targeting a <1% FDR at 676 

the peptide level. Quantification of LC-MS/MS spectra was performed using MassChroQ57 and 677 

the iBAQ method58. Missing values were imputed from a normal distribution in Perseus to 678 

enable statistical analysis59. For further analysis, proteins had to be identified in the B56g +dox 679 

+biotin or Venus-BRCA2 samples with more than 1 total peptide and quantified in 2 or more 680 

replicates. B56g or BRCA2 protein abundances were normalized to be equal across all 681 

samples. Statistical analysis was carried out in Perseus by two-tailed Student’s t-test.  682 

 683 

Xenopus egg extract work 684 
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Xenopus egg extracts preparation and reactions 685 

Xenopus egg extracts were prepared as described before60. For replication of pICLPt, the 686 

plasmid was first licensed in high-speed supernatant (HSS) extract for 30 min at RT at a final 687 

DNA concentration of 7.5 ng/mL. DNA replication was then initiated by adding two volumes of 688 

nucleoplasmic egg extract (NPE). For all other non-replicating reactions DNA was 689 

supplemented to NPE at a final concentration of 15 ng/mL. When indicated ATM inhibitor (KU-690 

55933, Selleckchem), ATR inhibitor (AZ20, Sigma) or DNA-PK inhibitor (NU 7441, 691 

Selleckchem) were added to NPE to a final concentration of 100 µM 10 min prior to initiating 692 

the reaction. To visualize DNA replication intermediates, reactions were supplemented with 693 

[a-32P] dCTP (Perkin Elmer) and 1.5 µL of each time point was added to 5 mL of stop buffer 694 

(5% SDS, 80 mM Tris pH 8.0, 0.13% phosphoric acid, 10% Ficoll). Proteins were digested by 695 

adding 1 mL of Proteinase K (20 mg/mL) (Roche) for 1 hour at 37°C. Replication intermediates 696 

were separated by 0.9% native agarose gel electrophoresis and visualized using a 697 

phosphorimager.  698 

DNA constructs  699 

pICLPt was prepared as previously described39. To generate closed circular or linear DNA 700 

substrates, pBlueScript was either untreated or linearized with XhoI and the respective 701 

species purified via gel electrophoresis.  702 

Immunoprecipitations and immunodepletions 703 

To immunodeplete BRCA2 from NPE, one volume of Protein A Sepharose Fast Flow (PAS) 704 

(GE Health Care) beads was bound to five volumes of affinity purified BRCA2 antibody (1 705 

mg/mL) overnight at 4°C. The beads were then washed once with PBS, once with ELB (10 706 

mM HEPES pH 7.7, 50 mM KCl, 2.5 mM MgCl2, and 250 mM sucrose), twice with ELB 707 

supplemented with 0.5 M NaCl, and twice with ELB. One volume of NPE was then depleted 708 

by mixing with 0.2 volumes of antibody-bound beads incubated at room temperature for 15 709 
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min.  The supernatant was recovered, and the depletion procedure repeated 3 additional 710 

times. The mock depletion was performed similarly using purified IgG from pre-immune serum. 711 

For immunoprecipitation experiments, 5 mL of PAS beads were incubated with 10 mg of the 712 

indicated affinity purified antibody. The sepharose beads were washed twice with PBS and 713 

three times with IP buffer 1 (10 mM Hepes pH 7.7, 50 mM KCl, 2.5 mM MgCl2, 0.25% NP-40). 714 

5 mL of NPE was diluted with 20 mL of IP buffer and incubated with antibody prebound beads 715 

for 1 hour at RT. The beads were then washed three times with IP buffer and resuspended in 716 

50 mL of 2x Laemmli sample buffer before analysis by Western blotting. 717 

Plasmid pull-down 718 

For plasmid pull-down experiments, 10 mL of streptavidin-coupled magnetic beads (Dynabead 719 

M-280, Invitrogen) per pull-down reaction were equilibrated with wash buffer 1 (50 mM Tris-720 

HCl, pH 7.5, 150 mM NaCl, 1mM EDTA pH 8, 0.02% Tween 20) and then incubated with 12 721 

pmol of biotinylated LacI at RT for 40 min. The beads were washed four times with pull-down 722 

buffer (10 mM Hepes pH 7.7, 50 mM KCl, 2.5 mM MgCl2, 250 mM sucrose, 0.02% Tween 20). 723 

225 ng of either closed circular or linear pBlueScript was bound to beads for 45 min. The 724 

beads were then washed twice with pull-down buffer and resuspended in 15 mL of NPE 725 

supplemented with Tween 20 to a final concentration of 0.02%. The reaction was incubated 726 

for 15 min at RT, washed twice in pull-down buffer and resuspended in 30 mL of 2X Laemmli 727 

sample buffer before analysis by Western blotting.  728 
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Figure 1. BRCA2 binds PP2A-B56 through a conserved LxxIxE motif and recruits it to 729 

DSBs. 730 

A. Structure of the PP2A-B56 holoenzyme with an LxxIxE motif-containing peptide bound. B. 731 

Top: Domain organization of human BRCA2 with selected interaction domains and the PP2A-732 

B56 binding motif indicated. Bottom: Sequence alignment of vertebrate BRCA2 protein 733 

sequences. LxxIxE motif is marked in blue and SQ/TQ sites in green. The sequence of the 734 

human 2A (L1114A, I1117A) mutation is shown. *, conserved residues. Evolution tree using 735 

the TimeTree database61 (timetree.org) is shown.  MYA, million years ago. C. Western blot of 736 

the co-immunoprecipitation of Myc-BRCA21001-1255 WT or 2A with Venus or Venus-B56g from 737 

HeLa Flp-In T-REx cells in presence of 3 ng/mL MMC representative of three independent 738 

experiments. D. Western blot of the co-immunoprecipitation of BRCA2 with B56 subunits from 739 

Xenopus egg extracts representative of two independent experiment. E. Dissociation 740 

constants (KD) for the interaction between the indicated BRCA2 peptides and B56a measured 741 

by isothermal titration calorimetry. F. Western blot of a pulldown of an intact or linearized DSB-742 

containing plasmid from mock (IgG) or BRCA2 immunodepleted Xenopus egg extracts 743 

representative of two independent experiments.  744 
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Figure 2. The BRCA2-PP2A-B56 complex is required for DNA repair by HR. 745 

A. Left: Schematic of the DR-GFP reporter assay. Right: Percentage of GFP positive (HR 746 

completed) HeLa DR-GFP Flp-In cells expressing the indicated siRNA resistant mCherry-747 

MBP-BRCA2 cDNAs after transfection with Ctrl or BRCA2 siRNAs and an I-SceI-encoding 748 

plasmid, quantified by flow cytometry. Background values (without I-SceI) were subtracted. 749 

Error bars represent means and standard deviations. B-F: U2OS Flp-In T-REx cells stably 750 

expressing siRNA resistant WT or 2A Venus-MBP-BRCA2 cDNAs were transfected with Ctrl 751 

or BRCA2 siRNAs. B-E. Colony formation assays showing plating efficiency (B), MMC 752 

sensitivity (C), CPT sensitivity (D), and Olaparib sensitivity (E). Error bars indicate means and 753 

standard deviations. One-way ANOVA analyses with Dunnett’s multiple comparison tests 754 

were performed to compare each condition to siBRCA2 + WT for a minimum of three 755 

independent experiments. *=p<0.5, **=p<0.1, ***=p<0.001, ****=p<0.0001. F. RAD51 nuclear 756 

foci in cells synchronized to S-phase, treated for 1 hour with MMC, and allowed to recover for 757 

8 hours before immunofluorescence microscopy. Each dot represents an individual nucleus, 758 

and means are indicated. The experiment is a representative of three independent 759 

experiments. G. Western blot of the co-purification of RAD51 and PALB2 with Venus-MBP-760 

BRCA2 WT and 2A from U2OS Flp-In T-REx cells representative of three independent 761 

experiments.  762 
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Figure 3. PP2A-B56 binding to BRCA2 is stimulated by ATM/ATR-mediated 763 

phosphorylation 764 

A. Schematic of the conserved B56 binding region of human and Xenopus laevis BRCA2 with 765 

LxxIxE motif, relevant phosphorylation sites, and introduced mutations indicated. B. Western 766 

blots of BRCA2 immunoprecipitates from U2OS Flp-In T-Rex cells synchronized to S-phase 767 

and treated for 1 hour with 2 µM CPT in presence or absence of ATM and ATR inhibitors 768 

representative of two independent experiments. The relative ratio of phosphorylated to total 769 

BRCA2 is indicated. C. Left: schematic of an cisplatin ICL repair reaction. Right: A replication-770 

coupled pICLPt repair reaction in Xenopus egg extracts. Top: Western blot analysis. Bottom: 771 

Analysis of a reaction run in the presence of [a-32P]dCTP by agarose gel electrophoresis and 772 

visualization on a phosphoimager. Representative of two independent experiments. D. 773 

Dissociation constants (KD) for the interactions between the indicated BRCA2 peptides and 774 

B56a measured by isothermal titration calorimetry. E. Western blot of co-immunoprecipitated 775 

Myc-BRCA21001-1255 WT, 3AQ, or 3DQ with Venus-B56g from HeLa Flp-In T-Rex cells in 776 

presence of 3 ng/mL MMC representative of three independent experiments. The Myc-777 

BRCA21001-1255 WT data (lanes 1-2) are identical to Fig. 1C. F-J. U2OS Flp-In T-REx cells 778 

stably expressing siRNA resistant WT, 3AQ, or 3DQ Venus-MBP-BRCA2 cDNAs were 779 

transfected with Ctrl or BRCA2 siRNA. The siCtrl, siBRCA2, and siBRCA2 + WT data are 780 

identical to Fig. 2B-F. F-I. Colony formation assays showing plating efficiency (F), MMC 781 

sensitivity (G), CPT sensitivity (H), and Olaparib sensitivity (I) as in Fig. 2B-E for a minimum 782 

of three independent experiments except for 3AQ in H which is n=2. Ns, non-significant. J. 783 

RAD51 nuclear foci examined as in Fig. 2F.  784 
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Figure 4. BRCA2 cancer-associated mutations deregulate PP2A-B56 binding and 785 

sensitize cells to PARP inhibition. 786 

A. Schematic of the B56 binding region of human BRCA2 with the introduced cancer-787 

associated mutations indicated. B. Western blot of co-immunoprecipitated Myc-BRCA21001-1255 788 

WT, S1106R, T1116P, or T1128I with Venus-B56g from HeLa Flp-In T-Rex cells in presence 789 

of 3 ng/mL MMC representative of three independent experiments. C-D. U2OS Flp-In T-REx 790 

cells stably expressing siRNA resistant WT, S1106R, T1116P, and T1128I Venus-MBP-791 

BRCA2 cDNAs were transfected with Ctrl or BRCA2 siRNA. Colony formation assays were 792 

performed to determine plating efficiency (C), and Olaparib sensitivity (D). Error bars indicate 793 

means and standard deviations. One-way ANOVA analyses with Dunnett’s multiple 794 

comparison tests were performed to compare each condition to siBRCA2 + WT for four 795 

independent experiments. *=p<0.5, ***=p<0.001, ****=p<0.0001. Ns, non-significant. E. 796 

Model. In the presence of DNA damage such as DSBs, ATM and ATR kinases phosphorylate 797 

BRCA2 on S1106, S1123, and T1128. This stimulates the binding of PP2A-B56 through a 798 

conserved LxxIxE motif, thus recruiting PP2A-B56 to the broken DNA. The phosphorylation-799 

regulated binding of PP2A-B56 is required for the ability of BRCA2 to load RAD51 onto 800 

damaged DNA and repair DSBs via HR.   801 
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Figure S1. Data related to Figure 1. 802 

A. Volcano plot of proteins co-purifying with Venus-BRCA21001-1255 versus Venus in HeLa cells 803 

in presence of 100 nM CPT identified by mass spectrometry. B. Isothermal titration calorimetry 804 

binding curves for the interaction between BRCA21108-1126 WT or 2A peptides and B56a. C. 805 

Colloidal stained gel showing the gel filtration chromatography of B56a with GST-BRCA21089-806 

1143 WT or 2A. D. Screen for B56g proximity partners. Volcano plot of biotinylated proteins from 807 

biotin proximity labelling and mass spectrometry analysis from HeLa Flp-In T-REx cells 808 

expressing doxycycline (dox)-inducible TurboID-B56g in presence of 100 nM CPT.   809 
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Figure S2. Data related to Figure 2. 810 

A. Western blot of cell extracts from HeLa DR-GFP Flp-In cells stably expressing siRNA 811 

resistant mCherry-MBP-BRCA2 WT or 2A cDNA constructs after transfection with Ctrl or 812 

BRCA2 siRNA. B. Western blot of cell extracts from U2OS Flp-In T-REx cells stably 813 

expressing the indicated siRNA resistant Venus-MBP-BRCA2 constructs after transfection 814 

with Ctrl or BRCA2 siRNA. C. Western blot of fractionated chromatin from U2OS Flp-In T-REx 815 

cells stably expressing the indicated siRNA resistant Venus-MBP-BRCA2 constructs after 816 

BRCA2 siRNA transfection. D. Percentage of GFP positive (HR completed) HeLa DR-GFP 817 

Flp-In cells within the mCherry positive population of cells transfected with an SceI-encoding 818 

plasmid alongside an mCherry-tagged PP2A-B56 inhibitor or a control inhibitor. Background 819 

values (without I-SceI) were subtracted. Error bars represent means and standard deviations. 820 

Student’s t-test was performed, ** = p<0.01. E. Representative immunofluorescence 821 

microcopy images of RAD51 foci from Figure 2F.  822 
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Figure S3. Data related to Figure 2. 823 

A-E. U2OS Flp-In T-REx cells stably expressing siRNA resistant WT or D1100-1131 Venus-824 

MBP-BRCA2 cDNAs were transfected with Ctrl or BRCA2 siRNA. The siCtrl, siBRCA2, and 825 

siBRCA2 + WT data is identical to Fig. 2B-F. A-D. Colony formation assays showing plating 826 

efficiency (A), MMC sensitivity (B), CPT sensitivity (C), and Olaparib sensitivity (D) as in Fig. 827 

2B-E. E. MMC-induced RAD51 nuclear foci as in Fig. 2F.    828 
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Figure S4. Data related to Figure 3. 829 

A. Validation of the phospho-specificity of the pT1104/pS1106-BRCA2 polyclonal antibody. 830 

Left: dot blot of non-phosphorylated and phosphorylated versions of the BRCA2 peptide 831 

SNHNL(p)TP(p)SQKAEI. Right: Western blot of lambda phosphatase treated endogenous 832 

immunoprecipitated BRCA2 from U2OS Flp-In T-REx cells synchronized to S phase and 833 

treated for 1 hour with 2 µM CPT. B. Validation of the phospho-specificity of the pT1128-834 

BRCA2 polyclonal antibody as in A. using the non-phosphorylated and phosphorylated 835 

BRCA2 peptide CQFEF(p)TQFRKPS for dot blotting. C. Western blot of cell extracts from 836 

U2OS Flp-In T-REx cells synchronized to S phase and treated for 1 hour with 2 µM CPT in 837 

presence or absence of ATM and ATR inhibitors representative of two independent 838 

experiments. D. Western blot of BRCA2 in Xenopus egg extracts after addition of an intact 839 

circular (Circ) or linearized DSB-containing plasmid representative of two independent 840 

experiments. E. Western blot of Xenopus egg extracts after addition of a linearized DSB-841 

containing plasmid in presence of ATM, ATR, or DNA-PKcs inhibitors representative of two 842 

independent experiments. F. Western blot of proteins pulled down with an intact or linearized 843 

DSB-containing plasmid from Xenopus egg extracts representative of three independent 844 

experiments.  845 
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Figure S5. Data related to Figure 3. 846 

Isothermal titration calorimetry binding curves for the interaction between the indicated BRCA2 847 

peptides and B56a.  848 
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Figure S6. Data related to Figure 4. 849 

A-B. Dissociation constants (KD) (A) and binding curves (B) for the interactions between the 850 

indicated BRCA2 peptides and B56a measured by isothermal titration calorimetry. The data 851 

for BRCA21105-1129 WT is identical to Fig. 3D and S5. C. Western blot of cell extracts from U2OS 852 

Flp-In T-REx cells stably expressing siRNA resistant WT, S1106R, T1116P, and T1128I 853 

Venus-MBP-BRCA2 cDNAs, which were transfected with Ctrl or BRCA2 siRNA.   854 
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Table S1. Conservation of the BRCA2 B56 binding motif (available as separate file). 855 

Clustal Omega sequence alignment of 190 vertebrate BRCA2 protein sequences. The region 856 

around the B56 binding motif is shown. Related to Figure 1. 857 

 858 

Table S2. Mass spectrometry data (available as separate file). 859 

Mass spectrometry data of Venus-BRCA21001-1255 and Venus specific interactors in HeLa cells. 860 

Additionally, mass spectrometry data of biotinylated proteins from HeLa Flp-In T-REx TurboID-861 

B56g cells. Related to Figure 1. 862 

 863 

Table S3. Isothermal titration calorimetry data (available as separate file). 864 

Affinities and thermodynamic values of B56α, BRCA2 peptide binding events inferred from 865 

ITC measurements performed at 25°C. Gibbs free energy (ΔG), enthalpy (ΔH), entropy (-866 

TΔS), equilibrium dissociation constant (KD) and reaction stoichiometry (n) are shown. The 867 

affinity is defined by the Gibbs energy for binding ΔG = -RT lnKA = RT lnKD. Related to Figure 868 

1, 3, and 4.  869 
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Table S4. DNA oligos. 870 

DNA oligos used in this study. QC: Quick change, F: Forward, R: Reverse. 871 

 872 

Primer Sequence (5’-3’) 

QC R for resistance to s2084 and s2085 GGAGAAGACATCATCTGGCCTGTATATCTTTCGCAATGAAAGAG 

QC F for resistance to s2084 and s2085 CTCTTTCATTGCGAAAGATATACAGGCCAGATGATGTCTTCTCC 

QC R to introduce L1114A-I1117A CCTGATTCTTCTAATGCAGTAGAAGCTTCTGTAATTTCTGC 

QC F to introduce L1114A-I1117A GCAGAAATTACAGAAGCTTCTACTGCATTAGAAGAATCAGG 

QC R to introduce S1106A CTGCCTTTTGGGCAGGTGTTAAATTATGG 

QC F to introduce S1106A CCATAATTTAACACCTGCCCAAAAGGCAG 

QC R to introduce S1123A GCAAATTCAAACTGAGCTCCTGATTCTTC 

QC F to introduce S1123A GAAGAATCAGGAGCTCAGTTTGAATTTGC 

QC R to introduce T1128A GCTTTCTAAACTGAGCAAATTCAAACTG  

QC F to introduce T1128A CAGTTTGAATTTGCTCAGTTTAGAAAGC 

F BRCA2 (to introduce D1100-113, 2 step) CCCGGGGGTACCCCACCATGCCTATTGGATCCAAAGAGAGG 

R BRCA2 1099 (to introduce D1100-1131, 2 step) TATGTAGCTTGGCTTTGAATTAAAATCCTGCTTGG 

F BRCA2 1132 (to introduce D1100-113, 2 step) CAGGATTTTAATTCAAAGCCAAGCTACATATTGC 

R BRCA2 (to introduce D1100-113, 2 step) CCCGGGGCGGCCGCCCGATATATTTTTTAGTTGTAATTGTGTCC 

QC R to introduce S1106D CTGCCTTTTGGTCAGGTGTTAAATTATGG 

QC F to introduce S1106D CCATAATTTAACACCTGACCAAAAGGCAG 

QC R to introduce S1123D GAGTAAATTCAAACTGATCTCCTGATTCTTC 

QC F to introduce S1123D GAAGAATCAGGAGATCAGTTTGAATTTACTC 

QC R to introduce T1128D GCTTTCTAAACTGATCAAATTCAAACTG 

QC F to introduce T1128D CAGTTTGAATTTGATCAGTTTAGAAAGC 

QC R to introduce S1106R CAAACCATAATTTAACACCTAGGCAAAAGGCAGAAATTACAGAAC 

QC F to introduce S1106R GTTCTGTAATTTCTGCCTTTTGCCTAGGTGTTAAATTATGGTTTG 

QC R to introduce T1116P AGGCAGAAATTACAGAACTTTCTCCTATATTAGAAGAATCAGGAAGT 

QC F to introduce T1116P ACTTCCTGATTCTTCTAATATAGGAGAAAGTTCTGTAATTTCTGCCT 

QC R to introduce T1128I AGAATCAGGAAGTCAGTTTGAATTTATTCAGTTTAGAAAGCCAAGC 

QC F to introduce T1128I GCTTGGCTTTCTAAACTGAATAAATTCAAACTGACTTCCTGATTCT 

R to create BamHI-Myc-BRCA21001-1255-NotI CCCGGGGCGGCCGCTCATACCTCTGCAGAAGTTTCC 

F to create BamHI-Myc-BRCA21001-1255-NotI CCCGGGGGATCCCCACCATGGAACAAAAGTTGATCAGCGA 

GGAGGACCTGTCAAATCACAGTT TTGGAGG 

R to create BamHI-BRCA21001-1255-NotI CGATGCGGCCGCTTATTCCTCACTAATATTCTC 

F to create BamHI-BRCA21001-1255-NotI CGATGGATCCATCTCCTTGAATATAGAT 
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