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Abstract  24 

Small world topologies are thought to provide a valuable insight into human brain organisation and 25 

consciousness. However, functional magnetic resonance imaging studies in consciousness have not 26 

yielded consistent results. Given the importance of dynamics for both consciousness and cognition, 27 

here we investigate how the diversity of brain dynamics pertaining to small world topology (quantified 28 

by sample entropy; dSW-E) scales with decreasing levels of awareness (i.e., sedation and disorders of 29 

consciousness). Paying particular attention to result reproducibility, we show that dSW-E is a 30 

consistent predictor of levels of awareness even when controlling for the underlying functional 31 

connectivity dynamics. We find that dSW-E of subcortical and cortical areas are predictive, with the 32 

former showing higher and more robust effect sizes across analyses. Consequently, we propose that 33 

the dynamic reorganisation of the functional information architecture, in particular of the subcortex, 34 

is a characteristic that emerges with awareness and has explanatory power beyond that of the 35 

complexity of dynamic functional connectivity.   36 

 37 

 38 

INTRODUCTION 39 

 40 

Recent neuroscience endeavours have approached the intractable question of consciousness via 41 

notions of complexity (Carhart-Harris et al., 2014; Northoff & Huang, 2017; Tononi, Boly, Massimini, 42 
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& Koch, 2016; Varley et al., 2020). A complex system can be defined as a large network of components 43 

that exhibit collective emergent properties (Mitchell, 2011).  In fact, consciousness researchers have 44 

focused their attention not only on the activity of brain regions; but also the statistical relationship 45 

between them (i.e., “connectivity”) and the resulting emergent global properties (Di Perri et al., 2016; 46 

Edelman & Gally, 2013; Stamatakis, Adapa, Absalom, & Menon, 2010; Tononi et al., 2016). 47 

A prominent paradigm to investigate the complexity of brain connectivity is given by network 48 

science(Rubinov & Sporns, 2010; Watts & Strogatz, 1998). Using the mathematical framework of 49 

Graph Theory Analysis (GTA), network science permits an investigation into the 50 

topological/architectural characteristics of a network by defining its components as nodes and their 51 

interactions as edges. Watts and Strogatz in 1998 (Watts & Strogatz, 1998) brought this approach to 52 

the forefront by showing that complex real-life networks of the most disparate kinds tend to show a 53 

“small-world” (SW) architecture. Computationally, the SW network structure can be created by taking 54 

a regular lattice network (where neighbouring nodes are connected) and randomly rewiring some 55 

edges. This particular network configuration simultaneously retains many clusters of connected 56 

nodes, whilst the rewired edges enable information to travel easily across long distances in the 57 

network (i.e., an average “short path length”). The SW network is appealing to neuroscience as it 58 

putatively describes the fundamental local-global interaction of a limited number of brain regions and 59 

connections, and thus would allow complexity to emerge in a cost-effective manner (Bassett & 60 

Bullmore, 2017; Northoff & Huang, 2017; Sporns & Zwi, 2004; van den Heuvel, Stam, Boersma, & 61 

Hulshoff Pol, 2008). In fact, SW topology has been shown to favour synchronisation, richness of 62 

possible states, self-organisation, criticality, resistance to insult, efficient and cost-effective 63 

information transfer (Barahona, Barahona, & Pecora, 2002; Papo, Zanin, Martínez, & Buldú, 2016; 64 

Takagi, 2018, 2020; Tan & Cheong, 2017). 65 

Given these characteristics, theorists have conjectured that SW organisation is relevant to 66 

consciousness (Alkire, Hudetz, & Tononi, 2008; Buzsáki, 2007; Carhart-Harris & Friston, 2019; Northoff 67 
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& Huang, 2017; Sporns & Zwi, 2004). SW is a topology (i.e., interrelation of constituent parts) that 68 

indicates simultaneous localised-clustered (segregated) and efficient-global (integrated) information 69 

flow (Bassett & Bullmore, 2017; Deco, Tononi, Boly, & Kringelbach, 2015; Lord, Stevner, Deco, & 70 

Kringelbach, 2017; Northoff & Huang, 2017; Rubinov & Sporns, 2010), which theoretically would 71 

underpin the emergence of consciousness (Baars, 2005; Dehaene & Christen, 2011; Northoff & Huang, 72 

2017; Sporns & Zwi, 2004; Tononi et al., 2016). In fact, SW has been theorised to underly the spatial 73 

temporal characteristics necessary for the emergence of awareness (Alkire et al., 2008; Buzsáki, 2007; 74 

Northoff & Huang, 2017).  75 

The empirical side, conversely, has proposed several measures of SW architecture (Humphries & 76 

Gurney, 2008; Muldoon, Bridgeford, & Bassett, 2016; Telesford, Joyce, Hayasaka, Burdette, & 77 

Laurienti, 2011); but has not yielded the same level of consistency as its theoretical counterpart. 78 

Research in the functional network SW of anaesthesia has shown increases in SW during 79 

unconsciousness, in opposition to what would have been expected from theory (Monti et al., 2013; 80 

Northoff & Huang, 2017; Schroter et al., 2012). Others show decreases in SW during anaesthesia and 81 

disorders of consciousness (Barttfeld et al., 2015; Luppi et al., 2019). Still more papers report 82 

inconclusive SW results in consciousness-relevant conditions (Achard et al., 2012; Crone et al., 2014; 83 

Godwin, Barry, & Marois, 2015). There are also contradicting results arising from structural 84 

connectivity measurements of SW configurations (Tan et al., 2019; Weng et al., 2017).  85 

Analogously to the proposed importance of small world topology to dynamic information flow 86 

(Barahona et al., 2002; Bassett & Bullmore, 2017; Takagi, 2018; Tan & Cheong, 2017; Watts & Strogatz, 87 

1998), different theories of consciousness converge in proposing that the dynamic richness of possible 88 

brain states is a fundamental hallmark of consciousness (Carhart-Harris et al., 2014; Dehaene & 89 

Christen, 2011; Northoff & Huang, 2017; Tononi et al., 2016). This approach has in fact proven 90 

empirically successful (Barttfeld et al., 2015; Cavanna, Vilas, Palmucci, & Tagliazucchi, 2018; Demertzi 91 

et al., 2019; Golkowski et al., 2019; Huang, Zhang, Wu, Mashour, & Hudetz, 2020; Luppi et al., 2019). 92 
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Although SW is universally recognised as important for network dynamics (Barahona et al., 2002; 93 

Takagi, 2018; Tan & Cheong, 2017; Watts & Strogatz, 1998), SW studies of consciousness have 94 

primarily focused on static networks, created by averaging across time points (Achard et al., 2012; 95 

Crone et al., 2014; Monti et al., 2013; Schroter et al., 2012).  96 

To tackle the inconsistencies between different empirical studies and theory, and to probe the 97 

relevance of network science to consciousness, we investigated the dynamics of small-worldness 98 

(SW). Specifically, we use an information-theory measure adapted to biological dynamical systems, 99 

namely sample entropy (Delgado-Bonal & Marshak, 2019; Richman & Moorman, 2000), to investigate 100 

how complex (“unpredictable” or “uncompressible”) SW architecture is over time. Given previous 101 

inconsistencies in this area, we devote particular attention to convergence of SW results by deploying 102 

different brain parcellations (i.e. region definitions that form network nodes). Parcellations, which 103 

varied between the aforementioned SW studies (Luppi et al., 2019; Monti et al., 2013; Schroter et al., 104 

2012), have been known to affect graph theory results (Hallquist & Hillary, 2018; Luppi & Stamatakis, 105 

2020; Papo et al., 2016; Yao, Hu, Xie, Moore, & Zheng, 2015). Therefore, the employment of different 106 

parcellations to assess whether results are parcellation-dependent is advised (Hallquist & Hillary, 107 

2018). We used whole-brain parcellations with different granularities (i.e., Low and high granularity, 108 

126 and 553 brain regions respectively, described in Supplementary material 1) and the AAL 109 

(Automatic Anatomical Labelling atlas), which has been extensively used in previous literature (Luppi 110 

et al., 2019; Schroter et al., 2012; Tan et al., 2019; Weng et al., 2017). To further assess convergence 111 

of results we chose to employ two different SW measures: Sigma (σ), as it is the most widely reported 112 

measure in the literature (Luppi et al., 2019; Monti et al., 2013; Schroter et al., 2012), and the more 113 

recently developed PHI (φ), which displays higher reliability in simulated networks and is designed for 114 

biologically-relevant weighted connectivity (Muldoon et al., 2016; Luppi 2021). Please note this is not 115 

“PHI” as defined in the context of integrated information theory (Tononi et al., 2016).  116 
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The empirical data consists of three independent functional magnetic resonance imaging (fMRI)  117 

datasets that are relevant to consciousness. Two are propofol anaesthesia datasets; the first collected 118 

in Cambridge (referred to as “CAM” dataset onwards), UK (18 participants) comprising a control awake 119 

and a moderate sedation condition (Adapa, Davis, Stamatakis, Absalom, & Menon, 2014) and the 120 

second in London, Ontario (henceforth referred to as LON) :16 participants in control awake and deep 121 

sedation conditions (Naci et al., 2018). The third dataset was acquired from patients with disorders of 122 

consciousness (hereafter indicated by “DOC”, Cambridge, UK). This comprised 23 patients of whom 123 

11 are in a Minimally Conscious State (MCS), and the other 12 displaying the Unresponsive 124 

Wakefulness Syndrome (UWS).  125 

These datasets are ideally suited to assess the importance of SW dynamics in consciousness as they 126 

permit an investigation which is independent of the type of consciousness alteration  (i.e. 127 

pharmacologically or pathologically induced) and can be ordered according to decreasing levels of 128 

awareness (i.e., “content consciousness” (Laureys, Perrin, & Brédart, 2007)). We predict that the 129 

temporal complexity of SW, if relevant to consciousness, will consistently diminish with decreasing 130 

levels of awareness, in accordance to theoretical models (Carhart-Harris et al., 2014; Laureys et al., 131 

2007; Tononi et al., 2016).  If the sample entropy of small-world dynamics is consistently predictive of 132 

levels of awareness at the whole-brain level, we will investigate whether these effects are 133 

differentially driven by different subsystems (Cortex, Subcortex, Cerebellum). We will also test 134 

whether any subsystem effects are exclusive to SW or can be extended to other graph-theory 135 

properties that are relevant to consciousness in terms of segregation (functional 136 

division/specialisation) and integration (functional combination/information merging) (Achard et al., 137 

2012; Luppi et al., 2019; Rubinov & Sporns, 2010; Sporns & Zwi, 2004).   138 

RESULTS 139 

In order to confirm that the dynamics of network SW architecture can predict altered levels of 140 

awareness, we divided whole brain resting-state fMRI data spatially into different parcellations (Fig 141 
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1A) and then split the resulting timeseries using a sliding window approach (Barttfeld et al., 2015; 142 

Luppi et al., 2019; Preti, Bolton, & Van De Ville, 2017) (Fig 1B). Within each of these windows we 143 

constructed a network by relating each brain region’s timeseries to all others, using Pearson’s 144 

correlation coefficients (Fig 1C). Two small world measures (PHI (Muldoon et al., 2016); and Sigma 145 

(Humphries & Gurney, 2008), Fig 1D) were calculated on each of these networks. In this manner, we 146 

obtained a time-series of SW values on which sample entropy was calculated (Richman & Moorman, 147 

2000) (Fig 1E), thus obtaining one value for each subject that denotes the richness, or complexity, of 148 

their SW fluctuations. Inferential statistics were performed using ordinal logistic regressions, with 149 

sample entropy values as the predictor variable and ordered conditions as the predicted variable (Fig 150 

1F).  151 

To assess whether dynamic SW complexity scales with consciousness, we ordered the conditions a-152 

priori according to presumed levels of awareness, analogously to previous studies looking at the 153 

functional network properties of consciousness (Demertzi et al., 2019; Di Perri et al., 2016). For the 154 

main analysis the CAM awake condition was ordered (as a factor in R) before the CAM moderate 155 

sedation, which in turn was placed as more aware than the DOC Minimally Conscious State (MCS) and 156 

DOC Unresponsive Wakefulness Syndrome (UWS) respectively. To assess the robustness of our results, 157 

we performed a second analysis by substituting the CAM propofol dataset with the LON propofol 158 

dataset which comprised an awake and a deep sedation condition (ordered respectively, Fig 1F).    159 

 160 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2021. ; https://doi.org/10.1101/2021.04.12.439452doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.439452
http://creativecommons.org/licenses/by-nc-nd/4.0/


 161 

 162 

 163 

 164 

Figure 1. Method Description 165 

Illustration of method. A) We obtained timeseries for each brain region. B) The timeseries were 166 

divided with a sliding window approach (each window comprising of 24 timepoints and slided by 1 167 

timepoint). C) We then correlated all region timeseries to obtain a weighted graph for each window. 168 

D) We calculated SW (Humphries & Gurney, 2008; Muldoon et al., 2016; Watts & Strogatz, 1998) for 169 

each graph so as to obtain a timeseries of SW values on which E) we calculated sample entropy. F) We 170 

inserted the sample entropy of dynamic small worldness into an ordinal logistic regression as a 171 

predictor; with the ordered conditions (according to presumed level of awareness) as a dependent 172 

variable.  173 

 174 
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 176 

 177 

 178 

SW dynamic complexity in the brain.  179 

Our hypothesis that dynamic SW sample entropy (dSW-E) predicts monotonically decreasing levels of 180 

awareness was confirmed using an ordinal logistic regression for both SW measures (Fig 2: PHI 181 

Standardized Regression Coefficients [Coef]= -1.42 p = 0.000006; C.I. [2.5%:97.5%] -2.05 : -0.81; Sigma 182 

Coef: -0.91 p=0.0002 C.I. -1.43 : -0.39). This result was corroborated across different parcellations with 183 

different granularities (presented in supplementary material 2). Furthermore, this result was 184 

replicated in the second analysis with a different sedation dataset (i.e., LON-DOC datasets= PHI; Coef= 185 

-0.82 p =0.001 C.I. -1.37 : -0.26 and Sigma; Coef = -0.81 p =0.001, C.I. -1.32 : -0.29; S2, Fig2). This 186 

suggests that the unpredictability of dynamic SW architecture reliably scales with increasing levels of 187 

awareness.  188 

This consistency is remarkable given that when we calculated the two SW measures (Phi and Sigma)  189 

on static graphs (i.e. one graph per participant constructed by averaging across all timepoints (Monti 190 

et al., 2013; Schroter et al., 2012)), they were not correlated (Rho=0.17, p=0.2) and did not yield 191 

consistent patterns between conditions and network definitions (S3). Conversely, the two measures 192 

of SW when calculated dynamically, proved more informative and showed the same intuitive patterns 193 

of decreasing complexity in lower levels of awareness (Fig 2, S2).  194 

It is important to assess whether these graph theory entropy metrics truly reflect the temporal 195 

complexity of the functional architecture (i.e., topology), or can be explained more parsimoniously by 196 

lower order metrics such as the variation in functional connectivity (FC) (van den Heuvel et al., 2017). 197 

In fact, the entropy of average positive dynamic FC (chosen as graph theory properties are here 198 
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calculated on positive correlations (Rubinov & Sporns, 2010; van den Heuvel et al., 2017) was a 199 

significant predictor for levels of awareness across parcellations and datasets (e.g., lower granularity 200 

whole brain parcellation for CAM-DOC analysis: Coef=-0.49, C.I.= -0.95:-0.02, p=0.01, see S4 for all 201 

results). Such results suggest that awareness entails an unpredictability of dynamic global 202 

synchronisation levels (measured by brain region timeseries Pearson’s correlations). This begs the 203 

question whether dynamic SW entropy (dSW-E, Fig 2) truly reflects the consciousness-predictive 204 

complexity of functional topology, or whether SW entropy results may be better explained by the 205 

unpredictability of global synchronisation.  206 

To investigate this question, we ran a control ordinal logistic regression analysis that involved the same 207 

exact procedure used above (fig 1f) with the addition of the sample entropy of dynamic FC (dFC-E) as 208 

a covariate predictor. Both SW entropy predictors remained significant in the main analysis (S5). 209 

However, in the analysis controlling for dFC-E in the LON-DOC dataset, the dSW-E of Sigma for the AAL 210 

parcellation lost significance (S5), whilst dSW-E results remained significant in all other parcellations 211 

despite controlling for dFC-E.   212 

This control analysis included both dFC-E and dSW-E as co-variate predictors in the same ordinal 213 

logistic regression and found the latter remained significant. This suggests that the temporal 214 

complexity of the functional SW architecture predicts increasing levels of awareness above and 215 

beyond what can be explained by the complexity (“compressibility”) of dynamic functional 216 

connectivity. This may be taken as a strong indication that the dynamic information produced 217 

(measured via sample entropy(Richman & Moorman, 2000) by functional topological dynamic 218 

organisation will decrease with diminishing levels of awareness.  219 

  220 

 221 

 222 
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 224 

FIGURE 2 Dynamic SW properties and Ordinal Logistic Regression results.  225 

In the top panel (A) are shown example dynamic SW properties (3 timepoints) overlaid on a brain 226 

template (Brainmesh_Ch2withCerebellum; BrainNet viewer(Xia, Wang, & He, 2013)]). The size of the 227 

nodes represents the clustering coefficient of that node, whilst the connections represent the inverse 228 

of the path length between the two nodes. The hotter the colour, the shorter the path length (i.e., 229 

how easily information can be transmitted between the nodes, not direct connectivity). Shown, for 230 

illustrative purposes, (top-left) is an example of a control awake participant (CAM dataset) and an 231 

example of an Unresponsive Wakefulness Syndrome patient (DOC dataset; bottom-left). Noticeable is 232 

the change in node size (clustering coefficient) and edge colour (path length) over time in the control 233 

participant, which is not so prominent in the individual affected by UWS. In the bottom panel (B) violin 234 

plots are showing the scaling of dynamic SW sample entropy with levels of awareness for both the 235 

main and second analysis. Conditions are ordered (left to right) according to a-priori presumed level 236 

of awareness (i.e. Awake > Propofol Sedation > MCS > UWS). The first two rows represent the dynamic 237 

PHI and Sigma entropy for a whole brain parcellation with 126 regions (S1) respectively. The third row 238 

represents dynamic PHI entropy values for the AAL. Blue triangle represents the median, whilst the 239 

red diamond represents the mean. OLR= Ordinal logistic regression coefficients; UWS= unresponsive 240 

wakefulness syndrome; MCS= minimally conscious state; SED = propofol sedation; Con= control awake 241 

condition. All ordinal logistic regression values are standardized for comparison. 242 

 243 

Dynamic Small-world Entropy in the Cortex, Subcortex and Cerebellum.  244 

Given that dynamic entropy of both SW measures (φ & σ) consistently predicts levels of awareness at 245 

the whole-brain level, we sought to explore whether the dSW-E of major cito-architectonically distinct 246 

subdivisions of the brain (i.e., Cortex, subcortex and cerebellum) are relevant to consciousness and 247 
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differentially explain the above whole-brain effects found in both high and low granularity 248 

parcellations.  249 

This analysis is relevant to debates in the literature in which, some postulate the importance of the 250 

cortex in consciousness (Ledoux & Brown, 2017; Tononi et al., 2016); whilst others posit an essential 251 

role for the subcortex (Carhart-Harris & Friston, 2019; Panksepp, 2011; Solms, 2013). Although Sigma 252 

was used in the whole-brain analyses to assess convergence of different SW measures, and because 253 

it is widely used in published literature; in this section we exclusively calculated the sample entropy 254 

of dynamic PHI. We continued analyses with this particular measure because it is the most stable and 255 

computationally viable SW metric, specifically designed for weighed networks (Muldoon et al., 2016).  256 

The complexity of dynamic SW topology predicted levels of awareness in the cortical (Coef= -1.30 257 

p=0.000006 -1.89:-0.71) and subcortical (Coef=-1.94 p=0.000003 C.I.= -2.7:-1.10) network definitions. 258 

The cerebellar parcellation displays a significant trend (fig 3 Coef= -0.52, p=0.02, C.I.= -1.06:0.01).   259 

Remarkably, the effect sizes for the subcortex were greater than those of the cortex. The LON-DOC 260 

datasets showed convergent results with the exception of the high granularity cortical parcellation 261 

(400 nodes; p=0.08, S6). Furthermore, when we added dFC-E as a covariate to dSW-E, both the cortex 262 

and subcortex remained significant, whilst the cerebellum dSW-E was borderline significant (p=0.055; 263 

S7). When controlling for dFC-E, the Subcortex dSW-E again had higher regression coefficients (coef=-264 

1.83) than the cortex (coef=-1.25) in both datasets, although the cortex violated regression 265 

assumptions in the CAM-DOC analysis (S7). 266 

To confirm whether the subcortex dSW-E was more predictive of levels of awareness than the cortex, 267 

we inserted dSW-E of the three subsystems within the same model and calculated the odds ratio for 268 

each. We found that an increase of 1 of the subcortical dSW-E increased the chance of being in the 269 

highest level of awareness by 6.34 (C.I.= 2.60:17.71), whilst a unit increase of cortical dSW-E increased 270 

the likelihood of being in the highest awareness category by 2.81 (C.I.= 1.50:5.52). Instead, the Odds 271 

ratio of the cerebellar dSW-E was 1.26 (C.I.= 0.70:2.32). A similar pattern was seen in the LON-DOC 272 
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dataset (S8). These results suggest that the complexity of subcortical dynamic SW topology may be 273 

more consistently sensitive to decreasing levels of awareness than the cortex.  274 

We then investigated whether these measures were correlated to behavioural metrics (bedside 275 

diagnostic assessments of consciousness-impairment in DOC patients via the Coma recovery Scale-276 

revised [CRS-r (Giacino, Kalmar, & Whyte, 2004)]; and pharmacological plasma propofol concentration 277 

metrics (in CAM dataset). This would elucidate the potential relevance of dSW-E to clinically relevant 278 

observable behaviour (in the case of CRS-r) and the amount of propofol found in the blood. We found 279 

that subcortex dSW-E was inversely correlated to Propofol plasma concentration in the CAM dataset 280 

(rho= -0.38, p=0.022). However, this correlation did not survive Bonferroni correction for the different 281 

parcellations and measures used. There was also a correlation between SW entropy of PHI of the 282 

cortex and CRS-r (rho = 0.56, p=0.004), but this did not replicate in the higher granularity parcellation. 283 

Thus, the unpredictability of dynamic SW topology may be loosely related to observable behaviour 284 

and propofol concentration metrics.   285 

 286 

 287 
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 288 

 289 

Figure 3 Subsystem dynamic SW properties and Ordinal Logistic Regression results.  290 

In the left panel (A) are shown example dynamic SW properties (3 timepoints) for the cortex, 291 

subcortex and cerebellum ( templates: BrainMesh_Ch2withCerebellum; 292 

BrainMesh_ICBM152_smoothed; BrainMesh Cerebellum respectively, created in BrainNet viewer (Xia 293 

et al., 2013)). Node size represents the clustering coefficient of that node, whilst the connections 294 

represent the inverse of the path length between the two nodes. The hotter the colour, the shorter 295 

the path length. Shown are three timepoints for the cortex (red nodes; no=100), Subcortex (blue 296 

nodes; no=54) and the cerebellum (green nodes; no=99), for an awake participant (CAM dataset). In 297 

the right panel (B) violin plots are showing the scaling of dynamic PHI sample entropy with levels of 298 
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awareness. Blue triangle represents the median, whilst the red diamond represents the mean. 299 

Conditions are ordered (left to right) according to a-priori presumed levels of awareness (i.e. Awake > 300 

Propofol Sedation > MCS > UWS). The first row shows the cortical, the second the subcortical and the 301 

last the cerebellar results. OLR= Ordinal logistic regression coefficients; UWS= unresponsive 302 

wakefulness syndrome; MCS= minimally conscious state; SED= propofol sedation; Con= control awake 303 

condition. All Ordinal Logistic Regression values are standardized for comparison. 304 

 305 

 306 

Sample entropy of integration and segregation dynamic graph theory metrics for the cortex, 307 

subcortex and cerebellum. 308 

Given that subcortical dSW-E has more predictive power than the cortex, we sought to investigate 309 

whether this striking effect (Fig. 3) is specific to SW or can be generalised to other topological 310 

organisation (graph theory) measures that are relevant to consciousness theory. To this end, we chose 311 

two measures that are conceptually (in terms of integration and segregation (Lord et al., 2017; 312 

Rubinov & Sporns, 2010; Sporns & Zwi, 2004)) and statistically related to SW (Jarman, Steur, Trengove, 313 

Tyukin, & Van Leeuwen, 2017). The first is modularity (Q), which measures the extent to which a 314 

network can be divided, therefore being a proxy measure for segregation in terms of functional 315 

differentiation at a network level. The second measure is participation coefficient (PC), that measures 316 

to what extend different modules (i.e., functional subdivisions calculated via modularity) of the 317 

network are interconnected, therefore indicating the degree of integration in terms of the merging of 318 

information from different modules. We analysed these measures as we did SW in the previously 319 

described procedure (from Fig 1D onwards) 320 

When we inserted the complexity of dynamic participation coefficient (dPC-E) of the different 321 

subsystems within the same model we saw that the odds ratio of the subcortex (2.14; C.I.=1.08:4.44, 322 
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p=0.01) were higher than those that of the cortex (1.09; C.I.=0.63:1.90, p=0.01). Remarkably, the dPC-323 

E of the cerebellum (2.76; C.I.=1.46:5.71, p=0.001) was the strongest predictor (S9). The complexity of 324 

modularity dynamics (dQ-E) had higher predictive power in the subcortex (2.15 C.I.=1.10:4.42, p=0.01) 325 

than the cortex (1.52; C.I.=0.86:2.75, p=0.07) and the cerebellum (1.61; C.I.=0.86:3.07, p=0.06). These 326 

results also reproduced in the second analysis (S9). 327 

Using the behavioural scores collected in the original semantic propofol study for the CAM dataset 328 

(Adapa et al., 2014) we found that Subcortical dPC-E was inversely correlated to reaction time (Rho=-329 

0.40, p=0.017), indicating the relevance of this measure to observable behaviour. These results 330 

suggest that decreasing subcortical complexity of network dynamics (beyond SW) is a characteristic 331 

of decreasing levels of awareness.   332 

 333 

DISCUSSION 334 

In consonance with our hypothesis, a key finding of this study is that the temporal complexity of SW 335 

architecture increases with levels of awareness. We integrate graph theory (Achard et al., 2012; Crone 336 

et al., 2014; Monti et al., 2013; Schroter et al., 2012) and dynamics (Barttfeld et al., 2015; Demertzi et 337 

al., 2019; Huang et al., 2020; Luppi et al., 2019) in a novel way to show that the temporal complexity 338 

of information architecture reliably scales with levels of awareness. Importantly, we show that the 339 

complexity of subcortical dynamics is particularly predictive of levels of awareness. Such cortical and 340 

subcortical dynamics possibly underlie the varied streams of contents and states that characterise 341 

consciousness (Carhart-Harris & Friston, 2019; Dehaene & Christen, 2011; Panksepp, 2011; Solms, 342 

2013; Tononi et al., 2016). 343 

Previously, changes in static (Di Perri et al., 2016; Naci et al., 2018; Stamatakis et al., 2010) and 344 

dynamic functional connectivity (Barttfeld et al., 2015; Cavanna et al., 2018; Demertzi et al., 2019; 345 

Golkowski et al., 2019) in different states of consciousness have been widely reported. We advance 346 
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this body of research by showing that the sample entropy of dynamic FC is predictive of levels of 347 

awareness; but importantly, we additionally show that SW architecture dynamics have consistent 348 

explanatory power above and beyond the variations in functional connectivity. This suggests that 349 

awareness has characteristic dynamic global information architectures (topologies) that cannot be 350 

reduced to simple FC. In other words, the dynamic re-configuration of the global functional 351 

architecture (“the interrelation of parts”), rather than the absolute synchronisation of brain regions, 352 

may be particularly important to consciousness. These findings, therefore, speak to theories that posit 353 

a global workspace (of information (Baars, 2005)), or the irreducibility of the whole to its parts (Tononi 354 

et al., 2016). In fact, we show that the dynamics of architectures that favour both integration and 355 

segregation between different information modules, consistently scale with increasing levels of 356 

awareness.  It is therefore possible that such architectures may contribute to an integrated dynamic 357 

global workspace of information across time.  358 

A key result of this study may supply some interpretations in regards to what may be particularly 359 

important for consciousness emergence. This is the difference between cortical and subcortical 360 

effects. Despite the cortex was a significant predictor on its own, we found that the complexity of 361 

dynamic subcortical topology is more consistent and powerful in predicting levels of awareness than 362 

the cortex. This suggests that the complexity of topological functional dynamics in the subcortex is 363 

particularly sensitive to different levels of awareness. In fact, the subcortical system is thought to 364 

provide fundamental (affective, interoceptive and sensory) inputs for cortical processing, and is 365 

hypothesised to have underpinned the first subjective experiences in evolutionary history and 366 

subsequent phylogenetic development of higher-order self-awareness (Carhart-Harris & Friston, 367 

2019; Panksepp, 2011; Solms, 2013). Despite studies of the dynamics of consciousness tend to focus 368 

mainly on the cortex (Barttfeld et al., 2015; Demertzi et al., 2019; Huang et al., 2020), recent evidence 369 

(Lutkenhoff, Johnson, Casarotto, Massimini, & Monti, 2020) shows that the complexity of cortical 370 

response to perturbation in DOC inversely correlates with atrophy in arousal-related subcortical 371 

structures rather than in cortical structures. 372 
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Although some authors propose that subcortical structures function as an unconscious modulator of 373 

behaviour and cognitive conscious access (Ledoux & Brown, 2017), rather than underpinning basic 374 

awareness (Panksepp, 2011; Solms, 2013), these results suggest that formulations that focus on the 375 

cortex as central to consciousness (Baars, 2005; Tononi et al., 2016), may necessitate further 376 

verification in the future (e.g. see, Shewmon, Holmes, & Byrne, 1999). In fact, the present results 377 

suggest that investigating subcortical information may aid finer differentiation of different conscious 378 

states (Lutkenhoff, Johnson, et al., 2020; Lutkenhoff, Wright, et al., 2020; Panksepp, 2011) for clinical 379 

purposes. 380 

In a similar vein, despite some researchers do not consider the Cerebellum important for 381 

consciousness (e.g., Tononi et al., 2016); we found that network dynamics of this subsystem 382 

(particularly dPC-E) displays some degree of predictive power for levels of awareness. This lends 383 

tentative support to notions that the cerebellum may have a discernible role in awareness (Clausi et 384 

al., 2017; Johnson, Belyk, Schwartze, Pinheiro, & Kotz, 2019).  385 

Another contribution of this paper is the investigation of the relevance of SW as a metric for 386 

consciousness. Although several measures of SW have been proposed (Humphries & Gurney, 2008; 387 

Muldoon et al., 2016; Telesford et al., 2011); its calculation in static functional brain networks have 388 

been problematic (Rubinov & Sporns, 2010). Such issues, other than being evidenced by the 389 

inconsistency between previously published studies on consciousness (Achard et al., 2012; Barttfeld 390 

et al., 2015; Crone et al., 2014; Luppi et al., 2019; Monti et al., 2013; Schroter et al., 2012), were found 391 

within this study (S3). Here, conversely, we show that the richness of the dynamics of this topological 392 

measure robustly decreases with diminishing levels of awareness, independently of the cause of 393 

unconsciousness, dataset, brain region definition, and different measures of SW. The SW topology 394 

implies an information communication architecture that is simultaneously efficient and specialised. In 395 

fact, SW is thought to be related to information transmission and cognition in both health and disease 396 

(Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006; Bassett & Bullmore, 2017; Schilling, 2005; 397 
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Sporns & Zwi, 2004; Takagi, 2018; Tan & Cheong, 2017; van den Heuvel et al., 2008; Wu et al., 2012; 398 

Yu et al., 2011; Zhu et al., 2020). Therefore, it is possible that the reconfiguration of SW topology over 399 

time may indicate variations in information processing (and therefore cognitive states (Bassett & 400 

Bullmore, 2017)), which would intuitively increase proportionally to the level of awareness (Carhart-401 

Harris et al., 2014; Laureys et al., 2007; Tononi et al., 2016).   402 

However, we have also shown that consciousness-relevant topological dynamics are not limited to 403 

SW. The sample entropy of dynamic Modularity (Q) and PC, may index changes in the formation and 404 

inter-communication of dynamic functional subsystems (e.g., in visual attention), and as such may 405 

provide a good metric of variations in the stream of conscious contents or cognitive states that is 406 

typical for awareness (Di Perri et al., 2016; Dixon et al., 2017; Edelman & Gally, 2013; Godwin et al., 407 

2015; Huang et al., 2020; Margulies et al., 2016). Either way, analogously to SW, PC and Q have been 408 

shown to be related to cognition and information processing (Arnemann et al., 2015; Bertolero, Yeo, 409 

Bassett, & D’Esposito, 2018; Cohen & D’Esposito, 2016; Finc et al., 2017; Godwin et al., 2015; Han, 410 

Chapman, & Krawczyk, 2020; Hilger, Ekman, Fiebach, & Basten, 2017). Thus, interpretations are 411 

complementary to those made above for SW, in that the dynamic entropy of these GTA properties 412 

may indicate variations in information processing state (and therefore contents of consciousness).  413 

Given the potential existence of many different types (or dimensions) of consciousness, that the 414 

dynamic complexity of several graph theory properties may display predictive power, and that these 415 

measures display high within condition standard deviations (Fig 2 & 3); we tentatively suggest that 416 

these results may primarily relate to the epi-phenomenology of consciousness. In other words, the 417 

dynamic complexity of functional topology necessarily arises with consciousness, but it may not be a 418 

sufficient condition for the emergence of awareness.  419 

As for the strengths and weakness of this study; the temporal resolution of the data-collection 420 

technique and the sliding window approach constitute a limitation of this study, as it only can measure 421 

coarse timescales of brain activity. Furthermore, DOC data is inherently noisy and is characterised by 422 
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high degrees of variability and misdiagnosis. We selected this subset of participants out of a bigger 423 

dataset to ensure the data had acceptable quality. The ordering of conditions into decreasing levels 424 

of awareness may be controversial, in that it reduces subjective qualitative states to a two-425 

dimensional quantity, despite being clinically (Giacino et al., 2004; Laureys et al., 2007), theoretically 426 

(Carhart-Harris et al., 2014; Tononi et al., 2016), and intuitively justified. Conversely, in light of 427 

inconsistencies between previously published studies, the use of different SW measures and related 428 

graph theory measures constitute a strength of this study. In fact, the explicit controlling for the 429 

dynamic FC (which underlies the graph theory measures) is a first in graph-theory consciousness 430 

research and consolidates the robustness and interpretation of results (van den Heuvel et al., 2017). 431 

The additional use of an independent dataset to validate results, and the use of different parcellations 432 

(with different brain region definitions but similar numbers, and with similar definitions but different 433 

granularities, S1) serve to augment assurance in these results (Hallquist & Hillary, 2018).  434 

We conclude, with a reasonable amount of confidence, that the complexity of dynamic topology (in 435 

other words: the re-organisation of functional information architecture) does increase with the 436 

emerging of awareness. We tentatively suggest that dynamics of information processing architecture 437 

indirectly reflects changes in cognitive content/mental state which is an intuitive characteristic of the 438 

vernacular “stream of consciousness”. The predictive power of the subcortex’s dynamic topology is 439 

higher and more consistent compared to that of the cortex or the cerebellum, suggesting that the 440 

dynamic re-organisation of this system may be particularly important in typical awareness.          441 

 442 

Methods 443 

Cambridge anaesthesia dataset (CAM) 444 

Participants – CAM dataset 445 
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 446 

Ethical approval was obtained from the Cambridgeshire 2 Regional Ethics committee (Adapa et al., 447 

2014). 25 participants were recruited, however due to incomplete data in the cortex and procedure 448 

failure a subset of 18 were taken for further analyses. All participants were healthy and were native 449 

English speakers (50% males). Mean age was 33.3 (19-52). Two senior anaesthetists were present 450 

during scanning. Electrocardiography and pulse oximetry were continuously performed whilst 451 

measures of blood pressure, heart rate and oxygen saturation were recorded regularly.  452 

Anaesthetic Protocol – Cam Dataset  453 

Propofol sedation was administered intravenously via “target controlled infusion” with a Plasma 454 

Concentration mode. An Alaris PK infusion pump (Carefusion, Basingstoke, UK) was used which was 455 

controlled via the Marsh pharmacokinetic model. The anaesthesiologist can thus decide on a desired 456 

plasma 2 “target” and the system will regulate the infusion rates using patient characteristics as 457 

covariates. Three target plasma levels were used – no drug (awake control), 0.6 µg/ml (low sedation), 458 

1.2 µg/ml (moderate sedation). In this study only the moderate sedation is used. Data for this latter 459 

condition was taken 20 minutes after cessation of sedation. Blood samples were taken at the end of 460 

each titration period, before plasma target was altered. The level of sedation was probed verbally 461 

immediately before and after each of the scanning runs.  462 

10 minutes of plasma and effect-site propofol concentration equilibration was allowed before 463 

cognitive tests were commenced (auditory and semantic decision tasks). Mean (Standard deviation) 464 

plasma propofol concentrations was 304.8 (141.1) mg/ml during light sedation, 723.3 (320.5) mg/ml 465 

during moderate sedation and 275.8 (75.42) mg/ml during recovery. Mean (SD) total propofol given 466 

was 210.15 (33.16) mg.  467 

Magnetic Resonance Imaging Protocol – Cam dataset  468 
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A Trio Tim 3 tesla MRI machine (Erlangen, Germany), with 12-channel head coil was used to obtain 32 469 

descending interleaved oblique axial slices with an interslice gap of 0.75 mmm and an in plane 470 

resolution of 3 mm. The field of view was 192x192, Repetition time and acquisition time was 2 seconds 471 

whilst the echo time was 30 ms and flip angle 78. T1-weighted structural images with 1mm resolution 472 

were obtained using an MPRAGE sequeunce with TR= 2250 ms , TI– 900ms , TE= 2.99 ms flip angle= 9 473 

degrees.   474 

London Ontario Propofol (LON) dataset 475 

Participants -LON dataset 476 

The second anaesthesia dataset used was obtained at the Robarts Research Institute in London, 477 

Ontario (Canada) and was approved by the Western University Ethics board. 19 healthy (13 males; 18-478 

40 years), right-handed, English speakers with no reported neurological conditions signed an 479 

informed-consent sheet and received pecuniary compensation for their time. The study was approved 480 

by research ethics boards of Western University (Ontario, Canada). Due to equipment malfunction or 481 

impairments with the anaesthetic procedure three participants were excluded (1 male). Thus, 16 482 

participants were included in this study(Naci et al., 2018).  483 

Anaesthetic Procedure -LON dataset 484 

The procedure was supervised by two anaesthesiologists and one anaesthetic nurse in the scanning 485 

room. Participants also performed an auditory target-detection task and a memory verbal recall to 486 

assess level of awareness independently from the anaesthesiologists. Additionally, an infrared camera 487 

was used to further assess level of wakefulness. 488 

Propofol was administered intravenously using a Baxter AS50 (Singapore); stepwise increments were 489 

applied via a computer-controlled infusion pump until all three assessors agreed that Ramsay level 5 490 

was reached (i.e. no responsiveness to visual or verbal incitements). If necessary, further manual 491 

adjustments were made to reach target concentrations of propofol which were predicted and 492 
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maintained stable by a pharmacokinetic simulation software (TIVA trainer). This software also 493 

measured blood concentration levels following the Marsh 3-compartment model. The initial propofol 494 

concentration target was 0.6 μg/ml, and step-wise increments of 0.3 μg/ml were applied after which 495 

Ramsay score was assessed. This procedure was repeated until participants stopped answering to 496 

verbally and where rousable only by physical stimulation at which point data collection would begin. 497 

Oxygen titration was put in place to ensure SpO2 above 96%. The mean estimated effect site propofol 498 

concentration was 2.48 (1.82-3.14) μg/ml and propofol concentration whilst the mean plasma 499 

concentration was 2.68 (1.92-3.44). Mean total mass of propofol administered was 486.58 (1.92–500 

3.44). 8-minutes of RS-fMRI data was acquired.   501 

 502 

Magnetic Resonance Imaging Protocol – LON dataset  503 

A 3-tesla Siemens Trio scanner was used to acquire 256 functional volumes (Echo-planar images [EPI]). 504 

Scanning parameters were: slices=33, 25% inter-slice gap resolution 3mm isotropic; TR=2000ms; 505 

TE=30ms; flip-angle=75 degrees; matrix=64x64. Order-of-acquisition was bottom-up interleaved. The 506 

anatomical high-resolution T1 weighted images (32-channel coil 1mm isotropic voxels) were acquired 507 

using a 3D MPRAGE sequence with TA=5mins, TE =4.25ms, matrix=240x256, 9 degrees FA.  508 

 509 

Disorders of consciousness Dataset (DOC) 510 

Patients - DOC dataset  511 

MRI data for 23 DOC patients were collected between January 2010 and July 2015 in the Wolfson 512 

Brain Imaging Center in Addenbrookes Cambridge, UK (mean time post injury 15.75 For UWS and 16.9 513 

for MCS). These were selected out of a bigger dataset due to their relatively intact neuroanatomy. 514 

These patients were treated and scanned at the Wolfson Brain Imaging Center, Addenbrookes hospital 515 

(Cambridge, UK). Written Informed consent was obtained from an individual that had legal 516 
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responsibility on making decisions on the patient’s behalf. These participants were split into 517 

vegetative state and minimally conscious groups (n = 12 for UWS and 11 for MCS) in accordance to 518 

the diagnosis given by the attending physician at Addenbrookes hospital. Mean CRS-r score was 8.3 519 

(standard deviation 2.03), For the UWSS group 7, (SD 1.41) and 9.75 (Sd 1.54) For the MCS group. 520 

Mean age for the UWS group was (40.16) SD 13.63; and for the MCS group (39,18, S.D 18.13). In the 521 

UWS group the aetiology was described as TBI for 3 patients, one hypoxia, one edema and the 522 

remaining participants having the pathology caused by anoxia. In the MCS group nine of the patients 523 

had a Traumatic brain injury, one a cerebral bleed and one anoxia. In the MCS group 7 were male; 524 

whilst in the UWS group 8 were male. This dataset received ethical approval from the National 525 

Research Ethics Service 526 

Magnetic Resonance Imaging Protocol -DOC dataset 527 

A varying number of functional tasks, anatomical and diffusion MRI images were taken for the DOC 528 

participants. Only the Resting-state data was used for this study. This was acquired for 10 minutes 529 

(300 volumes, TR=2s) using a siemens TRIO 3T scanner. The functional images were acquired using an 530 

echo planar sequence. Parameters include: 3x3x3.75mmm resolution, TR/TE = 2000ms/30ms, 78 531 

degrees FA. Anatomical images T1-weighted images were acquired using a repetition time of 2300ms, 532 

TE=2.47ms, 150 slices with a cubic resolution of 1 mm.  533 

Preprocessing  534 

All functional images were preprocessed in the same way using an in-house matlab script that used 535 

SPM12 functions (https://www.fil.ion.ucl.ac.uk/spm/software/spm12). After removing the first 5 536 

scans to reach scanner equilibrium, slice-timing correction was performed (reference slice=no. 17). 537 

Volumes were realigned to the mean functional image. This process produced re-alignment 538 

parameters which were included in the time series extraction covariates. Finally, using the mean 539 

functional image, spatial normalization to an EPI-template was conducted using the function “old 540 

norm” in SPM as this yielded consistently good results. Participant-specific cerebral spinal fluid and 541 
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white matter maps, used for the time series extraction (See below), were also created using an in-542 

house Matlab (2016a) script based on SPM functions. Visual inspection of normalization to standard 543 

space was carried for all datasets. Particular attention was given to the DOC dataset because of the 544 

effect that lesions may have on spatial transformations. Due to insufficient coverage of the cerebellum 545 

in a UWS patient, these data were excluded from analyses involving the cerebellum.  546 

 547 

Time Series Extraction 548 

Denoising steps were performed in the SPM-based software CONN (17.f) (https://web.conn-549 

toolbox.org/). Movement parameters were included as a first-level covariate. The aCompCorr 550 

algorithm regressed out CSF & White-matter signals from the time-series (using the first 5 principal 551 

components). The ART quality-assurance/motion-artifact rejection toolbox 552 

(https://www.nitrc.org/projects/artifact_detect) was also used to further clean the timeseries data. 553 

Linear de-trending and a 0.008 to 0.09 Hz band-pass filter was applied to eliminate low-frequency 554 

scanner drifts and high-frequency noise. The time-series were extracted controlling for the nuisance 555 

variables described above from the unsmoothed functional volumes to avoid artificially-induced 556 

correlations in clustered regions of interests. 557 

 558 

Graph theory analysis: graph construction 559 

 560 

Graph theory analyses were run on weighted thresholded undirected connectivity matrices (i.e., 561 

graphs). The ROIs corresponded to “nodes” and are placed on the rows and columns of a matrix; whilst 562 

the Pearson’s correlations between any two pairs of nodes were considered weighted (FC) edges and 563 

are represented by the cells in the matrix (Rubinov & Sporns, 2010). Self-connections were set to 0 564 

and NaN values were removed to ensure graphs represented ROI-to-ROI connections.  565 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2021. ; https://doi.org/10.1101/2021.04.12.439452doi: bioRxiv preprint 

https://www.nitrc.org/projects/artifact_detect
https://doi.org/10.1101/2021.04.12.439452
http://creativecommons.org/licenses/by-nc-nd/4.0/


There is no consensus regarding how to threshold connectivity matrices (Crone et al., 2014; Monti et 566 

al., 2013; Rubinov & Sporns, 2010). Usually a set of thresholds are used to ensure that results are 567 

consistent and not driven by graph topologies at specific connection densities (Hallquist & Hillary, 568 

2018; Rubinov & Sporns, 2010; Martijn P. van den Heuvel et al., 2017). Proportional thresholding was 569 

used (e.g., top 10% of correlations). This ensures that the networks compared are of the same size, 570 

have similar properties such as node-connectivity distribution and that the density of each network 571 

was calculated relative to its size (Hallquist & Hillary, 2018; Rubinov & Sporns, 2010). There have been 572 

critiques (Hallquist & Hillary, 2018; Martijn P. van den Heuvel et al., 2017) to the use of proportional 573 

thresholding in clinical populations as baseline functional connectivity may be different compared to 574 

controls and would introduce spurious correlations in the network analysis. It is possible in this case 575 

that graph theory differences are actually driven by simple FC differences. To obviate this problem, 576 

other than controlling for dynamic FC entropy at the inferential statistic level, weighted networks were 577 

used as lower correlations would have lower values in the calculation of GTA metrics and are reported 578 

to ameliorate FC-driven GTA differences (Martijn P. van den Heuvel et al., 2017).  579 

To further guard from the problem of the FC- driven GTA difference problems, a particularly stringent 580 

proportional threshold was used to define graphs. 5 thresholds going from 5% to 25% in 5% increases 581 

were used to test a wide-range of connection densities (Godwin et al., 2015; Monti et al., 2013). The 582 

graph theory values for each of these thresholds were then averaged to form the independent 583 

variables in inferential analyses. Only positive correlations were considered as is typical for network 584 

neuroscience due to the dubious interpretation and the preprocessing contingencies associated with 585 

negative weights (Dixon et al., 2017; Huang et al., 2020; Rubinov & Sporns, 2010). 586 

These weighted-thresholded matrices were analysed using in-house matlab scripts which utilised 587 

functions from the brain connectivity toolbox (Rubinov & Sporns, 2010). In accordance to previous 588 

advice (Hallquist & Hillary, 2018), given how GTA results may be driven by specific parcellations 589 
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(Hallquist & Hillary, 2018; Papo et al., 2016; Yao et al., 2015), the reproducibility of GTA results was 590 

tested through the use of several network definitions (see S1).  591 

For the creation of time-varying (dynamic) connectivity matrices, a sliding-window approach was 592 

used. In accordance to previous studies (Luppi et al., 2019; Preti et al., 2017), the timeseries were split 593 

into a window composed of 24 timepoints (48 seconds) (Figure 1 in main text) which was then moved 594 

by one timepoint. The timeseries were tempered with a gaussian window to ensure that the 595 

timepoints at the edge of the windows did not have a great effect on the correlations obtained.  596 

This procedure resulted in 122 graphs for each participant in the Cam dataset, 271 graphs for the DOC 597 

dataset and 251 for the LON dataset. The measure used upon the properties of this graph (see sample 598 

entropy section; Richman & Moorman, 2000) is meant to be relatively stable with differing number of 599 

time points.  600 

 601 

Graph theory properties: definitions 602 

Small-Worldness attempts to quantify a particular topology of self-organising complex systems(Watts 603 

& Strogatz, 1998). This particular architecture is defined by a high clustering-coefficient and a small 604 

characteristic path length.  605 

Clustering-coefficient is defined as the fraction of neighbours of a node that are also neighbours 606 

(Humphries & Gurney, 2008; Muldoon et al., 2016; Rubinov & Sporns, 2010; Telesford et al., 2011; 607 

Watts & Strogatz, 1998) effectively operationalized as:  608 

Equation 1 609 

∁𝑖 =
2𝑡𝑖

𝑘𝑖(𝑘𝑖 − 1)
 610 

Where t, the number of connected triangles of node i, is compared to the number of connections (k) 611 

of that node. The clustering coefficient is averaged across nodes to the typical “cliquishness” of a 612 
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network (Humphries & Gurney, 2008; Muldoon et al., 2016; Telesford et al., 2011; Watts & Strogatz, 613 

1998). 614 

Characteristic path-length is calculated as the average of the shortest distance between all pairs of 615 

nodes (Watts & Strogatz, 1998) using Dijkstra’s algorithm and is denoted as L. Small values of L indicate 616 

that information is readily available across the network(Rubinov & Sporns, 2010; Telesford et al., 617 

2011).  618 

It is common practice to normalise L and C to equivalent (i.e. with comparable network properties) 619 

Erdos-Renyi random networks (Crand & Lrand (Humphries & Gurney, 2008; Monti et al., 2013; 620 

Schroter et al., 2012)). This ensures that clustering coefficient and path-length rather than other 621 

network properties influence SW, and thus somewhat faithfully operationalises the original SW 622 

definition (i.e., C>>Crand & L≥Lrand (Humphries & Gurney, 2008; Watts & Strogatz, 1998)). The 623 

randomisation parameters and the number of random networks created were assessed in terms of 624 

convergence of values (i.e., recalculating with increasing values until results were consistently similar). 625 

Each Crand and Lrand were calculated from 50 random networks from a rewiring parameter of 5 (in 626 

the ranmio_und function in BCT toolbox). 627 

The ratio between these random-network normalized values of these gives small-worldness:  628 

Equation 2 629 

 𝜎 =  
𝛾

𝜆
=

𝐶

𝐶𝑟𝑎𝑛𝑑
𝐿

𝐿𝑟𝑎𝑛𝑑

 630 

 631 

Thus, the shorter the normalised path-length (λ) and the higher the normalised clustering coefficient 632 

(γ), the higher SW-σ.  633 

However, despite being extensively used in the literature (Lord et al., 2017; Luppi et al., 2019; Monti 634 

et al., 2013; Schroter et al., 2012), this metric has been criticized as σ is highly dependent on small 635 
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variations of clustering-coefficient in the random network and is a measure that is primarily driven by 636 

clustering coefficient(Papo et al., 2016; Telesford et al., 2011). It is argued that Crand is an 637 

inappropriate normalisation model as high clustering is found in lattice networks and in fact in the 638 

original definition compares the clustering coefficient of a SW network to that of a lattice network and 639 

the path length to a random graph (Watts & Strogatz, 1998). Therefore, Telesford and colleagues 640 

(2011) (Telesford et al., 2011) suggest normalising C to the clustering coefficient of an equivalent 641 

lattice network (Clatt).  642 

In fact, for this study the alternative function to calculate small world topology was taken from 643 

Muldoon and colleagues (Muldoon et al., 2016), which similarly to Telesford and colleague’s measure 644 

(Telesford et al., 2011), uses both lattice and random networks to normalise C and L. 645 

Equation 3 646 

 647 

∆𝐶 =  
𝐶𝑙𝑎𝑡𝑡 − 𝐶𝑜𝑏𝑠

𝐶𝑙𝑎𝑡𝑡 − 𝐶𝑟𝑎𝑛𝑑
 648 

∆𝐿 =
𝐿𝑜𝑏𝑠 − 𝐿𝑟𝑎𝑛𝑑

𝐿𝑙𝑎𝑡𝑡 − 𝐿𝑟𝑎𝑛𝑑 
 649 

Where L and C indicate path length and Clustering Coefficient respectively of the observed network 650 

(obs), an equivalent latticed network (latt), and a random network (rand). These normalisations in 651 

turn give the SW measure which ranges from 0 to 1 (the algorithm forces values to 1 in the cases they 652 

are above this value):  653 

Equation 4 654 

ɸ = 1 −  √
∆𝐶2 + ∆𝐿2

2
 655 

For further conceptual and statistical evaluation of the two small-world measures used in this study 656 

see supplementary material 3.  657 
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The modularity algorithm(Rubinov & Sporns, 2010) works by detecting the (computationally) optimal 658 

community structure by dividing the network into groups of nodes with maximised within group 659 

connections and minimised between group connection. Here we used the weighted version of 660 

modularity (Rubinov & Sporns, 2010). 661 

Equation  5 : 662 

𝑄𝑤 =
1

𝑙𝑤 
 ∑ [𝑊𝑖𝑗 −

𝐾𝑗
𝑤𝐾𝑖

𝑤

𝑙𝑤
] 𝛿𝑚𝑖,𝑚𝑗 

𝑖,𝑗∈𝑁
 663 

 664 

Where l is the number of links, i and j represent nodes, W the weights, and K the degree and the 665 

𝛿𝑚𝑖,𝑚𝑗  parameter is 1 if the nodes i and j are in the same module and 0 otherwise.  666 

 667 

The participation coefficient is a measure of the richness of inter-modular connectivity of all nodes, 668 

and requires modularity to have been calculated already (Rubinov & Sporns, 2010).   669 

 670 

Equation 6:  671 

𝑦𝑖
𝑤 = 1 −  ∑ (

𝑘𝑖
𝑤(𝑚)

𝑘𝑖
𝑤 )

2

𝑚∈𝑀
 672 

Where M is the set of modules, 𝑘𝑖
𝑤 (m) is number of weighted links between i and all nodes in module 673 

m.  674 

All metrics were calculated across the 5 thresholded networks and the results averaged. All graph 675 

theory measures, excepting the SW propensity (Muldoon et al., 2016), were calculated using the brain 676 

connectivity toolbox (Rubinov & Sporns, 2010). 677 

 678 
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 679 

Sample entropy 680 

In dynamical systems, entropy is a measure of the rate of information produced. Sample entropy was 681 

developed specifically to obviate the problem of having short and noisy timeseries which is typical of 682 

biological datasets (Delgado-Bonal & Marshak, 2019; Richman & Moorman, 2000). Sample Entropy is 683 

derived from approximate entropy, which in turn is based upon Kolomogorov complexity 684 

(Kolmogorov, 1965; Mitchell, 2011). The underlying notion being that a complex system cannot be 685 

easily described, whilst a simple system can be quickly and briefly summarized.  686 

Sample entropy takes two timeseries segments of different lengths and compares how well each of 687 

these segments explains the rest of the timeseries (via the default Chebyshev distance measure). 688 

Sample entropy is a ratio between how well the smaller segment explains the data compared to the 689 

larger segment, and thus higher values indicating decreased self-similarity and increased complexity. 690 

Equation 7:  691 

𝑆𝑎𝑚𝑝𝐸𝑛 =  −𝑙𝑜𝑔
𝐴

𝐵
 692 

Where A is how similar the smaller timeseries segment (via Chebyshev distance) to the rest the 693 

timeseries. B is how similar the bigger timeseries segment relates to the rest of the timeseries. 694 

The sequence lengths or timeseries lengths (max=2,  min=1) were taken from a study which has looked 695 

at sample entropy of graph theory properties in functional MRI (Pedersen, Omidvarnia, Walz, Zalesky, 696 

& Jackson, 2017). Also taken from this study is the tolerance for accepting matches of similarity which 697 

was set to 0.2 times the standard deviation. The algorithm used in this paper was used in a previous 698 

study with the original creators of the Sample entropy algorithm(Richman & Moorman, 2000). 699 

 700 

Inferential Analyses: Ordinal Logistic Regression  701 
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To assess the hypothesis that the dynamical complexity of graph theory properties diminished with 702 

decreasing levels of awareness Ordinal Logistic Regressions were performed using the polr function 703 

of the MASS R toolbox. This is a regression model for ordinal categorical dependent variables whilst 704 

the independent variable is continuous. This is derived from the logistic regression and ideally suited 705 

to this study for the little assumptions underlying it. Nonetheless, multicollinearity was assessed when 706 

multiple predictor variables were included and the proportional odds assumption was tested using 707 

Brants test (using package ‘brant’). The proportional odds assumption entails the model coefficients 708 

have a proportional effect on each group; I.e., “the slope” estimated between each condition 709 

(outcome variable) is the same or proportional. All tests were one-sided given the direction-specific 710 

hypotheses.  711 
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