
Replication of single-cell proteomics data reveals important

computational challenges

Christophe Vanderaa1 and Laurent Gatto1

1Computational Biology and Bioinformatics Unit (CBIO), de Duve Institute,

UCLouvain, Belgium

Email: laurent.gatto@uclouvain.be

Abstract

Introduction Mass spectrometry-based proteomics is actively embracing quantitative, single-

cell level analyses. Indeed, recent advances in sample preparation and mass spectrometry (MS)

have enabled the emergence of quantitative MS-based single-cell proteomics (SCP). While excit-

ing and promising, SCP still has many rough edges. The current analysis workflows are custom

and built from scratch. The field is therefore craving for standardized software that promotes

principled and reproducible SCP data analyses.

Areas covered This special report is the first step toward the formalization and stan-

dardization of SCP data analysis. scp, the software that accompanies this work, successfully

replicates one of the landmark SCP studies and is applicable to other experiments and designs.

We created a repository containing the replicated workflow with comprehensive documentation

in order to favor further dissemination and improvements of SCP data analyses.

Expert opinion Replicating SCP data analyses uncovers important challenges in SCP data

analysis. We describe two such challenges in detail: batch correction and data missingness. We

provide the current state-of-the-art and illustrate the associated limitations. We also highlight

the intimate dependence that exists between batch effects and data missingness and offer avenues

for dealing with these exciting challenges.

Keywords: mass spectrometry, proteomics, single-cell, batch correction, imputation, R, Biocon-

ductor, software, replication, reproducible research.
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1 Article highlights

• Single-cell proteomics (SCP) is emerging thanks to several recent technological advances, but

further progress is still lagging due to the lack of principled and systematic data analysis.

• This work offers a standardized solution for the processing of SCP data demonstrated by the

replication of a landmark SCP work.

• Two important challenges remain: batch effects and data missingness. Furthermore, these

challenges are not independent and therefore need to be modeled simultaneously.

2 Introduction

High-throughput single-cell assays are instrumental in highlighting the biology of heterogeneous cell

populations, tissues and cell differentiation processes. Single cell RNA sequencing (scRNA-seq) is

a prominent player, thanks to its throughput, technical diversity, and the computational tools that

support its analysis and interpretation. scRNA-seq is however blind to the many biologically active

gene products, proteins and their many proteoforms. Mass spectrometry (MS)-based approaches

to study the proteome of single cells are emerging, using the wide range of possibilities offered by

the technology, including miniaturized and automated sample preparation, labeled and label-free

quantitation, as well as data dependent and independent approaches [1, 2, 3, 4, 5]. All these avenues

promise to be valuable contributions to the single cell tool kit.

In this work, we focus on the processing of mass spectrometry-based single cell quantitative

data, as produced from the raw data using widely used tools such as, for example, MaxQuant [6]

or Proteome Discoverer (Thermo Fisher Scientific). As expected for a young and fast evolving field

such as single-cell proteomics (SCP), there are yet no best practice nor any consensus as to how to

adequately process such data. Some studies start from protein and peptide tables as produced by

MaxQuant followed by manual data manipulation using Excel [7, 8], proceed with Perseus [9, 10],

use private in-house scripts [11, 7, 12], while others publish their custom scripts openly [13, 14]. In

this report, we present the replication of the open-source scripts of SCoPE2 published by Specht

and colleagues and their implementation as a formal R/Bioconductor package named scp [14, 15].

We have chosen to focus on the replication of the SCoPE2 analysis for several reasons. First,

it put a milestone in the SCP field by reporting the acquisition of over a thousand single cells

and proving that SCP has reached its potential in becoming a high-throughput technology [16].
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Furthermore, the acquisitions were distributed across several MS runs, chromatographic batches

and 2 labeling protocols, offering the opportunity to assess confounding effects that are common in

complex experimental or clinical designs. Finally, the authors publicly shared all the code and data

necessary to reproduce the results presented in their article, making benchmarking of the replication

possible. Replicating their work allows to formalize and standardize the current SCP data processing

pipeline, and also brings to light two important challenges for SCP data analysis that we will address

in the Expert Opinion section.

3 Replicating the SCoPE2 analysis

We focused on replicating the SCoPE2 analysis by Specht et al. [14] since their raw and quan-

titative data and the processing scripts are readily available, making this work an outstanding

example of open science. Sharing research outputs is indeed paramount to promote community-

wide contributions that will further push the development of the field forward. Furthermore, Specht

et al. implemented new metrics and quality controls that the field could benefit from. Although

the provided data and scripts could fully reproduce their results, the code is difficult to read for

non expert programmers and lacks modularity, making it tedious to reuse and hard to adapt and

extend. We therefore decided to provide a standardized and modularized framework to replicate

this analysis and hence offer a common ground for SCP data analysis and method development.

Our data structure relies on two established R/Bioconductor [17] data classes: QFeatures [18] and

SingleCellExperiment [19]. QFeatures is a data object model dedicated to the manipulation and

processing of MS-based quantitative data. It explicitly records the successive steps to allow users

to navigate up and down the different MS levels. SingleCellExperiment is another efficient data

container, that serves as an interface to state-of-the-art methods and algorithms for single-cell data.

Our approach combines these two classes and benefit from their respective strengths. Based on this

data framework, we built two pieces of software: scp and scpdata.

The scp package extends the functionality of QFeatures to SCP applications (Figure 1A, orange

boxes). It includes functionality that was implemented in SCoPE2, such as normalization by a

reference channel, filtering single-cells based on the median coefficient of variation, or filtering of

peptide-spectrum matches (PSM) based on the single-cell to carrier ratio (SCR). A core feature

of the scp package is the conversion of standard data tables, like those exported by MaxQuant or

Proteome Discover (Thermo Fisher Scientific), to scp formatted data objects along with sample
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metadata. scpdata disseminates twelve SCP data sets formatted using our data structure. The

purpose of scpdata is three-fold. First, it is an ideal platform for data sharing and hence lays the

ground for open and reproducible science in SCP. For instance, the package provides, among others,

the PSM, peptide and protein data used for this replication study. Second, it facilitates the access to

SCP data for developers to build and benchmark new methodologies. Finally, the scpdata package

allows new users to readily access curated and thoroughly annotated SCP data in the context of

training and education.

The first step of the replication was to retrieve the SCoPE2 data. The data are hosted on Google

Drive and are clearly linked from the authors’ web page [20]. We formatted the data set using

scp and included it in scpdata along with comprehensive documentation about data content, data

acquisition and data collection. This is true for any data set in scpdata. Next, we retrieved the

SCoPE2 code from the authors’ GitHub repository and formalized the key steps of the workflow

(Figure 1A) [20]. Most steps implemented in SCoPE2 are routinely performed in bulk proteomics

and are handled by existing software such as QFeatures. The reuse of existing code is essential in

software development because it allows the developer to focus on the innovative aspects of its research

field without losing time reinventing the wheel [17]. Next, we implemented the missing steps in scp

(Figure 1A, orange boxes) and provided clear documentation and examples. Finally, we wrote a

new workflow that fully replicates the results of the SCoPE2 script, using our standardized software.

The output obtained after running the scp workflow leads to very similar results compared to the

data provided by the authors (Figure 1B). The sets of filtered cells and proteins are almost identical.

The final processed data using the two workflows show high similarity with most differences close to

zero. A small proportion of the processed protein expression values show larger differences between

the two workflows. These values arise during imputation of the protein data that will be discussed

in a later section (Figure 4B). A detailed report about the replication of the SCoPE2 analysis using

scp can be found on GitHub [21]. This report includes the code used and some comprehensive

documentation to give readers a good understanding of the underlying processes. It demonstrates

how to integrate other tools to the workflow, such as the ggplot2 package for data visualization [22].

It also gives additional comments on each steps of the SCoPE2 workflow and suggests alternatives

steps and methods for future analyses.
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Figure 1: Replication the SCoPE2 data processing. A: Overview of the key steps performed in

the SCoPE2 script. Blue boxes indicate steps that were already available in QFeatures. The orange

boxes indicate steps that were implemented in scp. The gray box indicates a step implemented in

another package. B: Results of the replication. The top row demonstrates the agreement between

the number of cells, peptides or proteins obtained when running the original SCoPE2 scripts and

scp. The bottom row shows the numerical differences between the peptide or protein expression

matrices. Red arrows point towards the step that generated the tested data.
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4 Conclusion

New tools are required for principled and standardized analysis of SCP data. In this work, we

show the successful application of scp, our R/Bioconductor software package, to replicate the data

processing workflow published in [14]. While replication or reproduction don’t guarantee optimal

processing of the data and the validity of the results, they demonstrate coherence and increase trust

in the data and the results. In addition, the scp package allows for an open SCP environment

that can foster new methodological developments as well as spreading SCP data analysis towards

a broader computational community. We emphasized the standardization of the implementation

which facilitates the integration with currently available tools such as the single-cell methods and

workflows provided by the Bioconductor project [19]. Furthermore, the code is continuously tested

and improved to guarantee long term usability of the software.

Although the replication of the SCoPE2 results supports the reliability of the original work, ad-

ditional improvements are necessary. Complex challenges, such as batch effects and data missingness

still need to be tackled and further methodological developments are required to obtain an optimal

workflow.

5 Expert opinion

5.1 Batch correction

The SCoPE2 protocol relies on sample multiplexing. The 1490 single-cell samples were multiplexed

across 177 MS acquisitions, 63 of which were labeled using TMT-11 and 14 using TMT-16. The data

were acquired across 4 chromatographic batches (LCA9, LCA10, LCB3 and LCB7). Unsurprisingly,

batch effects account for the main source of variation in the unprocessed peptide data, as indicated by

a principal component analysis (PCA) on Figure 2. The first component (12.4 % of total variance)

perfectly separates the TMT-11 from the TMT-16 batches and the second component (6 % of total

variance) further separates the four chromatographic batches. The next two components (7.3 %

of total variance) are driven by biological variations and separate macrophages from monocytes.

Because components in PCA are constrained to be orthogonal, this analysis indicates that most

of the technical and biological variations are independent. This is a key assumption in order to

separate the undesired technical variability from the biological variability. Orthogonality between

technical and biological variation is achieved by carefully designing the experiment. As pointed out
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in the SCoPE2 protocol, it is crucial to randomize cell types and biological samples across different

MS batches.

Since batch effects are technically unavoidable, they need to be accounted for computationally.

The SCoPE2 authors opted for removing the batch effect using ComBat, an empirical Bayes frame-

work [24]. As with any procedure, it is important to understand and apply the requirements of the

method. First, ComBat assumes a balanced design, i.e. it requires that differences between batches

be only the result of technical differences. This can be an issue when cell types or cell states are

unknown in advance, for example in experiment designed to discover new cell populations. Second,

ComBat cannot work with missing data, which requires the data to be imputed beforehand. As

we will discuss later, imputation is a sensitive step that can lead to substantial artifacts in the

data, especially when the number of missing values is high, as is the case for single-cell proteomics

data. Thirdly, ComBat cannot account for the hierarchical structure of batch effects. We anticipate

that once the technology matures, and is applied to clinical samples, for instance across multiple

patients and acquisitions, such a hierarchical structure will become significant. Finally, ComBat

creates a new data set by fitting and removing the batch effect from the input data and ignores the

uncertainty associated to the estimation of the batch effect itself. It would be important to quantify

this uncertainty instead of only considering point estimates. Other batch correction methods have

been developed for scRNA-Seq data and were extensively benchmarked elsewhere [25, 26]. However,

methods tailored for other single-cell applications only partly address the above listed issues and

none suggest to propagate the uncertainty linked to batch effect estimation. An alternative approach

would be to avoid batch correction altogether and account for batch effects explicitly during data

modeling [27, 28, 29].

7

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 12, 2021. ; https://doi.org/10.1101/2021.04.12.439408doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.439408
http://creativecommons.org/licenses/by/4.0/


PC1 (12.4%) PC2 (6.2%) PC3 (4%) PC4 (3.3%)

-0.04 0.00 0.04 -0.04 0.00 0.04 -0.04 0.00 0.04 -0.04 0.00 0.04

LC batch
LCA9

LCA10

LCB3

LCB7

Cell type
Macrophage

Monocyte

-0.050

-0.025

0.000

0.025

0.050

0.075

-0.06 -0.03 0.00 0.03
Principal component 1 (12.4%)

Pr
in

ci
pa

l c
om

po
ne

nt
 2

 (6
.2

%
)

-0.08

-0.04

0.00

0.04

-0.04 0.00 0.04
Principal component 3 (4%)

Pr
in

ci
pa

l c
om

po
ne

nt
 4

 (3
.3

%
) LC batch

LCA9

LCA10

LCB3

LCB7

Cell type
Macrophage

Monocyte

Principal component score

D
en

si
ty

A

B

TMT-11

TMT-16

TMT-11

TMT-16

Figure 2: SCP data exhibit batch effects. The PCA is performed on the peptide data after log-

transformation (cf Figure 1A). The Nonlinear Iterative Partial Least Squares (NIPALS) algorithm

was used to account for missing values during PCA [23]. The liquid chromatography (LC) batches

were acquired either with a TMT-11 (green ellipses) or TMT-16 (yellow ellipses) protocol. The data

set contains two types of single-cells: macrophages (red dots) and monocytes (blue dots). A: PCA

scores for the first four components. Each point represents a single cell and is colored according to

the corresponding cell type. The ellipses give the 95 % interval for each chromatographic batch. B:

Distribution of the principal components scores. Each principal component is displayed in a separate

column. The distributions are split according to LC batch (top row) or to the sample type (bottom

row). The densities were computed from the PCA scores.
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5.2 Data missingness

Next to batch effects, missing values are a major challenge in MS-based proteomics [30, 31, 32].

Missingness refers to the fact that not all features (peptides or proteins) are detected and quantified

in all samples. We can distinguish between to types of missingness.

The first type is biological missingness. The peptides of a protein are not detected in a sample

because that sample does not express the protein. Such missingness is biologically relevant and must

be considered accordingly. We observed this phenomenon in the SCoPE2 data, where some peptides

are systematically missing less in macrophages compared to monocytes and the reduced missingness

is correlated with an increased average expression level in that cell type (Figure 3A).

The second type is technical missingness. There are several technical mechanisms that explain

why a protein could not be detected in a sample. A first reason is that none of its constituting

peptides could be correctly delivered to the MS instrument, for example due to sample loss. Sample

loss is a major concern for single-cell applications because only limited amounts of material are avail-

able to start with. This limitation has been actively researched and improved in the last two years,

and the SCoPE2 protocol or the cellenONE’s proteoCHIP are two prime examples [14, 5]. Poor

ionization of peptides can also lead to reduced signal or to missing data. Another cause of technical

missingness is related to MS1 peak selection. In data dependent acquisition (DDA), only the most

abundant precursor peaks are selected for fragmentation and MS2 analysis. Whether a peak will be

selected is therefore dependent on the abundance of the peptide and the surrounding peptides in a

specific chromatographic region, as well as their ionization efficiencies. Several approaches have been

developed to reduce this bias by propagating spectrum identifications from one sample to the corre-

sponding MS1 peaks from another sample. The match between run algorithm of MaxQuant is very

popular in label-free SCP [10, 9, 7, 8, 34, 12], but methodological improvements have recently been

suggested for both label-free and TMT-based SCP [35, 36]. Finally, another reason for missingness is

the inability to match a spectrum to a peptide sequence due to poor spectrum quality. Low-quality

spectra occur because of peptide co-isolation after MS1 selection or when the peptide abundance is

close to the detection limit. This limitation is tackled by improving the current sensitivity of LC-

MS/MS instruments. For instance, [8] reported an increased proteome coverage when decreasing

the diameter of the LC columns for improved chromatographic resolution or upgrading the Orbitrap

Eclipse Tribrid MS to an Orbitrap Fusion Lumos Tribrid MS for improved MS sensitivity. Later,

they also showed improved peptide identification by coupling the MS with a high field asymmetric

ion mobility spectrometry (FAIMS) device [34]. Technical missingness translates to the fact that
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two similar MS runs will not contain the same set of quantified peptides and proteins. Although

most proteins are common to several MS runs, each run exhibits a specific set of proteins that were

probably present but missed in the other runs (Figure 3B). We observe only marginal correlation

between the peptide abundance and the proportion of missingness in single-cell samples (Figure

3C), as was already described for bulk proteomics [31]. While upcoming technical improvements

to SCP will further decrease the amount of missing values, computational approaches will still be

required.

To overcome the current limitations regarding missing data, Specht and colleagues imputed

missing data using the k-nearest neighbors (KNN) method. They applied KNN in the sample

space instead of the gene space, thus increasing the similarity between samples. Since subsequent

cluster or differential abundant protein analyses focus on sample-wise differences, this causes an

underestimation of the variance and hence leads to a potential increase of false positive outcome.

Furthermore, the imputation is performed at the protein level. As pointed out by [30], imputa-

tion at the protein level means that a first implicit imputation is performed at the peptide level and

the authors instead suggest to use well-justified imputation methods directly at the peptide level.

However, a good understanding of the missingness mechanism is required to justify the use of a

suited imputation method. Further research is required to extend current work on bulk proteomics

to the context of SCP data [30, 31]. Finally, just like batch correction, imputation is an estima-

tion process that generates estimates with some degree of uncertainty. Replacing missing data by

imputed values ignores the variance associated to the estimates and this variance can become large

when available data are scarce. Multiple imputation, i.e. the application of a range of imputation

parameters or methods to estimate a range of plausible values rather than point estimates, would be

a promising strategy here. This is best illustrated by an issue we noticed in the data. For instance,

the E3 ubiquitin-protein ligase (RNF41) is quantified in only three MS runs and KNN imputation

predicted the missing values for the remaining runs (Figure 4A). When comparing the resulting data

distribution to the distribution for vimentin (VIM), a protein that is not missing, we can clearly

observe that the imputation introduces two suspicious trends. First, the variability observed for

imputed values is much lower than for acquired values, and second, the imputation does not exhibit

batch effects. While reduced variability and absence of batch effects are desirable properties, in this

case, we are faced with erroneous data that does not hold biologically meaningful information. The

imputed data for RNF41 is unreliable and should be flagged accordingly. Furthermore, small quan-

tification errors may get amplified during the imputation step, as observed during the replication of
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the SCoPE2 data (Figure 4B). While we observed minimal differences between the two workflows

before imputation, those small differences where magnified after imputation, considerably increasing

the proportion of values deviating from zero.
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Figure 3: Missing data is the consequence of two components. A. Biological missingness

is illustrated by plotting the proportion of missing values in monocytes against the proportion of

missing values in macrophages for each peptide. Those proportions are also shown on the histograms

along the y and x axis for monocytes and macrophages, respectively. Each peptide is colored

according to its relative log fold change between macrophages over monocytes. The data used are

the peptides after log-transformation (cf Figure 1 A). B. Technical missingness between replicates is

shown using an upset plot on eight representative MS runs [33]. Two MS runs were randomly sampled

from each of the four LC batches. The bar plot on the left shows the total number of proteins per

MS run and the bar plot at the top shows the number of proteins for each intersection. Black dots

indicate which MS runs are included in the intersection. C. Relationship between the proportion of

missingness in single-cell samples and the average log2 abundances. Each dot represents a peptide.

Samples containing 1000 cells were used as a proxy to estimate the peptide abundances for monocyte

(left) and macrophage (right) populations. Red dots highlight peptides that are found in 1000-cell

samples but absent in single-cell samples.
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Figure 4: Problem with imputation. A. The data distribution is shown for two proteins: RNF41,

a highly missing protein, and VIM, a protein with no missing data. The variance associated to the

imputed values for RNF41 (gray points) is not correctly estimated as compared to the variance

observed for VIM. Data points are colored in red for macrophages and in blue for monocytes. B.

Numerical differences between the protein data generated by the scp and the SCoPE2 processing

workflows, before imputation (left, cf. Figure 1A, Normalization step) and after imputation (right,

cf. Figure 1A, Imputation step).
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5.3 Batch effects and data missingness are not independent

As of today, all published SCP analyses consider batch effects and data missingness as two distinct

issues that can be tackled separately when they are, in reality, correlated. Figure 5 highlights

the impact of acquiring data in different LC batches on the data missingness. First, since with

SCoPE2, peptides are identified from the carrier signal, the number of identified peptides and their

missingness display a prominent MS acquisition effect. Second, the LC batches influence the amount

of missingness. For instance, more missing values are observed for LCB3 than LCB7. Third, the

amount of missing data within each LC batch varies over time. LCA10 displays a very clear increase

of missingness, while LCB7 shows a decrease. Finally, LC batches also influence the variability of

missing data as the proportion of missing values both within and between MS runs, with LCB3

displaying much less thereof compared to all other ones. Therefore missing values can only be

correctly modeled if we include batch covariates. Inversely, batch effect can only be correctly modeled

if we accurately model the missing data.

A solution to this issue is to explicitly model the protein expression and the protein detection

rate. The hurdle model is very compelling in this regard [37]. The hurdle model consist of two

components. The first component is fit using the MSqRob model, that estimates peptide intensities

as a function of sample covariates, and includes blocking factors for batch effect, taking into account

the correlation between peptides belonging to the same protein [28]. Inference on the estimates

allow to perform differential abundance analysis. The second component is a binary component that

models the probability that an observation is missing as a function of sample covariates for each

run independently. This second component is fit using a quasi-binomial regression and allows to

assess differential detection. Another solution is provided by proDA [38], that constructs a sigmoidal

probabilistic dropout model for each sample. This model is in turn used to infer means across

samples and the associated uncertainty in the presence of missing values. Further research is needed

to assess the performance of the model when applied to SCP data in the light of inflation of missing

values, and to further adapt the algorithm to achieve principled SCP data analysis.

In conclusion, we believe there are two open paths of research that need to be explored to deal

with the batch effect and data missingness challenge. First, we need to better understand the

different mechanisms that influence missingness and batch effects in SCP data and how they differ

from bulk proteomics. Benchmark data sets are therefore required to assess our ability to control

for technical factors (e.g. operator, acquisition run, instrument, LC column, . . . ) while preserving

biological meaningful variability (e.g. cell type, cell state, treatment, . . . ). Second, there is a need
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Figure 5: Influence of batch on data missingness. The proportion of missing data is shown for

each single cell as a dot colored by LC batch. A. Effect of the MS run. Cells are ordered based on

the acquisition date. The 95 % ellipses are drawn for every MS run. B. Effect of LC batch. Cells are

grouped by LC batch. The missing data distribution within each batch is highlighted using violin

plots.
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for dedicated models and methods that can disentangle the technical challenges that are batch effects

and data missingness from the desired biological knowledge. scp represents an ideal environment for

a standardized processing of the data and hence allowing comparison, integration and improvement

of various existing methods available from other fields as well as benchmarking new methodological

innovations.
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