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Abstract 

Purpose: Supervised machine learning (ML) provides a compelling alternative to traditional 

model fitting for parameter mapping in quantitative MRI. The aim of this work is to 

demonstrate and quantify the effect of different training strategies on the accuracy and 

precision of parameter estimates when supervised ML is used for fitting. 

Methods: We fit a two-compartment biophysical model to diffusion measurements from in-

vivo human brain, as well as simulated diffusion data, using both traditional model fitting and 

supervised ML. For supervised ML, we train several artificial neural networks, as well as 

random forest regressors, on different distributions of ground truth parameters. We compare 

the accuracy and precision of parameter estimates obtained from the different estimation 

approaches using synthetic test data. 

Results: When the distribution of parameter combinations in the training set matches those 

observed in similar data sets, we observe high precision, but inaccurate estimates for atypical 

parameter combinations. In contrast, when training data is sampled uniformly from the entire 

plausible parameter space, estimates tend to be more accurate for atypical parameter 

combinations but may have lower precision for typical parameter combinations.  

Conclusion: This work highlights the need to consider the choice of training data when 

deploying supervised ML for estimating microstructural metrics, as performance depends 
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strongly on the training-set distribution. We show that high precision obtained using ML may 

mask strong bias, and visual assessment of the parameter maps is not sufficient for evaluating 

the quality of the estimates.  

 

1. Introduction 

Clinically used magnetic resonance imaging (MRI) typically focuses on the qualitative 

assessment of image contrast that arises from a combination of different properties of the 

imaged tissue, imaging hardware and measurement settings. Going a step further, 

quantitative MRI (qMRI) aims to quantify inherent tissue properties, such as T1- and T2-

relaxation times, proton density, magnetisation transfer, susceptibility and diffusivity, by 

removing confounding effects arising from differences in imaging setup. Quantifying physical 

tissue features has many potential benefits, such as ease of interpretation, reproducibility, 

and straightforward comparisons between measurements made at different times or across 

different populations [1]. However, to quantify the tissue features of interest, it is necessary 

to define a model linking those features to the measured MRI signal and fit it to appropriately 

collected data. For example, in diffusion MRI (dMRI), a rich arsenal of biophysical models, 

signal representations and acquisition strategies have been proposed to quantify several 

tissue properties, such as mean diffusivity, microscopic anisotropy, neurite density and 

dispersion [2] [3]. One of the key challenges in qMRI is therefore estimating tissue features 

accurately, precisely and in a reproducible way, given a model and MRI data.  

 

Conventionally, model fitting is performed voxel-by-voxel using optimisation techniques, 

often based on minimising a non-linear objective function. However, as models become more 

complex, conventional fitting approaches become slow and prone to local minima, and the 

estimation performance degrades with decreasing amount of available data and signal-to-

noise ratio (SNR). These drawbacks can hamper the widespread use of qMRI in clinically 

relevant applications.  

 

Recently, machine learning (ML) has emerged as a promising tool for overcoming many of the 

challenges associated with model fitting for qMRI. For example, ML methods based on 

artificial neural networks have been used to reduce estimation time of myelin water fraction 
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in the brain [4] and to estimate T1 and T2 in a fast and robust way using sparse data from 

magnetic resonance fingerprinting [5]; whereas ML methods based on convolutional neural 

network approaches have been developed to estimate susceptibility using a single subject 

orientation [6]. In dMRI, ML has been used, for example, to bridge the gap between data-

hungry imaging techniques and clinically feasible scans, for example by reconstructing super-

resolved maps from low spatial resolution data [7] [8], or by estimating advanced diffusion-

based metrics from sparse q-space acquisitions [9] [10] [11].  

 

Most of the ML methods used in qMRI are based on the so-called supervised learning 

paradigm which relies on learning patterns from large amounts of examples, or training data, 

to map inputs to desired outputs. A key issue with supervised ML is that in the absence of 

balanced training data, the ML model may learn disruptive patterns. There are compelling 

examples of this in healthcare technology, where racial [12] and gender [13] biases arise from 

the specific data set used for training. Thus, the performance of supervised ML tools is only 

as good as the data used to train them.  

 

Recent works that leverage supervised ML for model parameter estimation typically employ 

one of two training strategies: (1) parameter combinations obtained from traditional model 

fitting and the corresponding measured qMRI signals [4] [6] [9] [14] [15] [11] [16] [17], or (2) 

parameters sampled uniformly from the entire plausible parameter space with simulated 

qMRI signals [5] [18] [19] [20] [21] [22] [23] [24]. While both of these approaches are limited 

by the model used to estimate parameters or simulate signals, simulations allow considerably 

more freedom in choosing training data [25] [26] [27]. However, it is not clear how best to 

utilise this freedom, as the impact of training data distribution on parameter estimation has 

yet to be examined.  

 

In this work, we focus on dMRI as an exemplar case and investigate the effect of training data 

distribution on microstructural parameter estimates. To this end, we quantify bias and 

variance in estimates throughout the parameter space of a simple dMRI model where the 

complexity of the estimation task and the dimensionality of the parameter space are low. 

Specifically, we use a simple two-compartment model based on the spherical mean technique 

(SMT) [28] [29], which has only two independent parameters. We estimate the 
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microstructural parameters of this model using both traditional non-linear optimisation and 

supervised ML trained on different distributions of ground truth parameters. We visualise 

how bias and variance manifest throughout the parameter space, and how regions of high 

and low estimation performance depend on the distribution and noise level of the training 

data. Although here we focus on dMRI, we expect similar results and conclusions for other 

qMRI techniques that use supervised ML methods for fitting multi-compartment models.  

 

2. Methods 

2.1. Data acquisition and pre-processing 

After informed written consent, six healthy volunteers were scanned on a 3T Siemens Prisma 

scanner using a 64-channel head coil. Ethical approval for the study was obtained from the 

UCL Research Ethics Committee. We acquired diffusion weighted images with b-values of 

[1000, 2000, 3500, 5000] s/mm2 and a total of 128 uniformly distributed gradient directions 

[30] with 32 gradient directions for each b-value. We acquired 13 b0 images with no diffusion 

weighting, including one b0 image with reversed phase encoding. Measurement parameters 

include isotropic 2 mm resolution with acquisition matrix 128 ´ 128 ´ 70, partial Fourier 

imaging 0.75, TE = 94 ms, TR = 9.2 s and GRAPPA parallel imaging with acceleration factor 2. 

The SNR of the diffusion images was approximately 25 based on the b0 images and averaged 

across white and grey matter. Additionally, a 3D T1-weighted MPRAGE with 1 mm isotropic 

resolution was acquired and segmented using FreeSurfer [31] to identify white and grey 

matter regions in the brain. 

 

To pre-process the diffusion data, we first removed Gibbs ringing artefacts using the method 

described in [32]. Using the FSL toolbox [33] , we estimated the susceptibility-induced off-

resonance field with two b0 images with reversed phase encoding polarities [34] and 

corrected for susceptibility and eddy-current induced geometric distortions and subject 

motion with methods described in [35]. Finally, we created a binary mask to remove non-

brain regions [36]. 
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2.2. Biophysical Model 

In this work, we use the two-compartment SMT model [28] [29] as a convenient example 

model that consists of only two independent parameters, which makes visualisation of the 

parameter space straightforward. In this model, brain tissue is assumed to consist of 

heterogeneously oriented cylindrical compartments and the surrounding extra-cellular 

volume. The model can be summarised as 

 

𝑆̅(𝑏)
𝑆!

= 𝑣"#$ 	
√𝜋	erf	(.𝑏𝜆"#$)

2.𝑏𝜆"#$
+	𝑣%&' 	

√𝜋	erf	(2𝑏(𝜆%&'
∥ − 𝜆%&') ))

22𝑏(𝜆%&'
∥ − 𝜆%&') )

exp	(−𝑏𝜆%&') ) (1) 

 

where erf is the error function such that lim
*→!

erf(𝑥) /𝑥 = 2/𝜋, 𝑆̅ is the powder-averaged 

diffusion signal at a specific b-value (b), 𝑆! is the signal with no diffusion weighting, vcyl and 

vext are the cylindrical and extra-cellular volume fractions, respectively, 𝜆"#$ is the diffusivity 

parallel to cylindrical compartments, and 𝜆%&'
∥  and 𝜆%&')  are the parallel and perpendicular 

extra-cellular diffusivities, respectively. The model assumes that within cylindrical 

compartments, perpendicular diffusivity is negligible, i.e. 𝜆"#$) = 0, that 𝑣"#$ + 𝑣%&' = 1, and 

that the extra-cellular diffusivities may be approximated by a tortuosity approximation [37], 

whereby 𝜆%&'
∥ = 𝜆"#$ and 𝜆%&') = (1 − 𝑣"#$)	𝜆"#$. Thus, the model has two independent 

parameters: vcyl and lcyl.  

 

2.3. Parameter estimation 

We estimate the parameters of the biophysical model using two methods: (1) traditional 

model fitting that utilises non-linear least squares optimisation (software available at 

https://github.com/ekaden/smt) and (2) supervised ML consisting of artificial neural 

networks implemented using TensorFlow 2.0 (https://www.tensorflow.org), as well as 

random forest regressors implemented in Scikit-learn [38]. The following subsections detail 

the properties of the artificial neural networks, the random forest regressors and the training 

data.  
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2.3.1. Artificial neural network architecture 

The inputs to the artificial neural networks are the powder-averaged and T2-normalised 

diffusion signals for the four b-values used: [𝑆̅(𝑏 = 1000) 𝑆!⁄ , 𝑆̅(𝑏 = 2000) 𝑆!⁄ , 

𝑆̅(𝑏 = 3500) 𝑆!⁄ , 𝑆̅(𝑏 = 5000) 𝑆!⁄ ]. The networks consist of fully connected layers with 

rectified linear unit (ReLU) activation functions. We include three fully connected layers (input 

layer, 1 hidden layer, output layer) for the artificial neural networks trained with noise and 

nine layers (input layer, 7 hidden layers, output layer) for the artificial neural networks trained 

without noise (i.e. infinite SNR), as more learning capacity is needed to map parameters to 

noise-free data. Each hidden layer contains 280 nodes. For training, we use a stochastic 

gradient descent optimiser with learning rate=0.001, momentum 0.9 and the mean squared 

error loss between the predicted and ground truth model parameter values. Each network 

was trained over 100,000 epochs.  

 

To train the neural networks, we simulated the powder-averaged and T2-normalised diffusion 

signal, 𝑆̅ 𝑆!⁄ ,  using Equation (1) for each b-value used in this work. Equation (1) provides one 

signal per b-value, whereas the in-vivo data has 32, one for each gradient direction. Here, we 

set all 32 measurements in the same b-shell to the same value. We then added noise from a 

Gaussian distribution with a fixed standard deviation corresponding to a specific SNR. 

Subsequently, we computed the mean, or powder average, of the noised signals for each b-

value. We implemented the noise addition and powder averaging as pre-processing layers in 

the neural network, as this ensures that a different instance of Gaussian noise is added at 

each epoch, which in turn ensures that the neural network does not overfit to the noise. In 

this work, we trained neural networks with three different noise levels corresponding to SNR 

= [5, 25, ¥]. 

 

The neural network outputs are logit(vcyl) and logit(lcyl/lfree), where logit(x) = log(x) – log(1-x) 

and lfree is the diffusivity of free water, set to 3 µm2/ms in this work. The form of the outputs 

ensures that the parameter estimates lie within a biophysically plausible range, such that 0 £ 

vcyl £ 1 and 0 £ lcyl £ lfree. 
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2.3.2. Random forest regressor 

For the random forest estimator, we used the random forest regressor implemented in Scikit-

learn [38] with 200 trees and a maximum tree depth of 20, similarly to previous works [18] 

[21]. We added noise to the training data and computed the powder average explicitly before 

training each random forest regressor. The inputs to the random forest regressors are the 

powder-averaged, T2-normalised signals, [𝑆̅(𝑏 = 1000) 𝑆!⁄ , 𝑆̅(𝑏 = 2000) 𝑆!⁄ , 

𝑆̅(𝑏 = 3500) 𝑆!⁄ , 𝑆̅(𝑏 = 5000) 𝑆!⁄ ], whereas the outputs are logit(vcyl) and logit(lcyl/lfree), 

as in the artificial neural network. 

 

2.3.3. Training data distributions 

The ML models were trained on synthetic data simulated using Equation (1) and the same set 

of b-values as in the in-vivo data described in Section 2.1. For each estimator, 219 parameter 

combinations were drawn from the parameter space bounded by 0 £ vcyl £ 1 and 0 £ lcyl £ 3 

µm2/ms, of which 75% were used for training and 25% for validation. We use the following 

distributions to draw samples for training: 

 

(i) Uniform distribution: vcyl drawn uniformly between [0, 1], and lcyl drawn uniformly 

between [0, 3] µm2/ms. This distribution corresponds to one of the two approaches used in 

recent works that estimate tissue microstructure with supervised ML. 

 

(ii) Healthy brain distribution: vcyl and lcyl sampled using parameter combinations 

obtained from traditional model fitting in five healthy adult subjects. We fit each of the five 

healthy adult data sets with traditional model fitting and pooled the resulting parameter 

combinations. The total number of parameter combinations was approximately 135,000, 

which is less than the 219 training data samples used in this work. Thus, to ensure that there 

were sufficient unique parameter combinations for training, we sampled proportionally to 

the density of parameter combinations obtained from traditional model fitting. First, we 

computed the two-dimensional histogram of available parameter combinations using 500 

bins in both dimensions and used cubic interpolation to approximate the continuous density 

function d(vcyl, lcyl) throughout the vcyl - lcyl parameter space. We then performed rejection 

sampling by selecting a random sample d’ between the minimum and maximum of the 
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density, as well as a random parameter combination vcyl’ and lcyl’. We computed d(vcyl’, lcyl’), 

and if d’ < d(vcyl’, lcyl’), the parameter combination was accepted, otherwise it was rejected.  

 

This distribution is an approximation of the second approach used in recent works, whereby 

ML models are trained on parameter combinations estimated via traditional model fitting and 

the corresponding measured signals. We make one necessary change which is to simulate the 

diffusion signals using Equation (1) instead of using the measured signals. This allows for 

increased flexibility in injecting noise into the training data. 

 

(iii) Mixed uniform and healthy brain distribution: half the samples drawn from (i) and half 

drawn from (ii). 

 

To investigate extreme cases where we train on only white or grey matter parameter 

combinations, we test two further training data distributions: 

 

(iv) Healthy WM distribution: vcyl and lcyl sampled similarly as in (ii), but for white matter 

voxels only, determined from the FreeSurfer [31] segmentations.  

 

(v) Healthy GM distribution: vcyl and lcyl sampled similarly as in (ii), but for grey matter 

voxels only, determined from the FreeSurfer [31] segmentations. 

 

2.3.4. Summary of trained ML models 

Table 1 summarises the ML estimators trained in this work, as well as the names we use to 

refer to each estimator in the Results and Discussion sections. 
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Estimator name ML model Training data distribution 
SNR of 
training 
data 

Net-uniform-SNRINF Artificial neural network Uniform distribution ¥ 
Net-uniform-SNR25 Artificial neural network Uniform distribution 25 
Net-uniform-SNR5 Artificial neural network Uniform distribution 5 
Net-healthy-brain-SNRINF Artificial neural network Healthy brain distribution ¥ 
Net-healthy-brain-SNR25 Artificial neural network Healthy brain distribution 25 
Net-healthy-brain-SNR5 Artificial neural network Healthy brain distribution 5 
Net-healthy-WM-SNR25 Artificial neural network Healthy WM distribution 25 
Net-healthy-GM-SNR25 Artificial neural network Healthy GM distribution 25 

Net-mixed-SNR25 Artificial neural network Mixed uniform and healthy 
brain distribution 25 

Net-mixed-SNR5 Artificial neural network Mixed uniform and healthy 
brain distribution 5 

RF-uniform-SNRINF Random forest regressor Uniform distribution ¥ 
RF-uniform-SNR25 Random forest regressor Uniform distribution 25 
RF-uniform-SNR5 Random forest regressor Uniform distribution 5 
RF-healthy-brain-SNRINF Random forest regressor Healthy brain distribution ¥ 
RF-healthy-brain-SNR25 Random forest regressor Healthy brain distribution 25 
RF-healthy-brain-SNR5 Random forest regressor Healthy brain distribution 5 

RF-mixed-SNR25 Random forest regressor Mixed uniform and healthy 
brain distribution 25 

Table 1. Summary of the ML models trained in this work indicating whether we used the 
artificial neural network or the random forest regressor, the training data distribution and 
noise levels used in each trained model. 
 

2.4. Test data 

We tested the impact of the training strategy on (i) in-vivo parameter maps, (ii) the bias and 

variance of predicted model parameter across the entire parameter space, (iii) the 

performance of parameter estimation for normal and abnormal parameter combinations, 

and (iv) the detectability of regions of abnormal tissue in parameter estimates. We outline 

the data sets used for these four test cases in the following subsections.   

 

2.4.1. In-vivo test data 

To compare parameter estimates obtained in healthy human brain scans, we used the 

diffusion measurements of the 6th healthy adult volunteer that was not included in the 

training data parameter pool used in distributions (ii)-(v) described in Section 2.3.3. The SNR 

of this data set was approximately 25, and the images were pre-processed as described in 

Section 2.1. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.13.439659doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.13.439659


 10 

 

2.4.2. Simulated data for different parameter combinations  

To probe the overall accuracy and precision of the model fitting, we synthesized test data 

using Equation 1 with the same set of b-values as in the in-vivo data described in Section 2.1. 

We chose 441 points on a 21´21 grid covering the parameter space, such that vcyl ranged 

from 0 to 1 at increments of 0.05, and lcyl ranged from 0 to 3 µm2/ms at increments of 0.15 

µm2/ms. For each of the parameter combinations on this grid, we synthesised 10,000 samples 

of the diffusion signals and added Gaussian noise. We created three such data sets with SNR 

= [5, 25, ¥]. For each of the test data sets we used the neural networks trained with the 

corresponding noise level to estimate parameters. 

 

2.4.3. Simulated normal and abnormal parameter combinations  

In addition to the gridded parameter combinations in the previous section, we synthesised 

the diffusion signals for five further parameter combinations to probe specific normal and 

abnormal tissues (Table 2). These included the mean parameter combination found in white 

matter based on traditional model fitting for 5 healthy adult subjects (WM), the mean 

parameter combination found in grey matter based on traditional model fitting for 5 healthy 

adult subjects (GM), two extreme abnormalities (Abnormality 1 and Abnormality 2), and an 

abnormality where both vcyl and lcyl deviate from WM only slightly (Abnormality 3). For each 

of these parameter combinations, we synthesised 10,000 samples of the diffusion signals and 

added Gaussian noise corresponding to SNR = [5, 25]. As before, for each of the test data sets 

we used the neural networks trained with the corresponding noise level to estimate 

parameters. 

Parameter combination name vcyl lcyl (µm2/ms) 

Typical white matter (WM) 0.67 2.20 

Typical grey matter (GM) 0.16 1.14 

Abnormality 1 0.67 0.50 

Abnormality 2 0.05 2.20 

Abnormality 3 0.60 1.80 

Table 2. Specific parameter combinations chosen to illustrate performance in typical and 
abnormal parameter combinations. 
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2.4.4. Simulated brain data with abnormality 

Taking the in-vivo parameter maps obtained from traditional model fitting, we chose a region 

of interest (ROI) in white matter and changed the parameter combinations in this region to 

those of Abnormality 3. Using the parameter combinations from the in-vivo parameter maps 

with the altered ROI, we simulated diffusion signals with Equation (1) to create a full 

simulated brain-like data set. We added noise to the simulated signals corresponding to SNR 

= [5, 25]. These two noised data sets were used to investigate whether small abnormalities 

can be visually detected with the different estimation approaches. 

 

3. Results 

In this section we present the accuracy and precision of parameter estimates using traditional 

model fitting and ML. For the ML approach, we focus on artificial neural networks as an 

example but obtain similar results using the random forest regressors. 

 

3.1. In-vivo parameter maps 

We map in-vivo parameter estimates for a single healthy adult subject using traditional model 

fitting (Figure 1A) and using Net-uniform-SNR25, Net-healthy-brain-SNR25, Net-healthy-WM-

SNR25 and Net-healthy-GM-SNR25 (Figure 1B). Figure 1 demonstrates that when we train 

only on parameter combinations typical in white matter, estimates in grey matter are 

substantially different from those obtained from traditional model fitting, whereas when we 

train only on parameter combinations typical in grey matter, estimates in white matter are 

substantially different from those obtained from traditional model fitting. Parameter maps 

obtained using Net-uniform-SNR25 and Net-healthy-brain-SNR25 are comparable to those 

from traditional model fitting. 
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Figure 1. Panel (A): vcyl and lcyl parameter maps obtained from traditional model fitting. Panel 
(B): (a) Different training data distribution strategies, (b) the corresponding vcyl and lcyl 
parameter maps and (c) the difference between parameter maps in row (b) and parameter 
maps from traditional model fitting in Panel (A). 
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3.2. Accuracy and precision using synthetic test data 

In this section, we use synthetic test data to compare the accuracy and precision of parameter 

estimates obtained using traditional model fitting and artificial neural networks trained on 

different data distributions at different noise levels.  

 

Figure 2 maps bias in parameter estimation for different combinations of vcyl and lcyl. The 

arrows point from the ground truth parameters to the mean of estimated parameters. 

Different rows show the different noise levels that were injected to both the training data 

and the test data. As SNR is reduced, bias in the parameter estimates increases for each 

estimation method, with traditional model fitting providing the lowest overall bias. Estimates 

obtained from the artificial neural network trained on the healthy brain distribution has the 

highest overall bias, and bias is consistently high in the low vcyl and high lcyl region where the 

training data has low density. Interestingly, certain regions of the parameter space act as 

‘sinks’, towards which estimates of nearby parameters are biased. The location of these sinks 

depends on both the training data distribution and the noise level. For example, in the 

networks trained on in-vivo parameter combinations a sink forms near the highest data 

density region. The pull of the sink becomes stronger as the SNR is reduced. For each fitting 

approach, biases are high when lcyl = 0, as the biophysical model is degenerate when there is 

no diffusion. We obtained similar results using random forest regressors (see Supplementary 

Figure S1A).  

 

Figure 3 shows the standard deviation in vcyl and lcyl estimates obtained from traditional 

model fitting and from the artificial neural networks. Parameters are estimated precisely 

using all three methods when the training and test data are noise-free. As SNR is reduced, the 

precision of the parameter estimates obtained using traditional model fitting degrades more 

than using the artificial neural networks. We obtained similar results using random forest 

regressors (see Supplementary Figure S1B). 

 

In Figure 4, we probe estimation performance for the specific parameter combinations 

representing white matter (WM), grey matter (GM) and three tissue abnormalities outlined 

in Section 2.4.2. We compare traditional model fitting and the neural networks trained on 
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uniform, healthy brain and mixed uniform-healthy brain distributions. When SNR = 25, WM 

and GM are estimated accurately using all estimation methods. Precision is comparable 

across the estimation methods for GM, but precision in WM estimates obtained using Net-

uniform-SNR25 is slightly lower than using Net-mixed-SNR25 and Net-healthy-brain-SNR25. 

When SNR = 5, biases appear in WM and GM estimates obtained using the neural networks. 

In WM, precision is low using traditional model fitting compared to the neural networks, 

whereas in GM, precision is lowest using Net-uniform-SNR5.  

 

Abnormality 1 is estimated with low accuracy using the neural networks trained on both the 

healthy brain distribution and mixed uniform and healthy brain distribution. Biases are 

substantial when SNR = 25 and are exacerbated for SNR = 5. For SNR = 25, estimates of 

Abnormality 2 are biased using Net-healthy-brain-SNR25, and as SNR is decreased to 5, 

estimates of Abnormality 2 are biased using all three neural networks. For Abnormality 3, 

estimates tend to be accurate using all methods when SNR = 25. However, as SNR is decreased 

to 5, the estimates using the neural networks are biased toward WM values. We demonstrate 

this effect further in Figure 5 using synthetic brain-like test data described in Section 2.4.3. 

When SNR = 25, Abnormality 3 can be visually distinguished from surrounding healthy tissue 

for all the estimation methods. When SNR = 5, estimates from traditional model fitting are 

noisy throughout the brain, whereas estimates from the neural networks appear smooth, 

particularly for Net-mixed-SNR5 and Net-healthy-brain-SNR5, but Abnormality 3 cannot easily 

be distinguished from the surrounding tissue. 
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Figure 2. Bias mapped using quiver plots for (A) traditional model fitting, (B) neural networks 
trained using the uniform distribution and (C) neural networks trained using the healthy brain 
distribution. The arrows point from the ground truth values to the mean of the estimated 
values. In column (C), the red contours show the training data density. Each row shows the 
biases at different values of SNR, according to which Gaussian noise was added both the 
training data and test data. 
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Figure 3. Precision of vcyl and lcyl estimates using (A) traditional model fitting, (B) neural 
networks trained using the uniform distribution and (C) neural networks trained using the 
healthy brain distribution. The three rows correspond to the different noise levels in both the 
training and test data sets. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.13.439659doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.13.439659


 17 

 
Figure 4. Panel (A): Different training data distributions: uniform data distribution, healthy 
brain distribution, and a mixed distribution where 50% of the samples are from the uniform 
distribution, and 50% of the samples are from the healthy brain distribution. We mark five 
parameter combinations: white matter (WM), grey matter (GM), two different extreme 
parameter combinations (Abnormality 1 and 2) and one parameter combination that differs 
only slightly from typical WM (Abnormality 3). We show box plots of the estimates for these 
five parameter combinations using synthetic data with SNR = 25 in panel (B) and using 
synthetic data with SNR = 5 in panel (C). The dashed red line marks the ground truth, and for 
Abnormality 3, the black line marks normal WM.  
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Figure 5. Parameter estimates for (A) SNR = 25 and (B) SNR = 5. The data sets used here were 
simulated using parameter values obtained from traditional fitting with Abnormality 3 applied 
to an ROI shown in the top row. Abnormality 3 is highlighted in the red box and shown in 
adjacent zoomed plots.  
 

3.3. Summary of results 

In Table 3 we summarise the overall RMSE, bias and standard deviation using the different 

parameter estimation methods for SNR = 25. Net-uniform-SNR25 yields the lowest average 

RMSE for the estimation methods tested in this work. On average, traditional fitting yields the 

lowest average bias in both vcyl and λcyl with Net-uniform-SNR25 in second place. For vcyl, bias 

is approximately 8% higher using Net-uniform-SNR25 compared to traditional model fitting, 

whereas for λcyl, bias is almost 200% higher using Net-uniform-SNR25 compared to traditional 

model fitting. Net-healthy-brain-SNR25 and RF-healthy-brain-SNR25 yield the lowest 

standard deviations in vcyl and λcyl, respectively, but at the cost of high average biases in both 

parameters compared to the other estimation methods.  
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Estimation 
method 

Mean vcyl 
RMSE 

Mean λcyl 
RMSE 

Mean vcyl 

bias 
Mean λcyl 

bias 

Mean vcyl 

standard 
deviation 

Mean λcyl 

standard 
deviation 

Traditional fitting 0.0883 0.1106 0.0313 0.0130 0.0742 0.1087 
Net-uniform-
SNR25 

0.0642 0.1082 0.0338 0.0386 0.0449 0.0965 

Net-healthy-
brain-SNR25 

0.1349 0.1538 0.1176 0.0927 0.0329 0.0949 

Net-mixed-SNR25 0.0669 0.1136 0.0382 0.0448 0.0472 0.0974 
RF-uniform-
SNR25 

0.0670 0.1109 0.0342 0.0400 0.0490 0.0980 

RF-healthy-brain-
SNR25 

0.1294 0.1449 0.1087 0.0878 0.0377 0.0934 

RF-mixed-SNR25 0.0690 0.1117 0.0350 0.0422 0.0510 0.0973 
Table 3. The mean RMSE, bias and standard deviation over the entire parameter space vcyl 
and lcyl for estimation methods using SNR = 25. Bold values highlight the lowest value in each 
column. 
 

4. Discussion 

This work highlights two key properties of supervised ML-based fitting techniques, which 

differ from traditional model fitting. Firstly, we show that parameter estimates are 

significantly affected by the distribution of training data. Secondly, we demonstrate that 

smooth parameter maps obtained via ML may be deceptive, as high precision may hide strong 

biases. This is in contrast with traditional fitting, where low reliability in estimates is typically 

reflected by noisy parameter maps. The results presented in this work focus on artificial 

neural networks as the example for supervised ML, but we observe similar trends with other 

ML models such as random forest regressors, for which we summarise accuracy and precision 

in Supplementary Figure S1. 

 

In Section 3.2. we focus on three different training data distributions: healthy parameter 

combinations obtained using traditional model fitting, uniformly distributed parameter 

combinations, and healthy parameter combinations augmented with uniformly distributed 

parameter combinations. Recently, authors in [39] compared the fitting performance of the 

first two training strategies, and authors in [40] assessed the trade-off between accuracy and 

generalisability when combining them to analyse diffusion-relaxation data. Our results show 

that training on healthy parameter combinations facilitates precise estimates in healthy tissue 

but may yield strong biases in atypical parameter combinations not represented in training. 
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This bias is mitigated when healthy data is combined with atypical parameter combinations 

in training, in line with recent findings in [40]. However, here we show that even when healthy 

training data is combined with atypical parameter combinations, and in fact even when the 

full parameter space is uniformly represented in the training data, supervised ML may still 

introduce substantial biases that can hamper the clinical utility of qMRI techniques. Thus, our 

findings suggest that it is crucial to develop training strategies that minimise biases 

throughout the parameter space. 

 

Parameter estimates obtained from traditional model fitting are overall more accurate than 

the estimates obtained from the ML models at each noise level tested in this work. However, 

at low SNR traditional fitting suffers from high variance, which limits the interpretability of 

estimated parameter maps. Maps obtained using the neural networks are less noisy, which 

may mistakenly convince the user that the estimates are reliable even at low SNR. Indeed, in 

Figure 6 we show that a small white matter abnormality may be missed if the low SNR neural 

network estimates are trusted. While this issue is particularly pronounced for the networks 

trained on healthy parameter combinations, the maps obtained using the uniform 

distribution may mislead users as well. Our findings highlight the importance of accounting 

for bias and variance of model parameter estimates when using supervised ML methods for 

model fitting tasks. The analysis and visualization approaches proposed here (Figures 2-5) 

provide tools to quantify the expected impact of a chosen estimation strategy and to aid the 

interpretation of resulting parameter estimates. For example, parameter estimates near 

‘sinks’ in the bias quiver plots should be interpreted with caution, as these parameter 

combinations may mask substantial biases. The location and evolution of these sinks can 

inform future experimental design and training strategies optimised to mitigate their impact. 

Furthermore, our findings point out the importance of computing uncertainty, cf. [41], in ML-

based estimation, particularly when ML is used to compensate for lower quality data. 

 

This work used a simple two-compartment model to demonstrate the impact of training data 

on a low-dimension system in dMRI. We expect to see similar effects in other models and 

qMRI techniques, likely exacerbated by complexity, but verification of this will be the subject 

of future work. Our analysis was also limited to a single set of b-values. Different numbers 

and combinations of b-values would likely affect both the overall accuracy and the position 
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of ‘sinks’ in the parameter space towards which nearby parameter combinations are biased. 

Finally, we note that the distribution of noise used to inject both the training and synthetic 

test data sets is Gaussian, and not Rician, as one might expect from magnitude MRI data. This 

likely has an impact on the in-vivo estimates obtained in Section 3.1., which were not 

corrected for Rician noise bias. Future work could investigate how the form, and not just the 

width of the noise distribution may affect parameter estimates in in-vivo measurements. 

 

ML is a promising tool for enhancing medical imaging technology, where resources are often 

limited, and the potential impact may be life changing. qMRI may benefit in particular, as 

advanced MRI acquisitions and subsequent model fitting may be time-consuming. However, 

work still needs to be done to mitigate biases and assess estimation reliability in order to use 

ML effectively. Here, we use a two-compartment model and dMRI data to highlight with a 

simple example that performance depends strongly on the choice of training data. Future 

work might explore optimising training data sampling given a set of experimental parameters 

and tissue model. 
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Supplementary Material 
 

 
Figure S1. Estimation performance using a random forest regressor. Panel (A) shows biases 
and panel (B) shows the standard deviation for different noise levels and training data 
distributions using synthetic data. 
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