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Abstract 12 

As (generalized) linear mixed-effects models (GLMMs) have become a widespread tool in 13 

ecology, the need to guide the use of such tools is increasingly important. One common 'rule of 14 

thumb' is that one needs at least five levels of a random effect. Having such few levels makes the 15 

estimation of the variance of random effects terms difficult, but it need not muddy one's ability to 16 

estimate fixed effects terms. Here, I use simulated datasets and model fitting to show that having 17 

too few random effects terms does not influence the parameter estimates or uncertainty around 18 

those estimates for fixed effects terms. Thus, it should be acceptable to use fewer levels of 19 

random effects if one is not interested in making inference about variance estimates of the 20 
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random effects terms (i.e. they are 'nuisance' parameters). I also assess the potential for pseudo-21 

replication in (generalized) linear models (LMs), when random effects are explicitly ignored and 22 

find that LMs do not show increased type-I errors compared to their mixed-effects model 23 

counterparts. These results challenge the view that it is never appropriate to model random 24 

effects terms with fewer than five levels – when inference is not being made for the random 25 

effects, it may not pose problems. Given the widespread accessibility of GLMMs, future 26 

simulation studies and further assessments of these statistical methods are necessary to 27 

understand the consequences of both violating and blindly following ‘rules of thumb.’ 28 

 29 

Keywords 30 

Statistics, hierarchical modelling, experimental design, block-design, varying effects, 31 

quantitative, regression, ANOVA, R, programming   32 
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Introduction 33 

While statistical analyses are becoming more complex (Low-Décarie, Chivers & Granados, 34 

2014), advances in computing power and freely available statistical software are increasing the 35 

accessibility of such analyses. As these methods have become more complex and accessible to 36 

non-statisticians, the need to guide the use of such tools is becoming increasingly important 37 

(Bolker, 2008; Bolker et al., 2009; Zuur, Ieno & Elphick, 2010; Kéry & Royle, 2015; Kass et al., 38 

2016; Zuur & Ieno, 2016; Harrison et al., 2018; Silk, Harrison & Hodgson, 2020). The use of 39 

generalized linear mixed-effects models (GLMM), for example, has become a widespread tool 40 

that allows one to build hierarchical models that can estimate, and thus account for, imperfect 41 

detection in biological surveys (e.g. occupancy, N-mixture, mark-recapture, etc. models) and can 42 

model correlations among data that come from groups (i.e. random effects; also known as 43 

varying effects) (Bolker, 2008; Kéry & Royle, 2015; Powell & Gale, 2015; Harrison et al., 2018; 44 

McElreath, 2020). 45 

Generalized linear mixed-effects models are a regression type analysis that are flexible in that 46 

they can handle a variety of data generating processes such as binomial (e.g. presence / absence) 47 

and Poisson (e.g. survey counts). When the sampling distribution is Gaussian (also known as 48 

normal), this is a special case of a GLMM that is referred to as simply a linear mixed-effects 49 

model (LMM). GLMMs (and LMMs) differ from their simpler counterparts, (generalized) linear 50 

models (GLMs and LMs), in that they include random effects, in addition to the fixed effects 51 

(hence mixed-effects). Fixed effects (which are also often called predictors, covariates, 52 

explanatory or independent variables) are fixed in that the model parameters (� in equation 1 53 

below) are fixed, or non-random, and are not drawn from a distribution. Random effects are 54 

random in that they are assumed to be drawn randomly from a distribution – often a Gaussian 55 
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distribution – during the data-generating process. Note that one can also assign random slopes to 56 

variables, where the slopes of variables (not just the intercepts) are allowed to vary, and are 57 

assumed to be randomly drawn from a distribution (see Bolker, 2008; Kéry & Royle, 2015; 58 

Harrison et al., 2018). 59 

The advantages of random effects are multifold; they allow one to combine information (as in a 60 

meta-analysis), deal with spatiotemporal autocorrelation,  use partial pooling to borrow strength 61 

from other populations or groups, account for grouping or blocked designs, and estimate 62 

population-level parameters, among others (Kéry & Royle, 2015). If we are interested in the 63 

variability of a population (of individuals, groups, sites, or populations), it is difficult to estimate 64 

this variation with too few levels of individuals, groups, sites, or populations (i.e. random effects 65 

terms).  66 

“When the number of groups is small (less than five, say), there is typically not enough 67 

information to accurately estimate group-level variation” (Gelman & Hill, 2006). 68 

“...if interest lies in measuring the variation among random effects, a certain number is 69 

required...To obtain an adequate estimate of the among-population heterogeneity – that 70 

is, the variance parameter  – at least 5 - 10 populations might be required” (Kéry & 71 

Royle, 2015). 72 

“With <5 levels, the mixed model may not be able to estimate the among-population 73 

variance accurately.” (Harrison et al., 2018). 74 

This ‘rule of thumb’ that random effects terms should have at least five levels (i.e. groups) is 75 

backed by limited empirical evidence (Harrison, 2015), but it is intuitive that too few draws from 76 

distribution will hinder one’s ability to estimate the variance of that distribution. Indeed, in each 77 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.11.439357doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439357
http://creativecommons.org/licenses/by/4.0/


of the above segments of quoted text, the authors suggest that at least 5 levels are needed for 78 

estimation of group-level, or among-population, variance. However, this rule is often adhered to 79 

out of context, where authors or reviewers suggest that one cannot use random effects terms if 80 

they do not contain at least five levels.  81 

Simulations by Harrison (2015) demonstrate that random effects variance can be biased more 82 

strongly when the levels of random effects terms are low, yet in this work it appears that slope 83 

(beta) estimates for fixed effects terms are generally not more biased with only three random 84 

effects levels compared to five. There are many cases (and some would argue that in most cases, 85 

see below) in which the variance of random effects is not directly of interest to the research 86 

question at hand. 87 

“...in the vast majority of examples of random-effects (or mixed) models in ecology, the 88 

random effects do not have a clear ecological interpretation. Rather, they are merely 89 

abstract constructs invoked to explain the fact that some measurements are more similar 90 

to each other than others are – i .e., to model correlations in the observed data” (Kéry & 91 

Royle, 2015). 92 

Thus, it is unclear whether or not it is appropriate to use random effects when there are fewer 93 

than five grouping levels in situations where one does not directly care about ‘nuisance’ among-94 

population variance, but instead is interested in estimates and the variance (i.e. uncertainty) of 95 

predictor variables (i.e. fixed effects). The current state of practice in ecology is to drop the 96 

random effects terms such that we are now using generalized linear models where we are not 97 

grouping observations (we drop the Mixed-effects from the GLMM to become GLM). I question 98 

whether we are choosing to accept pseudoreplication of repeat-measures (Hurlbert, 1984; Kéry 99 
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& Royle, 2015), rather than inaccurate estimates of among-population variance. In cases where 100 

one does not care about among-population variance, this tradeoff may be non-existent, but little 101 

research exists to support this. Here, I perform simulations to assess whether fixed effects 102 

estimates are more biased when the accompanying random effects consist of fewer than five 103 

levels; I also ask whether using an alternative model without random effects (GLMs) leads to 104 

higher type I errors (demonstrating a ‘significant’ effect when in fact one does not exist). 105 

 106 

 107 

Methodology 108 

All simulation of datasets and model fitting was done in R v4.0.4 (R Core Team, 2017), all 109 

visualizations were completed using the aid of R package `ggplot2` (Wickham, 2011), and all 110 

code is available from Zenodo at http://doi.org/10.5281/zenodo.4679101. 111 

 112 

Data generation 113 

I used a modified version of code from Harrison (2015), to explore the importance of varying 114 

two parameters in a linear mixed-effect model (LMM): the number of observations in a dataset 115 

(30, 60, or 120), and the number of levels of the random intercept term (3, 5, or 20). This was 116 

done by generating a response variable ��  from the following equation: 117 

�� � ����� � �����
� �����

� ��  

[1] 118 
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��~ 
������, �� 

[2] 119 

Where ����� is the intercept for site (or population) j to which observation (or individual) i 120 

belongs. Thus, each observation shared a site-level intercept, which were drawn from a normal 121 

distribution with mean (μ) = 0 and standard deviation (σ) = 0.5. �� and �� are the slope 122 

parameters for two generic predictor variables (���
 and

 

���
 respectively), which were both drawn 123 

from a normal distribution with μ = 0 and σ = 0.5, which mimics standardized variables that are 124 

centered by their mean and scaled by two standard deviations (Gelman, 2008). The error term ��  125 

is unique to each observation i that is drawn from a normal distribution with ��= 0 and ��  = 0.25 126 

(same as equation 2 above). 127 

For all simulated datasets, parameter values were fixed at �� = 2 and �� = 0, meaning ���
 does 128 

not have a linear relationship with, or is only randomly related to, the response variable �� . This 129 

allows for an assessment of type-I error rate, since any significant p values for this �� slope 130 

parameter are erroneous. 131 

 132 

Model fitting simulations 133 

For each of the nine combinations of scenarios (30, 60, or 120 observations by 3, 5, or 20 134 

random intercept levels), I simulated 10,000 datasets. Each dataset was fit with a linear mixed-135 

effect model (LMM) and a linear model (LM). All model fitting was done with R functions 136 

`lmer` (LMM) or `lm` (LM) in the package `lme4` or in `base` R, respectively (Bates et al., 137 

2007; R Core Team, 2017).  138 
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#LMM: 139 

m1 <- lmer(y ~ x1 + x2 + (1|Site)) 140 

R Code 141 

Where x1 and x2 are fixed effects (see equation 1), and (1|Site) is the syntax for specifying a 142 

random intercept (����� in equation 1). In ecology, we often fit independent sites as unique levels 143 

of a random effect, so I use site here for demonstration purposes. But site can be replaced with 144 

individual, group, population, etc. 145 

Often the recommendation, if one has fewer than 5 levels of random effects terms (j ≤ 5 in �����), 146 

is to fit the random effects as fixed effects (LMM becomes LM), specified in R as: 147 

#LM: 148 

m2 <- lm(y ~ x1 + x2 + Site) 149 

R Code 150 

and mathematically defined as: 151 

�� � �����
� �����

� ���������� � �	�������� � � �
������
��� � ��  

[3] 152 

Now a � term is estimated for each site (or population) level independently. Site parameters no 153 

longer come from a normal distribution (as in equation 2), but instead are considered fixed, 154 

hence fixed effects. 155 

Thus, both a LMM and a LM were fit to each simulated dataset (n = 10,000) of each of the nine 156 

combinations (30, 60, or 120 observations by 3, 5, or 20 random intercept levels) of data-157 
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generation. This allowed for a comparison of the type-I error rates of LMMs and LMs, the latter 158 

of which ignores the blocked structure of data (i.e. site-level grouping). 159 

 160 

Type-I error calculation 161 

Type-I error rate was calculated as the proportion of 10,000 models that a ‘significant’ p value of 162 

≤ 0.05 was obtained for the �� parameter estimate in which the true value of that parameter was 163 

set to be 0. I sampled (with replacement) 10,000 p value ‘observations’ from each group of 164 

10,000 models to produce a new proportion of type-I error; this process was repeated 1,000 165 

times, and the bootstrapped 95% confidence intervals were calculated as the 0.025 and 0.975 166 

quantiles of those 1,000 replications (see code). 167 

 168 

 169 

Results 170 

Estimating model parameters and uncertainty 171 

Linear mixed models were able to resurrect simulated fixed effect relationships with no 172 

noticeable patterns in bias, regardless of number of levels of random effects or sample size. That 173 

is, both mean model parameter estimates (�� and ��) were centered on their true values (Table 1; 174 

Figure 1). The uncertainty around these estimates generally decreased as sample size increased. 175 

For example, doubling the sample size from 30 observations to 60 observations lead to a 176 

decrease by 36.6% and 35.5% in parameter estimate uncertainty (for �� and �� respectively; 177 

Table 1; Figure 1). Another doubling to 120 observations lead to a further decrease in uncertainty 178 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.11.439357doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439357
http://creativecommons.org/licenses/by/4.0/


by 33.4% and 32.9%, respectively. The number of levels of random effects appears to be 179 

relatively non-important in resurrecting model parameter estimates within these simulation 180 

scenarios (Table 1; Figure 1); instead there were small, likely negligible, increases in uncertainty 181 

around fixed effect parameter estimates as the number of levels of random effects increased. 182 

All LMM estimates of the distribution mean (μ) were unbiased, regardless of number of levels of 183 

random effects or sample size (Table 1; Figure 2A). The random effects variance (σ), however, 184 

was not centered at the true value, and it was more biased with fewer levels of random effects, 185 

whereas sample size did not affect this bias (Table 1; Figure 2B). That is, with only three levels 186 

of random effects the magnitude of the bias was 12.2% of the true value. Increasing to five levels 187 

of random effects nearly halved this bias to 6.4%, and increasing to 10 levels halved the bias 188 

again to 3.2% of the true value. Averaged across numbers of random effects terms, estimates 189 

were biased by about 7% regardless of sample size (7.1%, 7.4%, and 7.2% for N = 30, 60, and 190 

120 respectively).  191 

The uncertainty around random effects estimates (μ and σ) showed the reverse pattern as the 192 

fixed effects. That is uncertainty generally decreased with an increased number of random effects 193 

levels, whereas sample size did little to alleviate this uncertainty (Table 1; Figure 2). Increasing 194 

the number of random effects levels from 3 to 5, and then from 5 to 10, decreased the uncertainty 195 

for μ by 22.4% and 29.1%, respectively, and for σ by 26.6% and 29.8% respectively. 196 

 197 

Type-I errors 198 

For all simulated datasets, both LMM and LM produced type-I error rates around the typical α = 199 

0.05, with 95% confidence intervals overlapping this value. Neither sample size, nor the number 200 
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of random effects levels seemed to influence the type-I error rate. Furthermore, dropping the 201 

random effects structure (using a LM instead of a LMM) did not increase the probability type-I 202 

errors (Figure 3). 203 

 204 

Discussion 205 

The work presented here demonstrates that i) fixed effects estimates are not more biased when 206 

the levels of an accompanying random effect have fewer than five (n ≤ 5) levels, but population-207 

level variance estimates are and ii) type-I error rates are not increased by using LM instead of 208 

LMM, contrary to previous expectations. 209 

These results suggest that fixed effects parameter estimation is not strongly influenced by, nor 210 

biased by, the number of levels of random effects terms, but uncertainty in those estimates is 211 

much more strongly influenced by sample size. While this pattern may appear to contradict the 212 

decreased uncertainty around beta estimates in Figure 2 of Harrison (2015), this instead is due to 213 

differences in the way that sample size was handled between that work and the current work. 214 

Harrison (2015) coded each random effect level to be associated with a fixed number of 215 

observations (N=20), such that each additional random effect level yielded an increased sample 216 

size. Here, sample size (i.e. number of observations) has been separated from the number of 217 

random effects terms.  218 

Despite this difference, the estimation of random effects terms (μ and σ) in the simulations 219 

presented here suggest consistent patterns with Harrison (2015) and support previous ‘rules of 220 

thumb’ and simulations suggesting that fewer than five levels of random effects terms can make 221 

estimation of population-level variance difficult (Gelman & Hill, 2006; Harrison, 2015; Kéry & 222 
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Royle, 2015; Harrison et al., 2018). Thus, the combination of these results suggest that using 223 

fewer than five levels of random effects is acceptable when one is only interested in estimating 224 

fixed effects parameters; in other words, when inference about the variance of random effects 225 

terms (e.g. sites, individuals, populations) is not of direct interest, but instead are used to group 226 

data, as in a block design of a study. In these cases, however, caution should be taken in 227 

reporting the variance estimates for such population-level parameters – as this information can 228 

later be taken out of context of the question at hand. 229 

Interestingly, type-I errors were not more likely in any situation. This possibly suggests that mis-230 

specified linear models that are theoretically missing a random effect are relatively robust to this 231 

omission – at least in some simple cases such as the scenarios presented here. While this perhaps 232 

alleviates some concern over inflated type-I errors due to pseudoreplication while ignoring the 233 

grouped nature of repeat-measures studies and non-independent data, this should not be taken as 234 

evidence to purposefully omit random effects when such a structure is appropriate. Instead, it 235 

warrants future investigation and further simulation studies with more thorough scenarios and 236 

more complex data structures. 237 

Often researchers or reviewers cite this ‘rule of thumb’ as to why one should not use a mixed-238 

effects model, leaving others to fight their case as to why they ignored such a rule. This is likely 239 

exacerbated by the fact that authors or peer-reviewers can easily point out that this ‘rule of 240 

thumb’ exists (Gelman & Hill, 2006; Harrison, 2015; Kéry & Royle, 2015; Harrison et al., 241 

2018), but may find it more difficult or time-consuming to make a nuanced argument against 242 

following such a pervasive rule. Hopefully the results presented here will challenge that view, 243 

and allow the fitting of random effects when inference is not being made for the random effects. 244 

It is critical to note that these results are far from comprehensive. Given the widespread 245 
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accessibility of GLMMs, future simulation studies and further assessments of these statistical 246 

methods are necessary to understand the consequences of both violating and blindly following 247 

‘rules of thumb.’ 248 
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294 

Figure 1: Fixed effects model estimates for simulated data. Each point is the mean estimate for 295 

10,000 models (and datasets), whereas error bars are 95% confidence intervals. N = the number 296 

of observations (i.e. number of rows) in each dataset. Dashed lines indicate the true value. In all 297 

scenarios the bias in parameter estimates are negligible. As the sample size increases, our 298 

certainty around the parameter estimates (β) increases, but the number of random effects has a 299 

relatively minor effect on estimating β. When sample sizes (N) are low, parameter uncertainty 300 

increases with increasing levels of random effects (assuming a consistent N).  301 

  302 
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303 

Figure 2: Random effects model estimates for simulated data. Each point is the mean estimate for304 

10,000 models (and datasets), whereas error bars are 95% confidence intervals. N = the number 305 

of observations (i.e. number of rows) in each dataset. Dashed lines indicate the true value. A) As 306 

the number of random effects levels increases, the uncertainty around the mean (μ) decreases. 307 

Sample size has a relatively minor effect on estimating μ. B) As the number of random effects 308 

levels increases, the bias and uncertainty around the random effects variance (σ) decreases. 309 

Sample size has a small, but relatively minor effect on estimating σ. The bias in σ starts to 310 

approach the starting (simulated) σ = 0.5 as the number of random effects reaches 10.  311 
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 314 

Figure 3: Type-I error for various linear models (LM) and linear mixed-effects models (LMM). 315 

Type-I error rate was calculated as the proportion of models (n = 10,000) in which a ‘significant’ 316 

p value of ≤ 0.05 was obtained for a parameter estimate in which the true value of that parameter 317 

was set to be 0 (Figure 1B); each point represents this proportion. To generate error bars as 95% 318 

confidence intervals, I used bootstrapping to replicate this process 1,000 times (see methods). N 319 

= the number of observations (i.e. number of rows) in each dataset. Symbols indicate model type 320 

(LM vs LMM). Dashed lines indicate the true alpha value (0.05). 321 
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Table 1: Model estimates from 10,000 simulated datasets. The number of levels of random effects (RE) was varied (3, 5, or 10), as 322 

was the number of observations in the dataset (N = 30, 60, or 120). The true (T) values for the data generation process (equation 1) are 323 

indicated in the second header row underneath the estimated parameter labels (fixed effects: β1, β2; random effects: μ, σ). The mean of 324 

10,000 model estimates (β1, β2, μ, σ) are indicated for the respective models below the true values. Lower and upper bounds on 95% confidence 325 

intervals for each parameter is calculated as the 0.025 and 0.975 quantiles, respectively, of 1,000 bootstrapped replications (see methods). 326 

RE β1 β1 95% CI β2 β2 95% CI μ μ 95% CI σ σ 95% CI 
levels N T = 2 Lower  Upper T = 0 Lower  Upper T = 0 Lower  Upper T = 0.5 Lower  Upper 

3 30 1.999 1.792 2.202 0.001 -0.199 0.205 0.000 -0.580 0.589 0.443 0.000 0.982 

5 30 2.001 1.790 2.217 0.001 -0.207 0.211 0.001 -0.450 0.454 0.468 0.147 0.846 

10 30 2.002 1.764 2.241 -0.003 -0.237 0.230 -0.001 -0.322 0.324 0.482 0.245 0.739 

3 60 2.001 1.864 2.139 0.000 -0.135 0.134 0.002 -0.573 0.569 0.437 0.053 0.964 

5 60 2.000 1.865 2.136 0.000 -0.140 0.135 0.001 -0.443 0.441 0.466 0.161 0.831 

10 60 2.001 1.858 2.143 0.000 -0.144 0.142 -0.002 -0.314 0.305 0.485 0.265 0.736 

3 120 2.000 1.910 2.090 0.000 -0.093 0.091 -0.001 -0.565 0.568 0.438 0.067 0.954 

5 120 2.000 1.907 2.093 0.000 -0.091 0.093 -0.001 -0.442 0.443 0.469 0.164 0.838 

10 120 2.000 1.905 2.093 0.000 -0.094 0.096 0.000 -0.318 0.311 0.485 0.267 0.735 
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