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Abstract

The evolution of diverse phenotypes both involves and is constrained by molecular interaction networks. When
these networks influence patterns of expression, we refer to them as gene regulatory networks (GRNs). Here, we
develop a quasi-species model of GRN evolution. With this model, we prove that–across a broad spectrum of
viability and mutation functions–the dynamics converge to a stationary distribution over GRNs. Next, we show
from first principles how the frequency of GRNs at equilibrium will be proportional to each GRN’s eigenvector
centrality in the genotype network. Finally, we determine the structural characteristics of GRNs that are favored
in response to a range of selective environments and mutational constraints. Our work connects GRN evolution
to quasi-species models, and thus can provide a mechanistic explanation for the topology of GRNs experiencing
various evolutionary forces.

1 Introduction1

Molecular networks influence both macro- and micro-evolutionary processes [1, 2, 3, 4, 5]. But, how might they2

themselves evolve? A recent comparative study of regulatory networks found that their structures often exist at the3

edge of critically, straddling the border of chaotic and ordered states [6]. That biological regulatory networks should4

exhibit the kind of dynamic stability associated with near-critical networks has been theorized as adaptive, both5

from the perspective of functional robustness [7] and their ability to effectively process information [8]. However,6

there is also empirical and theoretical evidence for the importance of change in these networks, e.g., if species must7

evolve to meet shifting environmental or ecological selection pressures [9]. This tradeoff between robustness and8

evolability is hypothesized as an explanation for the common “small-world” property in biological networks [10].9

Nevertheless, foundational work on self-organized criticality and 1/f noise demonstrated that dynamical systems10

embedded in a spatial dimension, e.g., biological regulatory networks, might naturally evolve to near-critical states11

[11, 12]. Therefore, one could observe near-critical networks in nature that are derived from constraints, as opposed12

to directly optimized by selective forces.13

Focusing specifically on interactions that modulate expression, recent studies have hypothesized how various evo-14

lutionary forces shape the structure of gene regulatory networks (GRNs) [13, 14, 15, 16]. Analyses of transcription15

factors [17, 18], mRNA profiles [19] and comparative genomics [20] suggest that gene duplication/loss have a sub-16

stantial contribution to divergent gene regulation. Moreover, several mathematical models of GRN evolution were17

introduced to encompass duplication events [21], selection on functional dynamics [22], horizontal gene transfer [23],18

correlated mutations on genomes [24], and non-genetic inheritance [25]. Force et al. [26] computationally showed that19

subfunction fission following duplication events can lead to a modular structure of GRNs. Similarly, Espinosa-Soto20

and Wagner [27] demonstrated that sequential adaptation to newly specialized gene activity patterns can increase21

the modularity of GRNs. Conversely, GRNs are hypothesized to emerge largely as a by-product of the progres-22

sion towards some optimal state, via some combination of negative-feedback regulation [28], the rate of molecular23

evolution [29], tradeoffs between robustness and evolvability [6], and self-organization of functional activity [30].24

In principle, existing frameworks that model evolutionary dynamics can be applied to the evolution of GRNs.25

Ideally, and hypothetically given “omniscience” over the genomes—including comprehension of every fundamen-26

tal interaction between molecules—one can reconstruct inter-dependencies among genes and obtain GRNs from a27
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bottom-up approach. Of course, this ambition is far from practical and even sounds like a fantasy. Yet, it shows that28

GRNs are essentially a direct abstraction of the genotypes. This abstraction is not only central to the omnigenic29

perspective of complex traits [31], but it also motivates a theoretical framework of regulatory circuit evolution [32].30

Over the past two decades, several models of GRN evolution have been proposed [33, 34, 35, 36, 37]. The resulting31

models have influenced our understanding of diverse phenomena including canalization [38, 34], allopatric speciation32

[39, 36, 37], expression noise [40], and the structural properties of GRNs themselves [41, 27, 35].33

However, to date, the existing models of GRN evolution remain largely computational, and the complexity of34

genetic interactions impedes more advanced theoretical analyses of these models. Our ambition in this work is35

to derive analytical conclusions for models of GRN evolution, with aids from known theoretical establishments in36

population genetics and quasi-species theory [42]. Population genetics describes how the frequency of different alleles37

change over time in a population mechanistically through evolutionary forces [43], in which mathematical models38

usually focus on a finite-sized population and a few loci. Quasi-species theory, on the other hand, concentrates39

on the balance between selection and mutation in an infinitely large population, where genotypes with a higher40

dimensionality are incorporated [44]. Literature has provided exact solutions for the steady distribution of genotypes41

along with their global convergence in quasi-species theory [45, 46, 47] under the assumption of irreducible and42

primitive transition matrices. This assumption was latter proposed to correspond to the mutational accessibility43

among genotypes with non-zero fitnesses [48]. It is thus not hard to vision that, when extended with complex44

genetic interactions, the stationary solution of a population-genetic or quasi-species model implicates the balanced45

distribution of plausible GRNs under the focal evolutionary forces. Nevertheless, it remains to be shown that such46

assumptions are valid for high dimensional genotype-phenotype maps associated with gene regulatory networks.47

Here, we develop a quasi-species model describing how the structure of GRNs are shaped by a combination of48

selection and mutation. First, using this model we study the dynamics of GRN evolution in an infinitely large pop-49

ulation with non-overlapping generations in a constant environment. By depicting the mapping between genotypes50

and phenotypes through the GRNs [37], we mechanistically recover the key assumption in the literature mentioned51

above and prove that the dynamics always converge to a stationary distribution over GRNs. Then, assuming bi-52

nary viability, identical reproductivity, and rare mutation, we analytically show that the frequency of GRNs at53

mutation-selection balance is proportional to each GRN’s eigenvector centrality in a sub-graph of the genotype net-54

work [49, 50, 51, 52]. Finally, we determine the structural motifs associated with GRNs that are favored in response55

to a wide variety of selective regimes and regulatory constraints. We discuss the implications of our results in the56

context of the evolution of complex phenotypes and the challenges of studying GRN evolution.57

2 Models58

2.1 Quasi-Species Model with Selection, Reproduction, and Mutation59

We begin with a quasi-species model that incorporates selection, reproduction, and mutation: The viable individuals60

in the current generation reproduce and generate their offspring, which may possibly mutate, and undergo selection61

to form the next generation. This phenomenological modeling scheme has frequently appeared in existing literature62

for a deterministic dynamics or a stochastic Markovian process perspective [44, 45, 46, 48, 47]. Yet, we shall63

see shortly that basic probability theory assists us to construct the model in a bottom-up fashion and leads to a64

probabilistic interpretation of various parameters. We additionally impose a few assumptions to the model, including65

a.) an infinitely large population size, b.) non-overlapping generations, c.) asexual reproduction, d.) a constant66

reproductivity of each genotype and a fixed selective environment over time, and e.) that any single-locus mutation67

has a non-zero chance to occur per generation.68

Suppose that It represents an individual randomly sampled from the population at generation t. Let g (It) and69

Ψ (It) be its genotype and the event that It is viable respectively. We will further denote by It−1 → It the event that70

the randomly sampled individual at generation t− 1, namely It−1, reproduced and generated the randomly sampled71

individual at generation t, namely It. We will also write G to represent the set of all plausible genotypes.72

For any genotype g ∈ G, we are interested in its prevalence in the population at a given generation t after73

selection. In other words, we would like to know the probability that we observe a randomly sampled individual at74

generation t with the genotype g, given the fact that the sampled individual is viable. Applying the Bayes’ theorem,75

this focal conditional probability becomes76
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P [g (It) = g | Ψ (It)] =
P [Ψ (It) | g (It) = g] P [g (It) = g]

P [Ψ (It)]

=
νg
νt

P [g (It) = g] . (1)

For simplicity we adapt the abbreviation νg = P [Ψ (It) | g (It) = g] and νt = P [Ψ (It)], which are equivalently the77

survivial probability or the viability of genotype g, and the average viability at generation t respectively.78

What we have left in equation (1) is the probability that a randomly sampled individual has genotype g before79

selection. The derivation of P [g (It) = g] relies on two observations: First, the genotype of individual It arose from80

mutation and the unique genotype of its parent; second, this parent individual must be viable. The event g (It) = g81

is hence partitioned1 by the joint events {g (It) = g, g (It−1) = g′ | It−1 → It, Ψ (It−1)}g′∈G . So we have82

P [g (It) = g] =
∑
g′∈G

P [g (It) = g, g (It−1) = g′ | It−1 → It, Ψ (It−1)]

=
∑
g′∈G

P [g (It) = g | g (It−1) = g′, It−1 → It, Ψ (It−1)] P [g (It−1) = g′ | It−1 → It, Ψ (It−1)]

=
∑
g′∈G

µg′g P [g (It−1) = g′ | It−1 → It, Ψ (It−1)] . (2)

Again we abbreviate µg′g = P [g (It) = g | g (It−1) = g′, It−1 → It, Ψ (It−1)] that shows the mutation probabil-83

ity from genotype g′ to genotype g.84

It remains to resolve P [g (It−1) = g′ | It−1 → It, Ψ (It−1)] in equation (2), which is the probability that the85

parent of a randomly sample individual at generation t has genotype g′. Applying the Bayes’ theorem once more,86

this probability becomes87

P [g (It−1) = g′ | It−1 → It, Ψ (It−1)] =
P [It−1 → It | g (It−1) = g′, Ψ (It−1)] P [g (It−1) = g′ | Ψ (It−1)]

P [It−1 → It | Ψ (It−1)]

=
ρg′

ρt−1
P [g (It−1) = g′ | Ψ (It−1)] , (3)

where ρg′ = P [It−1 → It | g (It−1) = g′, Ψ (It−1)] is the reproductivity of genotype g′, and ρt−1 = P [It−1 → It | Ψ (It−1)]88

is the average reproductivity at generation t − 1. Note that, instead of defining reproductivity as the number of89

offspring of an individual, the probabilistic formulation conversely describes, when sampling from the infinitely-sized90

next generation, how likely we will observe an offspring of the focal individual.91

More importantly, we see that equation (3) leads us back to the focal conditional probability that, at generation92

t − 1, a randomly sampled individual has genotype g′ given that it is viable. Combining (1) to (3), we obtain the93

master equation for the simple quasi-species model that integrates selection, reproduction, and mutation of genotypes:94

95

P [g (It) = g | Ψ (It)] =
1

νt ρt−1

∑
g′∈G

ρg′ µg′g νg P [g (It−1) = g′ | Ψ (It−1)] . (4)

2.2 Pathway Framework of GRNs: Representing Genotypes by Expression Behavior96

In existing literature of quasi-species theory, the model parameters are usually arbitrarily tunable or follow a particular97

distribution for simplicity. Hypothetically, these parameters depend on the resultant phenotypes of the genotypes,98

and any genotype-phenotype mapping reflects constraints and provides information of the model parameters. Our99

previous work has proposed a modeling approach, termed the pathway framework, to describe how the structure100

of GRNs varies due to genetic changes and how they respond to a given selective pressure [37] (which we summarize101

below; see its formal mathematical formulation in Appendix A). In the current work, we apply the pathway framework102

of GRNs to the quasi-species model (4) as a simple genotype-phenotype mapping for parameterization.103

1A set A is said to be partitioned by {Ai}i∈I if A =
⋃

i∈I Ai and Ai ∩Aj = ∅ for two distinct i, j ∈ I.
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Figure 1: The pathway framework interprets a GRN as an abstraction of the expression behavior of the genotype.
In this framework a GRN consists of edges indicating the input-output pair of a gene’s expression, from which
transcriptional regulation between genes can be recovered, and it is arguably a more compact representation than
the conventional notion of GRNs.

We note that the pathway framework is not without a handful of presumptions and thus restricts to rather104

specific GRNs. Nevertheless, the pathway framework GRNs play the role of an informative genotype-phenotype105

mapping which evokes some mechanistically interpretable parameterization for models in quasi-species theory. As a106

teaser, we shall in later sections that this naive and particular genotype-phenotype mapping through gene regulation107

surpasses the key assumption in existing quasi-species theory when proving the global convergence to a stationary108

solution. The pathway framework may seems an arbitrary and perhaps oversimplified choice to encapsulate the109

genotype-phenotype mapping; future works can indeed incorporate more realistic modeling frameworks to GRNs to110

strengthen the conclusion of global convergence.111

The key of the pathway framework is to conceptualize alleles of genes as “black boxes” that encapsulate their112

expression behavior. Expression of a gene is triggered by some protein called the transcription factor, which is113

followed by a series of procedures to synthesize the protein product. The pathway framework of GRNs extracts114

the allele of a gene through this input-output relation, i.e., the activator protein(s) of gene expression and the115

protein(s) it produces. Regulation between two genes naturally arises once one gene’s protein product involves in116

the activation of the other’s expression (see Figure 1). Furthermore, these input-output relations of gene expression117

serve as the “inherited” reactions through which external environmental stimuli and internal chemical signals of118

proteins propagate to develop the phenotype. The pathway framework hence represent the genotype as the input-119

output relation of each gene’s expression behavior, where the corresponding GRN is constructed accordingly, and it120

considers the collective state of proteins as the resulting phenotype.121

In this work, we focus on a minimal pathway framework of GRNs which integrates a few additional assumptions:122

First, we presume there is a constant collection of proteins Ω that can possibly appear in the organisms, and the state123

of a protein is binary, which indicates whether the protein is present or absent in an organism. Second, assuming124
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that any gene’s expression is activated a single protein and produces a single protein product, the allele of the gene125

becomes the ordered pair of protein activator/product. If the protein activator is in the present state, the allele126

of the gene turns the state of the protein product to presence. Third, there is a fixed collection of genes Γ in the127

organisms, and the allele of each gene can be any pair of activator/product in the constant collection of proteins.128

Forth, the external environmental stimuli, if any, specify some activator proteins in the constant collection Ω and129

turn their state to presence.130

Under these assumptions, a GRN can be transformed from its conventional notion, where nodes in the network131

represent genes and the edges shows regulation among them, into a more compact format such that the nodes are132

exactly the constant collection of proteins and the directed edges describe the expression behavior of alleles of genes133

(see Figure 1). Hereafter, if not otherwise specified, we refer the term GRNs to those in the compact format under134

the pathway framework, yet it is noteworthy that the two constructions are merely different representations of the135

expression behavior of the same underlying genotype. While the set of all possible genotypes is denoted by G in136

section 2.1, we abuse the notation G for their corresponding GRNs as well, and we write g ∈ G to refer to a possible137

genotype/GRN. Given the constant collection of proteins Ω and genes Γ, the set of all possible GRNs is determined:138

A possible GRN is a network among Ω with |Γ| directed edges, each of which is labeled by a gene in Γ and points139

from any protein activator to any protein product in Ω.140

The pathway framework provides an approach to model evolutionary mechanisms, such as random mutation and141

natural selection, through graphical operations and structural characteristics on the GRNs. Mutation at a gene142

changes its allele stochastically, which is essentially a random process over all possible pairs of protein activator/143

product in the constant collection Ω excluding the original allele. In the corresponding GRN, mutating the allele of144

a gene is equivalent to rewiring the directed edge labeled by the focal gene. On the other hand, selection is usually145

characterized as some phenotypic response against the environment. Specifically, since a phenotype is developed146

through the cascading of internal signal of protein appearances starting from the external environmental stimuli, the147

binary state of a protein in the resulting phenotype corresponds to its reachability from the stimulated proteins in the148

GRN. The viability and the reproductivity of a genotype can therefore be modeled as functions of node reachability149

in the GRN. For example, in the case study in section 3.2, we will consider a simple scenario where the mutation at150

each gene is independent and the outcome is uniform among all possible alleles, and that the viability is 1 if some151

phenotypic constraint is satisfied or 0 otherwise. We explore more complex scenarios in later sections.152

2.3 Genotype Network: a Space of Mutational Relationship between GRNs153

Previous literature has developed the concept of the genotype network, which captures how various genotypes tran-154

sition from one to another through mutations (not necessarily just point mutations) and/or recombination [49, 53].155

Here, we adopt the genotype network to describe the mutational connection between GRNs. The genotype net-156

work of GRNs is a undirected network of networks, where every possible GRN becomes a mega-node, and two157

mega-nodes are connected if the two corresponding GRNs only differ by the allele at a single locus. In other words,158

an edge between two mega-nodes in the genotype network represents a single-locus mutation between GRNs (Fig-159

ure 2). Sometimes, instead of concentrating on all possible GRNs, we focus the mutational relationship between a160

subset of them. A particularly remarkable scenario is to constrain the GRNs on the binary state of proteins of the161

resulting phenotype. For instance, one common phenotypic constraint is to focus on the GRNs with equal fitness162

under selection, and the consequent induced subgraph of the genotype network is known as the neutral network163

[51, 53], which captures mutational transition between GRNs that are selectively neutral.164

We emphasize two important properties of a genotype network of GRNs and its induced subgraphs under the165

pathway framework. First, because the underlying collections of proteins and genes are fixed, and a mutation at any166

gene can lead to a mutant allele that points from any protein activator to any protein product, each GRN has the167

same number of mutational neighbors. As a result, the genotye network of GRNs is in fact a regular graph. Second,168

for any phenotypic constraint, we show that the resulting induced subgraph of the genotype network is connected.169

In other words, there always exists a sequence of single-locus mutations between two GRNs such that the involved170

GRNs all satisfy the arbitrary given constraint on their phenotype. The guaranteed connectedness also applies to the171

neutral network of GRNs, where the phenotypic constraint corresponds to protein states leading to the same fitness.172

We leave to Appendix C the detailed proof for the connectedness of a subgraph of the genotype network induced173

from arbitrary phenotypic constraint, and we only provide a brief outline here. The proof is based on a few ob-174

servations of the pathway-framework GRNs. Under the presumption of binary protein state, there naturally exist175

some protein activator/product pairs that are “redundant” in terms of the resulting phenotype. Such redundancy176

manifests when the product is simply the activator itself, or when multiple genes the same activator/product pair.177
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Figure 2: (a) Genotype network of GRNs, where, under the pathway framework, two mega-nodes (GRNs) are
connected if and only if thy differ by one edge rewiring. (b) Neutral network of GRNs, where inviable mega-nodes
are removed from the genotype network. In this illustrative example inviability is modeled as a regulatory pathway
from the stimulus to the protein product with a fatal effect.

Furthermore, given a phenotypic constraint, one can come up with a family of “naive” GRNs that satisfy the con-178

straint. Specifically, such a “naive” GRN is constructed by (a) for each required-present protein, assign it as the179

product of a gene with an external stimulus as the activator, and (b) assign the rest of genes with redundant acti-180

vator/product pairs. Our proof in Appendix C systematically finds a mutational trajectory between two GRNs gs181

and gt satisfying the phenotypic constraint. This trajectory consists of three segments — between gs and a naive182

GRN g′, between g′ and another naive GRN g′′, and finally between g′′ and gt — and all GRNs traversed by the183

mutational trajectory also satisfy the given phenotypic constraint.184

3 Analyses185

3.1 Convergence to a Stationary Distribution of GRNs186

Our main result shows the convergence of the quasi-species model (4) under the pathway framework, and we derive187

the stationary distribution over possible GRNs. We begin with noting some groups of GRNs whose probability188

to be observed is relatively straightforward in the model. First, for any GRN g with a zero viability, i.e., νg =189

P [Ψ (It) | g (It) = g] = 0, the probability to observe g from a randomly sampled individual that has survived selection190

is also zero. Formally speaking, denoting those GRNs with a non-zero viability by Gv = {g ∈ G | νg > 0}, we191

have P [g (It) = g | Ψ (It)] = 0 for each g ∈ G \ Gv and at any time t. Second, denote the GRNs with a zero192

reproductivity by Gs = {g ∈ G | ρg = 0}. Since GRNs Gs do not contribute to the offspring, their probability to193

be observed solely depends on the other GRNs G \ Gs. In particular, for each g ∈ Gs and at any time t, we have194

P [g (It) = g | Ψ (It)] = 1
νtρt−1

∑
g′∈G\Gs ρg′µg′gνgP [g (It−1) = g′ | Ψ (It−1)].195

It is thus useful to only keep track of the GRNs with a non-zero viability and a non-zero reproductivity. Hereafter,196

we consolidate the focal conditional probability for every g ∈ Gv \ Gs at generation t through a column vector p(t).197

We write the ig-th entry of p(t) as the one that corresponds to g, namely
[
p(t)

]
ig

= P [g (It) = g | Ψ (It)]. The master198

equation (4) can also be rewritten in a matrix format. Specifically, we denote by T a semi-transition matrix whose199

entry at the ig-th row and the ig′ -th column is ρg′µg′gνg, for any pair of g, g′ ∈ Gv \ Gs. We in addition have another200

matrix R to capture the transition from g′ ∈ Gv \Gs to g ∈ Gv∩Gs, whose entry at the ig-th row and the ig′ -th column201

is again ρg′µg′gνg. With these matrix notations, and along that the product of the average viability and the average202

reproductivity νtρt−1 =
∑
g∈Gv

∑
g′∈G ρg′µg′gνgP [g (It−1) = g′ | Ψ (It−1)] since

∑
g∈Gv P [g (It) = g | Ψ (It)] = 1, the203

master equation (4) therefore becomes204

p(t) =
T p(t−1)

1> T p(t−1) + 1> R p(t−1)
, (5)

where we use the notation 1> for the row vector of ones with the proper length.205

The matrix T plays a key role in the master equation (5), and it has a nice property that all its entries are206

positive. Since T corresponds to transition between GRNs g, g′ ∈ Gv \ Gs, the relative reproductivity ρg′ and the207

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2021. ; https://doi.org/10.1101/2021.04.11.439376doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439376
http://creativecommons.org/licenses/by-nc-nd/4.0/


viability νg are both positive. Next, we must show that the mutation probability µg′g is positive as well. Recall that,208

when constructed through the pathway framework of GRNs, the subgraph of the genotype network induced by any209

phenotypic constraint is connected (see section 2.3 and Appendix C). More formally, the connectedness among GRNs210

constrained by a non-zero viability and reproductivity implies that, for any g, g′ ∈ Gv \ Gs, there exists a sequence of211

mutations which transforms g′ to g through GRNs in Gv \ Gs. Since we presume that any single-locus mutation can212

occur with a non-zero probability (recall from section 2.1), there is a non-zero chance for g′ to mutate to g within213

one generation2, i.e., µg′g > 0. As a result, we observe that T is a positive matrix.214

For the ease of presentation, we next show the convergence of equation (5) when the matrix T is symmetric and215

leave the proof for a non-symmetric T in Appendix D. In this case, the eigenvectors {vi}ni=1 of the symmetric matrix216

T are linearly independent and form a basis of n-dimensional vectors, where n = |Gv \Gs|. We order the eigenvectors217

such that the magnitudes of their corresponding eigenvalues {λi}ni=1 are non-increasing. The initial distribution can218

then be rewritten as a linear combination of the eigenvectors of T219

p(0) =
n∑
i=1

aivi . (6)

In addition, because p(t) is proportional to T p(t−1) for t > 0, we have p(t−1) proportional to Tt−1 p(0) and220

consequently221

p(t) =
Tt p(0)

1> Tt p(0) + 1> R Tt−1 p(0)

=

∑n
i=1 ai (λi)

t
vi∑n

i=1 ai

[
(λi)

t
(1>vi) + (λi)

t−1
(1>Rvi)

]
=

a1v1 +
∑n
i=2 ai (λi/λ1)

t
vi

a1

(
1>v1 + 1>Rv1

λ1

)
+
∑n
i=2 ai

[
(λi/λ1)

t
(1>vi) + (λi/λ1)

t−1
(

1>Rvi

λ1

)] , (7)

where v1 and λ1 are the leading eigenvector and the leading eigenvalue of T respectively. Since T is a positive222

matrix, by the Perron-Frobenius theorem, we have |λ1| > |λi| for every i > 1, which guarantees the convergence of223

equation (5)224

lim
t→∞

p(t) =
v1

1>v1 + 1>Rv1

λ1

. (8)

For a general and potentially non-symmetric matrix T, we can first factor T by its generalized eigenvectors and225

its Jordon normal form and then an analogous derivation follows (see Appendix D). Therefore, under the pathway226

framework of GRNs, the master equation (5) converges to a stationary distribution that is proportional to the leading227

eigenvector of T. Combined with the GRNs with a zero viability/reproductivity, whose probability to be observed228

under the limit t→∞ can be easily computed given (8), the stationary distribution of GRNs describes the balanced229

scenario between selection, mutation, and reproduction.230

3.2 Case Study: Binary Viability, Identical Reproductivity, and Independent Muta-231

tion232

We next turn to a case study to validate our predicted stationary distribution of GRNs. We will examine a more233

specific version of the quasi-species model (4) with assumptions on the viability, reproduction, and mutation of a234

GRN. First, a GRN g either always survives the selection or becomes inviable, i.e., it has a binary viability νg ∈ {0, 1}.235

It also implies that for any GRN g ∈ Gv with a non-zero viability, we have νg = 1.236

2To be more precise, this argument is only valid when the joint probability for any combination of multiple single-locus mutations is
non-zero per generation. Otherwise, we can modify the master equation (5) by extending the time scale from 1 to ∆t, where ∆t is the
diameter of the subgraph of the genotype network constrained by a non-zero viability and reproductivity. The modified transition matrix
is now proportional to T∆t, which is a positive matrix since mutation events at different generations are independent. Replacing T by
T∆t we have an analogous derivation to prove the convergence of the master equation.
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Second, we assume that each GRN g ∈ G produces the same number of offspring and there is no sexual selection.237

Equivalently, the probability that an individual randomly sampled from an infinitely large offspring population is238

reproduced by a viable parent with GRN g is a constant for any viable GRN g ∈ Gv. We denote this uniform239

reproductivity by ρg = P [It−1 → It | g (It−1) = g, Ψ (It−1)] = ρ , which is asserted to be non-zero.240

Third, given the underlying collection of proteins Ω and genes Γ, the per-generation occurrence of mutation at241

every γ ∈ Γ is assumed an independent identically distributed Bernoulli random variable with a constant success242

probability µ. Moreover, if it occurs, a mutation at γ randomly changes γ’s expression behavior to any other pair243

of protein activator/product encoded in Ω with an equal probability. Under this assumption of independent and244

uniform mutation, the per-generation probability that a GRN g′ mutates to g becomes245

µg′g =

(
µ

|α(Ω)| − 1

)d(g′,g)

(1− µ)
|Γ|−d(g′,g)

, (9)

where we denote by α(Ω) the set of possible pairs of protein activator/product in Ω, and d(g′, g) is the number of246

genes with different expression behavior between g′ and g.247

For this more specific model, we can rewrite the semi-transition matrix T into a series248

T = T0 + T1 + T2 + . . .+ T|Γ| , (10)

where the entry at the ig-th row and the ig′ -th column of matrix Tk is ρµg′g if d(g′, g) = k and 0 otherwise. Observe249

that T0 is proportional to the identity matrix I (of a proper size), and T1 is proportional to the adjacency matrix250

of the neutral network of GRNs (see section 2.3), which we denoted by A. Writing T̃k = Tk / µ
k, whose entries are251

finite even for a zero per-generation, per-locus mutation probability µ, equation (10) becomes252

T = ρ (1− µ)
|Γ|

I + ρ

(
µ

|α(Ω)| − 1

)
(1− µ)

|Γ|−1
A +

|Γ|∑
k=2

µk T̃k . (11)

We further consider the scenario that mutations are rare events, specifically, under the limit µ → 0. Since the253

eigenvectors of I+cA are exactly the eigenvectors of A for any scalar c, and {Tk}|Γ|k=1 are symmetric matrices because254

d(g′, g) = d(g, g′), the theory of eigenvalue perturbation [54, 55] ensures that the leading eigenvector of T converges255

to the leading eigenvector3 of A:256

lim
µ→0

v1 = v1 (A) . (12)

From equation (8), we have257

lim
µ→0

lim
t→∞

p(t) =
v1 (A)

1>v1 (A)
. (13)

In network science, entries of the leading eigenvector of the adjacency matrix of a connected, undirected graph is258

known as the eigenvector centrality [56, 57] of the nodes. As a result, under the assumptions of binary viability,259

identical reproductivity, and rare, uniform mutation, the probability distribution of viable GRNs converges to a260

stationary distribution that is proportional to their eigenvector centrality in the neutral network.261

To validate the predicted probability distribution of GRNs under mutation-selection balance, we simulate the262

evolution of 107 parallel populations. The simulations are parametrized with the constant sets of |Γ| = 4 genes and263

|Ω| = 6 proteins. We further presume that two proteins can not be the product of any expression behavior, whose264

presence state can only be stimulated externally and hereafter they are referred to the input proteins. We also presume265

that two other proteins only have direct physiological effects and they can not serve as the activator of any expression266

behavior, which we call the output proteins. Under this minimal setup, there are in total |α(Ω)| = 16 potential pairs267

of expression activator/product, which leads to |G| = 65536 plausible GRNs. We evolve the populations under268

the environmental condition such that one of the input proteins is externally stimulated, and one of the output269

proteins shows a fatal effect which is required absent for an individual’s viability, resulting in |Gv| = 45389 possible270

viable GRNs altogether. Our simulated GRNs are indeed small to avoid data scarcity in sampling the empirical271

distribution since the number of possible GRNs grows super-exponentially with the number of genes and proteins.272

We leave simulation of more realistic GRNs in future work.273

3Here we abuse the notation v1 (A) and λ1 (A) for the leading eigenvector and the leading eigenvalue of A respectively.
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Figure 3: Validation that the evolutionary dynamics of GRNs converges to the derived stationary distribution (13).
We compare the predicted stationary distribution of viable GRNs under the rare-mutation approximation with (a)
the exact leading eigenvector of the transition matrix (11) with various per-locus mutation probability µ (colored by a
red-purple gradient from large to small), and (b) the distribution of GRNs sampled from their simulated evolutionary
dynamics with µ = 0.1 (blue). The predicted distribution is colored in gray, and the shaded area shows its 95%
confidence band that accounts for the uncertainty of finite-sized sampling in the simulations. In both panels, the
viable GRNs are ordered increasingly by their predicted probability to be observed.

The evolution of parallel populations are simulated using a Wright-Fisher model [58]. Specifically, we fix a274

number of 16 individuals for all populations, and given a current generation, the next generation is generated275

through randomly choosing viable GRNs from the current generation without replacement followed by potential276

mutations with a per-locus mutation probability µ = 0.1. We begin with 10,000 different initial populations where277

the GRN of every individual is chosen uniformly at random from all possibilities G, and 1,000 lineages are evolved278

from each initial population. Each of the 107 parallel populations are evolved for a constant number of generations,279

from this ensemble of lineages we randomly sample a viable GRN to form the simulated distribution of GRNs. This280

fixed length of evolution is determined through the temporal lower bound such that the resulting GRN distribution281

is theoretically closed enough to the stationary distribution regarding to a given level of error tolerance (detailed in282

Appendix E).283

Moreover, in order to account for the uncertainty of finite-sized sampling in the simulated distribution, we284

also draw the same number of 107 independent samples from the predicted distribution (13) to form an empirical285

distribution. Repeating the sampling procedure 1,000 times, we obtain an ensemble of empirical distributions that286

captures the effect of finite-sized sampling over the predicted probability that GRNs are to be observed. We further287

use the averaged variation distance between the empirical distribution and the predicted distribution as the error288

tolerance from which the number of generations to be simulated is calculated such that convergence of the model is289

theoretically guaranteed (Appendix E).290

In Figure 3a, we compare the exact, properly normalized leading vector of the transition matrix T (11) along291

with the predicted stationary distribution of viable GRNs under the rare-mutation approximation (13). Observe292

that even a moderate per-locus mutation probability µ leads to a GRN distribution well aligned with the predicted293

one, especially, with respect to the uncertainty arising from finite-sized sampling in the simulations. Moreover,294

Figure 3b shows the simulated distribution of viable GRNs after long-term evolution. We see that, despite a little295

overdispersion, the simulated distribution agrees with the derived stationary distribution of GRNs. Direct comparison296

between the simulated distribution and the exact solution, i.e., the leading eigenvector of the transition matrix297

(11) shows no significant difference as well (see Supplementary Figure 5). Combined, our simulations indicate298

computational evidence that, when viability is assumed rugged and mutations are rare, the topology of the neutral299

network, particularly the eigenvector centrality of mega-nodes, serves as a informative predictor of the prevalence of300

GRNs under mutation-selection balance.301
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Env. 1 Env. 2 Env. 3 Env. 4 Env. 5 Env. 6 Env. 7
Stimuli {1} {1} {1, 2} {1} {1} {1, 2} {1}
Essentials ∅ ∅ ∅ {6} {5, 6} {6} {5}
Fatals {6} {5, 6} {6} ∅ ∅ ∅ {6}

Table 1: Different environmental conditions specified by the sets of stimulated, essential, fatal proteins.

No spare genes No redundant genes All genes activated No direct selection
Group (i)
Group (ii) X
Group (iii) X X
Group (iv) X X
Group (v) X X X
Group (vi) X
Group (vii) X
Group (viii) X X

Table 2: Groups of GRNs by imposing constraints on their structural properties.

3.3 Prevalent GRNs under Mutation-Selection Balance302

We now apply our prediction in the case study of binary viability, identical reproductivity, and rare mutation to303

further investigate the structure of GRNs that have a higher probability to be observed than others under different304

environmental conditions. Here we again consider GRNs with a constant collection of 6 proteins and 4 genes. In305

addition, for the ease of presentation, we label the genes by uppercase letter Γ = {A,B,C,D} and the proteins by306

numerals Ω = {1, 2, 3, 4, 5, 6}, where protein 1 and 2 are the input proteins and protein 5 and 6 are the output proteins307

respectively (see section 3.2). Under the pathway framework of GRNs, an environment can be jointly described by308

a.) a set of stimuli proteins that are externally stimulated to be in the presence state, b.) a set of essential proteins309

whose absence state leads to inviability of the individual, and c.) a set of fatal proteins whose presence state also310

causes inviability. We will focus on seven distinct environments listed in Table 1 that showcase the scenarios of single311

versus multiple stimulated/essential/fatal proteins and their combinations.312

For each of the focal environmental conditions, we examine the prevalent regulatory structure among various313

groups of GRNs. These groups consist of GRNs satisfying different constraints on their structural properties, which314

correspond to a few artificially enforced scenarios of interests. Here the focal topological constraints originate315

from patterns observed in the most prevalent GRNs, and progressively adding constraints offers a rough ranking of316

regulatory patterns for their inducing prevalence. We arrange groups of GRNs based on the following four constraints:317

First, GRNs with a gene of “spare” functionality are excluded, where the spareness of a gene refers to its negligible318

consequence on the resulting phenotype. This includes self-regulating genes due to the binary state assumption and319

genes that are activated by an input protein which is not externally stimulated or that produce an output protein320

without an essential/fatal effect under the given environment. Second, we exclude GRNs with multiple genes of321

the same, redundant expression behavior. Third, we only consider those GRNs where all the genes are functionally322

activated. This constraint mimics the scenario that genes with active expression behavior are more likely to be323

observed empirically than inactive ones. Forth, we exclude GRNs where a gene is directly activated by a stimulus324

and produces an essential protein to enforce selection on regulation rather than individual genes. Combinations of325

these four constraints lead to eight distinct groups where the prevalent GRNs are investigated (see Table 2).326

In Figure 4, we plot the GRNs that have the largest predicted probability to be observed among the various327

groups and environments, i.e., the GRNs with the greatest eigenvector centrality in the neutral network under each328

scenario. Note that such GRNs may not be unique; in fact, one can find multiple alike GRNs through transformations329

that preserve their roles in the neutral network, e.g., exchanging the expression behavior of two genes A and B. Yet,330

these GRNs all share the common structural features, and we only show a random sample from the GRNs with the331

same, maximal probability to be observed in our prediction. Moreover, Figure 4 demonstrates the prevalent GRNs in332

both the representation of the pathway framework that manifests expression activator/product of each gene (labeled333

arrows between circles) and that of the conventional notion showing the regulation between genes (unlabeled arrows334

among rectangles).335

A few intriguing observations arise from the prevalent regulatory structure in Figure 4. For the environmental336
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Figure 4: GRN that has the largest eigenvector centrality in the neutral network for different environmental conditions
(Table 1) and among different constrained groups of GRNs (Table 2). For each prevalent GRN, its pathway framework
representation is plotted by the circles and the labeled arrows, while its conventional representation is drawn through
the rectangles and the unlabeled arrows. A node is colored in orange if the protein/gene is present/activated and in
blue otherwise.
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conditions where only the fatality of protein products is imposed (environment 1, 2, and 3), the GRNs with the largest337

probability to be realized under mutation-selection balance are the ones in which spare genes dominate (group (i)).338

Once constrained by the absence of the spare genetic functionality (group (ii)), we see prevalent GRNs favoring all339

genes sharing the same expression behavior which does not involve any stimulated or fatal proteins. If we further340

exclude redundant genes or enforce all genes to be activated (group (iii) and (iv) respectively), the prevalent GRNs341

demonstrate a structure which seemingly avoids expression activated by the stimulated protein or producing the342

fatal proteins as much as possible, and imposing both constraints leads to a similar outcome. Interestingly, for the343

environment with multiple stimuli and constraining on no spare and redundant genes (environment 3 and group344

(iii)), the functional activeness of all genes naturally emerges.345

On the other hand, for the environmental conditions where only the essentiality of protein products is obligated346

(environment 4, 5, and 6), the most prevalent GRNs are the ones where several redundant genes are directly activated347

by a stimulus and produces an essential protein, and they are evenly split if multiple essential targets or stimuli348

exist (group (i)). When redundant genes are artificially excluded (group (vi)), the prevalent GRNs turn into a349

structure that manifests multiple pathways between the stimuli and the essential proteins. While constrained by350

no direct gene expression activated by a stimulus and producing an essential target (group (vii)), the prevalent351

GRNs similarly show multiple pathways yet each of which involves at least two genes, and these pathways share the352

same intermediate protein that serves as the product of one and the activator of another. Jointly imposing the two353

constraints mentioned above (group (viii)) results in the prevalent GRN structure that maintains multiple regulatory354

pathways and simultaneously triggers the presence state of the underlying proteins, if plausible. Notice that for these355

environmental condition, the prevalent GRNs take advantages of the functionality of every gene, and all the genes356

are activated.357

Last but not least, for the environmental condition where both essential and fatal proteins exists (environment358

7), the most probable GRNs favor redundant genes that are directly activated by the stimulus and synthesize the359

essential target when the genetic redundancy is not constrained (group (i), (ii), and(iv)). Otherwise, the prevalent360

regulatory structure leaves one gene to maintain its essentiality, whereas others are capable to generate the essential361

protein but their activators remain absent (group (iii) and (vi)). If we further artificially require the activation of362

genes or exclude direct selection on individual genes (group (v), (vii), and (viii)), we begin to see multiple pathways363

in the prevalent GRNs.364

We discover that most of the prevalent structures of GRNs in Figure 4 follow an intuitive pattern: these GRNs365

have the least plausible, subsequent inviable mutants under the diverse environmental conditions and structural366

constraints. When selection is enforced by the fatality of proteins, any regulatory pathway from the stimulus to the367

fatal protein is prohibited. The prevalent GRNs keep the fewest proteins in their presence state that can serve as the368

potential expression activators, since this minimizes the ways for subsequent mutations to create a lethal regulatory369

pathway. As a result, the mutation-selection balance drives the dominance of genes with a spare functionality, and370

secondly the appearance of redundant genes whose expression involves neither the stimulus nor the fatal protein. On371

the contrary, when selection acts through the essentiality of proteins, regulatory pathways from the stimulus to the372

essential target become critical for an individual’s viability. The prevalent GRNs show the structure of redundant373

genes or multiple pathways such that the chance of eliminating the essential pathways through subsequent mutations374

is most mitigated. Therefore genes in these prevalent GRNs are expected to be functionally active. Moreover, even if375

a gene does not participate in an essential pathway, its expression behavior will involve the stimulus or the essential376

protein to potentially form a pathway with latent mutations. In the case where both the fatal and the essential target377

exist, the prevalent GRNs demonstrate structures as a superposition of the two patterns we previously discussed,378

which alternatively display the characteristics of the fatality-/essentiality-driven scenario under different structural379

constraints of gene regulation.380

4 Discussion381

In this work, we analyze the evolutionary dynamics of GRNs under a quasi-species model with selection, muta-382

tion, and asexual reproduction. Integrating with the pathway framework of GRNs that abstracts the alleles of383

genes through their expression behavior, we analytically show that the population dynamics always converges to384

a stationary distribution of GRNs given any arbitrary viability function and stochastic mutational transition as385

long as no mutation is prohibited. This stationary distribution characterizes the ensemble of regulatory circuits386

under mutation-selection balance, and it implicates the structural features of GRNs to be predicted favorable under387

long-term evolution. Next, we investigate a case study assuming binary viability, identical reproductivity and rare388
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mutation, and find that the stationary distribution of GRNs can be derived from the topology of the genotype net-389

work. Specifically, the probability to observe a GRN under mutation-selection balance is proportional to the GRN’s390

eigenvector centrality in the neutral network, which is a subgraph of the genotype network consisting of all viable391

GRNs.392

We advocate that our contribution to the theory of evolutionary dynamics provides a mechanistic explanation393

for the key assumption of irreducible transition matrices in existing literature [45, 46, 47]. As we mentioned in the394

Introduction, Moran relates this assumption, which leads to the global convergence to a single quasi-species, to the395

scenario that viable genotypes are mutually accessible through mutations [48]. In a similar spirit, a recent review396

[53] concludes that a population genetic model situating on a genotype network always evolves into a stationary397

solution once we retreat to the regime of non-zero fitnesses. Our work takes an alternative route to recover the398

same assumption; instead of the absent knowledge between genotypes and their fitnesses, we consider a minimal399

modeling framework of how genotypes develop into phenotypes via the mechanisms of gene regulation [37]. Despite400

the simplicity of this modeling framework, when encapsulating the genotype-phenotype mapping through GRNs, the401

mutational accessibility between genotypes with non-zero fitnesses naturally emerges due to the high dimentionality402

of GRNs. This result relaxes the global convergence in quasi-species theory to the cases with extreme fitness values403

such as a holey adaptive landscape [59].404

Our derivation sheds light on how we may interpret the prevalence of GRNs under rare mutation and strong405

selection on the resulting phenotypic functionality. When first introduced [56], the eigenvector centrality was designed406

to capture an individual’s global “importance” as measured by their social ties in a communication network. In407

particular, the eigenvector centrality is computed based on the idea that a node’s importance is proportional to the408

sum of its neighbors’ importance scores. This interpretation is nicely translated to the content of the neutral network409

of regulatory circuits: Under mutation-selection balance, our derivation predicts that the probability to observe a410

GRN is proportional to the total likelihood to find its viable, mutational neighbors in the population. Intriguingly,411

the interpretation of eigenvector centrality leads to some emerging concept of robustness [60], where the prevalence412

of a GRN is not only due to its selective advantage but also the overall prevalence of its mutational neighboring413

GRNs.414

Moreover, the observed prevalent structures of GRNs in our analyses also provides a possible alternative expla-415

nation for evolutionary robustness. We inductively find that these prevalent regulatory structures follow the same416

pattern to achieve a minimal number of plausible inviable mutants (see section 3.3). Since the genotype network is417

a regular graph under the pathway framework of GRNs (recalling from section 2.3), i.e., every GRN has the same418

amount of mutational neighbors, minimizing the number of inviable mutants optimally increases the viable mutants419

for a GRN. In other words, the observed prevalent GRNs under various environmental conditions appear to show420

the regulatory structures with the maximal number of neighbors in the neutral network, and indeed the degree of421

a node is known to be strongly correlated with its eigenvector centrality in the network science literature [57]. We422

emphasize that these concepts of robustness naturally emerge from the mechanistic, quasi-species model of GRN423

evolution rather than an a prior assumption about prevalent regulatory circuits.424

Previous work often focused on relating the topological features of genotype networks to evolutionary processes of425

interest. For example, evolvability has been approximated by the size of the genotype network of a given phenotype426

[61], as well as the number of “neighboring” phenotypes inferred from the genotype network [62]. Robustness has427

been modeled as the node degree in the genotype network [62], and [63] adopted the average path length in the428

genotype network as a proxy for genetic heterogeneity. To our best knowledge, Van Nimwegen et al. was the first429

to bridge between the asymptotic abundance of different genotypes under a population genetic model and their430

eigenvector centrality in the neutral network [60]. Our case study resonates Van Nimwegen et al.’s conclusion and431

differentiates a quasi-species perspective from a model lacking of genetic variation in a population. For instance, if a432

population fixes a single genotype at all time and its evolution is modeled as a random walk on the neutral network,433

network science guarantees the fixation probability at a given genotype to be proportional to its degree instead of434

the eigenvector centrality in the neutral network [57].435

The current scope of the work presented here is not without a few noteworthy limitations. First, we assume a436

constant, static surrounding in which the population evolves, whereas populations certainly experience shifting or437

alternating environmental conditions [64, 65, 66]. Second, our model mainly focused on the joint forces of selection438

and mutation. Although this simple model can indeed be extended through more sophisticated mechanisms known439

to play a role in evolutionary dynamics such as recombination [67, 68], gene duplication [69, 70], and demographic440

information [71], we leave such extensions–along with their possible implications–to future work. Third, when the441

time scale of environmental changes is much faster than that of the evolutionary dynamics (see Appendix E), the442

transient constitution of GRNs in a population shall acquire more attention than their stationary distribution at443
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mutation-selection balance [72, 73, 74]. Put simply, it remains an open question whether real-world populations444

should ever be conceptualized as at equilibrium (even dyanmic) as opposed to existing in some far-from equilibrium445

state [75]. As a result, further investigation should focus on the transient distributions and/or trajectories of GRNs446

under various population genetic models. Finally, despite confirmation between the derived stationary distribution of447

GRNs in an infinitely large population and the long-term numerical simulations, we also find that a finite population448

size moderately influences the transient evolutionary dynamics. Developing a richer understanding of the role drift449

plays in structuring the evolution of GRNs is an important extension of our work.450

The observed structure of molecular interaction networks is a result of myriad evolutionary forces. By analyzing451

such topologies using a network-science approach, it may be possible to construct a mechanistic theory for how452

evolution shapes and is constrained by higher-order interactions. Across a broad scope of genotype/neutral networks–453

with applications ranging from RNA sequences to metabolic reactions–our work rigorously shows that the neutral454

network of GRNs must be connected (in agreement with existing computational work [76]) and that the relative455

frequency at equilibrium of various GRNs can be predicted from first principles. Therefore, our work connects456

the evolutionary forces/mechanisms embedded in a population genetic model with the accordingly favorable GRN457

structure through the topology of the neutral network. Clearly, our predicted prevalent regulatory structures under458

mutation-selection balance may not capture all the features in empirical GRNs [77, 78]; however, we establish a null459

expectation for how GRNs are shaped by mutations and selection [26, 27]. Critically, this null expectation appears to460

recapitulate many of the topological features of molecular interaction networks currently associated with evolvability461

and robustness. Perhaps, more broadly speaking, the emergence of complex fitness landscapes can result from simple462

evolutionary rules.463
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Cañestro. Coelimination and survival in gene network evolution: Dismantling the ra-signaling in a chordate.
Molecular biology and evolution, 33(9):2401–2416, 2016.

[21] Yoram Louzoun, Lev Muchnik, and Sorin Solomon. Copying nodes versus editing links: the source of the
difference between genetic regulatory networks and the www. Bioinformatics, 22(5):581–588, 2006.

[22] Yung-Keun Kwon and Kwang-Hyun Cho. Analysis of feedback loops and robustness in network evolution based
on boolean models. BMC bioinformatics, 8(1):1–9, 2007.

[23] Sergei Maslov, Sandeep Krishna, Tin Yau Pang, and Kim Sneppen. Toolbox model of evolution of prokaryotic
metabolic networks and their regulation. Proceedings of the National Academy of Sciences, 106(24):9743–9748,
2009.

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2021. ; https://doi.org/10.1101/2021.04.11.439376doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439376
http://creativecommons.org/licenses/by-nc-nd/4.0/


[24] Feixiong Cheng, Chuang Liu, Chen-Ching Lin, Junfei Zhao, Peilin Jia, Wen-Hsiung Li, and Zhongming Zhao. A
gene gravity model for the evolution of cancer genomes: a study of 3,000 cancer genomes across 9 cancer types.
PLoS Comput Biol, 11(9):e1004497, 2015.

[25] Andreas Odorico, Estelle Rünneburger, and Arnaud Le Rouzic. Modelling the influence of parental effects on
gene-network evolution. Journal of evolutionary biology, 31(5):687–700, 2018.

[26] Allan Force, William A Cresko, F Bryan Pickett, Steven R Proulx, Chris Amemiya, and Michael Lynch. The
origin of subfunctions and modular gene regulation. Genetics, 170(1):433–446, 2005.

[27] Carlos Espinosa-Soto and Andreas Wagner. Specialization can drive the evolution of modularity. PLoS Comput
Biol, 6(3):e1000719, 2010.

[28] Weilin Peng, Ping Liu, Yuan Xue, and Murat Acar. Evolution of gene network activity by tuning the strength
of negative-feedback regulation. Nature communications, 6(1):1–9, 2015.

[29] Rishi R Masalia, Adam J Bewick, and John M Burke. Connectivity in gene coexpression networks negatively
correlates with rates of molecular evolution in flowering plants. PLoS One, 12(7):e0182289, 2017.

[30] Bram A. Siebert, Cameron L. Hall, James P. Gleeson, and Malbor Asllani. Role of modularity in self-organization
dynamics in biological networks. Phys. Rev. E, 102:052306, 2020.

[31] Evan A Boyle, Yang I Li, and Jonathan K Pritchard. An expanded view of complex traits: from polygenic to
omnigenic. Cell, 169(7):1177–1186, 2017.

[32] Thomas F Hansen. The evolution of genetic architecture. Annu. Rev. Ecol. Evol. Syst., 37:123–157, 2006.

[33] Andreas Wagner. Evolution of gene networks by gene duplications: a mathematical model and its implications
on genome organization. Proceedings of the National Academy of Sciences, 91(10):4387–4391, 1994.

[34] Mark L Siegal and Aviv Bergman. Waddington’s canalization revisited: developmental stability and evolution.
Proceedings of the National Academy of Sciences, 99(16):10528–10532, 2002.

[35] Mauricio O Carneiro, Clifford H Taubes, and Daniel L Hartl. Model transcriptional networks with continuously
varying expression levels. BMC evolutionary biology, 11(1):363, 2011.

[36] Josh S Schiffman and Peter L Ralph. System drift and speciation. bioRxiv, page 231209, 2018.

[37] Chia-Hung Yang and Samuel V Scarpino. Reproductive barriers as a byproduct of gene network evolution.
bioRxiv, 2020.

[38] Andreas Wagner. Does evolutionary plasticity evolve? Evolution, 50(3):1008–1023, 1996.

[39] Michael E Palmer and Marcus W Feldman. Dynamics of hybrid incompatibility in gene networks in a constant
environment. Evolution: International Journal of Organic Evolution, 63(2):418–431, 2009.

[40] Natasa Puzovic. Effect of gene network topology on the evolution of gene-specific expression noise. PhD thesis,
Christian-Albrechts-Universität Kiel, 2020.

[41] Z Burda, A Krzywicki, OC Martin, and M Zagorski. Distribution of essential interactions in model gene
regulatory networks under mutation-selection balance. Physical Review E, 82(1):011908, 2010.

[42] Claus O Wilke. Quasispecies theory in the context of population genetics. BMC evolutionary biology, 5(1):1–8,
2005.

[43] James Fraklin Crow and Kimura Motoo. An Introduction of Population Genetics Theory. Harper & Row, 1970.

[44] Manfred Eigen and Peter Schuster. A principle of natural self-organization. Naturwissenschaften, 64(11):541–
565, 1977.

[45] Colin J Thompson and John L McBride. On eigen’s theory of the self-organization of matter and the evolution
of biological macromolecules. Mathematical biosciences, 21(1-2):127–142, 1974.

[46] Billy L Jones, Richard H Enns, and Sadanand S Rangnekar. On the theory of selection of coupled macromolecular
systems. Bulletin of Mathematical Biology, 38(1):15–28, 1976.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2021. ; https://doi.org/10.1101/2021.04.11.439376doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439376
http://creativecommons.org/licenses/by-nc-nd/4.0/


[47] Lloyd Demetrius. Selection and evolution in macromolecular systems. Journal of theoretical biology, 103(4):
619–643, 1983.

[48] Patrick AP Moran. Global stability of genetic systems governed by mutation and selection. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 80, pages 331–336. Cambridge University Press,
1976.

[49] Andreas Wagner. The Origins of Evolutionary Innovations: A Theory of Transformative Change in Living
Systems. Oxford University Press, 2011.

[50] John Maynard Smith. Natural selection and the concept of a protein space. Nature, 225(5232):563–564, 1970.

[51] Peter Schuster, Walter Fontana, Peter F Stadler, and Ivo L Hofacker. From sequences to shapes and back: a case
study in rna secondary structures. Proceedings of the Royal Society of London. Series B: Biological Sciences,
255(1344):279–284, 1994.

[52] Matthew C Cowperthwaite and Lauren Ancel Meyers. How mutational networks shape evolution: lessons from
rna models. Annu. Rev. Ecol. Evol. Syst., 38:203–230, 2007.
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Appendices473

A Mathematical Formulation of the Pathway Framework of GRNs474

In this study, we assume there is a constant set of proteins that can possibly appear in the organisms. We clarify475

that this constant collection is not necessarily the proteins which we have observed in the certain species to date;476

contrarily, these proteins are the plausible options of the activators and products of gene expression, and they are477

better acknowledged as all (or a reasonable subset of) the proteins under our awareness. We will refer to the state478

over this protein set for their actual appearance in the organisms, with a more detailed discussion later.479

We furthermore divide the constant set of proteins into three categories: input proteins that can only be supplied480

through external stimuli but not through any internal gene expression, output proteins that are products of gene481

expression which affect physiological traits of the organisms but can not serve as activators of gene expression, and482

the remaining internal proteins with neither constraints. The input and internal proteins form the set of plausible483

activators for gene expression, whereas the internal and the output proteins become the set of products. This484

completes the underlying backbone of GRNs under the pathway framework.485

Definition A.1. We denote by Ωs and Ωt be the fixed underlying activator set and product set of gene expression486

respectively. And we call their union Ω = Ωs ∪ Ωt the underlying protein set.487

The three categories of proteins can be recovered easily from the notion of expression activators and products.488

In particular, the input, output, an d internal proteins are Ω− Ωt, Ω− Ωs, and Ωs ∩ Ωt respectively.489

With a pre-specified underlying backbone (Ωs,Ωt) of the regulatory structures, a gene regulatory network is490

a graphical abstraction of the expression behavior for the whole genotype. We will assume that the collection of491

genes of the organisms remains the same over evolutionary time, i.e., there is no duplication and deletion of the492

loci. A GRN is then uniquely determined by the activator and the product of every gene, and we have the following493

formulation:494

Definition A.2. Denote by Γ the fixed set of genes, or the gene set. We define a gene regulatory network495

(GRN) as a mapping g : Γ→ Ωs × Ωt. We further denote by G the set of all such gene regulatory networks.496

Definition A.2 may seem an unusual way to describe a network. To illustrate that the definition is appropriate,497

recall that a directed edge in a GRN under the pathway framework represents the input-output relation of a gene’s498

expression. Every edge in the GRN is thus labeled by the gene whose allelic content is abstracted as the edge. With499

the given protein set Ω as nodes, the GRN can be described as its edgelist representation — a table where each500

row stands for an edge (and its corresponding gene) and the two columns entails its source and target (i.e., the501

corresponding activator and protein product respectively). This table, and therefore the GRN, is equivalent to a502

mapping g from the finite set of genes Γ to the pairs of activators and products Ωs×Ωt, where g(γ) is the expression503

input-output pair of gene γ ∈ Γ.504

We also have the notion of projection from the input-output relations of a genotype. For any gene γ ∈ Γ, these505

projections explicitly point to its activator protein sg(γ) and its protein product tg(γ):506

Definition A.3. The activator projection and the product projection of a gene regulatory network g are507

defined by sg = ps ◦ g and tg = pt ◦ g, where ps and pt are the set projection from Ωs × Ωt onto Ωs and Ωt508

respectively.509

We next introduce how the two evolutionary forces we will consider in a population genetic model of GRNs,510

mutation and selection, can fit into the pathway framework.511

Mutating the allele of a gene can alter the expression behavior of the gene. Since under the pathway framework512

a genotype is conceptualized as a GRN on the expression functional level, we will model mutation to be changing513

the input-output relation of gene expression. Specifically, a mutation randomly rewires a single edge in the GRN514

and results in a mutant GRN. Equivalently we can find all the possible mutants, namely, those only differ by one515

input-output pair from the original GRN, and a mutation can be defined as a random process over the mutants.516

Definition A.4. Let g1, g2 be two gene regulatory networks. The set of genes with different alleles between g1 and517

g2 is518

∆(g1, g2) = {γ ∈ Γ | g1(γ) 6= g2(γ)} (14)

The edit distance between g1 and g2 is defined by d(g1, g2) = |∆(g1, g2)|.519
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Definition A.5. Let g be a gene regulatory network. We denote the set of mutants from g by520

N(g) = {g′ ∈ G | d(g, g′) = 1} (15)

i.e., those gene regulatory networks that are 1-edit-distant from g.521

Definition A.6. A mutation of gene regulatory network g is a random process with a probability measure over its522

mutants N(g), which we denote by µg.523

On the other hand, natural selection can be regarded as a phenotypic response to the surrounding environment,524

where the phenotype is derived from the genotype. We presume that the physiological traits of an organism are525

uniquely determined by the actual appearance of proteins within it, and that they are conditionally independent of526

the external environments. The phenotype is thus the collective state over the underlying protein set Ω. And this527

collective state is the outcome of external environmental stimuli and internal chemical signals propagating on the528

gene regulatory networks.529

For simplicity we adapt the chemical state of proteins to be binary, i.e., that a protein is present in the organism530

versus that it is absent. Additionally, assuming that the environmental condition directly triggers the presence state531

of some proteins, the binary state of a protein is determined by its reachability from those stimulated ones on the532

GRN. We let the set of proteins with the presence state to represent the phenotype derived from the GRN:533

Definition A.7. Let a g be a gene regulatory network, and let Ω0 ⊂ Ω−Ωt be the set of environmentally stimulated534

proteins. The phenotype of g is the function χg : P(Ω−Ωt)→ P(Ω)4, where for any protein ω ∈ Ω, ω ∈ χg(Ω0) if535

and only if there exists a sequence of genes {γi ∈ Γ}ki=1 such that tg(γk) = ω, sg(γi+1) = tg(γi) for i = 1, 2, . . . , k−1,536

and sg(γ1) ∈ Ω0.537

The phenotypic response to the environmental condition, or namely the individual viability under natural selec-538

tion, becomes a function of the collective binary state of the underlying proteins Ω. We again for simplicity adapt the539

viability to be the binary variable that whether the individual organism survives or not. Moreover, we suppose that540

this binary viability solely depends on two collections of proteins: those proteins which are essential for the organism541

to survive, and those having fatal effects to the organism. The selective environment is then explicitly specified by542

the sets of stimulated, essential, and fatal proteins respectively. We describe the outcome of selection through the543

viable GRNs, i.e., those with which a organism will survive natural selection:544

Definition A.8. Let Ω0 ⊂ Ω − Ωt and Ω+,Ω− ⊂ Ω − Ωs be the stimulated, essential, and fatal proteins in the545

environmental condition respectively. The selective environment, or simply selection, is the triplet S = (Ω0,Ω+,Ω−).546

We define the set of viable gene regulatory networks under selection S by547

GS = {g ∈ G | Ω+ ⊂ χg(Ω0), Ω− ⊂ Ω− χg(Ω0)} (16)

Notice that we have implicitly exerted the assumption that the stimulated proteins must be a subset of the input548

proteins, and the essential and fatal proteins must be a subset of the output proteins (recall Definition A.1).549

B Formal Definition of the Genotype Network and the Neutral Net-550

work of GRNs551

With the constant sets of activators Ωs, products Ωt, and genes Γ, and the pre-determined sets of stimulated proteins552

Ω0, essential proteins Ω+, and fatal proteins Ω−, we have the following definitions:553

Definition B.1. Recall from Definition A.2 and A.5 that G = {g : Γ→ Ωs × Ωt} is the set of all plausible gene554

regulatory networks, and N(g) are mutants from gene regulatory network g. The genotype network is a graph G555

whose nodes V (G) = G and whose edges E(G) = {(g, g′) ∈ G × G | g′ ∈ N(g)}.556

Definition B.2. Let S = (Ω0,Ω+,Ω−) be a given selection, and recall from Definition A.8 that GS is the set of viable557

gene regulatory networks under S. The neutral network subjected to S is a graph GS whose nodes V (GS) = GS558

and whose edges E (GS) = {(g, g′) ∈ GS × GS | g′ ∈ N(g)}. Note that GS is the induced subgraph of the genotype559

network G on nodes GS.560

4We denote by P(S) the power set of a set S, which is the set of all possible subsets of S.
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C Structural Properties of the Genotype Network and the Neutral561

Network of GRNs562

We begin with analyzing the structural properties of the genotype/neutral network of GRNs under the pathway563

framework, as well as highlighting those that are relavent to deriving the stationary distribution in the generalized564

population genetic model. First of all, the genotype network G shows an intuitive and nicely ordered structure. Since565

the mega-nodes in G consist of all the plausible GRNs G given the constant activators Ωs, products Ωt, and genes566

Γ, every mega-node is equivalent to a tuple of |Γ| entries, each of which takes a discrete value from Ωs × Ωt. Two567

mega-nodes/GRNs are connected in G if and only if they differ by the allele of a single gene, namely that the two568

corresponding tuple only differ by one entry, and as a result, the genotype network G is essentially a high-dimensional569

lattice.570

The lattice-like nature of the genotype network G implies several structural properties. The genotype network G571

must be a connected graph, which agrees with the intuition that any two genotypes (at least on their gene expression572

level, i.e., the GRNs) can be mutually reached by a sequence of mutations under zero selection pressure. In addition,573

the distance between two GRNs g1 and g2 in G is, recalling from Definition A.4, exactly their edit distance d (g1, g2)574

because the shortest paths correspond to the scenarios to mutate the genes with different alleles ∆ (g1, g2) sequentially.575

Furthermore, we also see that any GRN has the same number of mutational neighbors in G:576

Lemma C.1. The genotype network G is a regular graph.577

Proof. Given an arbitrary gene regulatory network g ∈ G and for any gene γ ∈ Γ, there are |Ωs ×Ωt| − 1 other gene578

regulatory networks that only differ from g by the allele at γ. The number of mutatnts is579

|N(g)| = |Γ| (|Ωs × Ωt| − 1) (17)

for any gene regulatory network g ∈ G, and hence every mega-node in G has the same degree.580

On the other hand, although the neutral network GS subjected to a pre-determined selection S = (Ω0,Ω+,Ω−) is581

a subgraph of the genotype network G (see Definition A.8), its structure is more disordered. There is no guarantee582

that GS is regular, and in fact one can easily find some counter-examples (e.g., see Figure ). The distance between two583

GRNs in G may not be preserved in GS either. For example, consider the case where Ωs = {1, 2, 3}, Ωt = {2, 3, 4},584

Γ = {a, b}, Ω0 = {1}, Ω+ = {4} and Ω− = ∅, and two GRNs g1 and g2 such that g1(a) = (1, 2), g1(b) = (2, 4),585

g2(a) = (1, 3) and g2(b) = (3, 4). In the genotype network G, there are two length-2 paths between g1 and g2, either586

through GRN g3 or g4 where g3(a) = g2(a), g3(b) = g1(b), g4(a) = g1(a) and g4(b) = g2(b). However, neither g3587

nor g4 satisfy the selection criterion, and thus they are excluded from the neutral network GS, in which the distance588

between g1 and g2 is greater than 2.589

Nevertheless, it turns out that, in most scenarios, any two GRNs are mutually reachable through some mutational590

trajectory in the neutral network GS:591

Lemma C.2. If |Γ| > |Ω+|, then the neutral network GS under selection S = (Ω0,Ω+,Ω−) is a connected graph.592

Proof. To show that GS is a connected graph, our strategy follows: For any two viable gene regulatory networks593

gs, gt ∈ V (GS) = GS, we will find a sequence of viable GRNs gs = g0, g1, . . . , gk−1, gk = gt ∈ GS that form a594

mutational trajectory from gs to gt, i.e., (gi−1, gi) ∈ E (GS) for every i = 1, 2, . . . , k. More specifically, we will595

uncover the sequence of mutations through a few general “steps” of edge rewiring in GRNs and ensure that two596

invariants hold in each of these steps:597

(I) There is a path from the stimulated proteins Ω0 to each of the essential proteins Ω+ in the GRNs.598

(II) There is no path from the stimulated proteins Ω0 to any of the fatal proteins Ω− in the GRNs.599

Here we would like to introduce a few notations for the ease to illustrate the edge-rewiring steps in the GRNs.600

First, we put the genes into different groups with respect to gs and gt. Let Γ
(+)
s = {γ ∈ Γ | tgs ∈ Ω+} and Γ

(+)
t =601

{γ ∈ Γ | tgt ∈ Ω+} be the genes that directly produce the essential proteins in gs and gt respectively. Similarly, let602

Γ
(−)
s = {γ ∈ Γ | tgs ∈ Ω−} and Γ

(−)
t = {γ ∈ Γ | tgt ∈ Ω−} be the genes that directly produce the fatal proteins in603

gs and gt respectively. Graphically, these genes correspond to the incoming incident edges of either Ω+ or Ω−. In604
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addition, denote by Πg(u, v) the set of genes that are involved in paths from protein u to protein v in the GRN g, and605

let Πs = {γ ∈ Πgs(u, v) | u ∈ Ω0, v ∈ Ω+} and Πt = {γ ∈ Πgt(u, v) | u ∈ Ω0, v ∈ Ω+} be the genes that are involved606

in pathways from Ω0 to Ω+ in gs and gt respectively.607

Second, when Γ\Πs or Γ\Πt is non-empty, there exists some “safe” allele among all the plausible allelic contents608

Ωs×Ωt. We will denote such a tuple as α. If Ωs ∩Ωt is non-empty, then there is a protein ω′ that can serve both an609

activator and a product, and we will take α = (ω′, ω′). On the other hand, if Ωs∩Ωt = ∅, we must have a non-empty610

Ωs \ Ω0, otherwise Γ \Πs = Γ \Πt = ∅. Hence there is a protein u′ ∈ Ωs \ Ω0 of the absence state, and we will take611

α = (u′, v′) for some v′ ∈ Ω−. Note that the allele α is said “safe” in the sense that introducing α will never break612

invariant (II).613

Now we state in details the five steps of edge rewiring that mutate gs into gt through viable GRNs:614

1. Rewire edges (alleles of genes) in gs to generate a viable GRN g′1 such that g′1(γ) = α for any gene γ ∈ Γ
(−)
s and615

g′1(γ) = gs(γ) for γ /∈ Γ
(−)
s . During this rewiring process, invariant (I) holds since the alleles of Πs ⊂ Γ \ Γ

(−)
s616

remain unchanged, and invariant (II) holds because this step simply introduces the safe allele α.617

2. Rewire edges in g′1 to generate another viable GRN g′2 such that g′2(γ) = (u, tgs(γ)) for any gene γ ∈ Γ
(+)
s and618

some u ∈ Ω0, and g′2(γ) = g′1(γ) for γ /∈ Γ
(+)
s . Since this step only creates length-1 pathways from Ω0 and Ω+,619

both invariant (I) and (II) are guaranteed.620

3. Rewire edges in g′2 to generate another viable GRN g′3 such that g′3(γ) = gt(γ) for any gene γ /∈ Γ
(+)
s ∪ Γ

(−)
t621

and g′3(γ) = g′2(γ) for γ ∈ Γ
(+)
s ∪ Γ

(−)
t . Invariant (I) holds because the length-1 pathways introduced in Step 2622

remain unchanged. Since in g′1 (and thus g′2) proteins Ω− have no incoming incident edges, and no rewiring623

leads to an incoming edge of Ω− in this step, invariant (II) is also ensured.624

4. Rewire edges in g′3 to generate another viable GRN g′4 such that g′4(γ) = gt(γ) for any gene γ ∈ Γ
(+)
s \ Γ

(−)
t625

and g′4(γ) = g′3(γ) for γ /∈ Γ
(+)
s \ Γ

(−)
t . In particular, for a gene γ ∈ Γ

(+)
s ∩ Γ

(+)
t , the rewiring process can be626

achieved via an intermediate gene γ′ ∈ Γ due to the pre-condition that |Γ| > |Ω+|5. Since for each γ ∈ Πt\Γ(+)
s ,627

Step 3 has properly rewire its edge/allele to g′3(γ) = gt(γ), the essential pathways formed by Πt are gradually628

completed throughout the process of rewiring edges corresponding to Γ
(+)
s \ Γ

(−)
t . And similar to Step 3, no629

edge is rewired to be an incoming edge of Ω− in this step, and thus invariant (II) holds as well.630

5. Rewiring edges corresponding to Γ
(−)
t in g′4 to generate gt completes the viable mutational trajectory. Because631

edges of Πt ⊂ Γ \ Γ
(−)
t remain unchanged in this step, invariant (I) still holds. Furthermore, since gt is viable,632

rewiring edges of Γ
(−)
t also preserves invariant (II).633

634

Note that since for a GRN to satisfy the selection criterion, every protein in Ω+ must be produced by a gene,635

so we must have |Γ| ≥ |Ω+|. As a result, the only case that Lemma C.2 has excluded is that of |Γ| = |Ω+|, where636

the GRNs form |Ω+|! components in the neutral network, each of size |Ω0||Ω+|. Moreover, the proof we provide here637

is general enough such that Lemma C.2 holds even if one adapts additional constraints and defines a mutation as638

changing either the protein activator or the protein product of a gene but not both.639

D Convergence to a Stationary Distribution with a Non-symmetric640

Transition Matrix641

Here we show a general, analogous proof for (8) in the case that the semi-transition matrix T is non-symmetric.642

Any square matrix can be factored by its general eigenvectors and its Jordan normal form. In particular, we have643

5Here such a rewiring process through an intermediate gene is necessary for most scenarios. Specifically, in the case where tgs (γ) 6=
tgt (γ), directly rewiring g′3(γ) to g′4(γ) may break the essential pathway to tgs (γ). One can alternatively find a gene γ′ whose allele
does not produce tgs (γ) or tgt (γ) in g′3, where the existence of γ′ is guaranteed since |Γ| > |Ω+|. Rewiring g′3(γ′) to τ = (u, tgs (γ)) for
some u ∈ Ω0, applying the direct rewiring between g′3(γ) and g′4(γ), and then rewiring τ back to g′3(γ′) avoids the potential break of the
essential pathways.
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T = PJP−1 (or equivalently TP = PJ), where P is a matrix consisting of linearly independent column vectors, and644

J is a block diagonal matrix such that645

J =

J1

. . .

Jm

 ,

Jk =


λk 1

λk
. . .

. . . 1
λk

 , for k = 1, 2, . . . ,m . (18)

The diagonal entries of J are the eigenvalues of T with multiplicities. The matrix J is called the Jordan normal646

form of T, and the column vectors of P are called the generalized eigenvectors of T. Similar to the derivation647

in section 3.1, we will again arrange the eigenvalues of T, i.e., the diagonal entries of J, in non-increasing order.648

There are a few noteworthy points about factoring the matrix T by its generalized eigenvectors and its Jordan649

normal form. First, note that the generalized eigenvecotrs are linearly independent and form a basis for n-dimensional650

vectors, where n is the size of T. We denote by nk the size of the Jordan block Jk, and let
{

v
(k)
i

}nk

i=1
be the generalized651

eigenvectors corresponding to the eigenvalues in Jk. Recalling from the notation in section 3.1, the initial distribution652

over the GRNs with a non-zero viability and a non-zero relative reproductivity Gv \ Gs can be written as a linear653

combination of the generalized eigenvectors654

p(0) =

m∑
k=1

nk∑
i=1

a
(k)
i v

(k)
i . (19)

Second, since T is a positive matrix (see section 3.1), by the Perron-Frobenius theorem, the size of the first Jordan655

block n1 equals to 1. Specifically, the only entry in J1 is the leading eigenvalue λ1, and |λ1| > |λk| for any656

k = 2, 3, . . . ,m. For convenience, we abuse the notation and write v1 = v
(1)
1 .657

From the matrix form of the master equation (5), we know that p(t) is proportional to T p(t−1), and consequently658

p(t−1) ∝ Tt−1 p(0)

= Tt−2 ·
m∑
k=1

nk∑
i=1

a
(k)
i Tv

(k)
i

= Tt−2 ·
m∑
k=1

nk∑
i=1

a
(k)
i

[
λkv

(k)
i + (1− δi,1) v

(k)
i−1

]
= Tt−2 ·

m∑
k=1

nk∑
i=1

[
λka

(k)
i + (1− δi,nk

) a
(k)
i+1

]
v

(k)
i

...

=
m∑
k=1

nk∑
i=1

[
λt−1
k a

(k)
i + (1− δi,nk

)

(
t−2∑
s=0

λsk

)
a

(k)
i+1

]
v

(k)
i . (20)

Plugging (20) into the master equation (5), we have659
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p(t) =
T ·
∑m
k=1

∑nk

i=1

[
λt−1
k a

(k)
i + (1− δi,nk

)
(∑t−2

s=0 λ
s
k

)
a

(k)
i+1

]
v

(k)
i

1> (T + R) ·
∑m
k=1

∑nk

i=1

[
λt−1
k a

(k)
i + (1− δi,nk

)
(∑t−2

s=0 λ
s
k

)
a

(k)
i+1

]
v

(k)
i

=

∑m
k=1

∑nk

i=1

[
λtka

(k)
i +

(λt
k−1)(1−δi,nk)

λk−1 a
(k)
i+1

]
v

(k)
i∑m

k=1

∑nk

i=1

{[
λtka

(k)
i +

(λt
k−1)(1−δi,nk)

λk−1 a
(k)
i+1

](
1>v

(k)
i

)
+

[
λt−1
k a

(k)
i +

(λt−1
k −1)(1−δi,nk)

λk−1 a
(k)
i+1

](
1>Rv

(k)
i

)}
=

f
(1)
1 (t) v1 +

∑m
k=2

∑nk

i=1 f
(k)
i (t) vki(

f
(1)
1 (t) 1>v1 + f

(1)
1 (t− 1) 1>Rv1

λ1

)
+
∑m
k=2

∑nk

i=1

(
f

(k)
i (t) 1>v

(k)
i + f

(k)
i (t− 1)

1>Rv
(k)
i

λ1

) , (21)

where660

f
(k)
i (t) =

(
λk
λ1

)t
a

(k)
i +

(λtk − 1) (1− δi,nk
)

λt1 (λk − 1)
a

(k)
i+1 . (22)

Since f
(1)
1 (t) = a

(1)
1 for any t and limt→∞ f

(k)
i (t) = 0 for k > 1, we hence recover equation (8) and show the661

convergence of the master equation (5) for a non-symmetric matrix T.662

E Convergence Rate to the Stationary Distribution of GRNs663

In this section, we provide an estimate of the rate that the master equation (4) converges to its stationary distribution,664

using the technique known as the uniform minorization condition of Markov chains [79]. Specifically, given a sequence665

of probability distribution {pt}∞t=1 over a finite discrete space X which converges to π = limt→∞ pt, we will find an666

upper bound of the variation distance667

‖pt − π‖ = sup
A⊂X
|pt(A)− π(A)| . (23)

An upper bound of ‖pt − π‖ will then lead us to estimating a large enough t such that ‖pt − π‖ < ε for any arbitrary668

tolerance ε.669

To begin, for any genotype/GRN g, g′ ∈ G, we introduce the notation670

F (g′, g, t) =
1

νt ρt−1
ρg′ µg′g νg . (24)

Since νt = P [Ψ (It)] and ρt−1 = P [It−1 → It | Ψ (It−1)] are always less than or equal to 1, observe that671

F (g′, g, t) ≥ β ζ(g) , (25)

where672

β =
∑
g∈G

min
g′∈G

ρg′µg′gνg (26)

and ζ is a probability distribution over G such that ζ(g) = 1
β ming′∈G ρg′µg′gνg for any g ∈ G. The inequality (25) is673

a uniform minorization condition, which has been recognized to elegantly estimate the convergence rate of Markov674

chains. We will adapt the derivation for Markov chains as reviewed by [79] and only summarize the key steps in675

what follows.676

Let X1, Y1 be two independent random variables, whose probability distribution are677

p (X1) = {P [g (I1) = g | Ψ (I1)]}g∈G , (27)

p (Y1) =
{

lim
t→∞

P [g (It) = g | Ψ (It)]
}
g∈G

(28)

respectively. Next, given random variables Xt and Yt, let Xt+1 and Yt+1 be two random variable such that678
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(i) With probability β, set Xt+1 = Yt+1 which follows the probability distribution ζ;679

(ii) Otherwise, Xt+1 and Yt+1 are independent random variables such that680

P [Xt+1 = g | Xt = g′] =
F (g′, g, t)− βζ(g)

1− β
, (29)

P [Yt+1 = g | Yt = g′] =
F (g′, g, t)− βζ(g)

1− β
(30)

for g, g′ ∈ G.681

Note that the probability distribution of {Xt}∞t=1 reconciles with the solution of (4) with initial condition p (X1),682

and the probability distribution of {Yt}∞t=1 remains to be the stationary distribution of (4). We write p (Xt) =683

{P [g (It) = g | Ψ (It)]}g∈G = pt and p (Y1) = {limt→∞ P [g (It) = g | Ψ (It)]}g∈G = π respectively.684

Suppose random variable T to be the first time step that scenario (i) occurs so XT = YT . By construction,685

we have P [T > t] = (1− β)
t
. Let {Zt}∞t=1 be another sequence of random variables such that Zt = Yt for t ≤ T686

and Zt = Xt for t > T . We observe that the probability distribution of {Zt}∞t=1 also remains to be the stationary687

distribution of (4). It is not hard to see that the variation distance between two probability distributions is bounded688

from above by the probability that the two corresponding random variables are not equal (for details, see [79]), and689

‖pt − π‖ = ‖p (Xt)− p (Zt)‖
≤ P [Xt 6= Zt]

≤ P [T > t]

= (1− β)
t
. (31)

Therefore, for an arbitrary tolerance ε and in the case that there is no g ∈ G with a zero ρg (so β > 0), a sufficient690

condition for ‖pt − π‖ < ε is691

t >
log(ε)

log(1− β)
. (32)

F Supplementary Figures692
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Figure 5: Validation that the evolutionary dynamics of GRNs converges to the derived stationary distribution. We
compare the distribution of GRNs sampled from their simulated evolutionary dynamics in subsection 3.2 (blue) with
the exact leading eigenvector of the transition matrix (11) with the same µ = 0.1 (gray). The shaded area shows
its 95% confidence band that accounts for the uncertainty of finite-sized sampling in the simulations. No significant
deviation was found.
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