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Abstract

The ongoing massive vaccination and the development of effective intervention offer the long-awaited

hope to end the global rage of the COVID-19 pandemic. However, the rapidly growing SARS-CoV-

2 variants might compromise existing vaccines and monoclonal antibody (mAb) therapies. Although

there are valuable experimental studies about the potential threats from emerging variants, the results

are limited to a handful of mutations and Eli Lilly and Regeneron mAbs. The potential threats from

frequently occurring mutations on the SARS-CoV-2 spike (S) protein receptor-binding domain (RBD)

to many mAbs in clinical trials are largely unknown. We fill the gap by developing a topology-based

deep learning strategy that is validated with tens of thousands of experimental data points. We analyze

261,348 genome isolates from patients to identify 514 non-degenerate RBD mutations and investigate

their impacts on 16 mAbs in clinical trials. Our findings, which are highly consistent with existing

experimental results about variants from the UK, South Africa, Brazil, US-California, and Mexico shed

light on potential threats of 95 high-frequency mutations to mAbs not only from Eli Lilly and Regeneron

but also from Celltrion and Rockefeller University that are in clinical trials. We unveil, for the first time,

that high-frequency mutations R346K/S, N439K, G446V, L455F, V483F/A, E484Q/V/A/G/D, F486L,

F490L/V/S, Q493L, and S494P/L might compromise some of mAbs in clinical trials. Our study gives

rise to a general perspective about how mutations will affect current vaccines.
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1 Introduction

Since the first positive cases of coronavirus disease, 2019 (COVID-19) caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) was reported in late December 2019, over 2.5 million lives have

been taken away in the COVID-19 pandemic up to March 10, 2021. The developments of vaccines and

antibody therapies are the most significant scientific accomplishments that offer the essential hope to win

the battle against COVID-19. Nonetheless, the emerging SARS-CoV-2 variants signal a major threat to

existing vaccines and antibody drugs.

SARS-CoV-2 is a novel β-coronavirus, which is an enveloped, unsegmented positive-sense single-strand

ribonucleic acid (RNA) virus. It gains entry into the host cell through the binding of its spike (S) pro-

tein receptor-binding domain (RBD) to the host angiotensin-converting enzyme 2 (ACE2) receptor, primed

by host transmembrane protease, serine 2 (TMPRSS2) [1]. According to epidemiological and biochemical

studies, the binding free energy (BFE) between the S protein and ACE2 is proportional to the infectivity

of different SARS-CoV-2 variants in the host cells [2, 3]. Intrinsically, the mutation-induced BFE changes

(∆∆G) of S protein and ACE2 complex provide a method to measure the infectivity changes of a SARS-

CoV-2 variant compared to the first SARS-CoV-2 strain that deposited to GenBank (Access number: NC

045512.2) [4]. Specifically, the positive mutation-induced BFE change of S and ACE2 indicates that this

mutation would strengthen the infectivity of SARS-CoV-2, while the negative mutation-induced BFE change

reveals the possibility of the weakening transmissible and infectious. Therefore, one can predict the impact

of SARS-CoV-2 RBD variants on infectivity by estimating their BFE changes [4–6].

Moreover, the binding of S protein and ACE2 will trigger the host adaptive immune system to produce

antibodies against the invading virus [7, 8]. As illustrated in Figure 1, antibodies are secreted by a type of

white blood cell called B cell (mainly by plasma B cells or memory B cells). An antibody can either attach to

the surface of B cell (called B-cell receptor (BCR)) or exist in the blood plasma in a solute form. An antibody

can be generated in three ways: 1) Once SARS-CoV-2 invades the host cell, the adaptive immune system

will be triggered, and the B cells will generate and secrete antibodies. 2) In antibody therapies, antibodies

are initially generated from patient immune response and T-cell pathway inhibitors [7], which are called

antibody drugs [8]. Most COVID-19 antibody drugs primarily target S protein. 3) The vaccine is designed

to stimulate an effective host immune response, which is another way to make B cells secrete antibodies [9]. At

this stage, various vaccines, including two mRNA vaccines designed by Pfizer-BioNTech and Moderna, have

been granted authorization for emergency use in many countries, aiming to give our human cells instructions

to make a harmless S protein piece to initiate the immune response actively. Although COVID-19 vaccines

are the gamechanger, S protein mutations might weaken the binding between the SARS-CoV-2 S protein and

antibodies and thus, reduce the efficiency and efficacy of the existing vaccines and antibody therapies [10].

Although SARS-CoV-2 has a higher fidelity in the replication process which benefits from its genetic

proofreading mechanism regulated by the non-structural protein 14 (NSP14) and RNA-dependent RNA

polymerase (RdRp) [11, 12], over 5,000 unique mutations has been found on SARS-CoV-2 S protein [5],

which raises the question that how these mutations on S protein will affect the existing vaccines and anti-

body drugs. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 was reported [10]. Mutation

E484K on S protein RBD may help SARS-CoV-2 slip past the host immune defenses, is broadly founded in

the B.1.351 (a.k.a 20H/501Y.V2) variant [13] and the P.1 (a.k.a 20J/501Y.V3) variant [14]. The ongoing

evaluation of susceptibility of variants in subjects treated with the antibody-drug bamlanivimab shows that

E484K substitution in B.1.1.7, P.1, and B.1.526 variants had reduced susceptibility to bamlanivimab [15].

Moreover, the K417N+E484K+N501Y substitutions in B.1.351 and P.1 variants had also reduced suscep-

tibility to bamlanivimab [15]. Specifically, a 50% increment in the transmission of the B.1.351 variant is

estimated in [16]. Both P.1 and B.1.351 variants cause negative effects on the neutralization by emer-

gency use authorization (EUA) monoclonal antibody therapeutics [17, 18], and the moderate reductions in

neutralizing activity were observed by using convalescent and post-vaccination sera [19]. Furthermore, the
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Figure 1: SARS-CoV-2 S protein antibodies are secreted by B cells in aiming to compete with the host ACE2 for binding to

the S protein RBD.

B.1.427/B.1.429 variant that is initially found in California carries an L452R mutation on the S protein

RBD, which approximately increase 20% of the transmissibility of SARS-CoV-2 [19], and has a mild nega-

tive impact on neutralization by some EUA therapeutics according to Food and Drug Administration (FDA)

report [15,20]. Notably, by using convalescent and post-vaccination sera, moderate reductions in neutralizing

activity of L452R were observed [19].

However, the determination of whether a mutation will reduce susceptibility to the existing antibodies

and antibody drugs from the wet laboratory experiments is time-consuming. Current experimental studies

are restricted to only a small fraction of known RBD mutations that have been observed. There is no reliable

measurement about whether a mutation will evade a vaccine because none knows how many different anti-

bodies will be created from the vaccination. Based on the molecular mechanism of SARS-CoV-2 infectivity,

antibody, and vaccine, one can quantitatively estimate mutation impacts on SARS-CoV-2 infectivity and an

antibody-drug through computing mutation-induced BFE changes of the S protein-ACE2 complex and the S

protein-antibody complex, respectively. In our earlier work, we proposed a TopNetTree model to predict the

RBD-induced binding free energy (BFE) changes of S protein with ACE2 and 56 antibodies [5]. We showed

that RBD mutation N501Y can significantly strengthen SARS-CoV-2 infectivity [5], which is consistent with

experiment [16]. Our results indicated that K417N, E484K, and L452R are all the antibody-escape muta-

tions with positive BFE changes, which are consistent with the findings from many wet labs [5,10]. Among

them, mutation L452R in the California variant is both more infectious and antibody resistant [5]. We found

that the T478K mutation in Mexico variant (B.1.1.222) has the most significant high value of predicted

BFE changes and is one of the potential vaccine-escape [5], which has a rapid growth rate in Mexico. Our

prediction is confirmed from a report that mutation T478K is spreading at an alarming speed [21]. We

also predicted 1149 most likely, 1912 likely, and 625 unlikely receptor-binding domain (RBD) mutations [6].

Currently, all known RBD mutations were correctly predicted as the most likely ones in our work [5, 6].

The objective of this work is to reveal the mutational threats to 16 antibody drug candidates that are

either in clinical trials or associated with clinical trial antibodies as shown in Figure 2. To this end, we

analyze 261,348 complete SARS-CoV-2 genome sequences isolated from patients to identify 27,530 unique

single mutations. Among them, 514 non-degenerate mutations are found on the S protein RBD of SARS-

CoV-2. We develop a deep learning model-based algebraic topology to estimate the mutation-induced BFE

changes. We show that 95 RBD mutations that have been observed over 10 times have favorable predicted

BFE changes, which further confirms the accuracy and reliability of our predictions from the epidemiological
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point of view. Our study of antibody drug candidates is valuable and complementary to experimental

results in the following senses. First, our machine learning and deep learning models validated with tens

of thousands of experimental data points, including SARS-CoV-2 related deep mutations, are reliable as

confirmed by emerging experimental data on various SARS-CoV-2 variants. Second, there are 95 fast-

growing RBD mutations around the world that pose imminent threats to existing and future vaccines and

antibody therapies. The current experimental capability lags behind the rapidly growing RBD mutations.

For example, there is no experimental study about the rapidly increasing Mexico variant B.1.1.222. Our

approach helps close the gap. This work provides a threat analysis of all 514 existing RBD mutations.

However, our emphasis is given to 95 fast-growing RBD mutations. Third, the current experiments in the

literature are limited to two EUA monoclonal antibody therapeutics from Regeneron [22] and Eli Lilly [8].

We extend our analysis to many other antibody therapeutic candidates that are in various stages of clinical

trials, such as those from Celltrion [23] and the Rockefeller University.

2 Results

2.1 Antibodies in clinical trials

In this work, we study 16 antibodies, including 5 antibodies in phase 3 clinical trials or EUA, and 2 an-

tibodies in phase 1 clinical trials. The rest of antibodies are closely related to those in clinical trials. For

the 5 antibodies in phase 3 clinical trials or EUA, there are two antibody combination treatments, casiriv-

imab/imdevimab (REGN10933/REGN10987), and bamlanivimab/etesevimab (LY-CoV555/CB6), and one

single antibody treatment, regdanvimab (CT-P59) from Celltrion. C135 and C144 are two antibodies from

the Rockefeller University in phase 1 clinical trials. The rest antibodies are C102, C105, C002, C104, C110,

C119, C121, LY-CoV481, and LY-CoV488. Most of the antibodies are isolated or derived from COVID-19

human neutralizing antibodies [23–27], while REGN10933 and REGN10987 are derived from the treatments

for Ebola – one from humanized mice and one from a convalescent patient [22]. According to the lit-

erature [22, 24, 25], antibodies REGN10933, REGN10987, LY-CoV555, and CB6, were optimized through

fluorescence-activated cell sorters.

REGN10933
CB6

CT-P59 LY-CoV555
LY-CoV481LY-CoV488

C105

C102

C002

C104

C119

C121

C144

C110

C135

REGN10987
ACE2

ACE2

ACE2

a. b. c. d.

ACE2

Figure 2: 3D alignment of 16 antibodies and ACE2 on the S protein RBD. a. CT-P59 (7CM4), REGN10933 (6XDG), CB6

(7C01). b. LY-CoV488 (7KMH), LY-CoV481 (7KMI), C102 (7K8M), C105 (6XCM). c. LY-CoV555 (7KMG), C002 (7K8T),

C104 (7K8U), C119 (7K8W), C121 (7K8X), C144 (7K90). d. REGN10987 (6XDG), C110 (7K8V), C135 (7K8Z).

In Figure 2, we align 16 three-dimensional (3D) antibody structures with ACE2. Figures 2 a and b

show 7 antibodies that directly compete with ACE2 on the binding domain. Three clinical-trial antibodies,

namely CT-P59, REGN10933, and CB6, can be found in Figure 2 a. Figure 2 c shows 6 antibodies whose

binding domains partially overlap with that of ACE2. Among them, LY-CoV555 and C144 are in clinical

trials. Figure 2 d shows 3 antibodies that partially share their binding domains with ACE2. Antibodies

REGN10987 and C135 do not compete with ACE2 directly and thus, they can be complements of other

antibodies.
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2.2 Impacts of SARS-CoV-2 on antibody efficacy and infectivity

hACE2

S477N/R

T478K

E484K

K417N/T

L452R

N439KN501Y SARS-CoV-2
spike protein
RBD

UK B.1.1.7:
N501Y

South Africa
B.1.351:
K417N,
E484K
N501Y

Brazil P.1:
K417T
E484K
N501Y

Mexican
B.1.1.222:
T478K

California
B.1.427
L452R

Figure 3: 3D structure of human ACE2 (hACE2) and RBD. Color on the RBD structure indicates the BFE changes induced

by mutations, where blue means binding strengthening and red means weakening.

SARS-CoV-2 variants with specific genetic markers are correlated to BFE changes on the RBD, degrade

the neutralization by antibody treatments, or antibodies of the self immune system, and increase the difficulty

of virus diagnostic or transmissible prediction. Especially, for those mutations that enhance transmissibility

and weaken antibody neutralization, they should be prioritized in the investigation. In Figure 3, we illustrate

RBD mutations involved in the UK variant B.1.1.7, Brazil variant P.1, South Africa variant B.1.351, US-

California variant B.1.427, and Mexico variant B.1.1.222. In this figure, each RBD residue is colored by the

maximum mutation-induced BFE change on the S protein-ACE2 complex from 19 possible mutations. One

can notice that all the six mutations in various variants have positive BFE changes that enhance the binding

of S protein RBD and ACE2, and consequently, the infectivity of SARS-CoV-2.
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Figure 4: Illustration of the BFE changes of the complexes of S protein and antibodies or ACE2, induced by RBD mutations

with frequencies being greater than 10. Positive changes strengthen the binding while negative changes weaken the binding.

Here, only mutations that occurred on the relevant random coil of the S protein RBD are considered. The Grey color indicates

that PDB structures do not involve specific residues.

Figure 4 gives an illustration of SARS-CoV-2 S protein RBD mutation-induced BFE changes to the

complexes of S protein with antibodies or ACE2. Here, we only consider those mutations that have been

observed more than 10 times, and a similar study for all known RBD mutations is presented in the Supporting

information. Note that there is a strong correlation between the positive predicted mutation-induced BFE

changes and observed mutation frequency. For a given mutation, if its BFE changes for antibodies are very

negative value while for ACE2 very positive, then this mutation has a combined antibody-escape and fast-

growing effort. Therefore, one can observe that mutations, R346K/S, K417T/N, L452R, E484K/Q, F486L,

F490L/S, S484P/L, and N501Y, have this effect, while R346K/S and N501Y induce a relatively moderate

weakening effect to most antibodies.

Figure 5 shows the BFE changes induced by six RBD mutations for the S protein complexes with

antibodies and ACE2. First of all, it is noted that all RBD mutations give positive BFE changes for
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Figure 5: BFE changes induced by new SARS-CoV-2 mutations, K417N, K417T, L452R, T478K, E484K, and N501Y. C110∗

and C135∗: no results due to incomplete PDB structure.

binding to ACE2, leading to more infectious variants. Additionally, the magnitude of BFE changes on each

mutation is correlated to the distance to antibodies. Therefore, antibodies having more overlap with ACE2

are impacted more significantly by mutations. For example, according to their 3D alignment in Figure 2,

CB6, CT-P59, REGN10933, C102, C105, LY-CoV481, and LY-CoV488 who are directly competing with

ACE2 have large BFE changes in five mutations. Antibodies that partially overlap with ACE2 in terms

of binding domain, i.e., C002, C104, C119, C121, C144, and LY-CoV555, have only a few significant BFE

changes. Antibodies, C110, C135, and REGN10987, which bind to the other side of the RBD, have very

mild changes in all the mutations.

More specifically, mutation T478K whose frequency has risen exponentially since early 2021 in Mexico

(Mexican B.1.1.222) induces a very large positive BFE change in the ACE2-S protein complex. This could

explain why T478K is a fast-growing mutation although it might not affect the binding of antibodies to the
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S protein. As for three variants from UK (B.1.1.7), Brazil (P.1), and South Africa (B.1.351), they share the

same mutation, N501Y, while the UK variant is the only one that contains one mutation on RBD and Brazil

and South Africa variants contain other mutations K417N/T and E484K. Meanwhile, the experimental re-

sults show that most antibodies demonstrated neutralizing capability against the UK variant [17, 18, 28].

Interestingly, as reported by European Medicines Agency [29], regdanvimab (CT-P59) shows neutralizing

ability against the UK variant. These results are highly consistent with the small positive BFE changes

of N501Y on antibodies in Figure 5. For the key substitution, L452R, of California (B.1.427/429), regdan-

vimab (CT-P59), and bamlanivimab (LY-CoV555) have large negative BFE changes. In the FDA report of

bamlanivimab (LY-CoV555) and etesevimab (CB6) [17, 18], the mutation L452R has a large fold reduction

in susceptibility of single bamlanivimab and mild fold reduction of the combination of bamlanivimab and

etesevimab. Lastly, we study the South Africa and Brazil variants, which share the same mutations E484K

and N501Y but different in K417N/T. For antibodies in EUA, REGN10987 has mild changes on mutations,

K417N/T and E484K, while REGN10933 and CB6 respond with large negative changes and LY-CoV555

has a significant negative change on E484K. Our predictions for the South Africa and Brazil variants are in

excellent agreement with experimental data [28,30].

2.3 Mutation impacts on antibodies in clinical trials

In this section, we study five antibodies in clinical trials or emergency use authorization. Two antibodies

of Regeneron Pharmaceuticals, casirivimab and imdevimab, are studies together, followed by other three

antibodies in phase 3, regdanvimab, bamlanivimab, and etesevimab. Two antibodies in phase 1 are discussed

in the end as well. We emphasize those RBD mutations that have been observed for more than 10 times

and denoted their as high-frequency mutations. A complete study of all known RBD mutations is given in

the Supporting information.

2.3.1 Antibodies REGN10933 and REGN10987 (aka Casirivimab and Imdevimab)
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Figure 6: Illustration of SARS-CoV-2 mutation-induced binding free energy changes for the complexes of S protein and an-

tibodies REGN10933 and REGN10987 (PDB: 6XDG). Here, mutations K417T, N439K, G446V, E484K/G, and F486L could

potentially disrupt the binding of antibodies and S protein RBD.

Regeneron’s Casirivimab and Imdevimab antibody cocktail against SARS-CoV-2 is the first combination

therapy, which receives an FDA emergency use authorization. As the only one in the clinical trial anti-

bodies that have the 3D structure of two antibodies binding to the RBD, we first study the BFE changes

of them as an antibody combination. We examine the BFE changes induced by RDB mutations whose

frequencies are greater than 10 in Figure 6 of the antibody cocktail, REGN10933 and REGN10987, binding

to the S protein RBD. The single antibody analysis is provided in the Supporting information. Notice that

mutations, K417T, N439K, G446V, E484K, E484G, and F486L, lead to large negative BFE changes. For

positive BFE changes, it is good to see that there are high-frequency mutations, which indicates that this

antibody combination potentially prevents the new variants of SARS-CoV-2, especially for variants with

mutations L452R, S477N, and K501Y. However, some mutations with negative BFE changes have a very

6

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.12.439473doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.439473


REGN10987

REGN10933

S477N

S494P

L452R

N501Y
RBD

Figure 7: The binding complex of S protein RBD and REGN10933+REGN10987.

large magnitude, indicating that the antibody combination of REGN10933 and REGN10987 was an immune

product optimized for the original un-mutated S protein. In general, parts of the mutations on the S protein

weaken the REGN10933+REGN10987 binding and make the antibodies less competitive to ACE2. This

cocktail is prone to South Africa and Brazil variants (K417N/T, E484K) but remains effective for UK and

US-California variants (L452R and K501Y).
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Figure 8: Illustration of SARS-CoV-2 mutation-induced binding free energy changes for the complexes of S protein and antibody

REGN10933 (PDB: 6XDG). Here, mutations K417T, N439K, G446V, E484K/G, and F486L could potentially disrupt the

binding of antibody and S protein RBD.

Additionally, these two antibodies can be studied separately as shown in Figures 8 and 9. By comparing

the stand-alone BFE predictions to those in Figure 6, it can be concluded that antibody REGN10933 plays

the main role in the antibody neutralization, while the antibody REGN10987 is a complement for two

reasons. First, the antibody REGN10933 shares the same disrupted mutations with the combination and

has larger BFE changes on those mutations. Secondly, the BFE changes for REGN10987 are mild, and most

of them are positive values. According to the 3D alignment, the antibody REGN10987 does not directly

compete with ACE2. Lastly, in the comparison, one can notice that the magnitude of BFE changes is smaller

on the mutations for the combination. This indicates a more stable binding of the antibody combination.

2.3.2 Antibodies LY-CoV555 and CB6 (aka Bamlanivimab and Etesevimab)

Bamlanivimab (LY-CoV555) was first developed as a single antibody therapy for the treatment of mild to

moderate COVID-19 illness. However, it is not distributed alone due to the SARS-CoV-2 variant resistance

and is used as an antibody combination with Etesevimab (CB6). Here, we first examine Bamlanivimab’s
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Figure 9: Illustration of SARS-CoV-2 mutation-induced binding free energy changes for the complexes of S protein and antibody

REGN10987 (PDB: 6XDG).

response to S protein RBD mutations followed by the discussion of Etesevimab.

LY-CoV555

CB6

N501Y

S494P

E484K
K417N/T/K

L452R

E484K

N501Y

RBD
RBD

CB6

RBD

LY-CoV555

Figure 10: The binding complexes of S protein RBD with LY-CoV555 and CB6. There is a crash at the interface between two

antibodies.

In the BFE changes prediction of LY-CoV555 (PDB: 7KMG) as shown in Figure 11, most mutations have

mild changes, while mutations, L452R, V483F/A, E484K/Q/V/A/G/D, F486L, F490L/V/S, Q493L, and

S494P, have large negative BFE changes. For positive BFE changes, the largest value is only 0.75 kcal/mol

and the average of positive BFE changes is 0.16 kcal/mol. However, many mutations with negative BFE

changes have very large magnitudes such that 7 mutations having binding free energy less than -2 kcal/mol,

and the least value is -4.1 kcal/mol for E484K. This could indicate that antibody LY-CoV555 was an immune

product optimized with respect to the original un-mutated S protein. In general, the mutations on S protein

weaken the LY-CoV555 binding to S protein and make it less competitive with ACE2 as most mutations

strengthen the S protein and ACE2 binding. The South Africa variant (E484K) and US-California variant

(L452R) have a strong antibody-escape effect.

In Figure 12, we illustrate the mutation-induced BFE changes for antibody CB6 (PDB: 7C01), which

directly competes with ACE2. One can notice that K417T, K417N, A475S, and N501Y, have large negative

BFE changes, and three of them belong to SARS-CoV-2 variants. The rest mutations have a small magnitude

of changes, and there are no large positive BFE changes. Antibody CB6 is isolated from peripheral blood

mononuclear cells of patients convalescing from COVID-19 at the early stage and optimized based on an
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Figure 11: Illustration of SARS-CoV-2 RBD mutation-induced binding free energy changes for the complexes of S protein and

antibody LY-CoV555 (PDB: 7KMG). Here, mutations L452R, V483F/A, E484K/Q/V/A/G/D, F486L, F490L/V/S, Q493L,

and S494P could potentially disrupt the binding of antibodies and S protein RBD.
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Figure 12: Illustration of SARS-CoV-2 mutation-induced binding free energy changes for the complexes of S protein and

antibody CB6 (PDB: 7C01). Here, mutations K417T, N439K, G446V, E484K, E484G, and F486L could potentially disrupt

the binding of antibody and S protein RBD.

early version of the SARS-CoV-2 virus.

In the 3D alignment, antibodies LY-CoV555 and CB6 share a partial binding domain with ACE2. There-

fore, they are not only competing with ACE2 but also with each other. Comparing the BFE change prediction

on both LY-CoV555 and CB6, one can note that two antibodies respond to S protein RBD mutations differ-

ently and thus are complementary. We deduce that the combined antibody will enhance the single antibody

neutralization.

2.3.3 Antibody CT-P59

Regdanvimab (CT-P59) has been approved for emergency use treatment in South Korea and is under review

by European Medicines Agency (EMA). We present the BFE changes in Figure 14. Antibody CT-P59

shares a similar binding domain with ACE2 and is a potent candidate for the direct neutralization of SARS-

CoV-2. Most mutations induce small changes in the binding free energy, while mutations L452R, L455F,

E484K/A, F490L/S, and S494P/L induce large negative BFE changes. This indicates antibody CT-P59 has

an antibody-escape effect for many variants, including the South Africa variant (B.1.351 with E484K) and

the US-California (B.1.427 and B.1.429 with L452R). It is noticed that is that CT-P59 has a large positive

BFE change for mutation N501Y, indicating CT-P59 can neutralize the SARS-CoV-2 UK variant (B.1.17).

2.3.4 Antibodies C135 and C144

Lastly, we study C135 and C144, another antibody combination treatment currently on phase 1 study. Due

to fact that there is no 3D structure of C135 and C144 binding to RBD simultaneously, we present their

BFE change predictions based on PDB 7K8Z and 7K90, separately.
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Figure 13: The binding complex of S protein and CT-P59.
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Figure 14: Illustration of SARS-CoV-2 mutation-induced binding free energy changes for the complexes of S protein and

antibody CT-P59 (PDB: 7CM4). Here, mutations L452R, L455F, E484K/A, F490L/S, and S494P/L could potentially disrupt

the binding of antibodies and S protein RBD.

In the BFE change calculation of antibody C135, most mutations have mild BFE changes, while two

mutations, R346K/S, induce large negative BFE changes, and three mutations, N440K, N450K, and P499H,

lead to positive BFE changes greater than 0.5 kcal/mol. Notably, C135 is not an antibody that directly

competes with ACE2 in terms of the binding domain. For mutations of emergent variants, K417T/N, L452N,

and N501Y, they all have small BFE changes. With mild changes of most mutations, the antibody C135

could be a complement of other antibodies that are directly competing with ACE2 on the binding domain.

The last antibody is C144, which shares a part of the binding domain with ACE2. It is obvious that

except for mutations E484K/Q/A, the rest mutations induce mild BFE changes. As the mutation E484K

is part of the Brazil and South Africa variants, this antibody treatment could have antibody-escape effects.

However, since most mutations lead to mild BFE changes and mutations K417N/T, L452R, T478K, and

N501Y render mild positive BFE changes, this antibody can have neutralizing efficacy for many emerging

variants, such as the UK, California, and Mexican variants.

3 Discussion

There are emerging variants spreading worldwide, which increase the virus transmissibility, reduce the neu-

tralization of antibodies, and degrade the efficacy of antibody treatments or vaccines. The S protein plays

the most important role in leading the virus to access the host cell. The RBD of S protein directly con-

tacts ACE2, and its substitutions induced by variants can significantly weaken its binding with original

antibodies that were either created from current vaccines or induced through existing antibody therapies.

RBD mutations that enhance the RBD binding to ACE2 and weaken the RBD binding to many antibodies
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Figure 15: The binding complexes of S protein and antibodies C135 and C144.
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Figure 16: Illustration of SARS-CoV-2 mutation-induced binding free energy changes for the complexes of S protein and

antibody C135 (PDB: 7K8Z). Here, mutations R346K/S could potentially disrupt the binding of antibodies and S protein

RBD.

pose potential threats to vaccines and antibody therapies. Figure S1 in the Supporting information provides

detailed analysis 514 RBD mutations to 16 antibodies.

B.1.1.7 lineage The UK variant has one mutation, N501Y, on the RBD, which increases viral trans-

mission [16] and severity based on hospitalizations [31]. However, for antibodies in clinical trials, it has a

minor impact on neutralization in terms of BFE changes based on our predictions. Similar findings for the

B.1.1.7 lineage have been reported for experimental neutralization by EUA therapeutics [17, 18, 32] and for

other antibodies [10].

P.1 lineage The Brazil variant has three RBD mutations K417T, E484K, and N501Y. According to our

BFE predictions, casirivimab (REGN10933) is moderately influenced by K417N and E484K on neutraliza-

tion, while for imdevimab (RENG10987), the mutation impact is less significant. Regdanvimab (CT-P59)

could still maintain its neutralizing capability. Bamlanivimab (LY-CoV555) shows a large fold reduction in

susceptibility on mutation E484K in our prediction, which is consistent with a CDC report [18], while the

combination of bamlanivimab and etesevimab gives a better response to P.1 lineage [17]. We hypothesize

that CB6 is competing with LY-CoV555 and preserve its neutralization capacity with E484K. The combi-

nation of bamlanivimab and etesevimab has a large BFE reduction from P.1 lineage, which indicates that

K417T has negative impacts on the binding.
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Figure 17: Illustration of SARS-CoV-2 mutation-induced binding free energy changes for the complexes of S protein and

antibody C144 (PDB: 7K90). Here, mutations E484K/Q/A could potentially disrupt the binding of antibodies and S protein

RBD.

B.1.351 lineage The South Africa variant is different from the Brazil variant only for one RBD mutation,

i.e., K417N. We can claim a similar statement but moderate impacts on all the clinical trial antibodies. The

same pattern can be found in the CDC report [17,18] and the literature [10].

B.1.427/429 lineage For the California variants, the mutation, L452R, will have a negative impact

on the neutralization for regdanvimab, but minimal impact on the neutralization by the two antibody

combinations. L452R reduces the capacity of bamlanivimab, which can be shown by the prediction and the

CDC report [18]. Interestingly, the fact of small impact on the combination, bamlanivimab and etesevimab,

shown by the prediction and report [17] indicates that etesevimab dominants the binding process again.

B.1.1.222 lineage The Mexico variant involves RBD mutation T478K and has a larger positive BFE

change on the binding of ACE2 and RBD. However, it has minor effects on existing antibodies.

B.1.526 lineage The New York variant is studied by only consider E484K. It reduces the neutralization

of REGN10933, C144, and LY-CoV555. Based on our predictions, the impact on REGN10933 can be reduced

if REGN10987 is in the treatment as well.

Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred.

REGN10933

REGN10987

REGN10933/10987

CB6 (Lilly)

LY-CoV555

CT-P59 (Celltrion)

C135 (Rockfeller)

C144 (Rockfeller)

Antibodies

Variants B.1.1.7 P.1 B.1.351 B.1.427 B.1.526

Figure 18: Comparison of experimental (Exp.) pattern and predicted (Pred.) pattern of the impact of SARS-CoV-2 variants

on major antibody therapeutic candidates. Light green indicates mild or no change in neutralization; pink indicates significant

reduction in neutralization; grey indicates no available data. RBD mutations in various variants: B.1.526: E484K; B.1.1.7:

N501Y; B.1.427: L452R; P.1: K417T+E484K+N501Y; B.1.351: K417N+E484K+N501Y. The BFE changes are accumulated

for multi-mutation predictions. Data resource: REGN10933 [10,30], REGN10987 [10,30], REGN10933/10987 [10], CB6 [10,30],

C135 [10,33], C144 [33], and LY-CoV555 [10,18]

Figure 18 gives an overall comparison of experimental and predicted patterns of variant impacts on major

antibody drug candidates. There is an excellent agreement between our predictions and various experimental

data, except for a minor discrepancy. Specifically, our prediction shows a potential two-fold reduction in
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BFE for CB6 from B.1.1.7 due to N501Y (see Fig. 5), while the experiment records little change [10].

In summary, the Eli Lilly antibody therapies bamlanivimab and etesevimab are likely compromised

by known emerging variants and other high-frequency mutations V483F/A, E484Q/V/A/G/D, F486L,

F490L/V/S, Q493L, and S494P. For Regeneron antibody therapies casirivimab and imdevimab, while there

is no experimental data regarding K417T from variant P.1, our predictions indicate that there is a potential

compromise from mutation K417T. Additionally, Regeneron antibodies are prone to high-frequency muta-

tions N439K, G446V, E484G, and F486L. The Celltrion antibody therapy regdanvimab (i.e., CT-P59) is

predicted to be compromised by variants P.1, B1.351, B.1.427, and B.1.526, although there is no exper-

imental data now. It can also be weakened by high-frequency mutations L455F, E484A, F490L/S, and

S494P/L. Rockefeller University antibody C135 can be evaded by high-frequency mutations R346K/S. The

antibody C144 from Rockefeller University is prone to variants P.1, B1.351, and B.1.526, while the experi-

ment has only confirmed the adversarial impact of variant B.1.526. Additionally, it can be compromised by

high-frequency mutations E484Q/A. In the Supporting information, we further identify that low-frequency

RBD mutations V401I/L, I402V, E406G, Q409L, I410V, D420A/G, N422S, N448D, N450D, Y453F, F456L,

Y473F, E484Q/A/G/D, G485S/R/C/V, F486L/V/C, F490I/L/V/Y/S, S393A/L, N501I, and Y508S have

potential to become future vaccine or antibody escape variants. These mutations are predicted to enhance

the RBD binding to ACE2 while weaken the binding between RBD and most antibodies.

4 Methods

4.1 Genome sequence data and pre-processing

Complete SARS-CoV-2 genome sequences are available from the GISAID database [34]. In this work, a

total of 261,348 complete SARS-CoV-2 genome sequences with high coverage and exact collection date are

downloaded from the GISAID database [34] ( https://www.gisaid.org/) as of March 10, 2021. We take the

first complete SARS-CoV-2 genome from the GenBank (NC 045512.2) as the reference genome [35], and

the multiple sequence alignment is applied by the Clustal Omega [36, 37] with default parameters, which

results in 27,530 single nucleotide polymorphism profiles. On the S protein RBD, i.e., residues 329 to 530,

514 non-degenerate mutations are found. Among them, 95 mutations have been observed for more than 10

times.

4.2 Machine learning datasets

Dataset is important to train accurate machine learning models. Both the BFE changes and enrichment

ratios describe the effects on the binding affinity of protein-protein interactions. Therefore, integrating both

kinds of datasets can improve the prediction accuracy. Especially, due to the urgency of COVID-19, the

BFE changes of SARS-CoV-2 data are rarely reported, while the enrichment ratio data via high-throughput

deep mutations are relatively easy to obtain. The most important dataset that provides the information

for binding free energy changes upon mutations is the SKEMPI 2.0 dataset [38]. The SKEMPI 2.0 is

an updated version of the SKEMPI database, which contains new mutations and data from other three

databases: AB-Bind [39], PROXiMATE [40], and dbMPIKT [41]. There are 7,085 elements, including single-

and multi-point mutations in SKEMPI 2.0. 4,169 variants in 319 different protein complexes are filtered as

single-point mutations are used for our TopNetTree model training. Moreover, SARS-CoV-2 related datasets

are also included to improve the prediction accuracy after a label transformation. They are all deep mutation

enrichment ratio data, mutational scanning data of ACE2 binding to the receptor-binding domain (RBD) of

the S protein [42], mutational scanning data of RBD binding to ACE2 [43,44], and mutational scanning data

of RBD binding to CTC-445.2 and of CTC-445.2 binding to the RBD [44]. Note that our training datasets

used in the validation do not include the test dataset, which is a mutational scanning data of RBD binding

to ACE2.
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4.3 Feature generation of PPIs

Algebraic topology [45,46] has had tremendous success in describing biochemical and biophysical properties

[47]. Element-specific and site-specific persistent homology can effectively simplify the structural complexity

of protein-protein complex and extract the abstract properties of the vital biological information in PPIs

[6,48]. The algebraic topological analysis on PPIs is constructed based on a series of atom subsets of complex

structures, which are atoms of the mutation sites, Am, atoms in the neighborhood of the mutation site within

a cut-off distance r, Amn(r), antibody atoms within r of the binding site, AAb(r), antigen atoms within r

of the binding site, AAg(r), and atoms in the system that has atoms of element type of {C, N, O}, Aele(E).

Additionally, a bipartition graph is introduced to describe the antibody and antigen in PPIs. Then, molecular

atoms construct point clouds for simplicial complex, which is a finite collection of sets of linear combinations

of points. We apply the Vietoris-Rips (VR) complex for dimension 0 topology, and alpha complex for point

cloud of dimensions 1 and 2 topology [47]. Overall, element-specific and site-specific persistent homology is

devised to capture the multiscale topological information over different scales along a filtration [45] and is

important for our machine learning predictions.

4.3.1 Simplex and simplicial complex

Given a set of independent k+ 1 points U = {u0, u1, ..., uk} in RN , the convex combination is a point

u =
∑k
i=0 αiui, where

∑
i αi = 1 and αi ≥ 0. The convex hull of U is the collection of convex combinations

of U , and a k-simplex σ is the convex hull of k+1 independent points U . For example, a 0-simplex is a point,

a 1-simplex is an edge, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. A proper m-face of the

k-simplex is a subset of the k+1 vertices of a k-simplex with m+1 vertices forms a convex hull in a lower

dimension and m < k. The boundary of a k-simplex σ is defined as a sum of all its (k−1)–faces as

∂kσ =
k∑
i=1

(−1)i〈u0, ..., ûi, ..., uk〉, (1)

where 〈u0, ..., ûi, ..., uk〉 is a convex hull formed by vertices of σ excluding ui. A simplicial complex denotes

by K is a collection of finitely many simplices forms a simplicial complex. Thus, faces of any simplex in

K are also simplices in K, and intersections of any 2 simplices are only faces of both or an empty set. A

k-simplex σ = 〈ui0 , ..., uik〉 is in Vietoris–Rips complex Rr(U) if and only if B(uij , r) ∩ B(uij′ , r) 6= ∅ for

j, j′ ∈ [0, k] and is in alpha complex Ar(U) if and only if ∩uij
∈σB(uij , r) 6= ∅.

4.3.2 Homology

For a simplicial complex K, a k-chain ck of K is a formal sum of the k-simplices in K defined as ck =
∑
αiσi,

where σi is the k-simplices and αi is coefficients. αi can be in different fields such as R, Q, and Z. Typically,

αi is chosen to be Z2, which is {−1, 0, 1} and forms an Abelian group Ck(K,Z2). Then, the boundary

operator can be extended to a k-chain ck as

∂kck =
∑

αi∂kσi, (2)

such that ∂k : Ck → Ck−1 and satisfies ∂k−1∂k = ∅, follows from that boundaries are boundaryless. The

chain complex is defined as a sequence of complexes by boundary maps is called a chain complex

· · · ∂i+1−→ Ci(K)
∂i−→ Ci−1(K)

∂i−1−→ · · · ∂2−→ C1(K)
∂1−→ C0(K)

∂0−→ 0. (3)

The k-homology group is the quotient group defined by taking k-cycle group module of k-boundary group

as

Hk = Zk/Bk, (4)
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where Hk is the k-homology group, and k-cycle group Zk and the k-boundary group Bk are the subgroups

of Ck defined as,

Zk = ker ∂k = {c ∈ Ck | ∂kc = ∅},
Bk = im ∂k+1 = {∂k+1c | c ∈ Ck+1}

(5)

The Betti numbers are defined by the ranks of kth homology group Hk as βk = rank(Hk). β0 reflects the

number of connected components, β1 reflects the number of loops, and β2 reflects the number of cavities.

4.3.3 Filtration and persistent homology

A filtration of a topology space K is a nested sequence of K such that

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km = K. (6)

Then, a sequence of chain complexes and a homology sequence are constructed on the filtration. The pth

persistent of kth homology group of Kt are defined as

Ht,p
k = Ztk/(B

t+p
k

⋂
Ztk), (7)

and the Betti numbers βt,pk = rank(Ht,p
k ). These persistent Betti numbers are applied to represent topological

fingerprints.

4.3.4 Auxiliary features

Features of topological invariants are not enough to reflect the whole picture of PPIs. Importantly, chemical

and physical information, including surface areas, partial charges, Coulomb interactions, van der Waals

interaction, electrostatic solvation free energy, mutation site neighborhood amino acid composition, pKa

shifts, and secondary structure, is added as auxiliary features to improve the predictive power of the machine

learning model [5].

4.4 Machine learning and deep learning algorithms

We illustrate the construction of a topology-based network (TopNet) model for the BFE change prediction

of protein-protein interactions (PPIs) on SARS-CoV-2 studying. These approaches have been widely applied

in studying protein-ligand and protein-protein binding free energy predictions [5, 6]. Firstly, one ensemble

method, gradient boosting decision tree (GBDT), is studied as baselines in comparison to deep neural

network methods. The ensemble methods naturally handle correlation between descriptors and are robust

to redundant features. Therefore, they usually do not depend on a sophisticated feature selection procedure

and a complicated grid search of hyper-parameters. The implemented GBDT is a function from the scikit-

learn package (version 0.22.2.post1) [49]. The number of estimators and the learning is optimized for ensemble

methods as 20000 and 0.01, respectively. For each set, 10 runs (with different random seeds) were done and

the average result is reported in this work. Considering a large number of features, the maximum number of

features to consider is set to the square root of the given descriptor length for GBDT methods to accelerate

the training process. The parameter setting shows that the performance of the average of sufficient runs is

decent.

A neural network is a network of neurons that maps an input feature layer to an output layer. The

neural network simulates a biological brain solves problems with numerous neuron units by backpropagation

to update weights on each layer. To reveal the facts of input features at different levels and abstract more

properties, one can construct more layers and more neurons in each layer, which is known as a deep neural

network. Optimization methods for feedforward neural networks and dropout methods are applied to prevent

overfitting.
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4.4.1 Optimization

To train feedforward neural networks, backpropagation is applied where the loss function is evaluated at the

output layer and is propagated backward through the network to update the model’s weights and bias. As

the calculation of gradient required, one popular approach is the stochastic gradient descent (SGD) method

with momentum which estimates a small portion of training data and applies the idea of exponentially

weighted averages. Thus, the momentum term can accelerate the convergence of the algorithm. A popular

way to implement the SGD with momentum is given as

Vi = βVi−1 + η∇Wi
L(Wi, bi)

Wi+1 = Wi − Vi,
(8)

where Wi is the parameters in the network, L(Wi, bi) is the objective function, η is the learning rate, X and

y are the input and target of the training set, and β ∈ [0, 1] is a scalar coefficient for the momentum term.

4.4.2 Dropout

Fully connected layers possess a large number of degrees of freedom. This can easily cause an overfitting

issue, while the dropout technique is an easy way of preventing network overfitting. [ref] In the training

process, hidden units are randomly set zero values to their connected neurons in the next layer. Suppose

that a percentage of neurons at a certain layer is chosen to be dropped during training. The number of

computed neurons of this layer is equal to the neuron number multiplied by a coefficient such as 1-p, where

p is the dropout rate. Then, in the testing process, the output of these layers is computed by randomly

dropouts the same rate of neurons, to approximate the network in each training step.

4.4.3 Deep learning algorithms

A deep neural network (DNN) consists of multi-layers of neurons. In the output layer, the single neuron gets

full connections with the last hidden layer and calculates predictions. Notice that the network is constructed

for mutation-induced BFE changes, one should preserve the consistency of all labels. An optimizer is used

to minimize the following loss function:

argmin
W,b

L(W, b) = argmin
W,b

1

2

N∑
i=1

(
yi − f(xi; {W, b})

)2
+ λ‖W‖2 (9)

where N is the number of samples, f is a function of the feature vector xi parametrized by a weight vector

W and bias term b, and λ represents a penalty constant.

4.5 Validation

Here, we present a validation of our BFE change prediction for mutations on S protein RBD compared to the

experimental deep mutations enrichment data [44]. Figure 19 presents a comparison between experimental

deep mutations enrichment data and BFE change predictions on SARS-CoV-2 RBD binding to ACE2. In the

heatmap of Figure 19, it is obvious that the predicted BFE changes are highly correlated to the enrichment

ratio data. Both BFE changes and enrichment ratios describe the affinity changes of the S protein RBD-

ACE2 complex induced by mutations.

Data and model availability

The SARS-CoV-2 single nucleotide polymorphism data in the world is available at Mutation Tracker. The

machine learning training datasets and the trained machine learning model are available at TopNetmAb.

The related training process is described in Supporting information.
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Figure 19: A comparison between experimental RBD deep mutation enrichment data and predicted BFE changes for SARS-

CoV-2 RBD binding to ACE2 (6M0J) [44]. Top left: deep mutational scanning heatmap showing the average effect on the

enrichment for single-site mutants of RBD when assayed by yeast display for binding to the S protein RBD [44]. Right: RBD

colored by average enrichment at each residue position bound to the S protein RBD. Bottom left: machine learning predicted

BFE changes for single-site mutants of the S protein RBD.

Supporting information

The supporting information is available for S1 BFE changes for the complexes of S protein RBD binding to

antibodies or ACE2 induced by 514 RBD mutations 2 and S2 Machine learning models.
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