
1 
 

Research 
Why most Principal Component Analyses (PCA) in population genetic studies are wrong 
 
 
Eran Elhaik1*  
 
 
1 Lund University, Department of Biology, Lund, Sweden, 22362 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* Please address all correspondence to Eran Elhaik at eran.elhaik@bio.lu.se 
 
Keywords: Principal Component Analyses (PCA), population genetics, ancient DNA, origins, 
biogeography, admixture 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.11.439381doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439381
http://creativecommons.org/licenses/by/4.0/


2 
 

Abstract 
 
Principal Component Analysis (PCA) is a multivariate analysis that allows reduction of the 
complexity of datasets while preserving data’s covariance and visualizing the information on 
colorful scatterplots, ideally with only a minimal loss of information. PCA applications are 
extensively used as the foremost analyses in population genetics and related fields (e.g., animal 
and plant or medical genetics), implemented in well-cited packages like EIGENSOFT and 
PLINK. PCA outcomes are used to shape study design, identify and characterize individuals and 
populations, and draw historical and ethnobiological conclusions on origins, evolution, 
whereabouts, and relatedness. The replicability crisis in science has prompted us to evaluate 
whether PCA results are reliable, robust, and replicable. We employed an intuitive color-based 
model alongside human population data for eleven common test cases. We demonstrate that PCA 
results are artifacts of the data and that they can be easily manipulated to generate desired 
outcomes. PCA results may not be reliable, robust, or replicable as the field assumes. Our 
findings raise concerns on the validity of results reported in the literature of population genetics 
and related fields that place a disproportionate reliance upon PCA outcomes and the insights 
derived from them. We conclude that PCA may have a biasing role in genetic investigations. An 
alternative mixed-admixture population genetic model is discussed. 
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“Would you tell me, please, which way I 
ought to go from here?” 
“That depends a good deal on where you 
want to get to,” said the Cat. 
Lewis Carroll, Alice in Wonderland 
1865, Macmillan Publishers 

Introduction 
 
The ongoing reproducibility crisis, undermining the foundation of science (Baker 2016), raises 
various concerns ranging from study design to statistical rigor (Ioannidis 2005). Population 
genetics is confounded by its utilization of small sample sizes, ignoring effect sizes, and adopting 
questionable study designs. The field is relatively small and may involve financial interests (Lee 
et al. 2009; Kaiser 2015; Stokstad 2019) and ethical dilemmas (Pennisi 2005; Holmes 2018). 
Since biases in the field rapidly propagate to related disciplines like medical genetics, 
biogeography, association studies (Hannon et al. 2016), forensics, and paleogenomics in humans 
and non-humans alike, it is imperative to ask whether and to what extent our most elementary 
tools satisfy risk criteria. 
 
Principal Component Analysis (PCA) is a multivariate analysis that reduces the data’s 
dimensionality while preserving their covariance. When applied to genotype data, typically 
encoded as AA, AB, and BB (where A and B are two alleles), PCA finds the eigenvalues and 
eigenvectors of the covariance matrix of allele frequencies. The data are reduced to a small 
number of dimensions or principal components (PCs); each describes a decreased proportion of 
the genomic variation. Individual genotypes are then projected onto space spanned by the PC 
axes, which allows visualizing the samples and their distances from one another in a colorful 
scatter plot. In this visualization, sample overlap is considered a reflection of common ancestry 
(Patterson, Price, and Reich 2006; Price et al. 2006). PCA’s most attractive property for 
population geneticists is that the distances between clusters allegedly reflect the genetic and 
geographic distances between them. PCA also supports the projection of points onto the 
components calculated by a different dataset, potentially accounting for insufficient data in the 
projected dataset. Initially adapted for human genomic data in 1963 (Edwards and Cavalli-Sforza 
1963), the popularity of PCA has increased over time. Still, it was not until the release of the 
SmartPCA tool (EIGENSOFT package) (Price et al. 2006) that PCA was propelled to the front 
stage of population genetics.  
 
PCA is used as the first data investigation and data description analyses in most population 
genetic analyses (e.g., Atzmon et al. 2010; Behar et al. 2010; Campbell et al. 2012; Lazaridis et 
al. 2016). It has a wide range of applications. It is used to examine the population structure of a 
cohort to determine ancestry, analyze the demographic history and admixture, decide on the 
similarity of samples and exclude outliers, decide how to model the populations in downstream 
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analyses, describe the relationships between the samples, infer kinship, identify clines of 
ancestries in the data (e.g., Patterson et al. 2010; Yang et al. 2010; Moorjani et al. 2011), detect 
genomic signatures of natural selection (e.g., Duforet-Frebourg et al. 2015), and identify 
convergent evolution (e.g., Galinsky et al. 2016). It is used by direct-to-consumer companies to 
estimate ethnicity (Ball et al. 2020) and in forensics to infer ancestry and biogeography (e.g., 
McNevin 2020). PCA is embedded in databases like gnomAD (Karczewski et al. 2020), MR-
Base (Hemani et al. 2018), and the UK Biobank (Bycroft et al. 2018) where PCA loadings are 
offered. PCA or PCA-like tools are considered the ‘gold standard’ in genome-wide studies 
(GWAS) and GWAS meta-analyses, where they are routinely used to cluster individuals with 
shared genetic ancestry and to detect, quantify, and adjust for population structure (e.g., Chen et 
al. 2017; Connolly et al. 2019; Müller et al. 2019). PCA is also used to identify cases and 
controls (e.g., Luca et al. 2008; Genovese et al. 2010; Willis et al. 2014; Mobuchon et al. 2017) 
as well as outliers (samples or data) (Moorjani et al. 2011; van't Hof et al. 2016), assess SNP 
effects (Price et al. 2006), and calculate population structure covariates (Peterson et al. 2019). 
The demand for large sample sizes has prompted researchers to “outsource” analyses to direct-
to-consumer companies that employ full discretion in their choice of tools, methods, and data – 
none of which are shared – and return the PCA loadings and other “summary statistics” (e.g., 
Ganna et al. 2019). PCA also serves as the primary tool to identify the origins of ancient samples 
in paleogenomics (Lazaridis et al. 2016), to identify biomarkers for forensic reconstruction in 
evolutionary biology (Li et al. 2020), and to bio localize samples (Novembre et al. 2008). As of 
April 2021, over 15,000 papers employed PC scatterplots to interpret genetic data, draw 
historical and ethnobiological conclusions, and describe the evolution of various taxa from 
prehistorical times to the present – no doubt Herculean tasks for any scatterplot. 
 
PCA’s widespread use could not have been achieved without several key traits that distinguish it 
from other tools – all tied to the replicability crisis. PCA can be applied to any genomic dataset, 
whether small or large, and it always yields results. It is parameter-free and nearly assumption-
free (Patterson, Price, and Reich 2006). It does not involve measures of significance, effect size 
evaluations, or error estimates. It is, by large, a “black box” harboring complex calculations. The 
proportion of explained variance of the data is the single reflection of the quality of PCA; 
however, there is no consensus on the number of PCs to analyze. Price et al. (2006) 
recommended using 10 PCs, and Patterson et al. (2006) proposed the Tracy–Widom statistic to 
determine the number of components. However, this statistic is highly sensitive and inflates the 
number of PCs. In practicality, most authors use the first two PCs, which are expected to reflect 
genetic similarities and are difficult to observe in higher PCs. The remaining authors use an 
arbitrary number of PCs or adopt ad hoc strategies to aid in their decision (e.g., Solovieff et al. 
2010). Pardiñas et al. (2018), for example, selected the first five PC “as recommended for most 
GWAS approaches” and principal components 6, 9, 11, 12, 13, and 19, whereas Wainschtein et 
al. (2019) preferred the top 280 PCs. There are no proper usage guidelines for PCA, and 
“innovations” towards less restrictive usage are adopted quickly. Recently, even the practice of 
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displaying the proportion of variation explained by each PC faded as those proportions dwarfed 
(e.g., Lazaridis et al. 2016). Since PCA is affected by the markers, samples, the precise 
implementation, and various flags implemented in the PCA packages – each has an unpredictable 
effect on the results – replication cannot be expected. 
 
In population genetics, PCA and admixture-like analyses are the de-facto standards used as non-
parametric genetic data descriptors. They are considered the hammer and chisel of genetic 
analyses (Elhaik 2016). Lawson et al. (2018) commented on the misuse of admixture-like tools 
and argued that they should not be used to draw historical conclusions. Thus far, no investigation 
has thoroughly explored PCA's usages and accuracy across most common study designs.  
 
Because PCA fulfills many of the risk-criteria for reproducibility (Ioannidis 2005) and due to its 
centrality as a first hypothesis generator in population genetic studies, this study is set to assess 
its reliability, robustness, and reproducibility. Since PCA is a model employed to describe the 
unknown truth, testing its accuracy requires a convincing model where the truth is unambiguous. 
For that, we developed an intuitive and simple color-based model (Figure 1A). Because all colors 
consist of three components—red, green, and blue (analogous to SNPs)—they can be plotted in a 
3D plot representing this truth (Figure 1B). Applied to these data, PCA reduces the dataset to two 
dimensions that explain most of the variation. This allows us to visualize the results in a 2D plot 
and measure the difference from the original 3D plot. Let us agree that if PCA cannot perform 
well in this simplistic setting, it should not be used in more complex analyses and certainly 
cannot be used to derive far-reaching conclusions about history.  
 
We carried out an extensive empirical evaluation of PCA through eleven test cases; each assesses 
a common usage of PCA using color and human genomic data. The PCA version used here 
yields near-identical results to the PCA implemented in EIGENSOFT (Figure S1-S2). Some of 
the results for the color populations are summarized in boxes and illustrate realistic investigation 
scenarios using common terminology to the field. If PCA results are irreproducible, if they can 
be manipulated, directed, or controlled by the experimenter, if multiple and conflicting results 
can be generated from the same dataset, or if PCA produces absurd results, then PCA must not 
be used for genetic investigations, and an incalculable number of findings based on its results 
should be reevaluated. We found that this is indeed the case. 
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Results 
 

1. The near-perfect case of dimensionality reduction 
 
Applying principal component analysis (PCA) to a dataset that consists of four even-sized 
numbers: the three primary colors (Red, Green, and Blue) and Black illustrates a near-ideal 
dimension reduction example. PCA condensed the dataset of these four samples from a 3D 
Euclidean space (Figure 1B) into three principal components (PCs), the first two of which 
explained 88% of the variation (Figure 1C). Although PCA correctly positioned the primary 
colors in even distances from each other and Black, it distorted the distances between the 
primary colors and Black (from 1 in 3D space to 0.82 in 2D space). Thereby, even in this limited 
and near-perfect demonstration of data reduction, the observed distances do not reflect the actual 
distances between the samples (which are impossible to recreate in a 2D dataset). Evenly 
increasing all the sample sizes yields identical results irrespective of the sample size (Figure 1D-
E). In other words, the number of samples does not affect the topography of the plot if the 
increase is proportional for all the populations.  
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Figure 1. Applying PCA to four color populations. A) An illustration of the PCA procedure 
(using the singular value decomposition (SVD) approach) applied to a color dataset consisting of 
four colors (NAll=1). B) A 3D plot of the original color dataset with the axis representing the 
primary colors. The color populations (in their true color) are then plotted along with their two 
top PCs with C) NAll=1, D) NAll=100, and E) NAll=10,000. The latter two results are identical to 
those of C). Grey lines and labels mark the Euclidean distances between the color populations 
calculated across all three PCs.  
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When analyzing continental populations, which harbor most of the genetic variation between 
human populations (Elhaik 2012), PCA tends to position Africans, Europeans, and East Asians 
along the three edges of an imaginary triangle, which closely resembles our color-population 
model and illustration. Analyzing continental populations, we obtained similar results for two 
even-sized population datasets (Figures 2A, 2C) and their quadrupled counterparts (Figures 2B, 
2D). As before, the distances between the populations remained similar (Figures 2A-B and 2C-
D), demonstrating that for even-sized populations, sample size does not contribute to the 
distortion of the results if the increase in size is proportional.  
 

 
Figure 2. Testing the effect of sample sizes on even-sized populations. The top plots show nine 
populations with n=50 (A) and n=188 (B). The bottom plots show a different set of nine 
populations with n=50 (C) and n=192 (D). In both cases, increasing the sample size did not alter 
the PCs (the y-axis flip between C and D is a known phenomenon). 
 

2. The case of uneven-sized populations  
 
The extent to which different-sized populations produce vastly different results with conflicting 
interpretations is illustrated through a typical study case in Box 2.  
 
Box 2 – Studying the origin of Black using the primary colors 
Three research groups sought to study the origin of Black. A previous study that employed 
even sample-sized color populations alluded that Black is a mixture of all colors (Figure 1B-
D). A follow-up study with a larger sample size (NRed=NGreen=NBlue=10) and enriched in Black 
samples (NBlack=200) (Figure 3A) reached the same conclusion. However, the Black-is-Blue 
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group suspected that the Blue population was mixed. After QC procedures, it reduced its 
sample size, which decreased the distance between Black and Blue and supported their 
speculation that Black has a Blue origin (Figure 3B). The Black-is-Red group hypothesized 
that the underrepresentation of Green, compared to its actual population size, masks the Red 
origin of Black. They comprehensively sampled the Green population and showed that Black 
is very close to Red (Figure 3C). Another Black-is-Red group contributed to the debate by 
genotyping more Red samples. To reduce the bias from other color populations, they kept the 
Blue and Green sample sizes even. Their results replicated the previous finding that Black is 
closer to Red and thereby shares a common origin with it (Figure 3D). A new Black-is-Green 
group challenged those results, arguing that the small sample size and omission of Green 
samples biased the results. They increased the sample sizes of all the other populations of the 
previous study and demonstrated that Black is closer to Green (Figure 3E). The Black-is-Blue 
group challenged these findings on the grounds of the relatively small sample sizes that may 
have skewed the results and dramatically increased all the sample sizes. However, believing 
that they are of Purple descent, Blue refused to participate in further studies. Their relatively 
small cohort was explained by their isolation and small effective population size. The results 
of the new sampling scheme confirmed that Black is closer to Blue (Figure 3F), and the group 
was praised for the large sample sizes that, no doubt, captured the actual variation in nature 
better than the former studies. 

Figure 3. PCA of uneven-sized samples of four color populations. A) NRed=NGreen=NBlue=10; 
NBlack=200, B) NRed=NGreen=10; NBlue=5; NBlack=200, C) NRed=10; NGreen=200; NBlue=50; 
NBlack=200 D) NRed=25; NGreen=NBlue=50; NBlack=200, E) NRed=300; NGreen=200; 
NBlue=NBlack=300, and F) NRed=1000; NGreen=2000; NBlue=300; NBlack=2000. Scatter plots show 
the top two PCs. The numbers on the grey bars reflect the Euclidean distances between the 
color populations over all PCs.  
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Note that unlike in Figures 1A and 3A, where Black is in the middle, in other figures, the 
overrepresentation of certain “alleles” (e.g., Figure 3B) shifts Black away from (0,0). Intuitively, 
this can be thought of as the most common “allele” (Green in Figure 3B) repelling Black, which 
has three null or alternative “alleles.” 
 
PCA is commonly reported as yielding a stable differentiation of Africans vs. non-Africans and 
Europeans vs. Asians on the primary PCs (Li et al. 2008; Qin et al. 2015), which prompted 
prehistorical inferences of PCA results as representing the post Out Of Africa event followed by 
multiple migrations, differentiation, and admixture events to explain these patterns (Reich, Price, 
and Patterson 2008). For instance, Silva-Zolezzi et al. (2009) argued that the Zapotecos did not 
experience a recent admixture due to their location on the Amerindian cluster at the Asian end of 
the European-Asian cline. However, variable population sizes can easily create alternative results 
as well as alternative “clines.” The same Mexican-American cohort can be made to appear closer 
to Europeans (Figure 4A) or as a European-Asian admixed group (Figure 4B). East Asians can 
appear on an Oceanian-Africans cline (Figure 4C), whereas Europeans can appear on an African-
East Asian cline (Figure 4D) as an admixed group. Europeans can also appear in the middle of 
the plot as an admixed group of Africans-Asians-Oceanians origins (Figure 4E), and Oceanians 
can be shown to cluster with (Figure 4F) or without East Asians (Figure 4E). The latter depiction 
maximizes the proportion of explained variance, which common wisdom would consider to be 
the correct explanation. According to some of these results, only Europeans and Oceanians 
(Figure 4C) or East Asians and Oceanians (Figure 4D) experienced the Out of Africa event. By 
contrast, East Asians (Figure 4C) and Europeans (Figure 4D) may have remained in Africa. 
 

 
Figure 4. PCA of uneven-sized African (Af), European (Eu), Asian (As), Amerindian (Am), and 
Oceanian (Oc) populations. Fixing the sample size of Mexican-Americans and altering the 
sample sizes of other populations: (A) NAf=198; NEu=20; NAs=483; NAm=64 and (B) NAf=20; 
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NEu=343; NAs=20; NAm=64) changes the results. An even more dramatic change can be seen when 
repeating this analysis on Oceanians: (C) NAf=5; NEu=25; NAs=10; NOce=20 and (D) NAfr=5; 
NEu=10; NAs=15; NOc=20 and when altering their sample sizes: (E) NAf=98; NEu=25; NAs=150; 
NOc=24 and (F) NAf=98; NEu=83; NAs=30; NOc=15. 
 

3. The case of one admixed population 
 
Box 3 – Studying the origin of Black using the primary and one secondary (admixed) 
color populations 
Following criticism on the sampling scheme used to study the origin of Black (Box 2), the 
redoubtable Black-is-Red group genotyped Cyan. Using even sample-sized populations, they 
demonstrated that Black is closer to Red (DBlack-Red=0.46) (Figure 5A), where D is the 
Euclidean distance between the samples over all three PCs (short distances indicate high 
similarity). Their findings were criticized by the Black-is-Green school on the grounds that 
their Cyan samples were biased and their results do not apply to the broad Black cohort. They 
also reckoned that the even sampling scheme favored Red because Blue is related to Cyan 
through shared language and customs. The Black-is-Red group responded by enriching their 
cohort in Cyan and Black (NCyan, NBlack=1,000) and provided even more robust evidence that 
Black is Red (DBlack-Red=0.12) (Figure 5B). However, the Black-is-Green camp dismissed these 
findings. Conscious of the effects of admixture, they retained only the most homogeneous 
Green and Cyan samples (NGreen, NCyan=33), genotyped new Blue and Black (NBlue, 
NBlack=400), and analyzed them with the published Red cohort (NRed=100). The Black-is-Green 
results supported their hypothesis that Black is Green (DBlack-Green=0.27) and that Cyan shared 
a common origin with Blue (DBlue-Green=0.27) (Figure 5C) and should thereby be considered an 
admixed Blue population. Unsurprisingly, the Black-is-Red group claimed that these results 
were due to the under-representation of Black since when they oversampled Black, PCA 
supported their findings (Figure 5A). In response, the Black-is-Green school maintained even 
sample sizes for Cyan, Blue, and Green (NBlue, NGreen, NCyan=33) and enriched Black and Red 
(NRed, NBlack=100). Not only did their results (DBlack-Green=0.63 < DBlack-Red=0.89) support their 
previous findings, but they also demonstrated that Green and Blue completely overlapped, 
presumably due to their shared co-ancestry, and that together with Cyan (DCyan-Green=0.63 < 
DCyan-Red =1.09) (Figure 5B, Figure 5D) they represent an antique clade. They explained that 
these color populations only appeared separated due to the effects of genetic drift. However, 
they still retained sufficient genetic information that PCA can uncover if the correct sampling 
scheme is used. Further analyses by the other groups contested these findings. Black was 
determined to be closer to Blue with Green and Cyan sharing common origins (Figure S3A) 
and closer to Green with Blue and Cyan sharing common origins (Figure S3B). It was also 
shown that Black, not Cyan, is a Blue-Red admixed group (Figure S3C) and that Black has 
Red-Green ancestors (Figure S3D). 
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Figure 5. PCA with the primary and mixed color populations. A) Nall=100; NBlack=200, B) 
NRed=NGreen= NBlue=100; NBlack=NCyan=500, C) NRed=100; NGreen=NCyan=33; NBlue=NBlack=400; 
and D) NRed=NBlack=100; NGreen=NBlue=NCyan=33; Scatter plots show the top two PCs. The 
numbers on the grey bars reflect the Euclidean distances between the color populations over 
all PCs. 

 
In the first large-scale study of Indian population history, Reich et al. (2009) applied PCA to a 
cohort of Indians, Europeans, Asians, and Africans using various sample sizes that ranged from 2 
(Srivastava) to 203 (YRI) samples. After applying PCA to Indians and the three continental 
populations to exclude “outliers” that supposedly had more African or Asian ancestries than 
other samples, PCA was applied again in various settings. The authors have generated a plethora 
of conflicting figures, none of which disclosed the proportion of explained variance along with 
the first four PCs that were examined. Their concluding analysis that consisted of Indians, 
Asians, and Europeans (their Figure 3) showed Indians at the apex with Europeans and Asians at 
the opposite ends. This plot was interpreted as evidence of an “ancestry that is unique to India” 
and an “Indian cline.” Indian groups were explained to have inherited different proportions of 
ancestry from “Ancestral North Indians” (ANI), related to western Eurasians, and “Ancestral 
South Indians” (ASI) who split from Onge. Indians have since been described using the terms of 
ANI and ASI. 
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In evaluating the claims of Reich et al. (2009) that rest on PCA, we first replicated the finding of 
the original “Indian cline” (Figure 6A). We then garnered support for an alternative cline using 
Indians, Africans, and Europeans (Figure 6B). We then demonstrated that PCA results support 
Indians to be European (Figure 6C), East Asians (Figure 6D), and Africans (Figure 6E), as well 
as a two-ways admixed European-Asian population (Figure 6F). Whereas the first two PCs of 
Reich et al.’s (2009) primary figure explain less than 8% of the variation (according to our 
Figure 6A, Reich et al.’s Figure 3 does not report this information), four out of five of our 
alternative depictions explain 8-14% of the variation. Our results question the authors' choice in 
using an analysis that explained such a small proportion of the variation (let alone not reporting 
it), yielded no support for a unique ancestry to India, and cast doubt on the reliability and 
usefulness of the ANI-ASI model to describe Indians. It is difficult to answer whether Africa is 
in India or the other way around (Figure 6E), but it is clear that geographical inferences based on 
PCA can lead to errors of Columbian magnitude. 
 

 
Figure 6. Studying the origin of Indians using PCA. A) Replicating Reich et al.’s (2009) results 
using NEu=99; NAs=146; NInd=321. Generating alternative PCA scenarios using: B) NAf=178; 
NEu=99; NInd=321, C) NAf=400; NEu=40; NAs=100; NInd=321, D) NAf=477; NEu=253; NAs=23; 
NInd=321, E) NAf=25; NEu=220; NAs=490; NInd=320, and F) NAf=30; NEu=200; NAs=50; NInd=320. 
 
In a separate effort, Need et al. (2009) applied PCA to 55 Ashkenazic Jews (AJs) and 507 non-
Jewish Caucasians to study the origins of AJs. The PCA plot showed that Jews formed a distinct 
cluster from non-Jews. Based on these results, Need et al. suggested that PCA can be used to 
detect genetic Jewishness. A follow-up PCA where Middle Eastern (Bedouin, Palestinians, and 
Druze) and Caucasus (Adygei) populations were included showed that AJs formed a distinct 
cluster that nested between the Adygei (and the European cluster) and Druze (and the Middle 
Eastern cluster). The authors then concluded that AJs might have mixed Middle Eastern and 
European ancestries. The proximity to the Adygei cluster was noted as interesting but dismissed 
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based on the small sample size of the Adygei (N=17). The authors concluded that AJs genomes 
carry an “unambiguous signature of their Jewish heritage, and this seems more likely to be due to 
their specific Middle Eastern ancestry than to inbreeding.” A similar strategy was employed by 
Bray et al. (2010) to claim that PCA “confirmed that the AJ individuals cluster distinctly from 
Europeans, aligning closest to Southern European populations along with the first principal 
component, suggesting a more southern origin, and aligning with Central Europeans along the 
second, consistent with migration to this region” with other authors (Tian et al. 2008b; Tian et al. 
2009) making similar claims. 
 
It is easy to show why PCA cannot be used to reach such conclusions. We first replicated Need 
et al.’s (2009) primary results (Figure 7A) showing that AJs cluster separately from Europeans. 
However, such an outcome is typical to any non-European population like Turks (Figure 7B). It 
is not unique to AJs, nor does it prove that they are genetically detectable. A slightly modified 
design shows that most AJs overlap with Turks and allows us to promote the claim that AJs have 
a Turkic origin (Figure 7C). We can easily refute our conclusion by including continental 
populations and showing that most AJs cluster with Iberians rather than Turks  (Figure 7D). This 
last design explains more of the variance than all the previous analyses together. This analysis 
questions PCA's use as a discriminatory genetic utility.  
 

 
Figure 7. Studying the origin of 55 AJs using PCA. A) Replicating Need et al.’s results using 
NEu=507; Generating alternative PCA scenarios using: B) NEu=223; NTurks=56; C) NEu=400; 
NTurks+Caucasus=56, and D) NAf=100, NAs=100 (Africans and Asians are not shown), NEu=100; 
NTurks=50; and 
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There are several more oddities with the report of Need et al. (2009). First, they did not report 
the variance explained by their sampling scheme (it is likely to be close to 1%, as in Figure 7A). 
Second, their interpretation of AJs as a mixed population is questionable, provided that most 
populations are nested between and within other populations, but the authors did not suggest that 
they are all admixed. Finally, the authors never justified their choice of populations. The 
conclusions of Need et al. (2009) were thereby obtained based on particular PCA schemes and 
preconceived ideas of AJs origins that are no more real than the Hispania origin of AJs (Figure 
7D). 
 

4. The case of two and three admixed population  
 
Box 4 – Studying the origin of Black using the primary and secondary colors 
Though the previous analyses could not resolve the origin of Black (Box 3), there was a 
consensus that admixed cohorts can provide novel insights even though the issue of sampling 
bias remained unaddressed. An even-sample analysis (N=10) that included Cyan and Purple 
supported earlier suspicions that Black is a Green-Red admix (Figure 8A). Concerned about 
the low sample sizes, the Black-is-Green increased the Red, Blue, and Purple sample sizes 
(NRed, NBlue, NPurple=100), which both showed that Black is closer to Green and that Cyan is 
closer to Blue (Figure 8B). The Black-is-Blue group argued that admixed individuals should 
be sampled at lower numbers (NCyan, NPurple=5) and since Blue and Green shared common 
origins (Figure 5D), they are interchangeable and should be sampled in an even amount to Red 
and Black (NGreen + NBlue, NRed, NBlack=50). The results showed perfect Black-Blue, Green-
Cyan, and Red-Purple overlap (Figure 8C), at odds with the historical records of the origin of 
secondary colors. To test that, an independent group ventured to the field and collected 
Yellow. The results positioned Cyan and Purple close to their postulated ancestral cohorts and 
yielded a new genuine insight that Black is Yellow (Figure 8D). The Black-is-Red group did 
not dispute this claim but argued that Yellow is a recent Black admixture and that Yellow 
should be excluded from future analyses if we wish to understand the ancient origins of Black. 
The removal of Yellow from the analysis showed a complete Black-Red overlap and concrete 
evidence that Black has a Red origin (Figure 8E). Yet those results could not be accepted as 
follow-up analyses provided credence to a new novel finding proving that Black has originated 
from Cyan (Figure 8F). 
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Figure 8. PCA with the primary and two or three mixed color populations. A) Nall=100, B) 
NRed=NBlue=NPurple=100; NGreen=NBlack=NCyan=10, C) NRed=NBlack=50; NBlue=NCyan=NPurple=5; 
NGreen=45, D) NRed=NGreen=NBlack=NYellow=50; NBlue=5; NPurple=NCyan=100, E) NBlack=800; 
NRed=NPurple50; NBlue=NGreen=NCyan=100. Scatter plots show the top two PCs.  

 
The origin of Papuans and Bouganvilleans or Northern Melanesians (NM) has been extensively 
debated in the literature (e.g., McEvoy et al. 2010a; Isshiki et al. 2020). PCA yielded conflicting 
results not only about their closeness to other samples but to each other. When analyzed against 
East Asians and Oceanians, Papuans and Bouganvilleans either cluster together but separately 
from other samples, typically at the edge of the plot (Hudjashov et al. 2018), or separately from 
each other and other samples at the edges of the plot (Pugach et al. 2018). Perhaps consequently, 
Papuan ancestry is considered distinct from Asian ancestry, which, in turn, is considered distinct 
from non-Asian ancestries (Isshiki et al. 2020). However, this is not obvious from PCA studies, 
as Papuans were also shown to cluster with Amerindians and close to Central-Southern Asia 
(McEvoy et al. 2010b).  
 
We first show that when using even-sampling, the inclusion of NM creates a European-Asian 
cluster that was not observed before (Figure 4A) with NM clustering separately from one another 
at the extreme edge. Using uneven sampling, as done in all the studies, yields various 
contradictory results with NM clustering together and close to East Asians (Figure 4B), 
appearing as a three-way tri-continental admix group distinct from each other and close to 
Pakistani (Hazara) (Figure 4C), or remaining highly distinct and separate from other population 
but influencing the formation of an African-European cluster with Pakistani (Hazara) as an 
outgroup. Each of these results supports a different explanation for the origin of NM and since 
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they all equally mathematically and genetically valid, we can conclude that PCA produces 
meaningless genetic results. 

 
Figure 9. Studying the origin of Northern Melanesians using PCA. Five populations are 
analyzed: Africans (Af), Europeans (Eu), East Asians (EA), South Asians (SA), and Northern 
Melanesians (NM). Results vary based on the sample size of each population. A) Nall=20, B) 
NAf=NEu=NEA=50; NSa=NNM=20, C) NAf=NEA=300; NEu=50; NSa=500; NNM=24, D) NAf=10; 
NEu=60; NEA=100; NSa=200; NNM=24. 
 

5. The case of multiple admixed population  
 
Box 5 – Studying the origin of Black using the primary and multiple mixed colors 
The value of using mixed color populations to study origins prompted new analyses using 
even (Figure 10A) and variable sample sizes (Figures 10B-D). Using this novel sampling 
scheme, the Black-is-Green school proved that Black is the closest to Green (Figure 10A), but 
a follow-up analysis using a different cohort yielded a novel finding that Black is closest to 
Pink (Figure 10B). Two final studies demonstrated that Black appears like a primary color 
from which other colors consist of (Figures 10C-D). Since Black clustered adjacently to Green 
and Blue, a consensus emerged that Black is the ancestor of Green and Blue, which partially 
explained many of the conflicting results reported thus far. That a shed of Blue and Cyan 
clustered together (Figure 10D) supported previous observations (Figure 8F).  
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Figure 10. PCA with the primary and multiple mixed color populations. A) Nall=50, B) Nall=50 
or 10, C and D) NAll=[50, 5, 100, or 25]. Scatter plots show the top two PCs.  

 
PCA has been used extensively to investigate the origins of AJs. In such analyses, it was 
assumed that the clustering of AJs by itself is evidence of Levantine origins (e.g., Atzmon et al. 
2010; Behar et al. 2010; Carmi et al. 2014) and that the “short” distance between AJs and 
Levantine populations indicates their close genetic relationships and thereby the Levantine 
origins of AJ (e.g., Behar et al. 2010). The “short” to European populations was also interpreted 
as evidence of admixture (Atzmon et al. 2010). As a rule, the much shorter distances between 
AJs and the Caucasus or Turkish populations, observed by all recent studies, were ignored (Need 
et al. 2009; Atzmon et al. 2010; Behar et al. 2010; Bray et al. 2010; Carmi et al. 2014) in favor of 
Levantine of South European populations. Bray et al. (2010) concluded that not only AJs have a 
“more southern origin” but that their alignment with Central Europeans is “consistent with 
migration to this region.” In these studies, the proposition “between” received a multitude of 
interpretations. For example, Carmi et al.’s (2014) PCA plot that showed AJs in the extreme 
edge of the plot with Bedouins and French in the other edges was interpreted as AJs clustering 
“tightly between European and Middle Eastern populations.” The authors interpreted the lack of 
“outliers” (which were never defined) as evidence of common AJ ancestry.  
 
Following the rationale of these studies, it is easy to show how PCA can be orchestrated to yield 
a multitude of interpretations concerning the origin of AJs. We replicated the observation that 
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AJs are a “population isolate,” i.e., AJ form a distinct group, separated from all other populations 
(Figure 11A), and are thereby genetically distinguishable (Need et al. 2009). We also replicated 
the most common yet often-ignored observation in previous studies, that AJs tightly cluster with 
Caucasus populations (Figure 11B). We next utilized PCA to produce novel results that AJs 
cluster tightly with Amerindians, most likely due to the north Eurasian origins of both groups 
(Figure 11C). We can also show that AJs cluster much closer to South Europeans than 
Levantines (Figure 11D), at odds with our previous finding (Figure 11A), and overlap entirely 
Finnish, in solid evidence of AJ’s ancient Finnish heritage (Figure 11E). Last, we wish to refute 
our previous finding and show that only half of the AJs are of Finnish origin. The remaining 
have a Levantine origin (Figure 11F) – a finding touted by all the previous reports though never 
actually shown. Excitingly enough, the primary PCs of this last Finnish-Levantine mixed origin 
depiction explained the highest amount of variance, but only a percent higher from an all-Finnish 
origin. We can interpret those results by the recent migration of the Finnish origin’s AJs to the 
Levant, where they experienced high admixture with the local Levantine populations that altered 
their genetic profile.  

 
Figure S11. An in-depth study of the origin of AJs using PCA in relation to Africans (Af), 
Europeans (Eu), East Asians (Ea), Ameridians (Am), Levantines (Le), and South Asians (Sa). A) 
NEu=159; NAJ=60; NLe=82, B) NAf=30; NEu=159; NEa=50; NAJ=60; NLe=60, C) NAf=30; NEa=583; 
NAJ=60; NAm=255; D) NAf=200; NEu=115; NEa=200; NAJ=60; NLe=235; NSa=88, E) NAf=200; 
NEu=30; NAJ=400, NLe=80 F) NAf=200; NEu=30; NAJ=50; NLe=160. Large square indicate insets. 
 
 

6. The case of multiple admixed population without “unmixed” populations 
 
Unlike stochastic models that possess inherent randomness, PCA is a deterministic process 
where the model's output is determined entirely by the parameter values and the initial 
conditions. This property of PCA adds to its perceived robustness. In reality, however, PCA 
behaves unexpectedly, where minor variations can lead to an ensemble of different outputs that 
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appear stochastic. This effect is more substantial when populations that explain most of the 
variation are excluded from the analysis. 
 
To demonstrate this effect, we can show that using the same code produces different results 
(Figures 12A-F) if the only variable is the standard randomization technique used to generate the 
individual samples of the color populations (to avoid clutter). Here, Black was the closest to 
Yellow (Figure 12A), Purple (Figure 12C), and Cyan (Figure 12D-E). When adding White, 
Black behaved as an outgroup as the distances between the secondary colors largely deviated 
from the expectation and produced false results (Figure 12D-F).  
 
 

 
Figure 12. Studying the effects of minor sample variation on PCA results using color populations 
(Nall=50). A–C) Analyzing secondary colors and Black. D–E) Analyzing secondary colors, 
White, and Black. Scatter plots show the top two PCs.  
 
 
Using a cohort of 16 populations, we carried out PCA on ten random individuals from 15 
random populations. We show that these analyses result in spurious and conflicting results. 
Puerto Ricans, for instance, clustered close to Europeans (A), between Africans and Europeans 
(B), close to Adygei (C), and close to Europe and Adygei (D). Indians clustered with Mexicans 
(A, B, and D) or apart from them (C). Mexicans themselves cluster with (A and D) or without 
Africans (B and C). Papuans and Russians cluster close (B) or afar (C) from East Asian 
populations. More robust clustering was observed for East Asians, Caucasians, and Europeans, 
as well as Africans. However, these were not only indistinguishable from the less robust 
clustering but also failed to replicate over multiple runs (results not shown). Note that the 
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proportion of explained variance was similar in all the analyses, which demonstrates that it is not 
an indication of accuracy nor robustness. 
 

 
Figure 13. Studying the effect of sampling on PCA results. A cohort of 16 worldwide 
populations (see legend) was selected. In each analysis, a random population was excluded. 
Populations were represented by ten random samples. The clusters highlight the most notable 
differences. 
 

7. The case of pairwise comparisons  
 
Several authors have adopted a pairwise comparison scheme to assess the genetic similarity 
between two cohorts of interest (e.g., Need et al. 2009; Chiang et al. 2010; O'Connor et al. 2015; 
Rahman et al. 2018; Wang et al. 2018a). This setting is prevalent in case-control analyses that 
seek overlap between the compared groups (e.g., cases and controls) (e.g., Luca et al. 2008; 
Genovese et al. 2010; Willis et al. 2014; Mobuchon et al. 2017). However, this setting can also 
lead to erroneous conclusions. To demonstrate that the existence or absence of overlap in PCA in 
a pairwise study design is an artifact of the sampling scheme, we analyzed two non-overlapping 
color populations (Figure 14A) and show that in the presence of two other samples, they highly 
overlap (Figure 14B). Although in this analysis, the additional samples are distinct, in real-time, 
they may appear as part of the cohorts and alter the findings. Moreover, the latter analysis 
explains 99% of the variation compared to the former analysis (94%), which may appear more 
reliable. We next demonstrate the opposite effect by analyzing two cohorts of interest alongside 
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other populations. Whether the two cohorts overlap or not depends on the choice of the other 
populations (Figure 14C-D). In other words, PCA outcomes as to whether populations overlap 
are independent of whether or not the populations are distinct from each other but instead are 
based on the sampling scheme. Misinterpreting PCA results can lead to a reduction in power and 
erroneous conclusions. 
 

 
Figure 14. Using PCA in a pairwise setting to assess the similarity between two color-population 
cohorts. Even-size cohorts (N=50) of two distinct shades of Blue (circles and squares) do not 
overlap (A) and mostly overlap (B) when analyzed along with Green and White samples. Even-
sized cohorts (N=50) of two distinct shades of Green (circles and squares) do not overlap when 
analyzed with three even-sized (N=250) populations (C) but overlap when analyzed with other 
even-sized (N=250) populations (D). 
 
 
We further demonstrate that PCA produces conflicting results in real populations based on the 
choice of the reference populations or merely their inclusion or exclusion. In Figure 15A, we 
show that two Chinese populations, which PCA purports are a single homogeneous population, 
can be split if Japanese is included in the sampling scheme (Figure 15B). That is, PCA’s 
outcome for the genetic relationships between Dai and Southern Han Chinese are relative to the 
inclusion of another population. Likewise, PCA’s answer to whether Mexicans and Peruvians 
share common origins and can thereby be compared in a pairwise setting depends on the 
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presence of Africans in the scheme (Figure 15D-D), which modifies the genetic relationships 
between the two populations, as far as PCA is concerned. These examples show that PCA 
outcomes are unreliable when comparing the relationships between populations in a pairwise 
scheme. 
 

Figure 15. Evaluating the reliability of cohort clustering to assess their homogeneity. Southern 
Han and Dai Chinese appear overlapping when analyzed with UK samples (A) but completely 
distinct when analyzed alongside Japanese (B). PEL (Lima Peruvians) and Mexican Americans 
(MXL) cluster distinctively from each other (C) but completely overlap when analyzed with 
Africans (D). The large square indicates an inset. 
 

8. The case of case-control matching and GWAS 
 
Samples of unknown ancestry or with self-reported ancestry are typically identified by applying 
PCA to the cohort combined with reference populations of known origins (e.g., 1000 Genomes) 
(e.g., Chen et al. 2017; Connolly et al. 2019; Müller et al. 2019; e.g., Wright et al. 2019). To test 
whether using PCA to identify the origin of an unknown cohort with known samples is feasible, 
we simulated a large and heterogeneous Cyan population (Figure 16A, circles) of self-reported 
Blue origin. Following a typical GWAS scheme, we carried out PCA for these individuals and 
seven known and distinct color populations. PCA grouped the simulated individuals with Blue 
and even Black individuals (Figure 16B), although none of the simulated individuals are Blue 
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nor Black (Figures 16A), as a different PCA scheme confirmed (Figure 16C). The clustering 
with Blue and Black is an artifact due to the choice of reference populations. A case-control 
assignment of this cohort to Blue or Black based on the PCA result (Figure 16B) would produce 
poor matches that reduce the power of the analysis. To demonstrate that, we repeated the 
analysis with different reference populations (Figures 16D). Here, the simulated individuals 
exhibit minimal overlap with Blue and no overlap with Black and overlapped mostly with the 
Cyan reference population, that was present this time.  
 
 

 
Figure 16. Evaluating the accuracy of PCA clustering of a heterogeneous test population in a 
simulation of a GWAS setting. A) The true distribution of a large heterogeneous Cyan 
population (N=1000). B) PCA of the test population with eight even-sized (N=250) reference 
populations. C) PCA of the test population with Blue from the previous analysis shows a 
minimal overlap between the cohorts. D) PCA of the test population with five even-sized 
(N=250) reference populations, including Cyan (marked by an arrow).  
 
 
We next asked whether PCA results can be used to group Europeans into homogeneous clusters. 
These can be thought of as samples of both known and unknown ancestry to identify the latter. 
Cluster homogeneity was calculated by applying k-means clustering to PC1 and PC2 for K 
clusters, where K was the square root of the number of samples. If all the individuals in the 
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cluster belonged to the same population, that cluster was considered homogeneous. The percent 
of homogeneous clusters is reported. Analyzing four European populations yielded 43% 
homogeneous clusters (Figure 17A). Adding Africans and Asians and then South Asian 
populations decreased the European cluster homogeneity to 14% and 10%, respectively (Figures 
17B-C). Including the 1000 Genome populations, as customarily done, yielded 14% 
homogeneous clusters (Figure 17D). Although the Europeans remained the same, the addition of 
other continental populations resulted in a three to four times decrease in the homogeneity of 
their clusters.  
 

 
Figure 17. Evaluating the clustering homogeneity of European samples. PCA was applied to the 
four European populations (Tuscan Italians [TSI], Northern and Western Europeans from Utah 
[CEU], British [GBR], and Spanish [IBS]) alone (A), together with an African and Asian 
population (B), as well as South Asian population (C), and finally with all the 1000 Genomes 
Populations (D). 
 
 
Since higher PCs explain a higher proportion of the variation, it is customary to assume that 
using more PCs can increase cluster homogeneity. This notion, however, may be supported up to 
a certain point. We demonstrate the effect of considering more PCs by calculating the 
homogeneity for different PCs for either 10 or 20 African, Asian, and European populations 
(Figure 17E). The maximum proportion of cluster homogeneity is reached between 10-15 PCs 
and fluctuates afterward. Adding more populations decreased the mean percentage of 
homogeneous clusters. As expected, East Asians exhibited the highest proportion of 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.11.439381doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439381
http://creativecommons.org/licenses/by/4.0/


26 
 

homogeneous clusters and Africans the lowest. Note that the cluster homogeneity in this limited 
setting should not be confused with the amount of variance explained by additional PCs. 
 

 
Figure 17E. Cluster homogeneity for 10 or 20 random African, European, or Asian populations 
on the first 40 PCs. The proportion of homogeneous clusters in each analysis is plotted against 
the number of PCs.  
 
 
To further demonstrate that PCA clustering does not equal shared ancestry nor biogeography, 
two of the most common applications of PCA, whether in GWA or population genetic studies 
(e.g., Chen et al. 2017), we applied PCA to 20 Puerto Ricans (Figure 18) and 300 Europeans. 
The Puerto Ricans clustered indistinguishably with the Europeans, whether in the first two or 
higher PCs (Figure 18). The Puerto Ricans represented over 6% of the cohort, sufficient to 
generate a stratification bias in an association study.   
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Figure 18. PCA applied to 20 Puerto Ricans and 300 random Europeans. The results are plotted 
on various PCs.  
 
We next demonstrate that the distance between individuals and populations is meaningless and is 
an artifact of the cohort rather than an informative biological or demographic quantity. For that, 
we sought to study the relationships between Chinese and Japanese, as has been done in previous 
studies (e.g., Tian et al. 2008a; Wang et al. 2018b). We applied PCA to Chinese and Japanese, 
using Europeans as an outgroup three times. The only element that varied in those analyses was 
the number of Mexicans as the second outgroup (5, 25, and 50). Figures 19A-C demonstrate that 
the genetic distances between Chinese and Japanese were entirely dependent on the number of 
Mexicans in the cohort.  
 
Some authors consider higher PCs to be informative and preach to consider these PCs alongside 
the first two. In our example, however, these PCs were not only susceptible to the bias due to the 
addition of Mexicans but also exhibited the exact opposite pattern than that observed by the 
primary PCs (Figures 19D-F). These results demonstrate that the observable distances between 
populations in a PCA plot can be manipulated in a way that produces unpredictable results and 
that considering higher PCs may produce conflicting patterns.. 
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We thereby demonstrated that PCA results (Figure 17-19), evaluated through clusters or 
distances between individuals, do not provide meaningful biological or historical information, 
nor can they be used to support such claims.  
 

 
Figure 19. The effect of varying the number of Mexican on the inference of genetic distances 
between Chinese and Japanese. We analyzed a fixed number of 135 Han Chinese (CHB), 133 
Japanese (JPT), 115 Italians (TSI), and a variable number of Mexicans (MXL), including 5 (A, 
D), 25 (B, E), and 50 (C, F) individuals over PCs 1 and 2 (A-C) and 3 and 4 (D-F). The overlap 
between Chinese and Japanese, typically used to infer genomic distances, was unexpectedly 
conditional on the number of Mexican in the cohort. 
 
 

9. The case of unions and projections 
 
There are two common approaches to incorporate previous PCA results in a new analysis. The 
first is to combine PCs from past studies and is common in meta-GWAS or Mendelian 
Randomization studies (e.g., Hemani et al. 2018). In such studies, PCs stored in GWAS catalogs 
[e.g., GWAS Central as used by (de Kovel et al. 2016)] or reported for similar populations are 
being applied if the studied cohorts are considered similar by the experimenter (e.g., Katrinli et 
al. 2019). The second approach is to project the PCA results from the first dataset onto the 
second one (e.g., Moorjani et al. 2011).  
 
We first combined PCs that were calculated separately for two datasets with mostly similar 
(Figures 20A) and dissimilar populations (Figures 20B). If merging PCs was a viable approach, 
we would expect similar populations to overlap and vice versa for different populations. Instead, 
we observed the opposite patterns, where different populations from the two datasets overlapped 
and the distances among the original populations were distorted, yielding incorrect results. This 
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is because the PCs are determined by the composition of the cohort and sample sizes. PCA may 
also rotate the axes in some of the datasets. The more heterogeneous the two datasets are, the 
higher is the distortion. As previously demonstrated, this effect is more pronounced for uneven 
and admixed samples. 
 
Next, we tested the projection approach, which was seemingly more successful. However, the 
results were dependent on the identity of the populations of the two cohorts. When the same 
populations were analyzed, they indeed overlapped (Figures 20C); but when unique populations 
were found in the two datasets, misleading matches occurred (Figures 20C-D). Overall, we found 
that PCA shows an overlap of different populations and distance distortion among all the 
populations using either approach. 
 

 
Figure 20. Combining two datasets in PCA. Datasets were merged either by plotting together 
their PCA results calculated separately for each dataset (squares and circles) (A and B) or by 
projecting the PCA results of one dataset (circles) onto another (squares) (C and D). An even 
sample size (N=10) was used in A, B, and D. In C, the sample size varied (10≤N≤300) for both 
datasets.  

 

The results for real populations closely followed our former results. When analyzing the same 
four continental populations from two datasets separately and plotting the results together, 
populations from the two datasets clustered together but incorrectly as Amerindians clustered 
with East Asians (Figure 21A). When the populations in the second dataset differed from the first 
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one, PCA distorted the results (Figure 21B). Here, Ashkenazic Jews completely overlapped with 
Spanish, Southern Han Chinese with Japanese, and Han Chinese with Vietnamese. UK 
individuals clustered closer to Africans than Europeans. When the heterogeneity of the second 
dataset increased, so did the distortion. When analyzing other datasets, the same populations 
clustered separately and overlapped with different populations (Figure 21C-D). In one case, East 
Asians were positioned on the trajectory between the British of the first and second cohorts 
(Figure 21D). We thereby demonstrated that merging PCs of different datasets does not allow a 
correct inference of ancestry or admixture for either dataset. 

 

Figure 21. Combining population PCA results from separate datasets. PCA results were 
calculated separately for two datasets (red and black lines) when plotted together. The first 
dataset (red line) used even-sized populations in A, B, D (Nall=50), and C (Nall=20). In A, the 
second dataset had the same even-sized populations (N=93). The population size varied in B 
(NNigerians=85, NJapanese=133, NAJ=478, NSpanish=154, NChiese=105) and C (NAf=178, NEu=105, 
NAJ=478, NVietnamese=93). In D, it remained constant (Nall=93). 

 

There are more reasons to be concerned about using projections. They can be shown to correctly 
align with continental populations when the base and the projected populations are very similar 
(Figure 22A) and gain trust in their accuracy. However, even in the simplest scenario of using 
three continental populations, it is unclear how to interpret the overlap between the base and 
projected populations since the Spanish cannot be considered genetically closer to Finns than 
they are closer to Italians, as suggested by PCA. In another simple scenario, where Europeans are 
projected onto other Europeans, distinct populations like AJs, Iberians, French, CEU, and British 
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overlap entirely (Figure 22B), whereas Finns and Italians are separate. Not only do the results 
share no apparent resemblance to the geographical distribution, but they also misrepresent the 
genetic distances between these populations – two properties that PCA has been flaunted to 
represent. Adding more populations, even if only with the projected populations, contributes 
towards further distortion of the results with previously distinct populations (Figure 22B) now 
clustering together (Figure 22C). In a different dataset, projecting Japanese onto a base dataset of 
Africans and Europeans places them as an admixed African-European population. The projected 
Finns cluster with other Europeans (Figure 22D), at odds with the previous results (Figure 22B) 
that singled them out.  

To demonstrate that projecting populations that are different from the base populations, as is 
commonly done, yields highly misleading results. We next projected Chinese, Finns, Indians, 
and AJs onto Levantine and two European populations (Figure 22E). The results imply that the 
Chinese are of an Indian origin originating from a European-Levantine mix. AJs are a sister 
population to the Chinese from the same Indian origins. Replacing Levantines with Africans 
does not add stability to the projected results (Figure 22F). Now the projected Chinese and 
Japanese overlap, and AJs cluster with Iranians.  

 

 

Figure 22. PCA projections of populations (italic & black star inside the shape) onto base even-
sized populations (N=50, unless noted otherwise) (regular font). In A) Nprojected=100, B) 
Nprojected=50, C) Nprojected=20, D) Nprojected=100, E) Nprojected=80 and Nprojected=100, and F) 
80≤Nprojected≤100 and 12≤Nprojected≤478. 
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10. The case of ancient DNA 
 

PCA is the primary tool in paleogenomics, where ancient samples are identified based on their 
clustering with modern or other ancient samples. Here, a wide variety of strategies are employed. 
In some studies, ancient and modern samples are combined (Gamba et al. 2014). In other studies, 
PCA is performed separately for each ancient individual and “particular reference samples,” and 
the PC loadings are combined (Skoglund et al. 2012). Sometimes present-day human populations 
are projected onto the top two principal components defined by ancient hominins (and non-
humans) (Reich et al. 2010) and sometimes, it is the other way around (Lazaridis et al. 2014). 

We focused on the projection of ancient populations onto modern ones, as it is the most common 
study design. Since ancient populations show more genetic diversity than modern ones 
(Lazaridis et al. 2016), we defined “ancient colors” (a) as brighter colors whose allele frequency 
is 0.95 with an SD of 0.05 and “modern colors” (m) as darker colors whose allele frequency is 
0.6 with an SD of 0.02. Both samples had null alleles. Black was neutral. Two approaches were 
used in analyzing the two datasets: calculating PCA separately for the two datasets and 
presenting the results jointly (Figures 23A-B), and projecting the PCA results of the “ancient” 
populations onto the “modern” ones (Figures 23C-D). In both cases, meaningful results would 
show the ancient colors clustering close to their modern counterparts in distances corresponding 
to their true distances.  

These are indeed the results of PCA when even-sized “modern” and “ancient” color populations 
are analyzed as well as a balanced color pallet (Figure 23A). In the more realistic scenario where 
the color pallet is imbalanced and sample sizes differ, PCA produced incorrect results where 
ancient Green (aGreen) clustered with modern Yellow (mYellow) away from its closest mGreen 
that clustered close to aRed. mPurple appeared as 4-ways mixed of aRed, aBlue, mCyan, and 
mDark Blue. Black, instead of being at the center as in Figure 23A, now appeared as an 
outgroup, and its distances to the other colors were distorted (Figure 23B). Projecting “ancient” 
colors onto “modern” also highly misrepresented the relationships among the ancient samples as 
aRed overlapped with aBlue or aGreen, mYellow appeared closer to mCyan or aRed, and the 
outgroups continuously changed (Figure 23C-D). Note that the first PCs of the last results 
explained most of the variance (89%), not the primary PCs of the first analysis (82%).  
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Figure 23. Merging PCA of “ancient” (circles) and “modern” (squares) color populations using 
two approaches. First, PCA is calculated separately on the two datasets, and the results are 
plotted together (A-B). Second, PCA results of “modern” populations are projected onto the PCs 
of the “ancient” ones (C-D). In A, even-sized “ancient” (N=25) and “modern” (N=75) color 
populations are used. In B, different-sized “ancient” (10≤N≤25) and “modern” (10≤N≤75) 
populations are used. In C and D, different-sized “ancient” (10≤N≤75) are used alongside even-
sized “modern” populations: C) (N=15) and D) N=25. 
 

Recently, Lazaridis et al. (2016) projected ancient Eurasians onto modern-day Eurasians and 
reported that ancient samples from Israel clustered at one end of the Near Eastern cline and 
ancient Iranians at the other, close to modern-day Jews. Insights from the positions of the ancient 
populations were then used in their admixture modeling that supposedly confirmed the PCA 
results. Using similar modern and ancient populations, we replicated the results of Lazaridis et 
al. (2016) (Figure 24A). However, this is neither the only possible nor most informative PCA 
outcome. By adding the modern-day populations that Lazaridis et al. (2016) omitted, we can 
show that the ancient Levantines cluster with Turks (Figure 24B), Caucasians (Figure 24C), 
Iranians (Figure 24D), Russians (Figure 24E), and Pakistani (Figure 24F) populations. The 
overlap between the ancient Levantines and other populations also varied widely, whereas they 
cluster with ancient Iranians and Anatolians, Caucasians, or alone, like a “population isolate.” 
Moreover, the remaining ancient populations exhibited conflicting results inconsistent with our 
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understanding of their origins. Mesolithic and Neolithic Swedes, for instance, clustered with 
modern Eastern Europeans (Figure 24A-C) or remotely from them (Figure 24D-F). It is difficult 
to justify Lazaridis et al.’s (2016) preference for the first outcome where the first two 
components explained only 1.35% of the variation (in our replication analysis. Lazaridis et al. 
omitted the proportion of explained variation) (Figure 24A), compared to all the alternative 
outcomes that explained a much larger portion of the variation (1.92-6.06%).  

 

 

Figure 24. PCA of 65 ancient Palaeolithic, Mesolithic, Chalcolithic, and Neolithic from Iran 
(12), Israel (16), the Caucasus (7), Romania (10), Scandinavia (15), and Central Europe (5) 
projected onto modern-day populations of various population sizes. In addition to the modern-
day populations used in A), the following subfigures also include B) Han Chinese, C) Pakistani 
(Punjabi), D) additional Russians, E) Pakistani (Punjabi) and additional Russians, and F) 
Pakistani (Punjabi), additional Russians, Han Chinese, and Mexicans. The ancient samples 
remained the same in all the analyses. In each of the plots (A-F), the ancient Levantines cluster 
with different modern-day populations. Present-day individuals are shown in grey dots alongside 
their broad population labels for coherency. The full population labels are shown in Figure S4.  

 

11. The case of marker choice 
 
The choice of markers is another primary concern in PCA that received little attention in the 
literature. Although PCA is routinely applied to different SNP sets, the PCs are typically deemed 
comparable. In forensic applications, where sample sizes usually range from 100 to 300 markers, 
this is a major problem. Thereby, for our last test case, we evaluated the effect of various 
markers on PCA outcomes. It is unfeasible to use our color model to study biologically different 
markers, yet it can be used to study the effects of missingness and noise, which are common in 
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genomic datasets and reflect the biological properties of different marker types in capturing the 
population structure. Compared to the original figure (Figure 8A), the addition of 50% (Figure 
25A) and even 90% missingness (Figure 25B) allowed recognizing the original population 
structure. The structure decayed when random noise was added to the latter dataset (Figure 25C). 
To further explore the effect of noise, we added random markers to the dataset. An addition of 
10% of noisy markers increased the dataset's disparity, but it still retained the original structure 
(Figure 25D). Interestingly, even adding 100% noisy markers allowed identifying the original 
structure's key features (Figure 25E). Only when adding 1000% noisy markers did the original 
structure disappear (Figure 25F). Note that the introduction of noise has also sliced the percent of 
variation explained by the PCs. These results highlight the importance of using ancestry 
informative markers (AIMs) to uncover the true structure of the dataset and accounting for 
disruptive markers.  

 

Figure 25. Testing the effects of missingness and noise in a PCA of six fixed-size (n=50) color 
populations. The top plots show the effect of missingness alone or combined with noise: A) 50% 
missingness, B) 90% missingness, and C) 90% missingness and low-level random noise in all the 
markers. The bottom plots test the effect of noise when added to the original markers in the 
above plots using: D) 30 random markers, E) 300 random markers, and F) 3,000 random 
markers. 

 
Different marker types represent the population structure differently, with coding markers 
carrying the least and non-coding the most information. To illustrate the extent to which marker 
types represent the population structure, we studied the relationships between UK British and 
other Europeans (Italians and Iberians) using different types of 30,000 SNPs, a number 
consistent with the number of SNPs typically analyzed (e.g., Hyde et al. 2016; Watkins et al. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.11.439381doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439381
http://creativecommons.org/licenses/by/4.0/


36 
 

2016; Wright et al. 2019). According to the full SNP set, the British do not overlap with 
Europeans (Figure 26A). However, coding SNPs show considerable overlap (Figure 26B) 
compared with intronic SNPs (Figure 26C). Protein coding SNPs, RNA molecules, and upstream 
or downstream SNPs (Figure 26D-F, respectively) also show small overlap. The identification of 
“outliers,” already a subjective measure, may also differ based on the proportions of each marker 
type. These results not only illustrate how the choice of markers and populations profoundly 
affect PCA results but also the difficulties in recovering the population structure in exome 
datasets.  

 

Figure 26. PCA of Tuscany Italians (N=115), British (N=105), and Iberians (N=150) across all 
markers (N~129,000) (A) and different marker types (N~30,000): B) coding SNPs, C) intronic 
SNPs, D) protein-coding SNPs, E) RNA molecules, and F) upstream and downstream SNPs. The 
European cluster is shadowed. 
 

Evaluating the core properties of PCA 
 

Several limitations of PCA are worth highlighting since they may not have been evident in the 
test cases reviewed here. First, PCA typically explains a tiny part of the genomic variation 
(Figure S5), which does not only grow smaller as more samples are added (Figure S5) but also 
grows in inaccuracy (Figure 10). This leads to a paradox, whereas increasing the sample size, 
which intuitively should be expected to increase the accuracy of analyses, decreases the 
proportion of explained variance. Second, analyzing only the two primary components does not 
solve the rapid decline in the proportion of explained variation (Figure S6). Interestingly, the 
average variance explained by the two primary PCs over hundreds and thousands of individuals 
is on average 0.12 (Figure S6, inset), the same amount of genetic variation distributed between 
continental populations calculated by hierarchical FST (Elhaik 2012). Third, PCs higher than 
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three not only explain a minuscule amount of variation, they also cannot distinguish the true data 
structure from noise (Figure S7). In other words, PC plots where two primary components 
explain around 1% of the variance, likely as in Lazaridis et al. (2016), capture as much of the 
population structure as they would from a randomized dataset. Recall that all the datasets 
analyzed here consist of ancestry informative markers (AIMs) and are thereby optimized for 
discovering population structure. The fourth concerning characteristic of PCA is the “big-p, 
little-n,” where p stands for predictors and n for samples, otherwise known as the p>>n problem 
or simply the curse of dimensionality (Bellman 1961). Briefly, it refers to the phenomenon that 
arises when analyzing data in high-dimensional spaces unobserved in lower-dimensional space. 
As a dimensionality reduction technique, PCA aims to address this problem; however, PCA 
introduces biases of its own. We observed that PCA misrepresents the distances even in the 
simplest and near-perfect analysis of four colors (Figure 1C). We have also seen PCA repeatedly 
misrepresent the true distances for color populations. In high-dimensional space, the distances 
between the data points increase compared to low-dimensional space (Figure S8). As such, 
samples that are closer to one another appear more distanced and no longer cluster. In other 
words, cases and controls cannot be reliably identified in high-dimensional data. PCA violations 
of the true distances between samples limit its ability to reduce high-dimensionality genetic 
variation data correctly. 
 

Discussion 
 
The reproducibility crisis in science called for a rigorous evaluation of scientific tools and 
methods. Due to PCA's centrality in population genetics, and since it was never proven to yield 
correct results, we sought to assess its reliability, robustness, and reproducibility. Here, we 
evaluated PCA performances for eleven use-cases using a simple color-based model where the 
true structure was known as well as real populations and showed that PCA failed in all three 
measures.  
 
We found that PCA is an unreliable tool because, excepting the simplest model case (Figure 1C), 
it has failed to produce correct results across all the design schemes, whether even-sampling was 
used or not, and whether for least or more admixed populations. Whereas the clustering of 
populations between other populations in the scatter plot has been regarded as “decisive proof” 
or “very strong evidence” of their admixture (Patterson et al. 2010), we demonstrated here that 
such patterns are an artifact of the sampling scheme and meaningless for any bio historical 
purposes. The clustering of the results, a subject that received much attention in the literature 
(e.g., Patterson, Price, and Reich 2006), is another artifact of the sampling scheme and likewise 
biologically meaningless (Figures 13-18). Overall, the notion that PCA can yield biologically or 
historically meaningful results is a misconception supported by post hoc reasoning. Like a 
broken watch, PCA can be engineered through careful data manipulation (e.g., Figure 24) to 
yield perceivably correct results. However, it is not a guaranteed outcome, and those “correct” 
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results are indistinguishable from alternative and contradictory results constructed using other 
schemes. That all the results presented here for either the color or real populations are 
mathematically true but realistically and biologically false proves that all bio historical 
inferences drawn from PCA are fictitious. We also found PCA to be an unrobust tool; it is highly 
subjected to minor alterations in the allele frequencies (Figure 12), study design (e.g., Figure 11), 
or choice of markers (Figure 26) (see also Wang et al. 2015; Elhaik and Ryan 2019). Finally, 
PCA results cannot be reproduced (e.g., Figure 13) unless an identical dataset is used, which 
defeats the usefulness of this tool. Note that variations in the implementations of PCA (e.g., 
PCA, singular value decomposition [SVD], and recursive PCA), as well as using the various 
flags, as implemented in EIGENSOFT, yield major differences in the results, none of which is 
more biologically correct than the other. 
 
Several aspects of this study are important to emphasize. First, this study does not ask whether 
PCA is right or wrong but whether it gives true or false results. PCA is a computational 
procedure that computes the principal components and uses them to change the basis of the data. 
PCA has multiple implementations and broad applications in various fields. Properly 
implemented, PCA is considered right. This study is concerned with whether PCA results are 
genetically and historically true and valuable in understanding the patterns in the dataset better 
than other procedures. Second, this study focuses on genetic variation data, particularly human 
data, that have a particular behavior compared to different data types or datasets that are not 
tested here and for which PC analyses may be more successful (e.g., Elhaik, Graur, and Josić 
2010). To better understand how PCA reached prominence, we shall review the historical debate 
as to whether PCA represents the genetic data correctly.  
 

A brief history of PCA and its application to population genetics 
 
It is well-recognized that Pearson (1901) introduced PCA and Hotelling (1933) the terminology. 
Hotelling’s motivation was to address the problem of evaluating independent mental traits in 
psychology. Thurstone presented another principal axes solution to the problem of factor 
analysis (Hotelling 1933). However, he abandoned it because he did not believe that they 
conform to a “true” and meaningful psychological model (Thurstone 1935). The debate about the 
truthfulness and reliability of PCs rages on to this day (Hubert 2016).  
 
In population genetics, PCA is primarily used to reduce the dimensionality of multivariate 
datasets by linearly transforming the genotypes into a set of mutually uncorrelated principal 
components (PCs) ranked according to their variances. As most of the original variability is 
contained in the primary two PCs, they are typically visualized on a colorful scatter plot. The 
early work of Cavalli-Sforza suggested that PCA can detect ancient migrations and population 
spreads (Menozzi, Piazza, and Cavalli-Sforza 1978) and uncover “hidden similarities” (Piazza, 
Menozzi, and Cavalli-Sforza 1981) in the genomic data. The authors proposed that PCA will 
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“give us new insight into the evolutionary history of the populations represented in the map” and 
that “using a different color for each one and making use of the capacity of the human eye to 
synthesize three colors.” Cavalli-Sforza arguments were not very convincing. 
 
During the 20th century, PCA was sparsely employed in genomic analyses alongside other 
multidimensional scaling tools. The next-generation sequencing revolution in the early 21st 
century resulted in the emergence of large genomic datasets that required new and powerful 
computational tools with appealing graphical interfaces, like STRUCTURE (Pritchard, Stephens, 
and Donnelly 2000). PCA was not used in the publications of the first two HapMaps nor the 
HGDP dataset (The International HapMap Consortium 2005; Conrad et al. 2006; The 
International HapMap Consortium 2007).  
 
In 2006, Price et al. (2006) introduced the SmartPCA tool (EIGENSOFT package) and claimed 
that the method has “a solid statistical footing” that can “discover structure in genetic data” even 
in admixed populations. Those claims were made based on a simulated dataset and an 
application of PCA to a dataset of European Americans, which revealed an incoherent pattern 
claimed to reflect genetic variation between northwest and southeast Europe. Simultaneously, 
Patterson et al. (2006) applied PCA to three African and three Asian populations and claimed 
that the dispersion patterns of the primary two PCs reflect the true population structure.  
 
The next milestone in the rise of PCA to prominence was the work of Novembre and colleagues 
(2008) that showed a correlation between PCA and geography among Europeans. For that, the 
authors omitted nearly 60% of their samples whose results did not fit with the predictions. The 
authors applied PCA to 90% of the remaining samples and projected the lasting samples (now 
less than 4% of the original dataset) onto the PCs. They positioned the PCs on Europe’s map and 
rotated their axis to fit the map. They argued that some 50% of the samples were predicted 
within less than 400km of their country. Most of the predicted samples, however, were from the 
extreme ends of the map (Italy, UK, and Spain) and were “predicted” most accurately because 
PCA maximizes the variance along the two axes. By contrast, samples from mid and north-
Europe were predicted most poorly. Moreover, 16% of those samples had dual origins (e.g., 
Swiss-French), fitting two predictions. Overall, the authors’ approach classified less than 2% of 
the original samples to within 400km of their countries. Later, Yang et al. (2012) claimed to have 
expanded the method to global samples. Elhaik et al. (2014) showed that the new method also 
has less than 2% accuracy, with some of the samples being predicted outside our planet. Thus 
far, no PCA or PCA-like application has ever reached an accuracy higher than 2% worldwide 
(Mason-Buck et al. 2020). By contrast, an admixture-based approach achieved 83% accuracy in 
classifying individuals to countries and even islands and villages (Elhaik et al. 2014).  
 
Ignoring these methodological problems and further promoting their PCA tool, Reich and 
colleagues (2008) wrote that “PCA has a population genetics interpretation and can be used to 
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identify differences in ancestry among populations and samples, regardless of the historical 
patterns underlying the structure” and that “PCA is also useful as a method to address the 
problem of population stratification—allele frequency differences between cases and controls 
due to ancestry differences—that can cause spurious associations in disease association studies” 
and finally that “PCA methods can provide evidence of important migration events” – none of 
which were supported by the work of Novembre et al.. 
 
After its applications to the HGDP (Biswas, Scheinfeldt, and Akey 2009) and HapMap 3 
(Altshuler et al. 2010) datasets, PCA became the foremost utility in population genetic 
investigations, reaching ”fixation,” the point where it is used almost in every paper in the field,  
by 2013 (Figure 27).  
 
 

 
Figure 27. Evaluating the existence of a PCA in population genetic publications by sampling 
four random population genetic papers per year from Nature and PNAS. The percent of 
publications that used at least one PCA is shown. 
 
 

Misuses of PCA in the literature 
 
To understand why a tool with so many limitations became the foremost tool in population 
genetic, we will briefly review how authors handled these limitations. 
 
We already demonstrated that authors had misinterpreted PCA findings and did not disclose the 
amount of variation explained by PCA. Many of the aforementioned authors were also aware 
that PCA results depended on the sample cohort. They addressed this problem by presenting only 
the results that they considered to be true. For example, Tian et al. (2008b) were aware that PCA 
“is sensitive to differences in the inclusion or exclusion of specific population groups” and that it 
“can be dramatically affected by differences in relatively small genomic regions that may not 
reflect true population substructure.” Likewise, Tian et al. (2009) noted that AJs “have a unique 
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genotypic pattern that may not reflect geographic origins” and that “the inclusion or exclusion of 
particular ethnic groups… shifted the relationships in PCA.” They acknowledged that their 
findings “show that PCA results are highly dependent on which population groups are included 
in the analysis.” Still, both groups drew conclusions based on PCA. Novembre and Stephens 
(2008) reported that “PCA results depend on the details of a particular dataset, they are affected 
by factors in addition to population structure, including distribution of sampling locations and 
amounts of data. Both these features limit the utility of PCA for drawing inferences about 
underlying processes” but nonetheless found PCA to be “undoubtedly an extremely useful tool 
for investigating and summarizing population structure,” and they “anticipate it playing a 
prominent role in analyses of ongoing studies of population genetic variation.” They also 
expressed little concern about the small amount of variance explained by PCA. 
 
Specific PCA applications have been criticized by several groups. McVean (2009) cautioned that  
“Sub-sampling from populations to achieve equal representation, as in Novembre et al. (2008), is 
the only way to avoid this problem [=the distortion of the projection space]” and that “the 
influence of uneven sample size can be to bias the projection of samples on the first few PCs in 
unexpected ways.” However, Novembre et al.’s population sizes ranged from 1 to 219. In reality, 
all PCAs are of unevenly-sized populations because of the exploratory use of PCA. We are 
unaware of any study that adopted McVean’s recommendations, and our findings (e.g., Figures 
5A and 8A) indicate that they are incorrect. Elhaik and Ryan (2019) showed that PCA could not 
model admixed samples. Elhaik et al. (2014) showed that PCA-like tools could not be used for 
biogeography. François et al. (2010) observed that the gradients observed in the first PC are often 
contrary to most often formulated expectations and offered a biological explanation to the 
phenomenon. They concluded that PCA should be considered as a data exploration tool and that 
interpreting the results in terms of past routes of migration “remains a complicated exercise.” 
The practice of ignoring sample dates in paleogenomic analyses has also been criticized 
(Francois and Jay 2020). 
 

PCA as a Dataism exercise in population genetics  

Dataism describes an ideology formed by the emergence of Big Data, where measuring the data 
is the ultimate achievement (Brooks 2013). Dataism proponents believe that with sufficient data 
and computing power, the world’s mysteries would reveal themselves. Dataism enthusiastic 
rarely ask themselves if PCA results are correct but rather how to interpret the results correctly. 
As such, clustering is interpreted as common ancestry and its absence as genetic drift. 
Populations nested between other populations are admixed or isolates and those at the extreme 
edges of the PC scatter plot are unmixed, pure, or races. 

Although a newly coined term, the roots of the dataism philosophy are traceable to the Hotelling-
Thurstone debate and specifically to the Cavalli-Sforza-Sokal conundrum. Cavalli-Sforza et al. 
(1994) explained the first six components in ancient human cross-continental expansions (P. 
338), but they never explained to what extent those historical inferences were distinguished from 
the null hypothesis since they did not have any. Sokal and colleagues were set to test that point 
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and showed that the PCA maps are subject to substantial errors and that apparent geographic 
trends may be detected in spatially random data (the null). Sokal et al. did not express doubt in 
human history but only that it reveals itself in the PC maps, as do we. Cavalli-Sforza’s group 
responded that Sokal et al.’s sampling scheme was extremely irregular (Rendine et al. 1999) and 
questioned Sokal et al.’s disbelief in a wrong method that yields a conclusion that they were 
willing to accept otherwise. Sokal et al.’s next paper was concerned with the lack of response to 
their original inquiries, the PC’s interpolation (to overcome gaps in the data) and smoothing 
technique that introduced more noise, the specific sampling scheme of Cavalli-Sforza and 
colleagues that appeared incidental rather than genuinely comprehensive, and the continued 
absence of a null model (Sokal, Oden, and Thomson 1999a). In further criticism of Cavalli-
Sforza et al. (1994), they claimed that whereas some of the results are biologically sound, others 
are not, yet both are discussed equally seriously. Cavalli-Sforza (Manni 2010) stuck by PCA and 
the historical inferences (The Neolithic spread to Europe made “between 8,000 and 5,000 years 
ago”) that can be allegedly derived from it. In other words, whereas Cavalli-Sforza and 
colleagues believed that once sufficient data are available, the value of PCA for bio-history 
would reveal itself, Sokal and colleagues questioned the robustness and reliability of the 
approach to generate valid historical and ethnobiological results and cautioned that data that 
“have been interpolated or smoothed, invite ethnohistorical interpretation by the unwary” (Sokal, 
Oden, and Thomson 1999b). The issues at the heart of the debate were not as much about 
biostatistics as about dataism. 

At first, Sokal and colleagues had the upper hand in the debate. PCA was not used in the first Big 
Data analyses of 2003-2005 until resurrected by Price et al. (2006). Cavalli-Sforza’s dataism was 
then vindicated. Price et al. (2006) ignored Sokal’s reasoning. They produced no null model nor 
proved that the method yields biologically correct results. The appeal of their tool was mainly its 
applicability to the large datasets that emerged and visual appeal.  

The positioning of a method that lacks any measurable power, a test of significance, or null 
model, which any diligent scientist should seek, at the forefront of population genetic analyses, is 
problematic at the very least. It would not be an exaggeration to consider PCA the Rorschach of 
population genetics, a test that is entirely open to manipulations and interpretations; almost all 
the answers are equally acceptable and where the truth is in the eyes of the beholder.  
 
As an alternative to PCA, we note the advantages of a supervised machine-like model. In this 
mode, gene pools are simulated from a collection of geographically localized populations. Next, 
the ancestry of all tested individuals is estimated in relation to these gene pools. In this model, all 
individuals are represented as the proportion of the gene pools. Their results do not change when 
samples are added or removed in the second part of the analysis. Population groups are bounded 
within the gene pools and inclusion to these groups can be evaluated. This model was shown to 
be reliable, replicable, and accurate for many of the applications discussed here, including 
biogeography (Elhaik et al. 2014), population structure modeling (Das et al. 2016), ancestry 
inference (Baughn et al. 2018), paleogenomic modeling (Esposito et al. 2018), forensics (Mason-
Buck et al. 2020), and cohort matching (Elhaik and Ryan 2019). 
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Conclusions 
 
PCA is a mathematical transformation that reduces the dimensionality of the data to a smaller set 
of uncorrelated dimensions called principal components (PCs), which has numerous applications 
in science. In population genetics alone, PCA usage is ubiquitous, with nearly a dozen of 
standard applications. PCA is typically the first and primary analysis, and its outcomes determine 
the study design. That PCA is completely non-parametric is the source of its strength. Any 
genotype dataset can be processed, typically rapidly, with no concerns of parameters or the 
validity of the data. It is also a weakness because the answer is unique and depends on the 
particular dataset, which is when reliability, robustness, and reproducibility become a concern. 
The implicit expectation employed by PCA users is that the variance explained along the first 
two PCs provides a reasonable representation of the complete dataset. When this variance is 
minuscule (as often is the case with human populations), it does not represent the data. In recent 
years, authors (e.g., Reich et al. 2009; Lazaridis et al. 2016) began omitting the Lilliputian 
amount of variation explained by their PCA. 
 
Here, we carried out extensive analyses on eleven use-cases of PCA, using model- and real-
populations to evaluate the reliability, robustness, and reproducibility of PCA. We demonstrated 
that PCA failed in all criteria and showed how easily it could generate erroneous and 
contradictory results. The dominance of PCA to population genetics is difficult to justify as it 
lacks any measurable significance or accuracy, excepting the quantity of explained variance, 
which is not only minuscule to the extent that authors avoid reporting it but, as shown here, is not 
a proxy to the reliability of the results. As such, PCA can be used to generate outcomes that fit 
preconceived hypotheses with a maximum explained variance. As a “black box” basking in 
bioinformatic glory free from any enforceable proper usage rules, PCA misappropriations, 
demonstrated here for the first time, are hard to spot. Our findings raise concerns to the validity 
of results reported in the literature of population genetics and adjacent fields like animal and 
plant or medical genetics (PCA tools were cited over 15,000 times) that relied on PCA outcomes 
and insights derived from it. Researchers from those fields may be even less aware of the 
inherent biases in PCA and the veracity of results that it can generate. We consider PCA 
scatterplots analogous to Rorschach plots and suggest that they should not be used for population 
genetic investigations. Findings of genetic studies that employed PCA should be reevaluated.  
  
 
Methods 
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Sample collection 
Alongside the simulated color datasets, we assembled three datasets in our evaluation of PCA 
performances for human populations: 1) 2068 global samples (Lazaridis et al. 2016), 2) the first 
dataset, 2,504 1000 genome samples (MacArthur et al. 2012), and 471 Ashkenazic Jews (Bray et 
al. 2010), and 3) the second dataset and 514 ancient DNA samples from (Lazaridis et al. 2016). 
(Table S1). We used Lazaridis et al.’s (2016) dataset to LD prune the datasets (2068 samples and 
621,799 SNPs). After LD pruning using PLINK command (50 10 0.8) and removing SNPs with 
missingness, allowing no more than five missing SNPs per sample, the datasets included: 
230,569, 128,568, and 128,568 autosomal SNPs, respectively.  
 

Data analyses 
All PCA analyses were carried out using Matlab’s (R2020a, Statistics and Machine Learning 
Toolbox Version 11.7) PCA function, which uses singular value decomposition (SVD), like 
SmartPCA, and yields nearly identical results to the basic SmartPCA tool (Patterson, Price, and 
Reich 2006) (Version 7.2.1 without removing outliers, normalization, or projection) (Figure S1-
S2). 
 

Projection of ancient samples 
A major challenge in projecting ancient samples onto modern-day samples is handling the high 
data missingness. Lazaridis et al. (2016) addressed this problem using the least-squares 
projection (lsqproject) implemented in EIGENSOFT. Wang et al. (2015) cautioned that this 
method does not address the shrinkage problem (where all the projected samples cluster 
together) and that the results might be misleading. To avoid this problem and the difficulties 
associated with missing data, in the tenth test case, we analyzed 65 out of 102 of the ancient 
samples of interest with over 10,000 SNPs in our dataset (with a median of 48,249 SNPs). We 
then projected one ancient sample at a time, based on the modern-day samples, using only the 
genotyped SNPs of the former.  
 

Estimating the citation number of PCA tools 
Our estimate that PCA tools were cited over 15,000 is based on the Google Scholar’s citation 
count for the most commonly used tools using the following searches: “EIGENSTRAT OR 
EIGENSOFT OR smartPCA” (>7600 times), “SNPRelate” (>1,200 times), “PLINK AND PCA -
EIGENSOFT -SNPRelate” (>6700 times), "PCA in R AND genetics" (>400 times), and 
“FlashPCA OR FlashPCA2” (>200 times). 
 

Data and scripts availability 
All our data and scripts that can replicate our results and figures are available via GitHub: 
https://github.com/eelhaik/PCA_critique 
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