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Abstract12

Bayesian total-evidence approaches under the fossilized birth-death model enable biologists to combine fossil and13

extant data while accounting for uncertainty in the ages of fossil specimens, in an integrative phylogenetic analysis.14

Fossil age uncertainty is a key feature of the fossil record as many empirical datasets may contain a mix of precisely15

dated and poorly dated fossil specimens or deposits. In this study, we explore whether reliable age estimates for16

fossil specimens can be obtained from Bayesian total-evidence phylogenetic analyses under the fossilized birth-death17

model. Through simulations based on the example of the Baltic amber deposit, we show that estimates of fossil18

ages obtained through such an analysis are accurate, particularly when the proportion of poorly dated specimens19

remains low and the majority of fossil specimens have precise dates. We confirm our results using an empirical20

dataset of living and fossil penguins by artificially increasing the age uncertainty around some fossil specimens and21

showing that the resulting age estimates overlap with the recorded age ranges. Our results are applicable to many22

empirical datasets where classical methods of establishing fossil ages have failed, such as the Baltic amber and the23

Gobi Desert deposits.24
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1 Introduction26

Recent progress in statistical methods has enabled biologists to estimate the timing of speciation events in phylo-27

genies comprising both living and fossil taxa. These advances include likelihood-based models for discrete morpho-28

logical data—variants of the Mk model (Lewis, 2001)—that describe the substitution process for discrete character29

data, and thus allow for statistical inference of phylogenetic relationships from morphological matrices. When com-30

bined with models characterizing the distribution of substitution rates among branches (such as “relaxed clock”31

models like those described by Thorne et al., 1998; Drummond et al., 2006; Lepage et al., 2007, and many others),32

these advances led to the introduction of new Bayesian approaches for jointly estimating phylogenetic relation-33

ships and divergence times of datasets containing extant taxa and dated fossil specimens. Early applications of34

these Bayesian “total-evidence” dating analyses (Pyron, 2011; Ronquist et al., 2012a) did not adequately model the35

speciation-extinction-sampling process underlying the generation of a dated phylogenetic tree with sampled fossil36

and extant taxa (Pett and Heath, 2020). However, the serially sampled birth-death process introduced by Stadler37

(2010) was later integrated into Bayesian approaches for inferring time-calibrated phylogenies using more realistic38

models of diversification and sampling (Heath et al., 2014; Gavryushkina et al., 2014). This model is referred to39

as the fossilized birth-death (FBD) process when applied to datasets including information from the fossil record40

(Heath et al., 2014).41

The FBD process describes the generation of a dated phylogenetic tree of sampled extant and fossil lineages,42

with parameters explicitly controlling for the extant sampling probability and the rates of speciation, extinction,43

and fossil recovery. This model can be combined with the morphological and clock models described above in44

a Bayesian statistical framework. Moreover, this integrative Bayesian framework allows researchers to combine45

paleontological information into phylogenetic analyses of living species, thus providing insights into the timing46

and rate of diversification in the tree of life. Importantly, total-evidence methods using the FBD model allow47

researchers to include a greater amount of the data observed from the fossil record, which, in turn, improves48

our understanding of macroevolutionary processes. Bayesian total-evidence methods and associated models are49

implemented in statistical tools like RevBayes (Höhna et al., 2016), BEAST2 (Bouckaert et al., 2014, 2019), and50

MrBayes (Ronquist et al., 2012b). With access to statistical software for more holistically integrating paleontological51

and neontological data, biologists have greatly improved our understanding of the evolutionary dynamics of various52

clades including monocots (Eguchi and Tamura, 2016), beetles (Gustafson et al., 2017), sponges (Schuster et al.,53

2018), vipers (Šmı́d and Tolley, 2019), and termites (Jouault et al., 2021).54

The fossil record is essential for calibrating species trees to time (i.e., years or millions of years), as molecular55

sequences from extant species are informative about the relative age of species but do not typically provide in-56

formation about the absolute age (Pett and Heath, 2020). There are two main methods of determining a fossil’s57

age, namely relative dating and absolute dating. Relative fossil dating determines a specimen’s approximate age58

by comparing it to similar rocks and fossils with known ages. A fossil’s absolute date is obtained by applying59
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radiometric dating to measure the decay of isotopes, either within the fossil or, more often, the rocks associated60

with it (Gradstein et al., 2012; Peppe and Deino, 2013). Accurate dates for fossil specimens and deposits are critical61

not only for understanding the timing of speciation events in the tree of life, but these dates also provide crucial62

data for answering questions in evolutionary biology, paleoecology, biogeography, and paleoclimatology. However,63

there are deposits and key specimens where traditional dating methods have failed and their ages remain uncertain.64

Uncertain dates for fossil specimens and formations, in turn, limit the scientific value of these observations.65

One of the most famous examples of such a deposit is Baltic amber, a remarkable source of terrestrial invertebrate66

fossils (mostly insects) from the Eocene. There are several hypotheses concerning its age (for a summary see Bogri67

et al., 2018) and it is generally dated as Eocene, with a wide age range between 55 and 34 Ma. Difficulties in the68

age determination are due to the repeated re-deposition of the amber, the broad range of the ancient forest, and69

its probable existence for several million years. Another example where the age uncertainty hampers biological70

and geological studies is the Cretaceous terrestrial sediments in the Gobi Desert of Mongolia, a site renowned for71

remarkably well preserved vertebrate fauna, including dinosaurs. Unfortunately, a definitive age cannot be directly72

determined due to the lack of discrete key beds, like zircon-bearing tuffs (Kurumada et al., 2020). In some cases,73

even if the age range of a formation can be determined, other factors might hinder the assessment of a fossil’s age.74

One example of such a deposit is the Daohugou Formation (164-159 Ma), which is well known for exceptionally75

complete fossils, including a diverse and rich record of invertebrates and plants, but also many vertebrates preserved76

with traces of soft tissues (Wang et al., 2005). However, due to the complicated stratigraphy of the formation, where77

several fossiliferous layers mix and overlap (Li et al., 2021), it is often difficult to assess a fossil’s precise age without78

knowing the exact layer from which it was sampled.79

Without sufficient direct evidence for dating critical deposits and specimens, scientists must rely on approaches80

that harness the information in indirect evidence. Bayesian total-evidence approaches make it possible to directly81

integrate the age uncertainty around historic samples into Bayesian analyses (Shapiro et al., 2011) and previous82

work has shown that adequately representing this uncertainty is critical to obtaining accurate phylogenies and83

divergence times estimates (Barido-Sottani et al., 2019a, 2020b). However, most phylogenetic divergence-time84

analyses typically treat fossil ages as nuisance parameters and the uncertainty associated with those observations is85

simply a source of error. Nevertheless, the ages of heterochronous specimens may be particularly interesting for some86

types of phylogenetic studies. Shapiro et al. (2011) note that datasets of infectious diseases or those that include87

ancient DNA sequences may have samples with unknown ages, and robust estimates of these undated samples can88

help shed light on the dynamics of viral epidemics or the ecological contexts of sub-fossils used in ancient DNA89

research. Their simulations and empirical validations show that phylogenetic analyses of datasets including a single90

undated sample can yield accurate estimates of the unknown sampling time (Shapiro et al., 2011). More recently,91

Drummond and Stadler (2016) extended this study to consider much older time-scales and total-evidence analyses92

of fossil and extant species under the fossilized birth-death model. Their study focused on analyses of fossil-rich93
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empirical datasets and demonstrated that the age estimated for a single fossil specimen with an unknown date94

is accurate when using this integrative Bayesian approach (Drummond and Stadler, 2016). While these previous95

studies indicate that combining data from extant and fossil taxa can lead to accurate age estimates for poorly96

dated fossils, they did not consider the patterns of age uncertainty frequently associated with the fossil record.97

Paleontological datasets can often include collections of fossils all sampled from the same poorly dated formation98

or multiple fossils with incomplete or disputed provenance, making it difficult to assign an accurate date.99

In this study, we investigate the performance of Bayesian phylogenetic approaches using the FBD model, applied100

to datasets that include multiple fossils from poorly dated formations. We use simulations to evaluate the accuracy101

and robustness of the age estimates for fossils belonging to the uncertain formation, and explore whether the102

presence of poorly dated fossils affects the estimates of the tree topology and the ages of the other, well dated103

fossils. We use a recently published dataset of extant and fossil penguins (order Sphenisciformes) from Thomas104

et al. (2020) to validate this approach on empirical data. Fossil penguin specimens have relatively precise dates,105

allowing us to compare the age estimates obtained when artificially increasing the age uncertainty around some106

selected fossils to ages observed and recorded from the fossil record.107

2 Methods108

2.1 Simulated data and analyses109

We evaluated the accuracy and precision of fossil specimen age estimates using simulated datasets. We calibrated the110

model and parameters used for simulation based on an empirical dataset of the subfamily Paederinae of rove beetles111

(Staphylinidae, Coleoptera). This subfamily has a strikingly rich fossil record in Cenozoic deposits, including several112

fossil specimens from one of the best known poorly dated insect deposits, Baltic amber (DŻ, personal observations),113

making rove beetles well suited for providing realistic values for our simulations.114

2.1.1 Simulated phylogenies and taxon sampling115

Trees were simulated under a birth-death process using the R package TreeSim (Stadler, 2011), starting from one116

lineage at the origin time of 120 Myr, with the speciation rate set to λ = 0.05/Myr and the extinction rate to117

µ = 0.02/Myr. Speciation and extinction rates were selected based on estimates for the Staphylininae subfamily118

of rove beetles, from Brunke et al. (2017). For each simulation condition, 100 replicates were simulated. The119

extant sampling probability was set to ρ = 0.5. In order to keep the trees computationally manageable, we based120

the number of tips based on the number of genera currently classified into Paederinae (A. Newton, unpublished121

database). Thus we rejected trees which had less than 20 or more than 30 extant samples.122

In our setup, we assume that the unknown deposit is likely tied to a geographical or ecological factor affecting123

the corresponding lineages. Thus to sample fossils, we first assigned all lineages present in the complete tree falling124
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within the 30 and 50 Myr interval to a binary character, using a continuous rate transition process where all lineages125

started in state 1 at age=50 and transitioned from state 1 to 2 with rate q1,2 and back with rate q2,1. All lineages126

occurring outside of the 30 − 50 interval were assigned to state 1. We then sampled fossils using the R package127

FossilSim (Barido-Sottani et al., 2019b), following a Poisson process with piece-wise constant rates ψint between128

30 and 50, and ψbg outside of this interval. Fossil samples in state 1, designated as “precise-date” fossils, were129

considered to be individual samples, while fossil samples in state 2, designated as “imprecise-date” fossils, were130

assigned to all occur within the same poorly dated deposit. Transition and fossilization rates were calibrated to131

obtain specific proportions (0.1, 0.3 or 0.5) of imprecise-date samples among all fossils. The detailed values used132

are shown in Table 1. Simulations were rejected if the resulting proportion was more than 10% different from the133

target proportion, or if the total number of fossil samples was not between 45 and 55. Note that in order to obtain134

the target proportions, a higher sampling rate had to be used during the interval of sampling imprecise-date fossils135

compared to the rest of the timeline.136

Target proportion of
imprecise-date fossils q1,2 q2,1 ψbg ψint

0.1 0.6 0.7 0.03 0.04
0.3 0.8 0.5 0.02 0.08
0.5 1.0 0.4 0.01 0.15

Table 1: Parameter values used to simulate the fossil sampling process.

An example of a complete simulated tree with fossil samples is shown in Figure S4. To simulate fossil age137

uncertainty, all fossil samples were assigned a range of possible ages, depending on their state. Imprecise-date138

fossils were all assigned the same age range of 30 to 50 Myr, and precise-date fossils were assigned a range of fixed139

length 0.1, 0.2 or 0.3 times the true age of the fossil. The minimum age of each range was sampled uniformly so140

that the true age of the fossil always lied within its corresponding range.141

2.1.2 Molecular sequence alignment and morphological character matrix simulation142

Molecular sequences were simulated for the extant samples using seq-gen (Rambaut and Grassly, 1997) via the R143

package phyclust (Chen, 2011). We simulated sequences comprising 4,500 nucleotides under an HKY+Γ model144

with five rate categories and a gamma shape value of α = 0.35. As the inference of the phylogenetic tree from145

molecular data was not the focus of this study, we used a simple strict molecular clock, with a clock rate set to 0.05146

substitutions/Myr, based on estimates of the clock rate from Brunke et al. (2017).147

Morphological alignments were simulated for both extant and extinct samples using the R package geiger148

(Pennell et al., 2014). We simulated matrices of 120 characters under an Mk model (Lewis, 2001) with five rate149

categories, selecting only varying characters. The number of states in the simulated matrices varied such that 70%150

of simulated characters were binary, 20% ternary, and 10% quaternary. The morphological clock rate was set to 0.1151

substitutions/Myr, following an estimate for Chrysomelidae and Cerambycidae from Farrell and Sequeira (2004).152
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We assigned a random proportion of 5% of the simulated morphological characters as “soft” characters, which were153

only represented in extant taxa and were assigned the unknown character “?” for all fossil samples, thus emulating154

biased character preservation.155

2.1.3 Bayesian inference156

For each simulated dataset, we performed a Bayesian total-evidence analysis in RevBayes (Höhna et al., 2016) under157

a constant-rate FBD tree prior. The constant-rate FBD model is used in most empirical studies, as time-dependent158

variation in rates is often difficult to know a priori. Priors for the speciation, extinction, and fossilization rates were159

set to Exponential(10). The ages of the fossils were sampled along with the other parameters, with a prior set as160

uniform over their simulated range, as described in Drummond and Stadler (2016). The extant sampling proportion161

was fixed to the true value, ρ = 0.5. Moves were set in accordance with guidance from the RevBayes FBD tutorial162

(Barido-Sottani et al., 2020a, also see: https://revbayes.github.io/tutorials/fbd/fbd_specimen.html). The163

substitution and clock models were set to the simulation models. The parameters of these models were estimated,164

using priors and moves also set following the RevBayes FBD tutorial. The full Rev scripts used for inference are165

available in the Supplementary Materials. Analyses in RevBayes were run for up to 150,000,000 generations, and two166

independent chains were run in for each replicate. Samples from each run were assessed in Tracer (Rambaut et al.,167

2018). We considered that the Markov chain had reached stationarity and converged on the target distribution if168

the effective sample size (ESS) of the posterior had reached a value > 200 and if both chains had median posteriors169

which differed by no more than 10%. We did not assess the convergence of the tree topology. Some simulation170

replicates (0 to 12 depending on the dataset, out of 100) failed to converge and were discarded from the final results.171

2.1.4 Assessing results172

We assessed the accuracy of the fossil age estimates by measuring the relative error of the posterior estimates,173

defined as the absolute difference between the true value and the estimated value, divided by the true value. We174

also calculated the coverage, i.e., the proportion of analyses in which the true parameter value was included in the175

95% highest posterior density (HPD) interval. These measures were averaged separately over all imprecise-date and176

precise-date fossils.177

To assess the accuracy of inferred topologies we calculated the mean normalized Robinson-Foulds (RF) distance178

(Robinson and Foulds, 1981) between the true simulated trees, including the fossil samples, and the tree samples179

from the posterior distribution. The RF distance only depends on the topology of the trees. The normalized180

RF distance between two trees with n tips is computed by dividing the RF distance between these trees by the181

maximum possible RF distance between two trees with n tips, thus scaling the distances between 0 and 1. Finally,182

we assessed the accuracy of the positioning of fossils on the inferred tree topologies by calculating the proportion183

of posterior samples in which a given fossil was placed in the correct extant clade.184
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2.2 Validation using empirical data185

We used a recently published study of penguins by Thomas et al. (2020) to demonstrate how Bayesian phylogenetic186

analyses can improve the precision of poorly dated fossil specimens using an empirical dataset. This dataset is a187

useful “ground truth” for fossil age estimation because the extant diversity of penguins is completely sampled, which188

minimizes the effect of potential sampling biases in the analysis. Moreover, the majority of fossils in this dataset189

are precisely dated (age ranges of 1.5 to 10 My) and the penguin fossil record is generally considered reliable.190

We used the molecular and morphological data matrices of living and fossil Sphenisciformes published in Thomas191

et al. (2020), which include recently published sequences from Cole et al. (2019) and extend the morphological matrix192

by Degrange et al. (2018). The molecular sequence alignment contains mitochondrial genome sequences of 15,755193

nucleotides for 24 extant taxa, and the morphological matrix is composed of 274 characters for 66 extant and fossil194

species. We focused our study on the estimated ages of fossil taxa while marginalizing over the tree topology (for195

the tree topology see figure 2 in Thomas et al., 2020).196

The observed age ranges for all fossil species were obtained from Thomas et al. (2020). We imposed a poorly197

dated fossil deposit on this dataset by assigning an identical large age range to selected fossil species. The observed198

age range of the fossils was always fully included in the assigned age range. Unlike the simulated dataset, we did199

not use the age range of the Baltic amber deposit. Instead, we selected three age intervals which covered the age200

ranges of approximately the same number of species, but were of different length. The first interval, denoted as201

“small”, ranged from 30.3 Ma to 46.8 Ma and contained 14 fossil species. The second interval, denoted as “large”,202

ranged from 14.6 Ma to 44.6 Ma and contained 15 fossil species. We also tested an extension of the first interval,203

which ranged from 25.2 Ma to 61.5 Ma and contained 22 fossils species. For each interval, two conditions were204

tested: (1) a random subsample of 50% of the species were assigned the full interval as age range, while the other205

species were assigned their observed ranges; and (2) all fossil species in the interval were assigned the full interval206

as their age range. In contrast to the simulation setup, the assignment of fossils to the unknown deposit was not207

tied to a phylogenetic character. The full prior age ranges set for each fossil and each configuration is shown in208

Figures S8-S10.209

2.2.1 Bayesian inference210

We performed the phylogenetic analyses in RevBayes (Höhna et al., 2016). With the exception of the age ranges,211

which were modified as described in above, all models and priors were identical to the analysis in Thomas212

et al. (2020), which also used the RevBayes FBD tutorial as a guide (Barido-Sottani et al., 2020a, also see:213

https://revbayes.github.io/tutorials/fbd/fbd_specimen.html). All fossil ages were assigned a uniform prior214

distribution over their age range. Priors for the speciation, extinction, and fossilization rates were set to Exponen-215

tial(10). The molecular alignment used a GTR+ Γ substitution model with 4 rate categories, in combination with216

an uncorrelated exponential clock model with a prior of Exponential(10) on the mean clock rate. The morpholog-217
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ical alignment used an Mk substitution model (Lewis, 2001) with 4 rate categories, in combination with a strict218

clock model with a prior of Exponential(1) on the clock rate. The inference was run for 137,000,000 iterations.219

Convergence was assessed in Tracer (Rambaut et al., 2018) using the criteria described above for the simulation220

analyses.221

3 Results222

3.1 Simulated datasets223

Results from our analyses of the simulated datasets are shown in Figures 1 and 2. As expected, the relative error on224

age estimates is much higher for imprecise-date fossils than for precise-date fossils. The proportion of imprecise-date225

fossils has a strong impact on the accuracy of fossil age estimates, with the mean coverage for the estimated age of226

imprecise-date fossils ranging from ≈ 65% when 10% of the fossils are poorly dated, to only ≈ 30% when 50% of227

the fossils are poorly dated. However, the absolute relative error remains quite low for imprecise-date fossils even228

in the worst case scenario, indicating that the inference is able to recover approximate age estimates for fossils from229

poorly dated deposits, despite the decreased coverage. The width of the age range associated with precise-date230

fossils, which corresponds to the magnitude of the age uncertainty on those fossils, has a strong impact on the231

accuracy of the age estimates for well dated fossils, but little effect on the estimates for imprecise-date fossils. This232

holds true even in the datasets where the relative age range for precise-date fossils is 30%, and the oldest precise-date233

fossils are associated with more age uncertainty than imprecise-date fossils. One likely reason for this is that older234

fossils are relatively rare in our simulated datasets, for instance only ≈ 15% of the total number of fossils are older235

than 60My.236

The widths of the 95% HPD intervals for imprecise-date fossils are smaller than the time interval of the prior age237

range in all tested conditions, showing that the age estimates of imprecise-date fossils are not driven only by this238

prior (Fig. 2C). Interestingly, the HPD interval widths decrease with higher proportions of imprecise-date fossils,239

while the estimates show decreased accuracy and coverage in this situation. This is contrary to the expected pattern,240

which would be that interval widths increase with larger amounts of uncertainty in the data, but that coverage levels241

remain similar. One likely explanation is that our simulations used a piece-wise constant sampling rate, in violation242

of the inference model which assumes that all FBD rates are constant across time and lineages. In addition, the243

discrepancy between the low and high fossil sampling rate increased with the proportion of imprecise-date fossils.244

It is also likely that the impact of model violation on the estimates is stronger in datasets with lower amounts of245

data. The combination of these two factors leads the datasets with high proportions of fossils with imprecise dates246

to exhibit narrower than expected HPD intervals and decreased coverage.247

The topology inference follows a similar pattern, as the proportion of correct fossil positions decreases and248

the average RF distance increases with increasing age uncertainty or higher proportions of poorly dated fossils249
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Figure 1: Relative error of the median age estimate (B,D) and 95% HPD coverage (A,C) of precise-date fossils
(A,B) and imprecise-date fossils (C,D) for different proportions of imprecise-date fossils, and different widths of the
age range of precise-date fossils. Measures are averaged over all fossils for each replicate. The average and standard
deviation across all replicates is shown.

(Fig. 2D). The positions of precise-date fossils are more accurate than the positions of imprecise-date fossils, which250

confirms that fossil ages are an important source of information for both topology and branch times in total-evidence251
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Figure 2: Proportion of posterior samples with correctly placed fossils, averaged across all precise-date fossils (A) or
all imprecise-date fossils (B), width of the 95% HPD interval averaged across all imprecise-date fossils (C) and mean
normalized RF distance between estimated trees and simulated tree (D), for different proportions of imprecise-date
fossils and different widths of the age range of precise-date fossils. The average and standard deviation across all
replicates is shown. The brown line in C shows the size of the age range set as the prior for all imprecise-date fossils
(i.e., 20Myr).
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analyses. In all tested conditions, the average proportion of correct fossil positions is >50% for both precise- and252

imprecise-date fossils.253

3.2 Empirical dataset254

Figure 3 shows the results of the analysis on the penguin datasets, using either the small or the large interval as255

deposit. When only 50% of the fossils in the interval are given imprecise dates (Fig. 3A and C), there is a large256

overlap between the estimated posterior distributions of fossil ages and the empirical intervals. As expected, the257

overlap decreases when all fossils in the interval have imprecise dates and less information is available in the dataset258

(Fig. 3B and D). In this case, some posterior distributions diverge completely from the recorded interval (Fig. 3D,259

Paraptenodytes antarcticus), or appear to be driven mostly by the prior (Fig. 3B, Delphinornis arctowskii).260

The results concerning the extended version of the first interval are shown in the supplementary materials, and261

show similar patterns to the large interval. Overall, these results confirm that the age of the well dated fossils, in262

combination with the tree, allows us to estimate the age of poorly dated fossils, and that the presence and number263

of these well dated fossils plays a key role in the accuracy of the resulting estimates.264

4 Discussion265

While phylogenetic analyses using the FBD model have largely focused on inferring phylogenetic trees and dating266

species divergences, our study shows that these methods can harness indirect information in an integrative and267

hierarchical model to improve date estimates for fossil specimens themselves. This is also the case when the dataset268

includes a collection of poorly dated fossils that all come from the same formation. This showcases one of the269

strengths of the FBD process as a complete model integrating both diversification and fossil recovery processes.270

Our study examines the accuracy of age estimates for a combination of poorly dated fossils from the same deposit271

and more credible fossils from well dated deposits. We show that when these fossil taxa are integrated with extant272

species in a joint analysis of discrete morphological characters (fossil and extant) and molecular sequences (extant273

only), it is possible to infer the ages of fossil samples from a deposit with a large age uncertainty. As expected,274

the accuracy of the fossil age inference is strongly impacted by the amount of uncertainty and missing information275

present in the analysis, which is represented in our study by the relative proportion of fossils with uncertain dates276

versus those with precise dates, as well as the magnitude of the age uncertainty associated with well dated fossils.277

Finally, we also demonstrate that the extant topology and the overall age of the phylogeny are well estimated in278

all datasets, which shows that FBD total evidence analyses can provide reliable estimates despite including fossils279

with large amounts of age uncertainty.280

It is important to note that our simulations represent an idealized scenario, chosen to reduce model complexity281

and the noise of the parameters under examination, and to focus specifically on fossil age estimates. In particular,282
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Figure 3: Comparison of observed (pink) and estimated (blue) penguin ages for the small (A,B) and large (C,D)
intervals, with a proportion of 0.5 (A,C) or 1 (B,D) of imprecise-date fossils. The observed age range is shown as a
uniform distribution, while the estimated age is the inferred posterior distribution. The uniform distribution used
as prior for the imprecise-date fossils is shown in green on each panel.

we used a strict clock for both the molecular and the morphological alignments, which is likely to be unrealistic283

for large empirical datasets. As shown in the supplementary materials, using a relaxed clock for the molecular284

alignment did not significantly affect our results, but also led to convergence issues, particularly in combination285

with high proportions of imprecise-date fossils. Using a relaxed clock for the morphological alignment also led to286

reduced sampling efficiency and poor convergence. In general, we expect that increasing the complexity of the287

model can induce long mixing times for the Markov chain Monte Carlo (MCMC) sampler and in some cases lead288

to non-convergence. One potential way to reduce complexity would be to assign the same age to all imprecise-289

date fossils, rather than estimating all fossil ages independently as we did. However, this assumes that all fossils290

from the deposit were sampled at very similar dates, rather than the deposit being the product of a continuous291

fossilization process over an extended period of time. In practice, it may be difficult to distinguish between these292

two hypotheses a priori. The Baltic amber deposit, which we use as the basis for our simulation parameters, is293
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particularly challenging in this respect. This deposit is an umbrella term for various secondary amber deposits294

found around the Baltic Sea. It remains unclear whether amber found in the different regions originated in a single295

or in multiple areas. The north European Eocene forest covered a substantial area of many square kilometres and296

amber forests in the Baltic region could have persisted for several million years up to the end of the Eocene (for a297

summary see Bogri et al., 2018).298

Poor mixing and convergence issues are particularly problematic when a complex, parameter-rich model is299

applied to a dataset with large amounts of missing data. As a result, we expect that this approach may perform300

less well than our simulated results on more complex empirical datasets, and in some cases may not converge at301

all without careful attention to the MCMC proposal algorithms. We believe that this is inevitable due to the302

challenges of working with missing data. Other ways to reduce uncertainty and complexity may be used, such303

as topological constraints which use taxonomic information to place fossil samples in particular clades, instead304

of relying purely on the morphological data and fossil ages to inform the inference of the tree topology. These305

constraints are particularly helpful in datasets where available morphological matrices are small (< 50 characters),306

since previous work has shown that small morphological matrices lead to high levels of inaccuracy in topology307

estimates (Barido-Sottani et al., 2020b). In addition, one advantage of using a Bayesian approach is that estimates308

will accurately represent the amount of uncertainty present in the dataset under a given model, including cases309

where the amount of uncertainty is too large to draw exploitable conclusions. However, this is only true if the310

inference model matches with the true evolutionary process, or in our case, with the simulation model.311

One likely contributor to the decrease in accuracy when the proportion of imprecise-date fossils increases is that312

our inferences assumed uniform fossil sampling rates throughout the tree, an assumption which was increasingly313

violated when the proportion of fossils coming from the same deposit increased. The assumption of uniform sampling314

is very uncommon in existing empirical analyses, however our results show that using this assumption when a large315

proportion of fossils come from the same deposit can lead to biases in the inference. Therefore, we advise empirical316

studies to pay attention to the time and spatial distribution of the included fossils, and to use the skyline FBD317

model (Stadler et al., 2013; Zhang et al., 2016) if time-varying rates are a likely factor.318

Understanding the performance of statistical phylogenetic methods under realistic conditions is especially critical319

for methods applied to paleontological data. The structure and complexity of the geologic record (Holland, 2016)320

as well as the challenges associated with collecting and curating fossils that may lead to uncertainty in a specimen’s321

age, collection locale, or identification are all common realities faced by researchers working with fossils. Thus, new322

phylogenetic models that account for the way that taxa are sampled (e.g., Höhna et al., 2011) or how fossil data323

are influenced by the structure of the rock record (e.g., Stadler et al., 2018) will be important for improving our324

understanding of the geological and ecological context of lineage diversification through time.325

In conclusion, we show that total-evidence phylogenetic analyses under a fossilized birth-death process can326

improve the precision of age estimates for fossils sampled from poorly dated geologic formations when combined327
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with character data and other information from extant taxa and other well dated fossil species. This approach may328

be useful for empirical datasets where the majority of fossils are precisely dated, but some specimens are sampled329

from a deposit with uncertain dates, e.g., the Baltic amber deposit for insects (such as the rove beetles used as330

a model in our study) or the Gobi Desert deposit for dinosaurs. Such analyses are easily extended to include331

other processes present in empirical data, such as diversified sampling of extant taxa (Höhna et al., 2011), which332

accounts for taxonomy-guided sampling strategies where only a single representative per genus or family is included333

in a dataset. However, because the accuracy of parameter estimates may be reduced when such complex models334

are used in analyses of highly incomplete datasets, researchers applying these methods to estimate fossil ages are335

encouraged to consider ways where they can minimize uncertainty and increase sampled data. Importantly, for some336

taxonomic groups, this may require more support and time for efforts to collect, curate, and analyze paleontological337

data.338
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Höhna, S., M. J. Landis, T. A. Heath, B. Boussau, N. Lartillot, B. R. Moore, J. P. Huelsenbeck, and F. Ronquist.400

2016. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification401

language. Systematic Biology 65:726–736.402
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