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Abstract 

Polygenic risk scores (PRSs) for predicting disease risk have become increasingly accurate, leading to 

rising popularity of PRS tests. Consider an individual whose PRS test has placed him/her at the top �-

quantile of genetic risk. Recently, Reid et al. (Circ Genom Precis Med. 2021;14:e003262) have 

investigated whether such a finding should motivate cascade screening in the proband’s siblings. 

Specifically, using data from the UK biobank, Reid et al. computed the empirical probability of a sibling 

of the proband to also have a PRS at the top �-quantile. In this short note, I use the liability threshold 

model to compute this probability analytically (for either a sibling of the proband or for a more distant 

relative), showing excellent agreement with the empirical results of Reid et al., including that this 

probability is disease-independent. Further, I compute the probability of the relative of the proband to 

be affected, as a function of the quantile threshold �, the proportion of variance explained by the score, 

and the disease prevalence. 

Introduction 

Polygenic risk scores show great promise for personalized disease risk prediction. A polygenic risk score 

(PRS) for a disease is a count of the number of risk alleles carried by an individual, with each allele 

weighted by its effect size. For complex diseases, a PRS represents the cumulative risk generated by 

thousands or more variants, each of a small effect
1
. PRSs were empirically shown to explain a substantial 

proportion of the variance in disease liability, and individuals at the highest PRS percentiles were shown 

to have risk that can be even ≈3x higher compared to the population mean
2-4

. This suggests the 

feasibility of personalized prevention and/or intervention in these individuals, whose high risk may not 

always manifest as traditional risk factors
5
. 

In clinical genetics, cascade screening refers to the testing of relatives of individuals who were either 

found to have a disease with a genetic component or were found to carry a disease mutation
6
. Cascade 

screening is important, as it allows high-specificity identification of individuals at high genetic risk. 

Cascade screening is currently limited to severe diseases and single mutations of large effects
7
. 

However, the development of increasingly accurate polygenic risk scores
8
, along with the increasing 

number of individuals receiving PRS results worldwide
9
, raise the prospects of performing cascade 

screening already upon the finding of an extreme PRS. 

Recently, Reid et al. have investigated the question of cascade screening following a PRS finding
10

. They 

empirically studied the following setting. Suppose an individual has taken a PRS test that has placed 
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him/her at the top �-quantile of the PRS distribution (where � can be, e.g., 1%, 5%, 10%, etc.). What is 

the probability of a sibling of the proband to also have PRS at the top �-quantile? Using data on ≈23,000 

sib-pairs from the UK biobank, Reid et al. have shown that the siblings of those probands have an 

increased probability to have a high PRS compared to the population average. Further, the probability 

was about the same across four diseases. 

Despite these interesting results, several questions remain open. Specifically, it is unclear (1) whether 

the empirical results of Reid et al. (and particularly, the independence across diseases) are concordant 

with predictions of quantitative genetics theory; (2) what is the expected risk for diseases or threshold 

quantiles not empirically studied; (3) what is the expected risk for more distant relatives; and (4) what is 

the expected risk of the relative to become affected, rather than just have a PRS above a cutoff. The 

latter is important, as the cost-effectiveness of cascade screening depends on the actual disease risk 

rather than just the PRS. Here, I use the liability threshold model, an established model of disease risk in 

quantitative genetics, to address these questions. 

Methods 

Model 

The liability threshold model (LTM) is a classic model in quantitative genetic theory that relates the risk 

of a disease to underlying genetic and non-genetic factors
11,12

. According to the LTM, a disease has an 

underlying continuous liability, distributed as a standard normal random variable. The liability can be 

written as � � � � �, where � � �	0, �� represents polygenic genetic factors (with variance equal to 

the heritability ��) and � � �	0,1 � �� represents non-genetic (environmental) factors. An individual 

is affected whenever his/her liability exceeds a threshold. For a disease with prevalence �, the threshold 

is �� , the upper-� quantile of the standard normal distribution. (For example, for � � 0.01, �� � 2.33.) 

The LTM was found to fit well genetic data on complex diseases, and it is widely applied
13-19

. 

In our setting, we do not know the precise value of the genetic factors influencing the liability. Instead, 

we have an estimate represented by the PRS. We thus write the liability as � � � � �, where � is the PRS 

and � is the residual liability, representing non-modeled genetic factors and non-genetic factors
17,19,20

. 

We assume that the PRS is normally distributed and has been standardized, such that � � �	0, ��, 

where �� is the variance in liability explained by the PRS. Consequently, � � �	0,1 � ��. 

Consider next a pair of (full) siblings. Using standard quantitative genetic theory, it can be shown that  

that the PRSs of the two sibs can be written as �� � � � �� for sib 1 and �� � � � �� for sib 2. In these 

equations, � is a genetic component shared between the sibs, equal to the average maternal and 

paternal PRSs. Its distribution across the population is � � �	0, ��/2. Then, �� � �� � �	0, ��/2 are 

two independent genetic components. For details on the derivation, see our previous publications
21,22

. 

For an intuitive explanation, the “segregation” variance, i.e., the variance of any polygenic component 

across siblings due to the randomness of meiosis, is known to be half the variance in the population
23

. 

Thus, given the parental PRSs, the PRS of each child has variance ��/2. 

We next define a threshold above which an individual is designated as having “high PRS”. We define the 

threshold as the upper-� quantile of the PRS distribution. For example, if � � 0.01, an individual is 

considered to have high PRS if his/her PRS is at the top 1% of PRSs across the population. The PRS has 
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zero mean and variance �� in the population, and thus, the value of the PRS at the threshold is ���, 

where ��  is the upper-� quantile of a standard normal variable. We are told that sib 1 (the proband) has 

a high PRS, i.e., �� � ���. We would like to compute the conditional probability that sib 2 either also has 

high PRS, or is affected. 

Our calculations are similar to those of So et al.
17

 and Do et al.
19

, who have considered the problem of 

predicting disease risk based on the PRS of an individual and/or a relative, along with the disease status 

of the relative. Here, we assume the disease status of the proband is unknown (e.g., for a late-onset 

disease). 

The probability that the sibling has high PRS 

We would like to compute the probability ���� � �� � � �� � ���. Using the definition of the 

conditional probability, 

(1) ���� � ��� � �� � �� � � �����	�
 � ���	�
�����	�
 � �� ���� � �� �   �� � ���!. 

To compute the numerator, we condition on �. Given �, the scores of the two sibs are independent, i.e., 

(2) ���� � �� �  �� � ��� � � � ���� � ��� | �!���� � �� � � �. 

For # � 1,2, 

(3) ���� � ��� | �! � ��� � �� � �� �! � ���� � �� � � �! � 1 � Φ %	�
��
/√� & � 

1 � Φ %√2�� � �
/√�&.  

In Eq. (3), Φ	� is the cumulative distribution of the standard normal variable, and we used the fact that �� � �	0, ��/2. We can now compute the desired probability (Eq. (1)) by substituting Eq. (3) into Eq. 

(2), and integrating over all �. Recalling that � � �	0, ��/2, 

(4) ���� � ��� � �� � �� � � �� ( �� �
�/√��


/√� )1 � Φ %√2�� � �
/√�&*� +���� . 

In Eq. (4), ,	� is the density of the standard normal variable. We now change variables, - � �/	�/√2, 

and obtain 

(5) ���� � ��� � �� � �� � � �� ( ,	-��� .1 � Φ�√2�� � -!/�+-. 

Eq. (5) is our final result for the probability of the sibling of the proband to have high PRS. Note that the 

probability does not depend on ��, the variance explained by the PRS, and thus is disease- and PRS- 

independent. 

The probability that the sibling is affected 
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Denote by �� and �� the liabilities of the two sibs, and recall that sib 2 will be affected if �� � �� , where ��  is the upper-� quantile of the standard normal distribution and � is the prevalence. We would like to 

compute the following probability, 

(6) �	�� � ��  | �� � ��� � �����	� � ���	�
�����	�
 � �� ���� � ��  �� � ���!. 

As above, we write �� � � � ��  for # � 1,2, and condition on �. First, we note that 

(7) ���� � ��  �� � �� � � � � �	�� � ��  | ����� � �� � � �,  

because knowledge of the score of sib 1, given �, is not informative on the remaining liability 

components of sib 2. As in Eq. (3) above, 

(8) ���� � �� � | �! � 1 � Φ %√2�� � �
/√�& . 

Next, 

(9) �	�� � ��  | � � �	�� � �� � ��  | � � �	� � �� � �� � �� � �	�� � �� � �� � � 0�	�̃� � �� � � � 1 � Φ 2 	������
�/�3. 

Above, we defined �̃� 0 �� � ��, and used the fact that �� and �� are independent normals, such that �̃� is normal with zero mean and variance Var	�̃� � ��/2 � 	1 � �� � 1 � ��/2. We can compute the 

desired probability (Eq. (6)) by substituting Eqs. (8) and (9) into Eq. (7), and integrating over all �, 

(10) �	�� � ��  | �� � ��� � �� ( �� �
�/√��


/√���� )1 � Φ %√2�� � �
/√�&* 71 � Φ 2 	������
�/�38 +�. 

We can again change variables, - � �/	�/√2, and obtain 

(11)  �	�� � ��  | �� � �� � � �� ( ,	-��� .1 � Φ�√2�� � -!/ 71 � Φ 2	���
/√����
�/� 38 +-. 

This is our final expression for the probability of the sibling of the proband to be affected. Here, the 

probability depends on ��, as well as on the prevalence �. 

The probability that an arbitrary relative has high PRS 

We now turn from siblings into +-degree relatives. [Parents and children and full siblings are first degree 

relatives; half-sibs, grandparent and grandchild, and uncle and nephew are second-degree relatives; 

(full) first-cousins are third-degree relatives, and so on.] To compute the probability of the relative to be 

affected in this more general case, we take a different approach. Denote by �� the PRS of the proband 

and by �� the PRS of the relative. It is well known in quantitative genetics
12,21

 that the distribution of 	�� , �� is multivariate normal, with the following parameters, 
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(12)  	�� , �� � 9:�	;, <, ; 0 %����& � ���!, < 0 = >�� ?>�>�?>�>� >�� @ � A�� 
��	
��	 ��B. 

The covariance term is Cov	�� , �� � 2�� F �� (i.e., the correlation is ? � 2��) because 2��  is the 

relatedness coefficient between +-degree relatives. As above, we would like to compute the probability ���� � ��� � �� � �� � that the relative has high PRS given that the proband has high PRS (top �-

quantile). 

Based on properties of multivariate normal distributions, we have 

(13)  ��  | �� � � � � %G� � ���� ?	� � G�, 	1 � ?�>��& � �	?�, 	1 � ?��� � � % ��	 , %1 � ���	& ��&. 

The tail probability of �� conditional on �� is 

(14)  ���� � �� � | �� � �! � 1 � Φ A 	�
� 

�	���� �

��	 
�B � 1 � Φ A 	�
� 

�	
��� �
��	

B. 

We can now compute the desired probability by integrating over ��, recalling that �� � �	0, ��. Denote 

the probability density function of �� as H��	F. We have 

(15)  ���� � �� � � �� � ��� � �� ���� � ���   �� � �� �! � ( ���� � �� � | �� � �!H��	�+��	�
 �
�� ( I1 � Φ A 	�
� 


�	
��� �
��	

BJ ��
� 
 +��	�
 . 

We now change variables, - � �/�, and obtain 

(16)  

���� � ��� � �� � �� � � �� ( I1 � Φ A 	�
� ��
�	
���� �
��	 BJ ,	-+-�	� �

�� ( 71 � Φ 2 	����	�������	38 ,	-+-�	� � �� ( 71 � Φ 2 �		������	��38 ,	-+-�	� . 

Eq. (16) is our final result for the probability that the +-degree relative has high PRS given that the 

proband has high PRS. We validated numerically that for full siblings (+ � 1), Eq. (16) gives the same 

result as Eq. (5). Note that here too, the probability does not depend on � and hence is disease- and 

PRS-independent. 

The probability that an arbitrary relative is affected 
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Finally, we compute the probability that the relative of the proband is affected. As above, we denote by �� and �� the liabilities of the proband and relative, respectively, and recall that the relative will be 

affected if �� � �� . As in Eq. (15) above, 

(17)  �	�� � ��  | �� � �� � � �� ���� � ��  �� � ���! � �� ( �	�� � ��  | �� � �H��	�+��	�
 . 

Next,  

(18)  �	�� � ��  | �� � � � ( �	�� � ��  | �� � �, �� � �K�	�� � �!| �� � �+�!��� � ( �	�� ������  | �� � �K�	�� � �!| �� � � +�K. 
The last step follows because given that we know the PRS of the relative, the total liability (and 

henceforth the disease status) of the relative no longer depend on the PRS on the proband. Recall that 

the liability is � � � � �, where � � �	0,1 � ��. Thus, 

(19)  �	�� � ��  | �� � �K � �	�! � � � �� � �	� � �� � �! � 1 � Φ % 	���!√��
�&. 

Using Eq. (13) above, 

(20)  �	�� � �! | �� � � � �" 
� 

�	

���� �
��	

#

��� �

��	
. 

Substituting Eqs. (19) and (20) into Eq. (18) we obtain 

(21)  

�	�� � ��  | �� � � � ( )1 � Φ %	���√��
�&* �" 
� 

�	

���� �
��	

#

��� �

��	
+�!��� �

( 71 � Φ 2	��
������	�√��
� 38 , A
��� �
��	�!� 


�	

��� �

��	
B +-!��� � ( 71 � Φ 2	��
������	�√��
� 38 , 2-! ����

�
���	��& +-!, 

where we changed variables, -K � �!/ =�L1 � ���	@. We finally plug Eq. (21) into Eq. (17), recalling again 

that �� � �	0, ��. This gives 

(22)  �	�� � ��  | �� � �� � � �� ( M( 71 � Φ 2	��
������	�√��
� 38 , 2-! � �
���	��3 +-!��� N ��
� 
 +��	�
 . 

Changing variables, - � �/�, we obtain 
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(23)  �	�� � ��  | �� � �� � � �� ( M( 71 � Φ 2	��
������	�√��
� 38 , 2-! � �

���	��3 +-!��� N ,	-+-�	� �
�� ( M( 71 � Φ 2	��
������	�√��
� 38 , 2-! � ����	��3 +-!��� N ,	-+-�	� . 

Eq. (23) is our final equation for the probability of the relative to be affected. For the case of full siblings 

(+ � 1), we validated numerically that Eq. (23) gives the same result as Eq. (11). As for siblings, the 

probability of disease depends �� and �. 

R implementation 

For siblings, we solved the integrals in Eqs. (5) and (11) numerically using the function integrate in R. 

Our code is as follows. 

risk_sib_high_prs = function(q) { 
  integrand = function(t) 
    return(dnorm(t)*pnorm(qnorm(1-q)*sqrt(2)-t, lower.tail=F)^2 / q) 
  return(integrate(integrand,-Inf,Inf)$value) 
} 
 
risk_sib_affected = function(q,K,r) { 
  zq = qnorm(1-q) 
  zK = qnorm(1-K) 
  integrand = function(t) { 
    arg1 = zq*sqrt(2)-t 
    arg2 = (zK-t*r/sqrt(2)) / (sqrt(1-r^2/2)) 
    return(dnorm(t)*pnorm(arg1,lower.tail=F)*pnorm(arg2,lower.tail=F) / q) 
  } 
  return(integrate(integrand,-Inf,Inf)$value) 
} 

 

For +-degree relatives, we again solved the integrals in Eqs. (16) and (23) numerically in R. Our code is as 

follows. 

 

risk_rel_high_prs = function(q,d) { 
  zq = qnorm(1-q) 
  e = 2^d 
  integrand = function(t) 
    return(dnorm(t)*pnorm((2^d*zq-t)/sqrt(2^(2*d)-1), lower.tail=F) / q) 
  return(integrate(integrand,zq,Inf)$value) 
} 
 
risk_rel_affected = function(q,K,r2,d) 
{ 
  r = sqrt(r2) 
  zq = qnorm(1-q) 
  zK = qnorm(1-K) 
  integrand_inner = function(tp, t) { 
    arg1 = (zK - r*sqrt(1-2^(-2*d))*tp)/sqrt(1-r^2) 
    arg2 = tp - t/sqrt(2^(2*d)-1) 
    return(pnorm(arg1,lower.tail=F)*dnorm(arg2)) 
  } 
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  integrand_outer = function(ts) { 
    y = numeric(length(ts)) 
    for (i in seq_along(ts)) 
    { 
      t = ts[i] 
      inner = integrate(integrand_inner,-Inf,Inf,t)$value 
      y[i] = dnorm(t)*inner / q 
    } 
    return(y) 
  } 
  return(integrate(integrand_outer,zq,Inf)$value) 
} 

 

Results and discussion 

Reid et al.
10

 have first studied the correlation between the PRSs of relatives. They found that the 

correlation between the PRSs of siblings and second-degree relatives was ≈0.5 and ≈0.25, respectively. 

These correlations are naturally expected: based on standard quantitative genetic theory, the 

correlation between the genetic values of relatives is equal to their coefficient of relatedness
12,24

. 

Next, Reid et al. have computed the empirical probability (across sib pairs in the UK biobank), that, given 

that the proband has PRS at the top � quantile, a sibling of the proband also has PRS at the top � 

quantile. Specifically, they considered four diseases (atrial fibrillation, coronary artery disease, diabetes, 

and severe obesity) and four values of � (1%, 5%, 10%, and 20%). 

We used the liability threshold model to derive an analytical expression for the probability of the sibling 

of the proband to have PRS at the top � quantile (Methods; Eq. (5)). We compare our theoretical 

predictions to the empirical observations of Reid et al. in Figure 1A, showing excellent agreement. Our 

theory also predicts that the risk of the sibling is independent of the disease and the accuracy of the 

PRS, as empirically observed by Reid et al. Our figure also provides the expected risk for other values of � in the range 0-25%. 

For studying the cost-effectiveness of cascade screening, it is necessary to estimate the risk of the sibling 

in the case screening is not applied. To this end, we need to compute the risk of the sibling to be 

affected, conditional on the proband having a high PRS. We used the liability threshold model to derive 

an analytical expression for this probability (Methods; Eq. (11)). We plot the results in Figure 1B, for a 

representative value of the prevalence (5%), and for four values of the proportion of variance explained 

by the PRS. As expected, the risk of the sibling is always higher than compared to a random individual 

from the population, and the risk increases with increasing accuracy of the score, and with a higher PRS 

of the proband (i.e., a smaller percentile used to define the top of the PRS distribution). 

Full siblings are first degree relatives. To estimate the utility of cascade screening for more remote 

relatives of the proband, we extended our theory to compute the risk of a +-degree relative of the 

proband to have either high PRS (Eq. (16)) or to be affected (Eq. (23); Methods). While the resulting 

expressions are more complex, they are amenable to numerical evaluation. In Figure 2, we plot the risk 

of the relative to have high PRS (panel A) or to be affected (panel B) for + � 1,2,3,4,5 (+ � 3 
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corresponds to first cousins and + � 5 to second cousins). As expected, as + increases, the risk of the 

relative to have high PRS or to be affected approaches that of the general population. 

Our simple R code will allow researchers to substitute any value for the high-PRS threshold, the accuracy 

of the score, the disease prevalence, and the degree of relatedness, in order to compute the expected 

outcomes of cascade screening in any setting of interest. Further conditioning on the disease status of 

the proband can be incorporated as in 
17,19

. We expect our results to form a necessary building block for 

future studies of the cost-effectiveness of cascade screening following a PRS test. 

 

Figure 1. The expected risk of a sibling conditional on a proband having a PRS above a cutoff. We assume that 

the proband is known to have a PRS at the top � quantile of the PRS distribution. The cutoff percentile varies along 

the x-axis. In (A), we plot the risk of the sib of the proband to have a high PRS, defined using the same cutoff. The 

diagonal blue line is � � �, which is the risk for an unrelated individual. The circles are the theoretical probabilities 

we derived based on the liability threshold model, obtained by numerically evaluating Eq. (5). The violet stars 

correspond to the empirical values (mean across diseases) obtained by Reid et al. In (B), we plot the risk of the sib 

to be affected. We assume prevalence of � � 5%, and show results for multiple values of ��, a measure of PRS 

accuracy equal to the proportion of variance in liability explained by the PRS (legend). The horizontal blue line 

represents the risk of an unrelated individual (equal to �). The circles are the theoretical probabilities, obtained by 

numerically evaluating Eq. (11). 
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Figure 2. The expected risk of a 	-degree relative of the proband. As in Figure 1, the x-axis represents the 

percentile cutoff used to define high PRS individuals. In (A), we plot the risk of the relative of the proband to have a 

high PRS, defined using the same cutoff. The diagonal blue line is � � �, which is the risk for an unrelated 

individual. The circles are the theoretical probabilities, obtained by numerically evaluating Eq. (16). Colors 

correspond to different degrees of relatedness 
 (legend). In (B), we plot the risk of the relative to be affected. We 

assume prevalence of � � 5%, and show results for multiple values of 
 (legend). The horizontal blue line 

represents the risk of an unrelated individual (equal to �). The circles are the theoretical probabilities (Eq. (23)). 
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