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Abstract 

Early in auditory processing, neural responses faithfully reflect acoustic input. At higher stages of 

auditory processing, however, neurons become selective for particular call types, eventually 

leading to specialized regions of cortex that preferentially process calls at the highest auditory 

processing stages. We previously proposed that an intermediate step in how non-selective 35 

responses are transformed into call-selective responses is the detection of informative call 

features. But how neural selectivity for informative call features emerges from non-selective 

inputs, whether feature selectivity gradually emerges over the processing hierarchy, and how 

stimulus information is represented in non-selective and feature-selective populations remain 

open questions. In this study, using unanesthetized guinea pigs, a highly vocal and social rodent, 40 

as an animal model, we characterized the neural representation of calls in three auditory 

processing stages – the thalamus (vMGB), and thalamorecipient (L4) and superficial layers (L2/3) 

of primary auditory cortex (A1). We found that neurons in vMGB and A1 L4 did not exhibit call-

selective responses and responded throughout the call durations. However, A1 L2/3 neurons 

showed high call-selectivity with about a third of neurons responding to only one or two call types. 45 

These A1 L2/3 neurons only responded to restricted portions of calls suggesting that they were 

highly selective for call features. Receptive fields of these A1 L2/3 neurons showed complex 

spectrotemporal structures that could underlie their high call feature selectivity.  Information 

theoretic analysis revealed that in A1 L4 stimulus information was distributed over the population 

and was spread out over the call durations. In contrast, in A1 L2/3, individual neurons showed 50 

brief bursts of high stimulus-specific information, and conveyed high levels of information per 

spike. These data demonstrate that a transformation in the neural representation of calls occurs 

between A1 L4 and A1 L2/3, leading to the emergence of a feature-based representation of calls 

in A1 L2/3. Our data thus suggest that observed cortical specializations for call processing emerge 

in A1, and set the stage for further mechanistic studies. 55 

 

Introduction 

How behaviorally critical sounds, such as conspecific vocalizations (calls), are represented in the 

activity of neural populations at various stages of the auditory processing hierarchy is a central 

question in auditory neuroscience. Early representations of sounds, such as in the auditory nerve, 60 

have been proposed to be optimized for the efficient and faithful representation of sounds in 

general [1, 2]. Consequently, at lower auditory processing stations, vocalizations are not 

represented any differently than other sounds ([3, 4]; but see [5]). At the other extreme, 

behaviorally-relevant stimuli such as vocalizations are over-represented at the highest cortical 
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processing stages [6–9]. In macaques and marmosets, neurons in the highest stages of the 65 

auditory processing hierarchy show strong selectivity for call category and even caller identity 

[10–12]. How the neural representation of calls is transformed from a nonspecific format in early 

processing stages to a call-selective format at higher processing stages remains unclear. 

Because auditory receptive fields increase in complexity as one ascends the auditory processing 

hierarchy [13, 14], the conventional hypothesis is that call selectivity is gradually refined across 70 

auditory processing stages. However, there is little systematic evidence supporting a gradual 

refinement in call selectivity. While many studies have investigated call representations in 

subcortical and cortical stages [6, 7, 15–27], these have not systematically explored the 

mechanisms of how call representations could be transformed from one stage to the next, or how 

this impacts information representation at different processing stages. A clear understanding of 75 

where critical transformations occur is an essential first step in designing experiments to probe 

neural mechanisms underlying these transformations, and to target these experiments to the 

appropriate processing stage in the auditory hierarchy. In this study, we recorded neural 

responses to an extensive set of call stimuli across multiple auditory processing stages to test 

whether the emergence of call selectivity is gradual, and to characterize the nature and 80 

informativeness of call representations at these processing stages. 

 

 The first question to address is what it means for a neuron to be call selective. In many 

mammalian species, calls are not produced stereotypically from trial to trial; rather, calls are 

instantiations of an underlying noisy production process. Thus, there is considerable variability in 85 

the production of calls belonging to a given call category both across trials and across individuals 

[28, 29]. Furthermore, different call categories may have highly overlapping spectral content. To 

be call category selective, a neuron has to be selective for more than purely spectral cues, and 

has to generalize across production variability. In previous theoretical work, we showed that in 

order to construct high level call category-selective neural responses, it is first necessary to have 90 

an intermediate representation where neurons detect informative call features [29]. Informative 

call features are spectrotemporal fragments of calls that are most likely to be found across 

exemplars of a given category (despite production variability), and typically span about an octave 

in frequency and about a hundred milliseconds in time. Thus, if one of the objectives of cortical 

processing is call categorization, our model would predict the existence of diverse neurons, each 95 

tuned for model-predicted informative features. Consistent with this prediction, limited 

experimental data suggested that call feature-selective neurons could be found in primary 

auditory cortex (A1) of marmosets and guinea pigs (GPs) [29]. But the question remains whether 
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feature-selectivity is gradually constructed over the ascending auditory pathway, or if it emerges 

de-novo at some processing stage. 100 

 

 At lower processing stations of the auditory pathway in GPs and non-human primates, 

there is little evidence for the existence of call feature-selective neurons [15, 16, 22]. Rather, 

neurons appear to respond to call types in a manner largely explained by frequency tuning [15, 

16, 22]. In GPs, single neurons in the inferior colliculus (IC) are not selective for particular call 105 

types or call features [16]. In primates and GPs, even at the level of A1, many previous studies 

have not reported strong selectivity for particular call types or features, or preference for natural 

over reversed calls ([17, 20, 21, 30]; but see below). It is only at the level of secondary cortex that 

clear call-selective responses have been reported, both in primates (in anterolateral belt, AL; [8, 

9]), and in GPs (Area S and the ventral-rostral belt, VRB [6]). However, gaps in understanding 110 

remain because of some technical limitations of these studies, including the use of anesthesia, 

limited stimulus sets, multi-unit recordings, or not comparing across processing stages, 

specifically across cortical laminae. Thus, these studies do not give rise to a clear picture of where 

and how a call feature-specific representation first emerges.  

 115 

 A few studies have provided hints that A1 could be a locus of important transformations to 

the neural representation of calls. In A1 of awake squirrel monkeys, one study reported that about 

a third of neurons responded to call stimuli that showed similarities in their frequency-time 

characteristics [23]. In marmoset A1, about a third of A1 neurons at shallower recording depths 

showed highly non-linear receptive fields that could in turn underlie call feature selectivity [31]. It 120 

has been proposed that because A1 neurons cannot phase-lock to fast envelope fluctuations, 

sparse spiking in A1 could provide temporal markers that reflect subcortical spectrotemporal 

integration [32]. But these studies did not specify whether recordings were from the input or output 

layers of A1. In humans, a recent study using ultra high-field fMRI with laminar resolution reported 

that whereas BOLD activity in granular and infragranular layers could be explained using simple 125 

frequency content based models, activity in supragranular layers could be explained better using 

more complex models incorporating spectral and temporal modulations [33]. This supragranular 

activity resembled activity in secondary auditory cortical areas, suggesting that a transformation 

between thalamorecipient (A1 L4) and superficial (A1 L2/3) layers of A1 might give rise to more 

specialized processing. Thus, a careful investigation of the thalamus and across identified cortical 130 

laminae of A1 is necessary to understand how the cortex might transform sound representations, 

particularly with respect to behaviorally critical sounds such as calls. 
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 In this study, we begin to address how early nonspecific and spectral content based 

representations are transformed into higher feature-based representations. We recorded neural 

activity from unanesthetized GPs passively listening to an extensive range of conspecific calls 135 

[6,34,35], and acquired single-unit responses from the thalamus (vMGB), thalamorecipient (A1 

L4), and superficial (A1 L2/3) layers of A1. We found that neurons in vMGB and A1 L4 responded 

to most call categories and throughout the call durations. In contrast, a third of A1 L2/3 neurons 

responded sparsely and selectively to one or two call categories, and only in specific time bins 

within a call. These A1 L2/3 neurons showed highly complex receptive fields that could underlie 140 

this call feature selectivity. Information theoretic analyses revealed that while average mutual 

information (MI) was high in A1 L4, MI was about evenly distributed over the population of neurons 

and across multiple stimuli, and sustained over the stimulus duration. In contrast, individual A1 

L2/3 neurons were highly informative about few stimuli, and conveyed high levels of information 

per spike in only a handful of time bins. These results argue against a gradual emergence of call 145 

feature selectivity, and suggest that a significant transformation in the neural representation of 

calls occurs between A1 L4 and A1 L2/3, leading to the emergence of a feature-based 

representation of calls in A1 L2/3. 

 

Results  150 

We recorded the activity of single neurons located in the vMGB, A1 L4, and A1 L2/3 of 

unanesthetized, head-fixed, passively-listening GPs (Fig. 1A, top). We first implanted a headpost 

and recording chambers onto the skull of the animals using aseptic surgical technique. We then 

performed small craniotomies (~1.0 mm diameter) to access the underlying tissue (Fig. 1A, 

bottom). Single-unit activity was recorded using high-impedance tungsten electrodes and first 155 

sorted online using a template-match algorithm, and later refined offline. Over a few weeks, we 

sequentially recorded from a number of such craniotomies and constructed tonotopic maps (Fig. 

1C). The location of A1 was confirmed using the direction of the tonotopic gradient and tonotopic 

reversals. Note that in GPs, the A1 gradient is similar to primates, and runs from low frequencies 

rostrally to high frequencies caudally [6, 36, 37]. On each track, we also acquired local field 160 

potential (LFP) responses to tones at evenly-spaced depths, from which we calculated the current 

source density (CSD) profile of the track (Fig. 1B). The thalamorecipient layers (referred to here 

as A1 L4) were identified based on the presence of a short-latency current sink and LFP polarity 

reversal [38]. We distinguished between regular-spiking (RS) and fast-spiking (FS) neurons in our 

recordings using spike width and peak-to-trough amplitude ratio (Fig. 1D). About 20% of our 165 

recordings were from FS neurons, but call responses were tested in only half these neurons. Only 
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RS neurons are reported in this study. Spontaneous rates of A1 L2/3 neurons (Fig. 1E; median: 

1.51 spk/s) were not significantly different from A1 L4 neurons (median: 2.31 spk/s), but were 

significantly lower compared to vMGB neurons (median: 3.67 spk/s; Kruskal-Wallis test p = 0.008; 

post-hoc Dunn-Sidak tests vMGB vs. A1 L4: p = 0.1112, A1 L2/3 vs. vMGB: p = 0.005, A1 L2/3 170 

vs. A1 L4: p = 0.085). We sampled over a broad range of neural best frequencies that overlapped 

with the call frequency range (Fig. 1F). Pure tone tuning bandwidths of tone-responsive neurons 

at all processing stages showed a dependence on best frequency (Fig. 1G; ANOCOVA with best 

frequency as co-variate, p = 0.0071), and after controlling for this frequency dependence, the 

bandwidths of vMGB neurons were significantly higher than A1 L2/3 neurons (ANOCOVA 175 

constrained to same slopes; intercept effect p = 0.0017; post-hoc Tukey’s HSD vMGB vs. A1 L4: 

p = 0.053, A1 L2/3 vs. vMGB: p = 0.0012). A1 L4 and A1 L2/3 bandwidths were not significantly 

different (p = 0.554). Following basic characterization, we presented a range of GP calls (8 

categories, 2 or more exemplars of each category; Fig. 2). Note that our vocalization set did not 

have acoustic power in the 4 – 6 kHz range, which may explain the relative paucity of call-180 

responsive neurons we encountered in that range, particularly in cortical recordings. All call 

categories were about evenly represented in neural responses across the processing stages (Fig. 

1H). The only statistically significant deviations we observed was a small over-representation of 

‘Other’ calls and a small under-representation of ‘Purr’ calls in A1 L2/3 (p = 0.014 for both, two-

sided permutation test with FDR correction for 24 comparisons). All further analyses are based 185 

only on call-responsive neurons from the vMGB (n = 33), A1 L4 (n = 67), and A1 L2/3 (n = 45). 

 

(continued on next page) 
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Figure 1: Single-unit recordings from unanesthetized, head-fixed guinea pigs.  
(A) Recording setup (top) and details of cranial implant (bottom). (B) Average LFP traces (black 
lines) and CSD (colormap; warm colors correspond to sinks) of an example electrode track in A1. 210 
Yellow box outlines estimated A1 L4 location. (C) Example Voronoi map showing tonotopy of 
auditory cortex in one GP. Colormap corresponds to best frequency. (D) Histogram of spike widths 
of sorted single units. Dashed orange line is the threshold used to separate FS (blue) from RS 
(red) units. (E) Distribution of spontaneous rates in vMGB (blue), A1 L4 (yellow) and A1 L2/3 (red). 
***: p<0.005, Kruskal-Wallis test (Dunn-Sidak post-hoc test). (F) Best frequencies (discs) and 215 
bandwidths (lines) of tone-responsive neurons recorded from vMGB, A1 L4 and A1 L2/3 (colors 
as earlier). Insets show distribution of units across subjects, colors correspond to individual 
subjects. (G) Tone tuning bandwidth plotted as a function of best frequency across all three 
auditory stages tested. Dots correspond to individual neurons and lines correspond to linear fits 
constrained to have the same slope. (H) Fraction of call-responsive neurons in vMGB, A1 L4, and 220 
A1 L2/3 that respond to each call category (*: p <0.05, two-sided permutation test with FDR 
correction). 
 
 
 225 
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Figure 2: Spectra and spectrograms of guinea pig calls. 230 

(A) Normalized power spectra of the guinea pig calls used in this study. Colors correspond to 
different call categories. (B) Spectrograms of the guinea pig calls used in this study (8 categories, 
2 calls per category). 
 

Call selectivity emerges in superficial cortical layers 235 

Call selectivity could emerge through a gradual sharpening of tuning along successive stages of 

the ascending auditory pathway, or could sharply emerge at some processing stage. To 

distinguish between these models, we quantified the call selectivity of neural populations in 

vMGB, A1 L4 and A1 L2/3. Figure 3 shows representative examples of neural responses to calls 

in vMGB (Fig. 3A), A1 L4 (Fig. 3B), and A1 L2/3 (Fig. 3C). Neurons in vMGB and A1 L4 typically 240 

responded to many call categories, with responses sustained throughout the call, or occurring at 

multiple times over the duration of a call. In contrast, neurons in A1 L2/3 responded to very few 

calls, and only for short durations within each call.  

 

Conventionally, response rates and response significance are calculated over a fixed 245 

response window, typically encompassing the entire stimulus duration.  For a first-pass analysis, 

we defined selectivity as the number of call categories that, compared to spontaneous rate, 
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evoked a significant response over the entire call duration (1 – highly selective, 8 – no selectivity). 

The median selectivity of the A1 L2/3 population was 3 call categories, whereas the medians for 

the A1 L4 and vMGB populations were 6 call categories (p = 3.5 x 10-6; Kruskal-Wallis test). While 250 

this approach accurately estimated response properties when response rates were high and 

sustained, it sometimes failed to capture feature-selective responses that were restricted to only 

some time bins of the stimulus, such as those we observed in A1 L2/3. To overcome this limitation, 

we used an automated procedure to estimate significant response windows for each stimulus 

(orange boxes in Fig. 3; see Methods). If at least one response window was detected for any 255 

exemplar belonging to a call category, we conservatively counted the neuron as being responsive 

to that category.  

 

Over the population of recorded neurons, while vMGB and A1 L4 neurons showed 

significant responses to most of the categories tested (Fig. 4A left and center; median of 7 260 

categories for both vMGB and A1 L4), nearly a third of A1 L2/3 neurons responded to only one or 

two call categories (Fig. 4A right; median = 5). Distributions of call selectivity were not significantly 

different between the vMGB and A1 L4 populations (medians = 7). In contrast, A1 L2/3 neurons 

responded to significantly fewer categories of calls (p = 2.8 x 10-5, Kruskal-Wallis test; post-hoc 

Dunn-Sidak corrected p-values are: vMGB vs. A1 L4: p = 0.90; A1 L2/3 vs. vMGB: p = 2.5 x 10-4; 265 

A1 L2/3 vs. A1 L4: p = 1.9 x 10-4). The temporal characteristics of the response and response 

duration are shown in Fig. 4B, where we plot the joint distribution of the number of response 

windows found per call and the fractional length of call stimuli spanned by response windows in 

vMGB, A1 L4, and A1 L2/3. While most vMGB and A1 L4 neurons typically exhibited two or more 

response windows per call that spanned a larger fraction of call length, many A1 L2/3 neurons 270 

usually exhibited only one response window per call with response windows spanning a smaller 

fraction of call length. The temporal response characteristics of vMGB and A1 L4 were therefore 

not significantly different (p=0.48, 2-D K-S [39] test with Bonferroni correction), whereas A1 L2/3 

responses were significantly different (A1 L2/3 vs. vMGB: p = 0.0008, A1 L2/3 vs. A1 L4: p = 

0.0023; 2-D K-S test with Bonferroni correction). Thus, at the culmination of subcortical 275 

processing, vMGB responses are not call selective, and in fact mirror earlier studies showing a 

lack of call selectivity in GP IC [16]. Even at the first cortical processing stage (A1 L4), no 

transformation to the representation of calls seems to have occurred. However, our data 

demonstrate that a significant transformation to call representation occurs in many superficial 

cortical neurons (A1 L2/3). These data strongly support the de-novo emergence of call feature-280 

selective responses in the superficial layers of primary auditory cortex. 
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Figure 3: Detection of response windows. 
Spike rasters of three call-responsive neurons from (A) vMGB, (B) A1 L4, and (C) A1 L2/3 are 
plotted. Gray shading indicates stimulus duration, and black dots correspond to spike times. 285 
Orange boxes correspond to response windows detected using our algorithm. 
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 290 
Figure 4: Neural selectivity for call features emerges in A1 L2/3.  
(A) Distributions of call selectivity in vMGB (blue), A1 L4 (yellow), and A1 L2/3 (red). Black dashed 
lines are medians. Comparison of cumulative distributions is shown on the right. (B) Joint 
distributions of the number of response windows and the fractional length of the call stimuli 
spanned by all windows exhibited by neurons at the different processing stages. vMGB and A1 295 
L4 neurons tended to exhibit either multiple short windows or a single long window that spanned 
a large portion of the stimuli. In contrast, A1 L2/3 neurons exhibited one or two short response 
windows. (C) Distributions of trial-wise response rates in an example vMGB (blue; same neuron 
as in Fig. 3A, left), A1 L4 (yellow; same neuron as in Fig. 3B, left) and A1 L2/3 (red; same neuron 
as in Fig. 3C, left) neuron. Kurtosis values calculated over the entire call length are shown. Gray 300 
dashed line corresponds to spontaneous rate. (D) Distributions of sparseness (kurtosis) across 
auditory processing stages. A1 L2/3 responses were significantly sparser than A1 L4 and vMGB 
responses. (E) Same as (D) but with activity fraction used as a metric of response sparseness. 
For all panels except B, Kruskal-Wallis tests with posthoc Dunn-Sidak tests were used for 
statistical comparisons. For B, a two-dimensional KS test with Bonferroni correction was used. 305 
Asterisks correspond to: *: p<0.05, **: p<0.01, ***: p<0.005, ****: p <0.001 (exact p-values in main 
text). 
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To evaluate whether neurons specifically responded to only parts of some calls or if neural 

responses were more evenly distributed across calls using metrics independent of stimulus 

identity and response window detection parameters, we characterized response sparsity. We 310 

defined sparseness as 1) the reduced kurtosis of the trial-wise firing rate distribution, and 2) the 

activity fraction ([40,41]; see Equation 1) of the trial-wise responses. For neurons that responded 

to most trials about evenly, such as the A1 L4 neuron in Fig. 3B (left), the firing rate distribution 

was approximately normal, resulting in low kurtosis values (Fig. 4C, center). In contrast, for 

neurons that responded strongly only on some trials, and were unresponsive for most trials, such 315 

as the A1 L2/3 neuron in Fig. 3C (left), the firing rate distribution showed high kurtosis (Fig. 4C, 

right). Over the population, for both sparsity metrics (kurtosis, Fig. 4D; and activity fraction, Fig. 

4E), we found that vMGB and A1 L4 responses were not sparse and not significantly different 

from each other. Consistent with earlier analyses, compared to both vMGB and A1 L4, A1 L2/3 

responses were highly sparse and sparsity distributions were significantly different (Kurtosis: p = 320 

3.2 x 10-5, Kruskal-Wallis test; Dunn-Sidak posthoc test p-values are: vMGB vs. A1 L4: p = 0.99, 

A1 L2/3 vs. vMGB: p = 5.5 x 10-4, A1 L2/3 vs. A1 L4: p = 1.2 x 10-4. Activity fraction: p = 5.2 x 10-

4, Kruskal-Wallis test; Dunn-Sidak posthoc test p-values are: vMGB vs. A1 L4: p = 0.79, A1 L2/3 

vs. vMGB: p = 0.001, A1 L2/3 vs. A1 L4: p = 0.004). 

 325 

 These observed differences in A1 L2/3 selectivity and sparsity could not simply be 

attributed to differences in frequency tuning. As mentioned above, pure tone tuning bandwidths 

of tone-responsive neurons in A1 L2/3 were not significantly different from A1 L4 neurons (Fig. 

1G). High call selectivity in A1 L2/3 could also arise if only a few call types are over-represented 

in this processing stage. This was not the case in our data – as described earlier, neural 330 

preference for call type was about evenly distributed across all tested call types across the 

processing stages. These controls thus suggest that the emergence of call or feature selectivity 

in A1 L2/3 is the consequence of cortical computations that result in a meaningful transformation 

of information representation between processing stages.  

 335 

 Because responses were evoked for more call categories and for larger fractional lengths 

of the calls in vMGB and A1 L4, and given the overlapping spectral content of call categories that 

is largely maintained over the call durations (Fig. 2), we hypothesized that vMGB and A1 L4 

neurons were likely driven by the spectral content of calls, responding when call spectral energy 

overlapped with the neurons’ tone receptive fields. In contrast, despite this overlap of spectral 340 

energy across call types, many A1 L2/3 neurons responded to few call types and only in narrow 
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windows, suggesting that they were likely driven by specific spectrotemporal features that occur 

during calls, consistent with our earlier theoretical model [29]. We tested these hypotheses by 

estimating the spectrotemporal receptive fields (STRFs) that best explained neural responses 

across the processing stages. 345 

 

Complex spectrotemporal features drive call-selective responses 

To determine the call features driving neural responses, we used the Neural Encoding Model 

System (NEMS [42,43]; https://github.com/LBHB/NEMS) to fit linear-nonlinear (LN) models to 

neural responses to calls. The input to these models was the concatenated cochleagram of all 350 

call stimuli (6 oct. frequency range with 5 steps/oct.; 20 ms time bins; ~35 s total; Fig. 5B), 

constructed using a fast approximation algorithm based on a weighted log-spaced spectrogram 

and three rate-level transformations corresponding to three categories of auditory nerve fibers 

([44]; https://github.com/monzilur/cochlear_models). A recent study demonstrated that such an 

input representation adequately captures the auditory input to cortex for the purposes of receptive 355 

field estimation [44]. The objective of the encoding model was to estimate a set of linear weights 

(the STRF of the neuron), which when convolved with the input cochleagram and then 

transformed through a point nonlinearity, would yield a predicted peristimulus time histogram 

(PSTH; Fig. 5A; see Methods for details). The correlation coefficient between predicted PSTHs of 

validation segments of neural responses (labeled r in figures; see Methods) and actual response 360 

PSTHs was used as the performance metric. For display and measuring STRF sparsity, we used 

significance-masked average STRFs (see Methods). 

 

 Examples of STRF estimates and comparisons of predicted responses to observed 

responses are shown for neurons with a range of call selectivities from different subjects in A1 L4 365 

and A1 L2/3 in figures 5 and 6.  For many A1 L4 neurons (Fig. 5), STRF estimates that best 

captured the response showed a clear tuning for specific frequencies, and significant weights 

were restricted to a narrow range of frequencies and few time bins. While a few call-selective A1 

L4 responses could not be directly explained by call energy overlapping with an excitatory 

receptive field subunit (for example, Fig. 5C, D), responses of most A1 L4 neurons to calls 370 

occurred when call energy was present within the excitatory subunits of the receptive fields 

(horizontal blue lines in Fig. 5E – H). In contrast, STRFs of A1 L2/3 neurons estimated using the 

same procedure were often more complex (Fig. 6). We observed STRFs with preferences for 

repetitive features (Fig. 6A), harmonically-related features (Fig. 6G), and frequency-modulated 

features (Fig. 6K). Compared to A1 L4 estimates, significant A1 L2/3 weights spanned a greater 375 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.11.439331doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439331
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

range of frequencies and time bins. When we overlaid different stimulus segments on the A1 L2/3 

STRFs, we observed that responses did not occur when only stimulus spectral energy matched 

STRF excitatory subunits (red boxes labeled ‘3’, ‘4’, and ‘5’ in Fig. 6). Rather, responses were 

elicited when complex stimulus features matched multiple STRF subunits (green boxes labeled 

‘1’ and ‘2’ in Fig. 6). 380 

 

Figure 5: STRF estimates of example A1 L4 neurons.  
(A) Schematic of the linear-nonlinear model architecture used to estimate STRFs. (B) Stimulus 
cochleagram of 16 call stimuli (8 categories) used as the input to the model. (C, E, G) Mean STRF 
estimates of three A1 L4 neurons with a range of selectivity values. (D, F, H) Comparison of 385 
predicted PSTHs (magenta) and observed responses (cyan) of these three neurons. Horizontal 
blue lines denote the extent of the frequency tuning of the STRFs. (I) Additional examples of A1 
L4 STRF estimates (sel. = call selectivity, r = correlation between predicted and actual responses 
derived from the validation data set). 
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 390 

Figure 6: STRF estimates of example A1 L2/3 neurons.  
(A, G) STRF estimates of two A1 L2/3 neurons showing complex feature selectivity. (B, H) 
Stimulus cochleagram (background) and comparison of predicted PSTHs (magenta) and 
observed responses (cyan) of these two neurons. (D) Expanded cochleagram segment from 
orange box in B. In B, D, and H, green boxes labeled ‘1’ and ‘2’ correspond to 200 ms long stimulus 395 
segments that elicited neural responses. Red boxes labeled ‘3’, ‘4’, and ‘5’ correspond to 200 ms 
long stimulus segments that did not elicit responses.  Numbers correspond to examples shown in 
panels C, E, F, I, and J. (C, E, F) Overlay of stimulus energy in 200 ms long segments 
corresponding to numbers in B and D (transparency denotes stimulus energy, peak energy is 
bounded by black contour) on the STRF (colormap) of this unit. (I, J) Similar to C, E, and F but 400 
for the other A1 L2/3 example. (K) Additional examples of complex STRFs of A1 L2/3 neurons.  
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For example, the unit in Fig. 6A-F showed selective responses to teeth chatter calls, a 

non-voiced call which contains repetitive pulses of low-frequency energy around 1 kHz 

accompanied by high-frequency energy around 8 kHz (see spectrogram in Fig. 2B). The STRF 

estimate of this neuron showed excitatory receptive field subunits at ~1 kHz and ~8 kHz, with an 405 

additional excitatory subunit at 8 kHz occurring ~100 ms later. Some parts of teeth chatter calls 

thus closely overlapped the excitatory subunits of STRF, driving strong responses (Fig. 6C). But 

other parts of teeth chatter calls did not drive responses (Fig. 6F), possibly because of the faster 

repetition rate of individual syllables or activity-dependent adaptation of spiking activity. A second 

call exemplar that had repetitive energy at 8 kHz (a chirp call) also drove responses in this neuron 410 

to a lesser extent (Fig. 6E), but other vocalizations with 8 kHz energy that did not have a repetitive 

structure did not drive responses (e.g. wheek calls, Fig. 6F). A second example unit that required 

the presence of harmonic structure is shown in Fig. 6G-J. This unit appeared to require at least 

two of the excitatory STRF subunits to be activated to produce a response. The selectivity for 

multiple frequency components in this unit was reminiscent of ‘harmonic template neurons’ that 415 

have been reported in marmoset auditory cortex [45]. This unit responded even when different 

frequency combinations were excited by different calls (Fig. 6I), underscoring the intuition that 

these units could not be described as a simple spectral filter. Figure 6K shows further examples 

of STRF estimates of units that showed selective responses to call features. 

 420 

 Over the population of neurons, we did not find significant differences in the performance 

of the LN models to fit training data segments from vMGB, A1 L4, or A1 L/3 neurons (Fig. 7A, left; 

p = 0.684, Kruskal-Wallis test), suggesting that the model converged to a solution similarly across 

the three processing stages. However, while the LN models generalized to the validation data 

segments with similar performance in vMGB and A1 L4 neurons, generalization was significantly 425 

worse for A1 L2/3 neurons (Fig. 7A, right; Kruskal-Wallis test, p = 0.0003; Dunn-Sidak posthoc 

test p-values are: vMGB vs. A1 L4: p = 0.999, A1 L2/3 vs. vMGB: p = 0.003, A1 L2/3 vs. A1 L4: p 

= 0.0006). Critically, model generalization performance was correlated with call selectivity across 

all processing stages (Fig. 7B; ANOCOVA with selectivity as covariate; p = 2.83 x 10-7). We note 

that several neurons with a call-selectivity of 1 showed very low and non-significant r values. 430 

These observations suggest that more complex and nonlinear models may be required to capture 

these highly selective responses. 
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Figure 7: Performance and complexity of STRF estimates across processing stages. 435 
(A) Performance of LN models on test and validation data from MGB (blue), A1 L4 (yellow), and 
A1 L2/3 (red). Discs denote medians, thick lines denote interquartile range, and thin lines 
correspond to the extent of the distribution. Outliers are shown as dots. (B) Model validation 
performance plotted as a function of call selectivity across processing stages. Dots are individual 
neurons and lines correspond to linear fit. (C) Distributions of STRF sparsity across processing 440 
stages. Colors and symbols as earlier. (D) Distributions of STRF kurtosis across processing 
stages. Colors and symbols as earlier. For all panels except B, Kruskal-Wallis tests with posthoc 
Dunn-Sidak tests were used for statistical comparisons. For B, an ANCOVA with selectivity as a 
covariate was used. Asterisks correspond to: *: p<0.05, **: p<0.01, ***: p<0.005, ****: p <0.001 
(exact p-values in main text). 445 
 
 
 

We used two metrics to compare the complexity of STRF structure across processing 

stages. First, we used STRF sparsity, defined as the maximum absolute value of the significance-450 

masked STRF divided by the standard deviation of the significance-masked STRF [46,47]. For 

‘simple’ STRFs, the maximum value would be high, whereas standard deviation would be low, 

resulting in high STRF sparsity values. For complex STRFs where many weight values are large, 

the maximum value and standard deviation would be comparable, resulting in lower STRF 

sparsity values. We found a significant effect of processing stage on STRF sparsity (Fig. 7C; 455 

Kruskal-Wallis test, p = 0.008), with post-hoc tests revealing a significant difference between A1 

L2/3 and A1 L4 neurons (Dunn-Sidak posthoc test, p = 0.006). As a second metric, we quantified 

the kurtosis of STRF weight values (after significance masking). STRFs with simple structure 

would show weight distributions with high kurtosis, with most of the weights concentrated in one 

or two subunits, and the rest of the weights equaling zero. Complex STRFs would be expected to 460 

have a more normal distribution of weight values. We found a significant effect of processing stage 

on kurtosis (Fig. 7D; Kruskal-Wallis test, p = 3.3 x 10-5), with Dunn-Sidak posthoc tests revealing 
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significant differences between A1 L2/3 and vMGB (p = 0.0007) as well as between A1 L2/3 and 

A1 L4 (p = 0.0001). These statistical results were qualitatively unchanged even when neurons 

with non-significant r values were excluded. These observations supported our hypothesis that 465 

whereas vMGB and A1 L4 neurons responded to call stimuli in a manner that was largely 

consistent with their spectral tuning properties, A1 L2/3 neurons were driven by more complex 

spectrotemporal features present in calls that could not be well fit by linear models. 

 

Emergence of call feature selectivity in A1 L2/3 confers high stimulus-specific information 470 

on to individual A1 L2/3 neural responses 

While our data show that A1 L2/3 neurons become call-selective by restricting their responses to 

specific call features, the consequence of this emergence of call selectivity on decoding call 

identity from A1 L2/3 neural activity is unclear. An obvious expectation would be that increasing 

the feature selectivity of single neurons would result in unique activity patterns in response to 475 

some calls, thereby leading to higher information carried by these neurons about call identity. 

Conventionally, mutual information (MI) [48] has been used to estimate the amount of information 

about stimulus identity carried by neural responses [49-52]. Intuitively, for our call stimulus set 

consisting of 16 calls, a neuron that exhibits 16 unique response patterns, each corresponding to 

a call, would provide the maximal MI about the stimulus set (in this case, 4 bits of information). 480 

When we computed the average MI in 100 ms time bins (50 ms slide; see Methods) of the 

population of A1 L4 neurons as has been done in most earlier studies [49-52], we found low 

information levels throughout the response duration (Fig. 8A, yellow) that were not significantly 

different (two-sided t-test with FDR correction at each time point) from population MI present in 

the vMGB population (Fig. 8A, blue). However,  consistent with a recent result showing decreasing 485 

information content in the ascending auditory pathway of anesthetized GPs [53], we found 

significantly lower MI levels in the A1 L2/3 population (Fig. 8A, red). We confirmed that this result 

held over a wide range of window sizes used for analysis (Supplementary Fig. 1A). We also found 

that compared to the vMGB and A1 L4 populations, the A1 L2/3 population displayed longer 

timescales of integration. When we determined the total population MI over the entire stimulus 490 

duration by integrating the area under the population MI curve at each analysis time-bin size used, 

we found that the population MI in vMGB and A1 L4 saturated at a window size of 200 ms (100 

ms slide), but the population MI in A1 L2/3 did not saturate even at the largest time bin considered 

(Fig. 8B).This difference in integration time scale paralleled our observations of STRF complexity 

– compared to vMGB and A1 L4 neurons, A1 L2/3 STRFs were extended in frequency as well as 495 

time. 
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 To understand how lower population MI levels might arise and to test whether this 

negatively impacted stimulus decodability in A1 L2/3, we decomposed how information was 

distributed across two factors, 1) individual neurons and 2) individual stimuli, in the vMGB, A1 L4, 

and A1 L2/3 neural populations. First, we examined how MI was distributed over the individual 500 

neurons that make up the population average in Fig. 8A. Fig. 8D shows MI as a function of time 

for two example A1 L4 neurons (the same neurons as in Fig. 3B left and center). Although the 

magnitudes of MI are different, the MI over time is sustained in both cases, which means that 

when averaged, the mean MI will also be sustained over time (as in Fig. 8A, yellow). In contrast, 

Fig. 8E shows MI for two example A1 L2/3 neurons (the same neurons as in Fig. 3C left and 505 

center). Here, the MI is close to zero for many time bins, and shows peaks in time bins that are 

non-overlapping between neurons, which means when averaged, the mean MI will be at a low 

value (as in Fig 8A, red). Second, we decomposed the MI into stimulus-specific information (ISSI; 

[54-56]), which measures how much information about each stimulus is provided by the response. 

Note that the conventionally-computed MI is the weighted average of ISSI across all stimuli. Figs. 510 

8F – H show the decomposition of the MI of the example neurons in Figs. 8C – E respectively into 

the ISSI for each call stimulus. In A1 L4 (Fig. 8G), ISSI was evenly distributed across all stimuli and 

time bins, resulting in the average (the MI; Fig. 8D) being at a sustained level over time. Note that 

later time bins for some calls (Fig. 8G left; wheeks and whines) have high information content 

because these calls are the longest in our stimulus set, and this neuron responded throughout 515 

the call durations. In A1 L2/3, however (Fig. 8H), ISSI was very high (approaching 3 bits) for specific 

stimuli only at specific time bins. Thus, average ISSI across stimuli, as is done to compute MI (Fig. 

8E), approached zero for most time bins, and severely underestimated the informativeness of the 

response. 

 520 

 To quantify whether a high MI time bin (see Methods; red crosses in Fig. 8C-E) arises from 

an approximately normal distribution of ISSI across all stimuli for that time bin (as in Fig. 8G), or 

from a highly skewed ISSI distribution across stimuli for that time bin (as in Fig. 8H), we computed 

a MI Sparsity Index (SIMI; see Methods). SIMI increased significantly between all three processing 

stages tested (Fig. 8I; p = 5.4 x 10-7, Kruskal-Wallis test; Dunn-Sidak posthoc test p-values are: 525 

vMGB vs. A1 L4: p = 0.005, A1 L2/3 vs. vMGB: p = 1.6 x 10-5, A1 L2/3 vs. A1 L4: p = 0.015), with 

A1 L2/3 neurons being informative about only a few calls in their most informative time bins. 
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 Figure 8: Reformatting of stimulus information in A1 L2/3. 

(A) Population average of MI as a function of time in vMGB (blue), A1 L4 (yellow), and A1 L2/3 
(red) neurons. Lines correspond to means and shading to 1 s.e.m. Colored dots represent results 530 
of statistical testing (p<0.05; two-sided t-test with FDR correction for multiple comparisons). (B) 
Area under the population average MI curves in when time bins of different lengths were used to 
evaluate MI. vMGB and A1 L4 show similar timescales of temporal integration, whereas A1 L2/3 
neurons show longer timescales of integration.  (C, D, E) MI for two example neurons each from 
vMGB (C), A1 L4 (D), and A1 L2/3 (E). The example neurons are the same as the left two 535 
examples from Fig. 3A-C. Red crosses correspond to high MI time bins. (F, G, H) ISSI for the vMGB 
neurons in (C), the A1 L4 neurons in (D), and the A1 L2/3 neurons in (E). Darker colors correspond 
to higher ISSI values. (I) Distributions of SIMI for vMGB, A1 L4, and A1 L2/3 neurons. Horizontal 
line corresponds to median and colored area corresponds to interquartile range. (J) Distributions 
of ISSI – PSTH correlation coefficients for vMGB, A1 L4, and A1 L2/3 neurons. (K) Distributions of 540 
ISSI – PSTH slopes for vMGB, A1 L,4 and A1 L2/3 neurons. Asterisks correspond to: *: p<0.05, **: 
p<0.01, ***: p<0.005, ****: p<0.001 (Kruskal-Wallis test with posthoc Dunn-Sidak tests, exact p-
values in main text). 
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 MI analysis only takes into account spike patterns, but does not distinguish between the 

presence or absence of spikes. In other words, if a neuron responds to 15 of the 16 call stimuli, 545 

and is inhibited by 1 call, the information provided by this neuron about the stimulus set is 

equivalent to that provided by a neuron that responds to only one call. To determine whether ISSI 

is provided by the presence or absence of spikes, we computed the cross-correlation between 

the PSTH and ISSI for neurons in vMGB, A1 L4, and A1 L2/3. Compared to vMGB and A1 L4, A1 

L2/3 neurons showed higher ISSI – PSTH correlations, suggesting that A1 L2/3 responses were 550 

informative because of presence of spikes (Fig. 8J; p = 2.2 x 10-5, Kruskal-Wallis test; Dunn-Sidak 

posthoc test p-values are: vMGB vs. A1 L4: p = 0.136, A1 L2/3 vs. vMGB: p = 1.1 x 10-5, A1 L2/3 

vs. A1 L4: p = 0.003). Compared to A1 L4, the ISSI – PSTH relationship in A1 L2/3 also showed a 

significantly higher slope, indicating that each spike from an A1 L2/3 neuron carried greater 

stimulus-specific information (Fig. 8K; p = 6.2 x 10-6, Kruskal-Wallis test; Dunn-Sidak posthoc test 555 

p-values are: vMGB vs. A1 L4: p = 0.018, A1 L2/3 vs. vMGB: p = 2.9 x 10-6, A1 L2/3 vs. A1 L4: p 

= 0.016). We confirmed that these results were consistent over a wide range of window sizes 

used for analysis (Supplementary Figs. 1B-D). 

 

 Table 1 is a summary of all statistical comparisons of basic tuning properties, selectivity 560 

metrics, STRF metrics, and information theoretic metrics of vMGB, A1 L4 and A1 L2/3 neurons. 

If call selectivity gradually developed over the three processing stages, one would expect to see 

differences in selectivity parameters pairwise between all three processing stages. In contrast, if 

selectivity arose de-novo in superficial cortical layers, vMGB and A1 L4 parameter distributions 

would not be significantly different, but A1 L2/3 and A1 L4 (as well as A1 L2/3 vs. vMGB) would 565 

show significant differences. Our results support the latter possibility and the idea that while 

subcortical activity and inputs to A1 represent vocalizations densely and based on spectral 

content, a call feature-based representation emerges in A1 L2/3 that dramatically transforms how 

information about conspecific calls is represented in A1 outputs. 

 570 

 

 

(continued on next page) 

 

 575 
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Table 1: Statistical summary of comparisons between vMGB, A1 L4, and A1 L2/3. 

 

(****: p<0.001, ***: p<0.005, **: p<0.01, *: p<0.05, n.s.: not significant. All tests are Kruskal-Wallis tests with 580 

post-hoc Dunn-Sidak tests unless noted.) 

 

Parameter vMGB vs. 

A1 L4 

A1 L2/3 vs. 

vMGB 

A1 L2/3 vs. 

A1 L4 

Basic properties    

Bandwidth 

ANCOVA (posthoc Tukey’s HSD) 

* *** n.s. 

Spontaneous rate n.s. *** n.s. 

Selectivity parameters    

Selectivity  

(overall firing rate) 

n.s. **** **** 

Selectivity 

 (response windows) 

n.s. **** **** 

 

No. of windows and response length 

2-D K-S (Bonferroni correction) 

n.s. **** *** 

Kurtosis n.s. **** **** 

Activity fraction n.s. *** *** 

STRF parameters    

r n.s. *** **** 

STRF sparsity  n.s. n.s. ** 

STRF kurtosis n.s. **** **** 

Mutual Info. analyses 

(100 ms time bins) 

   

Population MI 

2-sided t-test (FDR correction) 

very few time 

points 

few time 

points 

many time 

points 

SIMI *** **** ** 

ISSI-PSTH correlation n.s. **** *** 

ISSI-PSTH slope * **** * 
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Discussion 

 Although many previous studies have explored the neural representation of conspecific 

calls in subcortical and cortical areas across species [6–9, 15–27, 57], exactly where and how 585 

call selective responses emerge in the auditory processing hierarchy has remained unclear. In 

mice, some studies have suggested that selectivity for ultrasonic vocalizations (USVs) in a 

manner not consistent with spectral content might arise at subcortical stations [5], and lead to an 

over-representation of USV-selective responses in the IC [58]. However, other studies have 

suggested that this over-representation is explained by a tonotopic expansion of the 590 

representation of those frequencies, and that USV responses are in fact consistent with spectral 

tuning of neurons [59]. In bats, the majority of neurons in subcortical processing stations 

responded to calls consistent with neurons’ frequency tuning [3, 60]. In GPs, single neurons in 

the IC are not selective for particular call types or call features [16]. In the MGB, although single 

neurons follow call envelopes less precisely [15] and neural responses to calls are less 595 

predictable from neurons’ tone tuning [61], responses do not differentiate between natural and 

reversed versions of calls [62], suggesting that MGB responses are not call or call feature 

selective. At the level of A1, some studies have reported that single neurons show selectivity for 

natural calls over reversed calls [18], or that neurons seem to respond to calls that share similar 

spectrotemporal features [23], but by and large, neural responses to calls seem to be explained 600 

by the frequency tuning of neurons [7, 21]. At the level of secondary cortex, neurons have been 

shown to be highly selective for call type in primates [8, 9] and GPs (Area S and VRB [6]). 

However, because of some technical limitations of these studies, including the use of anesthesia, 

limited stimulus sets, multi-unit recordings, or not comparing across processing stages, 

specifically across cortical laminae, it is difficult to evaluate where transformations to call 605 

representation begin to occur. Answering the ‘where’ question is a critical first step that will enable 

the targeting of experiments probing the neural mechanisms underlying these transformations to 

the appropriate target processing stage. In this study, we overcame these limitations by 

simultaneously: 1) conducting experiments in unanesthetized animals, 2) using an extensive set 

of conspecific calls as stimuli, 3) comparing across thalamic and cortical processing stages, and 610 

4) separating A1 neurons recorded from thalamorecipient and superficial layers. We found that 

whereas call representations in vMGB and A1 L4 were similar, a critical transformation occurs 

between A1 L4 and A1 L2/3. While vMGB and A1 L4 neurons seemed to respond primarily to the 

spectral content of calls resulting in a dense representation of calls, many A1 L2/3 responses 

were contingent on the presence of specific spectrotemporal features, resulting in a highly sparse 615 

representation of calls. 
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 This observed transformation is consistent with previously reported increases in the 

nonlinearity of neural receptive fields in marmosets [31], increases in sparsity of responses in rats 

[63], and some reports of increased receptive field complexity in superficial A1 layers (in cats [64-

66]). This transformation is also consistent with ultra-high-field human fMRI studies showing that 620 

supragranular BOLD responses are less readily explained using simple frequency tuning models 

[33]. Thus, the transformation of sound representation between A1 L4 and A1 L2/3 appears to be 

a conserved phenomenon across species, from GPs to humans. In non-human primates, 

secondary auditory cortical areas have been shown to exhibit call-selective responses [8, 9], and 

the highest sensory cortical regions of the auditory processing pathway preferentially represent 625 

conspecific calls [10–12]. Our results suggest that the emergence of call feature-selectivity at 

supragranular A1 layers is a critical first step in building call-selective cortical specializations. 

  

 How could highly feature-selective neurons be generated? In an earlier study in 

marmosets, many A1 neurons recorded at shallow cortical depths were combination-selective, 630 

i.e., these neurons showed responses only when specific frequencies were present with precise 

temporal relationships [31]. Such nonlinear mechanisms could generate call feature-selectivity, 

but how precise temporal delays necessary for this computation are generated in the A1 circuit 

remains an open question. A second possibility is that although A1 L4 neurons are not selective 

for call type in that they respond to all categories, responses to some calls in a subset of time bins 635 

may be marginally stronger (Fig. 9A, B). Pooling a number of A1 L4 neurons that exhibit similar 

marginally stronger responses to the same time bin, but whose responses are uncorrelated 

otherwise, could accentuate the differences between this preferred time bin and other bins. The 

higher SIMI observed in A1 L4 neurons compared to vMGB neurons supports the notion that there 

may be local periods of high information in the A1 L4 population responses. Applying a strong 640 

nonlinearity to these pooled inputs could in principle create A1 L2/3 responses that are highly 

selective for particular spectrotemporal call features (Fig. 9C, D). Supporting the notion that A1 

L2/3 neurons might be applying high thresholds is the fact that A1 L2/3 neurons are known to 

exhibit very low spontaneous rates across species [31, 63], including in our own data (Fig. 1E).  

 645 

 Extending this model to the next linear (pooling) stage, the responses of multiple feature-

selective A1 L2/3 neurons that respond to features belonging to the same call category could be 

integrated by neurons in secondary cortical areas to result in sustained call category-selective 

responses. In anesthetized GPs, neurons that show dense firing with high contrast between call 

categories, which is highly useful in discriminating between call categories, have been reported 650 
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in secondary areas VRB and S [6]. It is yet to be determined whether additional mechanisms 

could be used to increase call category selectivity by further restricting responses to only if call 

features are detected in a particular temporal sequence, which for example could be achieved by 

some forms of dendritic computation [67, 68, 69]. Our proposed model is based on model 

architectures with alternating linear and nonlinear stages that have been used to explain 655 

responses in inferotemporal cortex [70]. These models are based on exclusively excitatory and 

feedforward operations. Other models, for example, incorporating recurrent excitatory inputs that 

have been shown to sharpen cortical tuning [71], or those involving cortical inhibition which could 

also fine-tune cortical selectivity [72-75], represent alternative architectures that are more 

complex but biologically realistic. Specific cortical inhibitory cell types, for example, somatostatin-660 

expressing interneurons, might play a role in generating sharp frequency tuning [76]. Thus, 

extensive theoretical and experimental work is necessary to test these models and dissect the 

neural mechanisms underlying the generation of feature selectivity. 

 

Figure 9: Working model of generating call-selectivity in the auditory cortical hierarchy. (A) 665 
Alternating nonlinear (high threshold) and more linear (pooling) stages that could result in call-
selective responses in secondary cortex. (B) Schematic of non-selective A1 L4 neural responses 
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that could show overlap in a few time bins. (C, D) A high threshold could be applied to different 
pools of A1 L4 neurons to result in A1 L2/3 responses that are selective to specific call features. 
(E) A more linear operation could pool over A1 L2/3 neurons that are selective for features 670 
belonging to the same call category to result in call category-selective secondary cortical 
responses. 
 

 

What could be the advantages of a highly sparse representation? Extensive work in the 675 

visual cortex has proposed that sparse coding could allow for increased storage capacity for 

associative memory, is more energy efficient, and could make read out by downstream areas 

easier [77]. The possibility of easier readout is especially interesting in the auditory system, where 

highly variable continuous inputs need to be parsed and sequenced into categorical units (for 

example, words in human speech or call category in animal communication calls). The ‘dense’ 680 

codes we found in vMGB and A1 L4 are redundant to some degree because neurons respond to 

highly overlapping stimulus sets. Thus, the activity of a single neuron in A1 L4 signaled the 

presence of multiple call features, with the actual feature identity being encoded over the 

population. This is reflected in our information theoretic analysis showing that in A1 L4, mutual 

information is distributed both over time bins and over neurons. A1 L2/3 effectively decorrelated 685 

A1 L4 activity, so that single neurons now carried high levels of information about the stimulus. 

One consequence of this decorrelation is an increase in the dimensionality of sound 

representation, which could serve to ‘untangle’ [78] highly variable representations of different 

sound categories. As mentioned earlier, in a further processing step, a linear pooling operation 

could be used to pool responses of A1 L2/3 neurons that respond to different features of the same 690 

call type, resulting in truly call category-selective responses such as those observed in secondary 

cortical areas [8, 9]. Further analysis is necessary to quantify the dimensionality of sound 

representation in different cortical layers and the separability of different call categories. In the 

auditory system, a second consideration for a neural code is robustness to environmental noise 

– realistic listening conditions add reverberations, noise, and competing sounds to the target 695 

sound impinging on our ears. It remains to be seen whether the feature-selective responses we 

have observed in A1 L2/3 neurons will remain invariant to these perturbations, and will provide a 

more robust representation of sounds than the dense representations in A1 L4. 

 

 In conclusion, by recording from successive auditory processing stages in awake animals 700 

using a rich and behaviorally-relevant stimulus set, we have demonstrated that rather than a 

gradual emergence of feature selectivity over the auditory processing hierarchy, selectivity for 

sound features appears to emerge de-novo in the superficial layers of auditory cortex, resulting 
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in a highly sparse representation of sounds by A1 L2/3 neurons. Our data thus identify that critical 

transformations to sound representations occur at the superficial layers of A1. These data set the 705 

stage for further studies investigating the biophysical and circuit mechanisms by which call feature 

selectivity arises from non-selective inputs, and how these feature-selective responses could be 

read-out by downstream call category-selective neurons. Our data suggest that the root of 

observed cortical specializations for call processing [10–12] could in fact reside in primary auditory 

cortex. 710 

 

Materials and Methods 

Ethics 

All experimental procedures conformed to NIH Guide for the care and use of laboratory animals, 

and were approved by the Institutional Animal Care and Use Committee (IACUC) of the University 715 

of Pittsburgh. 

 

Animals 

We acquired data from 4 male and 2 female adult, wild-type, pigmented guinea pigs (Cavia 

porcellus; Elm Hill Labs, Chelmsford, MA), weighing ~600-1000 g over the course of the 720 

experiments.  

 

Surgical procedures 

All experiments were conducted in unanesthetized, head-fixed, passively-listening animals. To 

achieve head fixation, a custom head post was first surgically anchored onto the skull using dental 725 

acrylic (Metabond, Parkell Inc.) following aseptic techniques under isoflurane anesthesia. 

Chambers for electrophysiological recordings were positioned over the location of auditory cortex 

using anatomical landmarks [6, 36, 37]. Post-surgical care, including administration of systemic 

and topical analgesics, was provided for 3 – 5 days. Following a 2-week recovery period, animals 

were gradually adapted to the experimental setup by slowly increasing the duration of head 730 

fixation. 

 

Acoustic stimuli 

All stimuli were generated in Matlab (Mathworks, Inc.) at a sampling rate of 100 kHz, converted 

to analog (National Instruments), attenuated (TDT), power-amplified (TDT), and delivered through 735 

a speaker (TangBand) located ~90 cm from the animal on the contralateral side. We used a wide 

variety of stimuli including pure tones, noise bursts, frequency- and amplitude-modulated sounds, 
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two-tone pips, and conspecific vocalizations as search stimuli to initially detect and isolate single 

units. Once we isolated a unit, we delivered pure tones (50 or 100 ms) covering 7 octaves in 

frequency (200 Hz – 25.6 kHz, 10 steps/oct.) at different sound levels (20 dB SPL spacing) to 740 

characterize its frequency response area. We defined the best frequency of the unit as the 

frequency eliciting the highest firing rate, best level as the sound level eliciting the highest firing 

rate. The bandwidth of the unit was estimated using a rectangle fit to the frequency tuning curve 

at the best level [79]. After characterizing basic tuning properties, we presented conspecific 

vocalization stimuli. All vocalizations were recorded in our animal colony using Sound Analysis 745 

Pro [80] by placing one or more animals in a sound-attenuated booth and by recording 

vocalizations using a directional microphone (Behringer). Two observers manually segmented 

and classified vocalizations into categories based on previously published criteria [6, 34, 35]. We 

verified high inter-observer reliability using Cohen’s Kappa statistic (κ = 0.8). In 

electrophysiological experiments, we typically presented 2 exemplars each of 8 vocalization 750 

categories (16 vocalization stimuli; 0.4 – 3.5 s length depending on call type; typically, 10 

repetitions of each stimulus). For some units, we presented additional exemplars belonging to 

some categories (24 stimuli), but only presented 5 repetitions. All vocalizations were normalized 

for r.m.s. power and presented at 70 dB SPL in random order, with a random inter-trial interval 

between 2 and 3 seconds. For some units, we also presented vocalizations to which we added 755 

reverberations or noise (not presented in the current manuscript). 

 

Electrophysiology 

All recordings were conducted in a sound-attenuated booth (IAC) whose walls were lined with 

anechoic foam (Pinta Acoustics). Animals were head-fixed in a custom acrylic enclosure affixed 760 

to a vibration-isolation tabletop that provided loose restraint of the body. We recorded the activity 

of single units in the ventral medial geniculate body (vMGB) and identified cortical laminae of 

primary auditory cortex (A1). We sequentially performed small craniotomies (~1 mm dia.) within 

the recording chamber using a dental drill (Osada) attached to a stereotactic manipulator (Kopf) 

to reach regions of interest. For vMGB recordings, we targeted previously published stereotactic 765 

coordinates [81, 82] by performing a caudally-angled craniotomy in the caudal part of the 

chamber. The location of the electrode in the vMGB was confirmed using electrophysiological 

properties (strong tone responses, low response latency, and expected tonotopic organization 

[83, 84]). For cortical recordings, we performed craniotomies over the expected anatomical 

location of A1 [6, 36, 37] angled to be roughly perpendicular to the cortical surface. We used 770 

strong tone responses and tonotopic reversals to confirm that the recording location was within 
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A1. In each recording session, we used a hydraulic microdrive (FHC) to advance a tungsten 

microelectrode (FHC or A-M Systems; 2 – 5 MΩ impedance) through the dura into the underlying 

target tissue. Electrophysiological signals were digitized and amplified using a low-noise amplifier 

(Ripple Scout), and data visualized online (Trellis software suite). We played a wide variety of 775 

search stimuli while slowly advancing the electrode. When a putative spike was detected, we 

used a template-matching algorithm for online spike-sorting to isolate single units. Sorting was 

further refined offline at the conclusion of the experimental session (MKSort). Using this 

technique, we typically acquired spike data from 1 – 3 single units simultaneously. Spike 

waveforms were classified into putative regular-spiking (RS) and fast-spiking (FS) categories 780 

using the peak-to-trough ratio and spike width as parameters. We only considered well-isolated 

single units, defined as having a peak amplitude at least 5.5 standard deviations above noise 

baseline, for further analysis. For A1 recordings, we sequentially recorded neural activity from 

superficial to deep cortical layers. At the end of each electrode track, we advanced the electrode 

to a depth of ~2 mm, and acquired LFP responses every 100 µm while retracting the electrode. 785 

To do so, we presented 100 repetitions of a pure tone at 70 dB SPL, with pure tone frequency 

chosen to match the best frequency of the recorded column. From these local potential data, we 

calculated the current source density (CSD) defined as the second spatial derivative of the LFP, 

based on which we assigned recorded units to thalamorecipient or superficial layers [38]. After 

the electrode was completely retracted, the craniotomy was filled with antibiotic ointment, and 790 

recording chambers sealed using a silicone polymer (KwikSil or similar). Recording sessions were 

limited to 4 hours, and we typically recorded from each craniotomy for 4 – 8 electrode tracks. 

Craniotomies were sealed with dental cement after data acquisition was completed. 

 

Data analysis and statistics 795 

Analysis was based on data from 45 L2/3 RS neurons, 67 L4 RS neurons, and 33 vMGB neurons 

that responded to at least one vocalization in our stimulus set. We also isolated 10 call-responsive 

FS neurons from A1 recordings, which were not analyzed in this study.  

 

Response window analysis: We obtained response rate estimates limited to small time bins using 800 

an algorithm similar to Issa & Wang (2008) [85] (also see [86-88]). Briefly, we started with seed 

windows selected using relaxed criteria and gradually added additional windows until the final 

window met stringent criteria. To do so, we first determined whether the responses to any call in 

any 100 ms window (50 ms slide) located from 50 ms post stimulus onset until 100 ms post 

stimulus offset met two criteria: 1) the average rate exceeded 6 s.e.m. of the spontaneous rate 805 
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and 2) the trial-wise response distribution within the window was significantly different from the 

spontaneous response distribution with psoft ≤ 0.1 (single-tailed t-test with false discovery rate 

(FDR) correction; this test is used for determining all p-values for response window analysis). The 

initial window could then grow in either direction by adding neighboring windows, if: 1) the 

response in window to be added met a threshold of psoft ≤ 0.1, 2) average rate in the enlarged 810 

window exceeded 10 s.e.m. of the spontaneous rate and 3) the trial-wise response distribution 

within the enlarged window met a threshold of padd ≤ 0.01. We successively added response 

segments until these thresholds could not be met. To avoid a single bursty trial from spuriously 

increasing response rate, we replaced trial-wise rates with a z-score > 1.96 by the mean response 

rate of the enlarged window. The resultant window was considered the final response window if: 815 

1) the average rate exceeded 14 s.e.m. of the spontaneous rate, 2) the trial-wise response 

distribution within the final window met a threshold of pfinal ≤ 0.0001, and 3) if responses were 

present on at least 60% of the trials. Any windows less than 100 ms apart were coalesced if the 

resulting window still met the three final stringent criteria. If no response windows were detected 

for any call, we relaxed the following parameters in order: minimum trial threshold decreased to 820 

50%, z-score for burst detection increased to 2.5, and window length increased to 200 ms (slide 

= 100 ms). For example, minimum responsive trial threshold was decreased to 50% and burst 

detection z-score increased to 2.5 for the neuron in Fig. 3C (right). Parameters for automated 

response window analysis were initially chosen to broadly match response regions to visual 

judgements of three independent observers in a small sample of neurons from the three 825 

processing stages. Results were verified to be largely consistent over a range of parameter 

values. While this automated analysis reliably detected excitatory responses, because of the very 

low spontaneous rates of cortical neurons, inhibitory responses could not be captured. Thus, 

when responses were mainly inhibitory rather than excitatory (2 neurons in A1 L2/3 and 9 neurons 

in A1 L4), the number of calls with significant responses was determined manually by three 830 

independent observers. 

 

Quantification of selective responses: We quantified the selectivity of neural responses based on 

the following metrics. 1) We defined call selectivity as the number of call categories with significant 

responses – if at least one response window was detected for any exemplar belonging to a 835 

category, we counted the neuron as being responsive to that category. 2) The number of response 

windows per call. 3) The length of the response, which was the sum of all window lengths within 

a call, expressed as a fraction of the total length of that call. Together, metrics (2) and (3) indicated 

if a neuron was feature-selective – for highly feature-selective neurons, we observed a small 
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number of short windows, whereas for neurons with low selectivity, we observed many short 840 

windows or a single long window. We compared selectivity across processing stages using 

Kruskal-Wallis tests followed by pairwise post-hoc tests. To quantify differences in feature 

selectivity across processing stages, we constructed two-dimensional distributions of the number 

of windows versus window length, and evaluated significance using two-dimensional KS tests 

[38] with Bonferroni correction. 845 

 

Sparsity:  We estimated sparsity using two metrics: 1) As the reduced kurtosis of trial-wise firing 

rate responses [79, 89], computed over a single window from 50 ms after stimulus onset to 100 

ms after stimulus offset. A reduced kurtosis of zero indicates a normal distribution of firing rates 

across stimuli or response bins, suggesting a response that is not feature selective. High kurtosis 850 

values arise when many response rates are zero and few response rates are high, suggesting 

highly feature-selective responses. 2) As the activity fraction [40, 41], defined as: 

𝐴 =
[∑ 𝑟𝑖/𝑁]

𝑁
𝑖=1

2

∑ [𝑟𝑖
2𝑁

𝑖=1 /𝑁]
           … (1)  

An activity fraction close to zero signifies highly sparse responses, and activity fraction close to 

one signifies dense responses. Sparsity across processing stages was compared using Kruskal-855 

Wallis tests followed by pairwise post-hoc Dunn-Sidak tests. 

 

Receptive field models: We used the Neural Encoding Model System (NEMS; [42,43]; 

https://github.com/LBHB/NEMS) as a platform to build linear-nonlinear models and estimate 

STRFs of call-responsive neurons. The input to the model consisted of the cochleagram of all call 860 

stimuli concatenated in time. To compute the cochleagram, we used a fast approximation 

algorithm that used weighted log-spaced frequency bins and three rate-level transformations 

corresponding to three categories of auditory nerve fibers ([44]; 

https://github.com/monzilur/cochlear_models). Previous work has shown that this transformation 

can adequately capture the inputs to auditory cortex [44]. The resolution of the cochleagram was 865 

set at 5 steps/oct. in frequency (total 6 oct. spanning 250 Hz – 16 kHz) and 20 ms in time.  Linear 

weights and the parameters of a point nonlinearity (double exponential function) were estimated 

by gradient descent to minimize the squared error between the predicted PSTH and the actual 

PSTH (computed in 20 ms bins, averaged over 10 repetitions). The matrix of linear weights was 

taken to represent the receptive field, or STRF of the neuron. We performed a nested cross-870 

validation, where for every neuron’s call responses, we used 90% of the data to fit the models 

and the remaining 10% to validate the models. This procedure was repeated 10 times using non-

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.11.439331doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439331
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

 

overlapping segments of validation data to fit and test the model, yielding 10 STRF estimates. 

The correlation coefficient between predicted responses from the validation data set (r) and actual 

responses was used as a metric of goodness-of-fit. A bootstrap procedure was used to test for 875 

significance of r values. For quantifying STRF complexity and display, we used the mean STRF 

(over the 10 cross-validation runs) multiplied by a significance mask. To estimate the mask, we 

used a bootstrap procedure by scrambling the actual linear weight matrices 1000 times to 

estimate the distribution of weights at each time and frequency bin, and used a two-tailed 

permutation test to evaluate if the observed STRF mean weights differed significantly (using FDR 880 

correction for 310 comparisons) from the bootstrap distributions. To quantify the complexity of 

STRFs, we used STRF sparsity [46, 47], defined as the maximum absolute value of the 

significance-masked STRF divided by the standard deviation of the significance-masked STRF, 

and as a second metric, the kurtosis of significance-masked STRF weights. Sparsity and kurtosis 

across processing stages were compared using Kruskal-Wallis tests followed by Dunn-Sidak 885 

posthoc tests. 

 

Information theoretic analyses: We used stimulus-specific information (ISSI) [54-56] to estimate the 

amount of information that each recorded neuron provided about each stimulus. We also 

computed the weighted average of ISSI across stimuli to determine overall information content, 890 

which is conventionally referred to as the mutual information (MI) between the stimulus and 

response. Only neurons that had completed 10 trials for all the stimuli were considered for this 

analysis. Intuitively, if a neuron shows a consistent response pattern to a given stimulus, then it 

has high ISSI about that stimulus. To quantify ISSI we extracted responses beginning 50 ms before 

stimulus onset and lasting until 50 ms after the length of the longest stimulus [49] in windows of 895 

varying lengths (14, 50, 100, 200, 300 and 400 ms with slide equal to half the window size). For 

shorter duration calls, we populated time bins occurring at times greater than one second after 

stimulus offset with simulated spikes, with spike rate set at the average spontaneous rate of the 

neuron. For each window size, the ISSI in each time bin was calculated as: 

    𝐼𝑆𝑆𝐼 = ∑ 𝑝𝑟𝑒𝑠𝑝 (𝑟𝑒𝑠𝑝|𝑠𝑡𝑖𝑚) ∗ 𝐼𝑆𝑃(𝑟𝑒𝑠𝑝)   … (2) 900 

where ISP(resp) is the information conveyed by a specific response pattern, calculated as: 

 

   𝐼𝑆𝑃(𝑟𝑒𝑠𝑝) = 𝑇𝑜𝑡𝑎𝑙𝐸𝑛𝑡𝑟𝑜𝑝𝑦 − 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑟𝑒𝑠𝑝) … (3) 

   𝑇𝑜𝑡𝑎𝑙𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −∑ 𝑝𝑠𝑡𝑖𝑚 (𝑠𝑡𝑖𝑚) ∗ 𝑙𝑜𝑔2(𝑝(𝑠𝑡𝑖𝑚))  … (4) 

 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑟𝑒𝑠𝑝) = −∑ 𝑝𝑠𝑡𝑖𝑚 (𝑠𝑡𝑖𝑚|𝑟𝑒𝑠𝑝) ∗ 𝑙𝑜𝑔2(𝑝(𝑠𝑡𝑖𝑚|𝑟𝑒𝑠𝑝)) … (5) 905 
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To correct for estimation bias arising from finite trial numbers that likely undersample response 

probability distributions, we subtracted an all-way shuffled estimate of ISSI (average of 100 

randomizations [56]) from the value of ISSI estimated earlier. All reported values refer to the bias-

corrected ISSI estimate.  910 

 

Having obtained these ISSI estimates, we computed how ISSI values were distributed across time 

bins and across stimuli, and how ISSI correlated with spiking responses of each neuron. To quantify 

how ISSI values were distributed across time bins and across stimuli, for each window size, we 

calculated a MI sparsity index (SIMI), defined as the mean kurtosis of ISSI values in high-MI time 915 

bins, with high-MI bins defined as bins with MI values exceeding 1 standard deviation of the MI 

values across all time bins. To determine whether high ISSI resulted from the presence or absence 

of spiking, we calculated the correlation between the ISSI and PSTH. Finally, to determine how 

much information was conveyed by each spike, we determined the slope of the ISSI vs. PSTH 

distribution. Distributions of information-theoretic measures between A1 L4 and A1 L2/3 were 920 

compared using Kruskal-Wallis tests with post-hoc pairwise tests. We chose the 100 ms window 

size (50 ms slide) for all comparisons shown in the main manuscript. Similar results were obtained 

across most tested window sizes (see Supplementary Information). 
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