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Abstract 17 

Electroencephalography (EEG) likely reflects activity of cortical neurocircuits, 18 

making it an insightful estimation for mental health in patients with substance use 19 

disorder (SUD). EEG signals are recorded as sinusoidal waves, containing spectral 20 

amplitudes across several frequency bands with high spatio-temporal resolution. Prior 21 

work on EEG signal analysis has been made mainly at individual electrodes. These 22 

signals can be evaluated from advanced aspects, including sub-regional and hemispheric 23 

analyses. Due to limitation of computational techniques, few studies in earlier work could 24 

conduct data analyses from these aspects. Therefore, EEG in patients with SUD is not 25 

fully understood. In the present retrospective study, spectral powers from a data house 26 

containing opioid (OUD), methamphetamine/stimulants (MUD), and alcohol use disorder 27 

(AUD) were extracted, and then converted into five distinct topographic data (i.e., 28 

electrode-based, cortical subregion-based, left-right hemispheric, anterior-posterior 29 

based, and total cortex-based analyses). We found that EEG spectral powers in patients 30 

with OUD were significantly different from those with MUD or AUD. Differential 31 

changes were observed from multiple perspectives, including individual electrodes, 32 

subregions, hemispheres, anterior-posterior cortices, and across the cortex as a whole. 33 

Understanding the differential changes in EEG signals may be useful for future work 34 

with machine learning and artificial intelligence (AI), not only for diagnostic but also for 35 

prognostic purposes in patients with SUD. 36 

 37 

Introduction 38 

EEG was discovered in the 1920’s, and explored for biomedical purposes since the 39 

1930’s (Ahmed & Cash, 2013; Stone & Hughes, 2013). Signals are primarily derived 40 

from cortical pyramidal neurons that generate postsynaptic potentials propagated towards 41 

the apical dendrites perpendicular to the cortical surface. Graphic waves vary irregularly, 42 

reflecting the net change between inhibitory and excitatory postsynaptic potentials in a 43 

temporal- and spatial-dependent manner. Thus, unlike magnetic resonance imaging 44 

(MRI) or positron emission tomography (PET), raw data are hardly interpretable, but 45 

require decomposition and then further reorganized into graphic images (Liu et al., 46 
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2016). Current computational methods make it possible for signals to be easily 47 

reprocessed and transformed into interpretable spectral images into at least one of three 48 

distinct methods. The most common method is to analyze constituents of spectra (i.e., 49 

frequency bands) including delta/δ, 0.1-4.0 Hz; theta/θ, 4.0-8.0 Hz; alpha/α, 8.0-12.0 Hz; 50 

beta/β, 12.0-25 Hz; gamma/γ, >25 Hz. Changes in frequency bands are commonly used 51 

in sleep and arousal investigation. Compared to healthy adults, patients with an arousal 52 

disorder had an excessive amount of slow-wave sleep (SWS; mainly delta/δ waves) 53 

interruption (Baldini et al., 2019). The next method is the event-related potential (ERP) 54 

by determining the signal-to-noise ratio of the EEG signals at a given time associated 55 

with a specific stimulus, which has become a popular tool in the study of sensory, 56 

cognitive, or motor events. For example, positive potentials at 300 msec (P300) are 57 

currently used for a schizophrenia biomarker in patients examined in clinical settings 58 

(Chun et al., 2013; Dvey-Aharon et al., 2015; Turetsky et al., 2015; Shim et al., 2016). 59 

Thirdly, EEG signals are transformed and quantified into a color-specific topographic 60 

map, which is associated with respective cortical activity (Duru et al., 2009; Taylor & 61 

Garrido, 2020). In epilepsy, topographic images provide a guide to remove epileptogenic 62 

zones during brain surgery (Pittau et al., 2014; Plummer et al., 2019).    63 

EEG as a powerful tool used to study opioid- (OUD), methamphetamine- (MUD), 64 

and alcohol-use disorders (AUD) has been ventured over the past few decades. Most 65 

efforts were made to identify frequency bands in relationship with EEG potentials in the 66 

closed-eye (i.e., resting) state. Opioid abuse can cause a loss of GABAergic inhibitory 67 

control over postsynaptic excitatory potentials, including cortical pyramidal neurons 68 

[(Liao et al., 2005); also reviewed by Baldo et al, 2016], resulting in an alteration of 69 

electrical synchronization between cortical neurons. By analysis of delta/δ, theta/θ, 70 

alpha/α, beta/β, and gamma/γ waves, it was found that all of the five spectral powers was 71 

elevated with almost equipotency in the frontal, central, temporal, parietal, and occipital 72 

subregions of patients with OUD (Wang et al., 2015). However, others demonstrated that 73 

it was only certain spectra, but not all, that were elevated in the cortical subregions 74 

(Polunina & Davydov, 2004; Greenwald & Roehrs, 2005; Motlagh et al., 2018; Minnerly 75 

et al., 2019). The selective effects are also reported in MUD and AUD. 76 

Methamphetamine (METH) exposure for a long period time may cause a reduction in 77 
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dopamine transporters in the brain (McCann et al., 1998). Newton et al (2003) showed 78 

that the delta/δ and theta/θ bands, but not others, were elevated almost globally in the 79 

cortical subregions (Newton et al., 2003).  The findings were partly supported by 80 

Khajehpour et al (2019), showing that delta/δ and gamma/γ powers were slightly, yet 81 

significantly, increased in a topographic analysis (Khajehpour et al., 2019). Alcohol is 82 

believed to be inhibitory, mimicking GABA’s effect on postsynaptic GABAA receptors 83 

(Olsen & Liang, 2017). The gamma/γ powers, but not other frequency bands, were 84 

elevated across the cortex of patients with AUD (Bauer, 2001). However, Ko and Park 85 

showed that there was a reduction in alpha/α power while an increase in gamma/γ powers 86 

(Ko & Park, 2018). Interestingly, by analyzing EEG obtained from 191 male alcoholic 87 

patients, Coutin-Churchman et al. revealed that the most frequent reduction took place in 88 

the delta/δ and theta/θ bands (Coutin-Churchman et al., 2006). Nevertheless, although 89 

EEG has been used as a tool to estimate mental health, there has been no consensus on 90 

spectral powers altered in patients with SUD (i.e., OUD, MUD, or AUD).  91 

Previous research typically focused on EEG signals at single electrodes or 92 

topographically, rarely having views from multiple aspects. In this work, we sought to 93 

characterize EEG signals in patients with OUD in contrast to those obtained from MUD 94 

or AUD. An advantage of the comparative study was that EEG was collected at the same 95 

rehabilitation facility and thus, data treatment was standardized for each group. To get 96 

insight into status of these patients, we sought to decompose the EEG signals in different 97 

aspects. With this goal in mind, EEG signals obtained from 19 electrodes were first 98 

broken down into 5 spectra (i.e., delta/δ, theta/θ, alpha/α, beta/β, and gamma/γ), and then 99 

re-arranged, combined, and mapped topographically. Thus, EEG signals obtained from 100 

patients with OUD were panoramically analyzed from multiple aspects, and compared 101 

with those with MUD or AUD.  102 

 103 

 104 

Materials and Methods 105 

Patients 106 
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Data were obtained from an electronic medical data house at a substance abuse 107 

treatment facility (FHE Health, Deerfield Beach, FL, USA), which had gathered ~1000 108 

cases of information about patients’ drug use history, DMS-5 diagnosis, and drug 109 

intoxication treatment. In addition, there were 20 cases obtained from healthy subjects 110 

with no substance abuse history. EEG data prior to treatment were tracked electronically, 111 

along with information about detox-related symptoms. Searches with opioid-related 112 

keywords (i.e., morphine, heroin, fentanyl, methadone or oxycodone) found 350 patients 113 

who had records of opioid use history. Approximately 450 patients had records of alcohol 114 

use history. Methamphetamine-related keywords (i.e., crystal meth, meth, ice) yielded 115 

approximately 100 records of METH use history, while the remaining cases were a mix 116 

of substance use disorders. To this end, thirteen men and seven women identified as OUD 117 

were compared with 20 sex- and age-matched healthy controls (Table 1); fifteen patients 118 

identified as MUD; and twenty-three as AUD were compared to those with OUD. 119 

Protocols of retrospective analysis of living subjects were approved by the institutional 120 

review board (IRB) from Florida Atlantic University (Boca Raton, FL, USA) and Ross 121 

University School of Veterinary Medicine (St. Kitts, West Indies). 122 

 123 

Table 1. Health profile of subjects used in the studies 124 
 CTL 

(N=20) 
OUD 
(N=20) 

MUD 
(N=15) 

AUD 
(N=23) 

P (vs. CTL) 

Age (years) 33 (±12) 34 (±12) 29 (±8) 38 (±10) >0.05 
 

Sex (M/F) 13/7 13/7 11/4 17/6 n/a. 
 

Duration of 
substances 
used (Years) 

0 7 (±5) 5 (±3) 9 (±7) <0.05 

 
Substances 
used 

 
no 

 
Morphine; 
heroin, 
oxycodone. 
 
 

 
METH 

 
alcohol 

 
n/a. 

 

n/a.; not applicable. 125 

 126 

EEG data acquisition 127 
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EEG recordings were performed between 12:00 PM - 4:00 PM. Following 128 

instrumental calibration, a case (patient or healthy control) was seated in a comfortable 129 

chair in a dimmed recording room and the EEG procedures were orally instructed. A cap 130 

with 19 electrodes (Electro-Cap International, Eaton, OH, USA) was placed on the scalp 131 

(Fig 1A). To reduce muscle artifacts in the EEG signal, the participant was instructed to 132 

assume a comfortable position and to avoid movement. Signals were collected with the 133 

band-pass filter of 1-100 Hz at a rate of 256 Hz, and amplified with Neurofield’s Q20 134 

amplifier (NeuroField Inc., Bishop, CA, USA; Fig 1B) using NeuroGuide software 135 

(Applied Neuroscience Inc., Tampa, FL, USA). Each subject underwent 10 minutes of 136 

EEG recording with eyes closed. 137 

 138 

EEG data analysis and rationale for five distinct approaches 139 

EEG data were downloaded from the database as described previously (Minnerly 140 

et al., 2019).  Briefly, raw data was edited using the editing tool within the NeuroGuide 141 

software to remove physical artifacts (including eye movement, jaw movement, and gross 142 

movement) and was then visually inspected. A 60-second epoch of quality data was 143 

gathered after removal of the aforementioned artifacts. Epoch selection was governed by 144 

reliability measures of the data within the NeuroGuide program. Test-retest values of 145 

0.90 or greater are considered highly reliable and valid according to literature (Thatcher, 146 

2010). Each epoch was subjected to EEG spectral power analysis, using a fast Fourier 147 

transform (FFT), and then extracted to Microsoft Excel for further data calculation. 148 

Powers of delta/δ (1-4 Hz), theta/θ (4-8 Hz), alpha/α (8-12 Hz), beta/β (12-25Hz), and 149 

gamma/γ (25-50 Hz) oscillations were individually sorted according to electrodes and 150 

averaged (mean ±SEM). 151 

EEG signals, consisting of 5 spectral powers and 19 electrodes, were 152 

characterized in five distinct ways (Table 2). First, spectral powers at individual 153 

electrodes between healthy controls (CTL) and SUD were directly used for data 154 

comparison and analysis. This approach has been widely employed by many laboratories 155 

previously [for instance, (Polunina & Davydov, 2004; Greenwald & Roehrs, 2005)], and 156 

thus defined as Approach 1. The advantage of using Approach 1 was that no computation 157 

was required in the data analysis. However, since end data were at individual electrodes, 158 
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one would often find that EEG signals were significantly altered at some electrodes, but 159 

not others. Given this, it could be difficult to draw conclusions of what happened in EEG 160 

signaling. To solve this problem, new approaches of data analysis developed from four 161 

additional approaches. Specifically at Approach 2, spectral power data were grouped into 162 

1 (prefrontal; Fp1 and Fp2), 2 (frontal; F3, F4, F7, F8, and Fz), (central; C3, C4, Cz, T3, 163 

and T4), 4 (temporal; T5 and T6), 5 (parietal; P3, P4, and Pz), and 6 (occipital; O1 and 164 

O2). Next, EEG signals were viewed from the hemispheric level designated as Approach 165 

3. Spectral data of Fp1, F3, F7, C3, T3, T5, P3, and O1 were grouped and expressed as 166 

mean ± SEM into data 1, and Fp2, F4, F8, C4, T4, T6, P4, and O2 into data 2 as the left 167 

and right, respectively, hemispheric subregions. Note that data from the central 168 

subregions (Fz, Cz, and Pz) were excluded from the analysis. Next, EEG signals were 169 

viewed from an anterior-posterior aspect designated as Approach 4. EEG signals obtained 170 

from Fp1, Fp2, F3, F4, Fz, F7, and F8 were grouped as mean ± SEM representing 171 

anterior EEG activity, while O1, O2, P3, P4, Pz, T5, and T6 grouped as the posterior 172 

EEG activity. Note T3, T4, C3, C4, and Cz were excluded from the data analysis. Lastly, 173 

spectral data was viewed as a whole, across the cortex designated as Approach 5. All of 174 

19 electrodes was grouped as mean ± SEM. 175 

 176 

Table 2. Comparison of Approach 1-5 used in the present studies 177 
Approach Main Features 

 

Advantage Disadvantage 

1 Electrode-based 

analysis 

Less computation needed 

Commonly used; 

references available 

A huge amount of end 

data 

Hard to find difference 

between CTL and SUD 

 

2 Cortex-based 

analysis 

EEG signals associated 

with specific cortices  

Easy to find difference 

between CTL and SUD 

 

Lack of details in EEG 

signals 

Amount of end data is 

still huge. 
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Computational analysis 

needed 

 

3 Hemisphere-

based analysis 

Only two sets of end data 

Easy to find difference 

between CTL and SUD 

 

Part of EEG signals 

excluded from analysis 

Comprehensive 

computation needed 

 

4 Anterior-

posterior analysis 

Only two sets of end data 

Easy to find difference 

between CTL and SUD 

 

Part of EEG signal 

excluded from analysis 

Comprehensive 

computation needed 

 

5 Total cortex-

based analysis 

A single set of end data 

Easy to find difference 

between CTL and SUD 

 

Lack of detailed 

information 

Likely misdiagnosis 

 178 

 179 

Statistical analysis 180 

Data are expressed as mean ± SEM, and evaluated with repeated measures 181 

ANOVA between CTL and SUD (OUD, MUD, and AUD) followed by post-hoc Fisher’s 182 

PLSD test using StatView software 5.0 (SAS Institute Inc., Cary, NC, USA).  If 183 

appropriate, unpaired Student t-test was also utilized to determine statistical difference. 184 

Significance was set at P<0.05. 185 

 186 

Results 187 
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Characterization of EEG spectral powers at cortices of the 188 

healthy brains 189 

Spectral power data obtained from 20 healthy controls with 19-channel caps are 190 

grouped into 5 bands (delta/δ, 1-4 Hz; theta/θ, 4-8 Hz; alpha/α, 8-12 Hz; beta/β, 12-30 191 

Hz; and gamma/γ, 30-50 Hz), and further classified into 6 subgroups: the prefrontal (Fp; 192 

Fp1 and Fp2), frontal (F; F3, F4, F7, F8, and Fz), central (C; C3, C4, Cz, T3, and T4), 193 

temporal (T; T5, T6), parietal (P; P3, P4, and Pz), and occipital (O; O1 and O2). 194 

Statistical analysis reveals that amplitudes of spectral powers (µV2) of those 5 bands are 195 

significantly different in 6 cortical subregions [delta/δ, F(5,374) =8.25, P <0.0001; theta/θ, 196 

F(5,374) =3.817, P =0.0022; alpha/α, F(5,374) =9.185, P <0.0001; beta/β, F(5,374) =9.185, P 197 

<0.0001; gamma/γ, F(5,374) =2.969, P =0.0121). As shown in Fig 2, the y-axis displays 198 

spectral powers plotted against 6 cortical subregions displayed in x-axis. Except for the 199 

delta/δ band, the greatest spectral powers of theta/θ, alpha/α, beta/β, and gamma/γ were 200 

found in the occipital (O) cortex. In contrast, the greatest delta/δ powers (fig 2A) were in 201 

the prefrontal area, followed by the frontal, central, parietal, occipital, and temporal 202 

subregions. Interestingly, there exhibited a characteristic distribution of spectral power 203 

levels. As shown in the right panel of figure 1A, the delta/δ power levels went from 204 

greatest to least in the anterior to posterior subregions and then to the lateral lobes (Fp 205 

→F →Cz →P →O →T). In contrast, theta/θ powers took nearly the opposite direction, 206 

from the posterior to anterior subregions and then to the lateral lobes (Fig 2B; O →P 207 

→Cz → F →Fp →T).  Alpha/α and beta/β powers had an identical direction of ranking 208 

orders, showing the posterior to central and lateral subregions, and finally to the anterior 209 

lobes (fig 2C-D; O →P →C →T →F →Fp). The direction utilized by gamma/γ was 210 

relatively complicated but still followed a pattern, showing the ranking orders from the 211 

occipital cortex to the lateral and then to the prefrontal cortex, from where direction 212 

changed to the central subregions (fig 2D; O →T →Fp →F →C →P). 213 

 214 

 215 
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Approach 1: Electrode-based analysis 216 

Fig 3A displays a representative delta/δ wave at the F3 electrode obtained from a 217 

healthy control (CTL) compared with individuals with OUD, MUD, or AUD. Compared 218 

to CTL, delta/δ amplitudes were increased in patients with OUD or MUD, but not AUD. 219 

On the contrary, it was reduced in the AUD case. Next, the delta/δ amplitude powers on 220 

F3 were grouped and statistical analysis conducted with a SAS software. As shown in Fig 221 

3B, the difference in delta/δ amplitude powers was statistically significant [F(3, 74) =6.07, 222 

P =0.0009].  Post-hoc analysis indicates that only OUD, but not MUD or AUD, reached 223 

statistical significance difference from the CTL. To further reveal delta/δ powers, data 224 

were normalized into %CTL. As shown in the right panel of Fig 3B, changes at the F3 225 

electrode were approximately 50%, 30%, and -30% relative to the CTL, in OUD, MUD, 226 

and AUD, respectively. 227 

 228 

Next, we analyzed all 19 individual electrodes. Compared with the CTL, there 229 

were at least 10% increases in delta/δ powers of patients with OUD, but not MUD or 230 

AUD. Specifically for OUD, 14 electrodes (73%) displayed at least 50% higher power 231 

than the CTL. However, only 7 electrodes (i.e., F3, F4, C3, C4, T4, P4, and Pz) reached 232 

statistical significance (P <0.05; ANOVA; Fig 3C-G). Although the rest of electrodes had 233 

no significant changes, their delta/δ powers still followed the same pattern as indicated 234 

with the dash lines on the graphs.  235 

Finally, effects of SUD on theta/θ (Supplementary S1), alpha/α (S2), beta/β (S3), 236 

and gamma/γ waves (S4) were compared with the CTL. Although there was a tendency, 237 

no statistically significant difference from the CTL was found any individual electrode (P 238 

>0.05; ANOVA). 239 

 240 

Approach 2: Cortex-based analysis 241 

Spectral power data are grouped into 1 (prefrontal; Fp1 and Fp2), 2 (frontal; F3, 242 

F4, F7, F8, and Fz), 3 (central; C3, C4, Cz, T3, and T4), 4 (temporal; T5 and T6), 5 243 

(parietal; P3, P4, and Pz), and 6 (occipital; O1 and O2). Fig 4 displays spectral powers 244 

(µV2) of those cortical subregions obtained from CTL compared with patients with OUD, 245 
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MUD, or AUD.  Compared to CTL, it appears that OUD and MUD had elevated spectral 246 

powers for delta/δ and theta/θ, while reduced in alpha/α powers. However, beta/β or 247 

gamma/γ powers could not be clearly determined with the analysis used in Approach 2. 248 

Statistical analysis reveals significant increases in delta/δ powers [F(3, 74) =6.753, P 249 

=0.0004], had no effect on theta/θ [(F(3, 74) =2.224, P =0.0924); alpha/α (F(3, 74) =1.605, P 250 

=0.1955); beta/β, (F(3, 74) =0.732, P =0.5359); gamma/γ, (F(3, 74) =0.732, P =0.5359)].  251 

 252 

 253 

Approach 3: Analysis of the left-right hemisphere axis and 254 

spectral powers 255 

In this section, spectral data were grouped and expressed as mean ± SEM into 1 256 

and 2, respectively, representing the left and right hemispheres. Note that data from the 257 

central subregions (Fz, Cz, and Pz) were excluded from the analysis. Fig 5 displays 258 

spectral powers obtained from healthy controls (CTL) compared with individuals with 259 

OUD, MUD, or AUD. Analysis was performed from two aspects. First, we found that 260 

spectral powers of two hemispheres were almost at the same level, parallel to the x-axis.   261 

This suggests that substance use disorders (OUD, MUD, or AUD) did not have a 262 

selective effect on hemispheres. We next determined effects of substance use on spectral 263 

powers by analysis of y-axis. Compared to CTL, OUD and MUD had an increased power 264 

of delta/δ (A) and theta/θ (B), but a decreased alpha/α power (C). In contrast, AUD 265 

showed a reduction in all three waves. However, only delta power reached statistical 266 

significance [left, F(3,620) =36.748, P <0.0001; right, F(3,620) =36.694, P <0.0001). Changes 267 

in beta/β (D) or gamma/γ powers (E) were not statistically significant.  268 

 269 

 270 

Approach 4: Analysis of the anterior-posterior axis and 271 

spectral powers 272 

Data obtained from Fp1, Fp2, F3, F4, Fz, F7, and F8 were grouped as mean ± 273 

SEM representing for anterior signals, while O1, O2, P3, P4, Pz, T5, and T6 grouped as 274 
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the posterior activity. Note T3, T4, C3, C4, and Cz were excluded from the data analysis 275 

(Fig 6A).  276 

 277 

First, the x-axis (horizontal) levels were analyzed. In the CTL group, we found 278 

that, except for the delta/δ wave, the powers of theta/θ, alpha/α, beta/β, and gamma/γ 279 

were greater at posterior regions than those at the anterior regions. However, powers of 280 

delta/δ at the anterior regions were greater. We found that, except for the gamma/γ wave, 281 

the drug use disorders (OUD, MUD, or AUD) did not alter the relationship of the 282 

anterior-posterior axis. However, such relationship had been reversed in the gamma/γ 283 

wave (E), showing that the anterior powers were elevated while posterior powers were 284 

reduced. Next, we conducted statistical analysis on the y-axis. There were significant 285 

main effects on the delta/δ [A; 1=anterior, F(3,542) =26.001, P<0.0001; 2=posterior,  F(3,542) 286 

=36.308, P<0.0001] and theta/θ waves [B; 1=anterior, F(3,542) =21.036, P<0.0001; 287 

2=posterior,  F(3,542) =9.675, P<0.0001]. Changes in alpha/α (C), beta/β (D), or gamma/γ 288 

(E) were not significant 289 

Since the anterior-posterior relationship in gamma/γ waves were reversely altered 290 

in patients with SUD (i.e., OUD, MUD, or AUD), it prompted us to determine whether 291 

the reversed effect was statistically significant at individual cortices. Thus, the gamma/γ 292 

data were decomposed, and then regrouped to 6 cortical subregions. As shown in Fig 7A, 293 

significant changes occurred in the frontal [F(3,386) = 2.694, P =0.0458), temporal (F(3,308) 294 

=4.18, P =0.0064), and occipital (F(3,152) =4.225, P =0.0067), but not prefrontal (F(3,152) 295 

=1.382, P =0.2505) nor central subregions (F(3,230) =3.067, P =0.0285]. Topographic 296 

analysis (Fig 7B) revealed that the lowest gamma/γ power still remained at the parietal 297 

subregion. However, the highest gamma/γ power was drifted towards prefrontal (OUD 298 

and AUD) or frontal subregions (MUD), resulting in changes in the anterior-posterior 299 

relationship. 300 

 301 

 302 
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Approach 5: Analysis of spectral powers across total cortex 303 

Data obtained from 19 electrodes were grouped as mean ± SEM representing for 304 

spectral power across the whole cortex. As shown in fig 8, Compared to CTL, spectral 305 

powers in patients with SUD (OUD, MUD or AUD) were significantly altered in delta/δ 306 

and theta/θ, partly alpha/α or gamma/γ (Fig 8). No effect was observed in the beta/β. 307 

 308 

 309 

Discussion 310 

The present study revealed that EEG signals can be decomposed into many 311 

elements and regrouped into multiple datasets, showing characteristic patterns in patients 312 

with OUD compared to those with MUD, AUD, or healthy controls (CTL). It appears 313 

that data regrouping and reanalyzing had no effect on the EEG patterns, but markedly 314 

increased EEG credentials. To obtain an unbiased conclusion, we therefore suggest that 315 

the EEG signals are best viewed from 5 distinct perspectives, including from an 316 

individual electrode aspect, a cortical subregion level, a left-right hemispheric axis, an 317 

anterior-posterior axis, and the cortex as a whole. 318 

EEG signals were analyzed with 5 approaches (Table 2).  Approach 1 (electrode-319 

based) analysis has been widely used to determine EEG activity (Polunina & Davydov, 320 

2004; Fingelkurts et al., 2006; Motlagh et al., 2018) because of simplicity without 321 

additional computation. However, changes in EEG signals at individual electrodes often 322 

fail to reach statistical significance. Small sample sizes, which are a major obstacle in the 323 

human studies, were likely attributed to the failure in statistical evaluation. Thus, 324 

increases in sample sizes would solve the question as to whether EEG signals were 325 

indeed altered, as measured at the scalp of patients. It has been suggested that adjacent 326 

electrodes are functionally coherent although such relationship for two distant electrodes, 327 

particularly at different cortical subregions, does not exist (Snyder & Smith, 2015; 328 

Snyder et al., 2018). Findings that EEG amplitudes of adjacent electrodes were at the 329 

same level (Minnerly et al., 2019) support the coherent hypothesis. This suggests that, 330 

despite different electrodes but physical adjacency, their spectral powers could be 331 

grouped to determine functional changes.  332 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.13.439656doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.13.439656
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

Taking advantage of this concept, individual electrodes were regrouped according 333 

to cortices and expressed as six subregions using Approach 2 (see details in fig 4).  As a 334 

result, it was clearly demonstrated that EEG signals, particularly on delta/δ, were 335 

synchronized in patients with OUD and MUD and desynchronized with AUD. However, 336 

the significant difference took place only in OUD patients. Changes in EEG signals 337 

became more easily interpretable in the left-right (Approach 3) and anterior-posterior axis 338 

(Approach 4). The concept of electrical axis, which is widely used for EKG [for instance, 339 

(Schmidt et al., 2018)], was borrowed here for the first time to use in the EEG field. 340 

Findings that the left and right spectral powers were normally at an equal level relative to 341 

the x-axis could be interpreted as similar EEG activity in the two hemispheres. However, 342 

the anterior-posterior axis was no longer in a parallel to x-axis. The observation can be 343 

interpreted as that functional impairments were different at two distinct areas. The 344 

anterior areas are predominated with neurons for cognition, motivation, and execution 345 

while the posteriors are organized with sensory and somatosensory components. 346 

Importantly, the anterior-posterior slope could provide a direct comparison of relative 347 

changes in axis. 348 

One argument might be that some of information could be eliminated due to the 349 

grouped analysis of adjacent electrodes or all 19 electrodes together in Approach 5. 350 

Indeed, a conclusion could be partially biased when a single approach is used for data 351 

analysis. Thus, we suggest that all five approaches should be included in the data 352 

analysis. For instance, EEG signals in patients with AUD became desynchronized but 353 

were not statistically significantly different from the CTL when the data were viewed 354 

from individual electrodes (Approach 1). The difference became apparent in Approach 2 355 

despite not being significant. Further increases in sample sizes in Approach 3 and 4 356 

resulted in statistically significant differences from the CTL group. This was supported 357 

by spectral power analysis across the total cortex with Approach 5, showing that, as 358 

sample sizes increased, there were more bands significantly different from the CTL. In 359 

this regard, it appears that five approaches of analyses reveal varying information about 360 

the data. We suggest that all five approaches should be conducted prior to reaching a 361 

conclusion.  362 
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We found that powers of each EEG spectrum (i.e., delta/δ, theta/θ, alpha/α, 363 

beta/β, or gamma/γ) could be topographically ranked in an order on cortical subregions. 364 

A “topomap” has been widely adopted and used for understanding functional connections 365 

across cortical networks (Joudaki et al., 2012; Chai et al., 2019). However, what a normal 366 

topomap looks like in a healthy brain is not fully revealed but has been nearly established 367 

in recent years. The consensus for alpha/α waves is that they show highest activity (i.e., 368 

“hotspot”) at occipital subregions (Sauseng et al., 2005; Klimesch, 2012; Caplan et al., 369 

2015; Haigh et al., 2018). A possible explanation for such consistency with alpha/α is 370 

that its power is relatively 5-10 times higher than the other spectra and can be reliably 371 

observed and identified. The prefrontal or frontal cortices are predominately delta/δ 372 

waves (Tanaka et al., 1997; Caplan et al., 2015; Hinrichs et al., 2020). Interestingly, 373 

hotspots for theta/θ and beta/β powers were located mainly at posterior areas, specifically 374 

occipitals, generally in line with previous reports (Chang et al., 2002; Duru et al., 2009; 375 

Hinrichs et al., 2020).  376 

Functional connection across cortices is often topographically displayed into 377 

gradients [for instance, (Hinrichs et al., 2020)]. Furthermore, two hemispheres are usually 378 

integrated as a single entity. As a matter of fact, EEG signals at electrodes reflect the 379 

local dendritic spikes that can be propagated 0.5 mm distance (Suzuki & Larkum, 2017) 380 

from the scalp (Snyder et al., 2018). Given that there exists a longitudinal fissure in the 381 

skull, it is unlikely that EEG signals at one hemisphere have a spread electrically to the 382 

counterpart in long-range spatial manner. This view, however, does not contradict the 383 

functional role of the corpus collosum that physically connects two hemispheres. At this 384 

point, EEG signals on two hemispheres should be viewed separately and compared 385 

whether substances could have a selective effect on one side of the hemispheres 386 

(Minnerly et al., 2019).  387 

An interesting finding was that the highest power or hotspot was from the 388 

prefrontal area for the delta/δ wave with a characteristic ranking order: prefrontal 389 

→frontal →central →parietal →occipital →temporal subregions. In contrast, the theta/θ, 390 

alpha/α, beta/β, or gamma/γ wave was found at the occipital subregion with unique rank 391 

orders for each spectrum. Taken together, hotspots and/or rank orders of spectral powers 392 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.13.439656doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.13.439656
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

could be a physiological feature, which is likely explored as EEG biomarkers to 393 

distinguish the healthy people from those with SUD, as discussed, further below. 394 

Delta/δ (1-4 Hz) was the band most vulnerable to be alteration in patients with 395 

SUD.  As the sample sizes increased, theta/θ (4-8 Hz) waves followed by alpha/α (8-12 396 

Hz) or gamma/γ (25-50 Hz) could be significantly affected. We found that beta/β was the 397 

band least sensitive to any effect of substance use disorders, partly in line with previous 398 

reports (Newton et al., 2003; Greenwald & Roehrs, 2005). Since etiology of those bands 399 

are unknown, it is impossible for us at the present time to interpret why the effects of 400 

SUD impacted primarily at the delta/δ wave and secondarily on theta/θ, or what could be 401 

the mechanism underlying the beta/β resistance.  402 

A drawback in the present study was that there was too much workload on EEG 403 

signal resorting, feature extraction, analysis design and redesign, which were time 404 

consuming. It appears these data analyses could be automatically processed with 405 

software. Recently, it has been suggested that artificial intelligence (AI) and automatic 406 

analysis could apply for some features of EEG signals [for instance, (Golmohammadi et 407 

al., 2019)]. To develop such software, the present studies for providing an AI roadmap 408 

are two-fold. First, we suggest that AI should analyze EEG signals from at least five 409 

aspects, such as individual electrodes, cortical subregions, left-right hemispheres, 410 

anterior-posterior axis, and the whole cortex. Second, we suggest that AI should analyze 411 

not only EEG amplitude but also other biomarkers, specifically ranking orders of 412 

amplitudes and electrical axis. It is no doubt that EEG amplitudes were indicative of 413 

mental health alteration by the use of substances. Despite such importance, it cannot 414 

exclude the possibility of bias, so other biomarkers are needed by which the conclusion 415 

can be alternatively corroborated. Results of the present study demonstrate that spectral 416 

powers in the closed-eye state were characteristically altered in not only amplitudes, but 417 

also ranking orders and electrical axis in patients with SUD, providing that multiple 418 

biomarkers can be evaluated. With an ~1-5min sampling time, AI-driven EEG could 419 

emerge as a powerful tool in the future for quick and inexpensive diagnosis on mental 420 

health of patients with SUD. 421 

 422 
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Fig 1. EEG data acquisition. (A) A 19-channel EEG cap (from Electro-Cap 622 

International, Inc. Eaton, OH, USA) used for collecting data. (B) QCheck electrode 623 

impedance monitor and Q21 amplifier (Neurofield, Inc., Bishop, CA, USA). (C) A 624 

diagram of the International 10-20 System to elaborate electrode placement across the 625 

scalp. (D) An example of a digitized EEG recording using Neuroguide software (Applied 626 

Neuroscience, Inc. Largo, FL, USA). 627 

 628 

Fig 2. Topographic analysis of the EEG bands at cortical subregions of the healthy 629 

brains (N =20). The y-axis indicates spectral powers (µV2) plotted against 6 cortical 630 

subregions displaying in x-axis. Data are expressed as the rank orders from the highest to 631 

lowest powers in the subregions. Except for delta/δ waves (A), the highest amplitude 632 

powers were found in the occipital subregion with characteristic rank orders.  633 

Specifically, the theta/θ powers (B) were found in a rank order of O →P →Cz → F →Fp 634 

→T). * P<0.05 and **P<0.01 vs. 1=O; #P<0.05 and ##P<0.01 vs. 2=P; φP<0.05 vs. 3=Cz. 635 

The rank orders for alpha/α (C) and beta/β (D) were identical, displaying O →P →Cz 636 

→T →F →Fp. **P<0.01 and ***P<0.001 vs. 1=O; #P<0.05, ##P<0.01 and ###P<0.001 vs. 637 

2=P.  Interestingly, the gamma/γ powers were the highest at the occipital subregion and 638 

made a turn to the temporal lobe and then the prefrontal subregion, and finally ended at 639 

the lowest power in the parietal subregion.  **P<0.01 vs. 1=O; #P<0.05 vs. 2=T.  In 640 

contrast, the highest amplitude powers for delta/δ waves were in the frontal subregions 641 

followed by rear subregions, and then the temporal lobes (Fp →F →Cz →P →O →T). 642 

**P<0.01 and ***P<0.001 vs. 1=O; ##P<0.01 vs. 2=F; φφP<0.01 vs. 3=Cz; ΨΨP< vs. 4=P; 643 
ωP<0.05 vs. 5=O. 644 

 645 

Fig 3. Effects on delta/δ powers at 19 individual electrodes of patients with OUD, 646 

MUD or AUD. A, Representative delta/δ waves in the F3 electrode from CTL, OUD, 647 

MUD and AUD. B, F3 delta/δ powers expressed as absolute values (µV2; left panel) or 648 

100% CTL level (right panel). C, Frontal delta/δ powers. D, Central delta/δ powers. E, 649 

Temporal delta/δ powers. F, Parietal delta/δ powers. G, Occipital delta/δ powers. *P 650 

<0.05 vs. CTL. 651 
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 652 

Fig 4. Phenotypic changes of spectral powers in cortical subregions. Numbers in x-653 

axis indicate cortical subregions. 1, prefrontal; 2, frontal; 3, central; 4, temporal; 5, 654 

parietal; 6, occipital. In the case of OUD and MUD, delta/δ (A) and theta/θ powers (B) 655 

appeared to be elevated in all 6 cortical subregions as compared to CTL. In contrast, 656 

alpha/α powers (C) were lower than the CTL. There was no clear pattern for beta/β (D) or 657 

gamma/γ powers (E). Regarding AUD, spectral powers for delta/δ, theta/θ and alpha/α 658 

bands were lower than the CTL. No clear pattern for beta/β or gamma/γ bands was found. 659 

*P<0.05, and **P <0.01 vs. CTL, a post-hoc Fisher’s PLSD test followed by ANOVA. 660 

 661 

Fig 5. Left hemispheric spectral powers compared with the right hemispheric 662 

subregions. Numbers in x-axis denote the left and right hemispheres as 1 and 2, 663 

respectively. Data are expressed as mean ± SEM. Compared to CTL, OUD and MUD had 664 

an elevated power of delta/δ (A) and theta/θ (B) waves but a reduced alpha/α wave (C). 665 

In contrast, all three waves were reduced in AUD. No change was observed as the data 666 

expressed as hemispheric beta/β (D) or gamma/γ powers (E). 667 

 668 

Fig 6. Anterior spectral powers compared with the posterior subregions. Numbers in 669 

x-axis denote the anterior and posterior powers as 1 and 2, respectively. Data are 670 

expressed as mean ± SEM. Compared to CTL, OUD and MUD had an elevated power of 671 

delta/δ (A) and theta/θ (B) waves but a reduced alpha/α wave (C). In contrast, all three 672 

waves were reduced in AUD. No change was observed in the beta/β (D) or gamma/γ 673 

powers (E). 674 

 675 
Fig 7. A, Gamma/γ power in the cortical subregions altered in drug use disorders. 676 

*P<0.05, **P<0.01, and ***P<0.001 vs. CTL, a post-hoc Fisher’s PLSD test followed by 677 

ANOVA. B, Topographic analysis of gamma/γ power. Compared to the CTL, the lowest 678 

gamma/γ power still remained at the parietal subregion while the highest power was 679 

drifted toward the prefrontal (OUD and AUD) or frontal subregion (MUD). 680 

 681 
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Fig 8. Analysis of spectral powers as a whole across cortex. Data are expressed as 682 

mean ± SEM. Compared to CTL, spectral powers in patients with SUD (OUD, MUD or 683 

AUD) were significantly altered in delta/δ (A) and theta/θ (B), partly alpha/α (C) or 684 

gamma/γ (E). No effect was observed in the beta/β (D). **P<0.01, and ***P<0.001 vs. 685 

CTL, unpaired t-test. 686 

 687 
Supporting information 688 
S1. Effects on theta/θ powers at 19 individual electrodes of patients with OUD, MUD 689 

or AUD. Data were expressed as % CTL A, Frontal. B, Central. C, Temporal. D, 690 

Parietal. E, Occipital. Overall, MUD or OUD theta/θ powers >CTL >AUD. However, 691 

OUD, MUD or AUD was not different from the CTL (P>0.05). 692 

 693 
S2. Effects on alpha/α powers at 19 individual electrodes of patients with OUD, 694 

MUD or AUD. Data were expressed as % CTL. A, Frontal. B, Central. C, Temporal. D, 695 

Parietal. E, Occipital. Overall, CTL alpha/α power >OUD >MUD >AUD. OUD, MUD or 696 

AUD was not different from the CTL (P>0.05). 697 

 698 
S3. Effects on beta/β powers at 19 individual electrodes of patients with OUD, MUD 699 

or AUD. Data were expressed as % CTL. A, Frontal. B, Central. C, Temporal. D, 700 

Parietal. E, Occipital. OUD, MUD or AUD was not different from the CTL (P>0.05) 701 

 702 

S4. Effects on gamma/γ powers at 19 individual electrodes of patients with OUD, 703 

MUD or AUD. Data were expressed as % CTL. A, Frontal gamma/γ powers. B, Central 704 

gamma/γ powers. C, Temporal gamma/γ powers. D, Parietal gamma/γ powers. E, 705 

Occipital gamma/γ powers. OUD, MUD or AUD was not different from the CTL 706 

(P>0.05) 707 

 708 

 709 

 710 
 711 
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