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Abstract 

Background: the current SARS-CoV-2 pandemic has emphasized the utility of viral whole 

genome sequencing in the surveillance and control of the pathogen. An unprecedented ongoing 

global initiative is increasingly producing hundreds of thousands of sequences worldwide. 

However, the complex circumstances in which viruses are sequenced, along with the demand of 

urgent results, causes a high rate of incomplete and therefore useless, sequences. However, viral 

sequences evolve in the context of a complex phylogeny and therefore different positions along 

the genome are in linkage disequilibrium. Therefore, an imputation method would be able to 

predict missing positions from the available sequencing data.  

Results: We developed impuSARS, an application that includes Minimac, the most widely used 

strategy for genomic data imputation and, taking advantage of the enormous amount of SARS-

CoV-2 whole genome sequences available, a reference panel containing 239,301 sequences was 

built. The impuSARS application was tested in a wide range of conditions (continuous fragments, 

amplicons or sparse individual positions missing) showing great fidelity when reconstructing the 

original sequences. The impuSARS application is also able to impute whole genomes from 

commercial kits covering less than 20% of the genome or only from the Spike protein with a 

precision of 0.96. It also recovers the lineage with a 100% precision for almost all the lineages, 

even in very poorly covered genomes (< 20%)  

Conclusions: imputation can improve the pace of SARS-CoV-2 sequencing production by 

recovering many incomplete or low-quality sequences that would be otherwise discarded. 

impuSARS can be incorporated in any primary data processing pipeline for SARS-CoV-2 whole 

genome sequencing.  
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Background 

SARS-CoV-2 is a 30 kb single stranded RNA non-fragmented virus. It is classified, together with 

HCoV-OC43, HCoV-HKU1, SARS-CoV-1, MERS-CoV, into the β coronaviridae. SARS-CoV-2 

was first described in Wuhan, China, in December 2019, and is responsible for COVID-19, which 

was declared by WHO as a pandemic in March 2020 [1]. Whole genome sequencing (WGS) has 

been successfully used for classification [2], studying transmission dynamics [3], and evaluating 

global and regional patterns of pandemic spread [4]. WGS has also the potential to study 

reinfections, which have been described in a number of patients [5], and has very recently gained 

protagonism to characterize viral variants that may escape the neutralizing activity of the 

antibodies produced by vaccines [6]. Unfortunately, WGS results, especially in complex scenarios 

like this pandemic, are often imperfect, rendering incomplete viral sequences, with significant 

regions of the genome poorly covered [7]. Actually, current systems for viral lineage identification, 

a highly relevant step for the control of potentially harmful strains, fail to provide a lineage 

assignment if a percentage (typically > 50%) of the viral sequences is missing [8]. Given the short 
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response times required in clinics, resequencing low-quality results is frequently not an option. 

Therefore, alternatives to improve sequencing results, used in other fields, such as genotype 

imputation, would be extremely useful in this scenario as well. Genotype imputation has 

traditionally been a crucial component of genome-wide association studies, by increasing the 

power of the findings, helping in their interpretation and facilitating further meta-analysis [9]. 

Genotype imputation relies on the existing correlation between genetic variants at sites across 

the genome of an organism [10]. Using this correlation, imputation methods accurately assign 

genotypes at untyped markers, improving genome coverage [10-14]. The accuracy of this 

imputation process improves as the number of haplotypes in the reference panel of sequenced 

genomes increases [15, 16], especially for variants present at low frequencies (minor allele 

frequency < 0.5%). The accuracy can also be increased with large reference panels. In the case 

of human genomes, the Haplotype Reference Consortium14, composed of about 32,000 

individuals, is considered a large panel, able to reach an accurate imputation for variants with 

frequencies of 0.1–0.5% or less [14]. In the case of SARS-CoV-2, the outstanding international 

effort of sequencing has generated in a short time span a genomic database ten times larger. In 

spite of the interest in whole genome sequencing (WGS) viral studies and the fact that typically 

the sequences are imperfect, with positions and regions missing, the imputation, with a few 

exceptions [17], has scarcely been used in the viral realm. In addition, since WGS may not be 

routinely available for clinical laboratories, protocols for partial sequencing of SARS-CoV-2 

genome, or even partial sequencing of the spike, where most of the determinants for variant 

characterization are located, are becoming available [18]. Given the importance of sequencing 

viral whole genomes for epidemiologic surveillance purposes, as stressed by the World Health 

Organization [19] and the European Parliament [20], a tool for genotype imputation in SARS-CoV-

2 would increase the sequencing throughput by recovering many sequences discarded by low 

quality, that still contain valid information for lineage or clade assignation. Similarly, sequencing 

kits that only cover some key stretches already miss (or will miss future) relevant mutations. 

Imputation may predict the existence of these variants of interest (VOI) or variants of concern 

(VOC) because of their linkage disequilibrium (LD) with resolved parts of the viral genome. Here 

we present a fully tested, highly accurate reference panel and tool for the imputation of SARS-

CoV-2 whole genome sequences from incomplete or partial sequences. 

Implementation 

SARS-CoV-2 Imputation  

SARS-CoV-2 sequences’ imputation (impuSARS) was performed by using the Minimac software 

[14]. Although Minimac was originally designed for human samples with diploid genotypes, the 

tool allows imputing haploid genomes as SARS-COV-2 since it supports imputation for non-PAR 

regions at human males’ chromosome X. The reference panel was built with Minimac3 whereas 

Minimac4 was used for imputation. Minimac4 provides comparable imputation qualities as 

Minimac3, but it reduces memory usage and computational costs. The impuSARS tool accepts 

both FASTA sequence or variation (VCF) inputs. Note that FASTA sequence can include missing 

regions (usually tagged as N), which will be then imputed. FASTA input is aligned to reference 
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with Muscle [21] to retrieve mutation positions. Also, VCF input should include both variant and 

reference genotypes when available. 

 

The provided reference panel was created with the available SARS-CoV-2 sequences from 

GISAID [22, 23] (downloaded on January 7, 2021). Only sequences including >29kb and <1% 

missing bases were kept (“complete” and “high coverage” tags in GISAID, respectively). Also, 

sequences were converted to a multi-sample VCF format to only compute variant positions. As 

defined by GISAID, the hCoV-19/Wuhan/WIV04/2019 sequence (accession number 

EPI_ISL_402124) was considered the official reference sequence. From this multi-sample VCF, 

unique variants, that is, private variants for each sequence, were discarded. Therefore, the final 

reference panel contained 239,301 sequences. The parameter estimation for the reference panel 

was already precomputed with Minimac (version 3) to speed up the imputation process (reference 

panel provided in M3VCF format). This reference panel will be periodically updated to allow the 

collection of novel variants, especially VOIs and VOCs. 

 

Once the variant imputation is performed using the previous reference panel, impuSARS will 

retrieve the imputed consensus sequence provided by bcftools consensus v1.11 [24]. Also, the 

associated lineage for each imputed consensus sequence will be obtained with PANGOLIN 

v1.10.2 [8]. PANGOLIN assigns a detailed lineage identifier to each sequence based on a 

multinomial logistic regression model [25]. PANGOLIN classifies sequences along a hierarchical 

tree reflecting evolutionary events. Each level of the hierarchical tree gathers a group of 

sequences with a common evidence associated with an epidemiological event (usually related 

with new variations), which could produce an emerging edge of the pandemic [25]. Lineages 

becoming important in the lowest levels of the phylogeny are retagged with aliases to avoid infinite 

spread across the hierarchical tree, thus keeping it compacted in four levels at most.  

 

Code availability 

The imputation tool impuSARS has been encapsulated in a Docker container for interoperability 

and easy distribution purposes [26] and it is freely available at 

https://github.com/babelomics/impuSARS. 

 

Validation procedure 

SARS-CoV-2 imputation was evaluated by using a 10-fold cross-validation process. The dataset 

was randomly partitioned in 10 test subsets. For each test subset, the imputation panel was 

computed for the remaining 9 datasets (training subsets). Initially, the loss of genomic regions 

was simulated by progressively increasing the percentage of the missing genome by 10% 

intervals. Three different strategies were used to select these missing regions: (i) random 

selection of only one missing region (continuous block); (ii) random selection of variant positions 

(missing sites) and (iii) random selection of amplicon regions that are usually independently 

amplified in SARS-CoV-2 sequencing (missing discontinuous blocks). Amplicon regions were 

defined by the hCoV-2019/nCoV-2019 v3 Amplicon Set [27] recommended by the ARTIC network 

[28]. Missing regions for amplicons were simulated as percentages of amplicons completely 

uncovered. The whole learning-testing procedure was repeated three times to reduce bias 

produced by the random selection. Additionally, imputation was also validated by iteratively 
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removing a sliding window of 3kb (~10% of the entire genome) by 1,5kb steps. This process will 

allow determining those hotspot regions in the SARS-CoV-2 genome which are harder to impute 

if missed. 

After validating imputation with several random selections, two more real scenarios were 

considered: i) imputation from regions covered by the genotyping assay kit DeepChek®-8-plex 

CoV-2 [29]; and ii) imputation only from variants belonging to the Spike protein (S) region. As 

above, a 10-fold cross-validation process was implemented in both cases. The genotyping assay 

covers several selected regions which represent around 20% of the entire SARS-COV-2 genome, 

hence imputation can provide a more comprehensive, improved result. Alternatively, S protein is 

one of the most commonly sequenced regions for SARS-CoV-2 given its crucial role in the docking 

receptor recognition and cell membrane fusion [30, 31]. Moreover, mutations in spike have been 

related to transmissibility or the ability to evade the host immune response [32]. Therefore, 

studying the ability of imputing the entire SAR-CoV-2 genome from the spike region can benefit 

subsequent lineage classification, thus being crucial for epidemiological surveillance. 

In order to facilitate the interpretation of the results we have computed the precision, recall and 

F1 scores. Since this is a heavily unbalanced problem (much lower number of variants against 

reference positions), we also provide the Matthews correlation coefficient (MCC) and Balanced 

accuracy (BACC) scores which are better suited for handling such scenarios [33-35]. Recall 

determines the true-positive rate whereas precision represents the positive predictive value. The 

F1-score represents the harmonic mean of the previous two metrics. The MCC measures the 

correlation and agreement between the truth and the predicted labels and varies between -1 and 

1, where -1 refers to complete disagreement between the predicted and truth labels, 0 an average 

random prediction and 1 a perfect prediction. Finally, the balanced accuracy is the arithmetic 

mean of sensitivity and specificity. 

 

Lineage classification 

Imputations from simulated genotyping assay and spike region test subsets were also evaluated 

in terms of the lineage assigned to the imputed sequences. A standard accuracy metric was 

calculated to evaluate assigned lineages from imputed sequences against real lineages from 

original GISAID sequences. Additionally, two baseline models were implemented to evaluate the 

influence of known variants against missing ones over the assignment of lineages. The first 

baseline model simply filled missing regions with the SARS-CoV-2 reference sequence. The 

second model randomly generated the genotype to the missing variant positions of the entire test 

subset weighting probabilities by the original genotype frequency in the training datasets. For 

comparison purposes, lineages were also obtained for the resulting sequences using these two 

baseline models. 

 

Imputation test with independent datasets 

After the entire validation process, the final reference panel including the 239,301 GISAID 

sequences was built. Several independent datasets were considered for this test phase using the 

definitive reference panel: i) new GISAID sequences not included in the reference panel belonging 

to lineages of interest; ii) eight samples sequenced at the Hospital San Cecilio (Granada, Spain) 

by using both the DeepChek®-8Plex-CoV2 genotyping array [29] and WGS as described below, 

and iii) one sample, assigned to the B.1.351 (South African lineage) [36] by an experimental RT-
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PCR kit, subjected to WGS that resulted in an incomplete whole-genome sequence, at Hospital 

Virgen del Rocio (Seville, Spain).  

In the first test, new GISAID sequences from highly relevant lineages like B.1.1.7 (British lineage) 

[37] and B.1.351 (South African lineage) [36] were selected: 64,398 and 970 sequences, 

respectively (sequences downloaded by February 23rd, 2021). As in the previous validation 

phase, these sequences were also tested by iteratively removing a 3kb window sliding by 1,5kb 

steps in the entire genome. In this way the importance of specific regions to impute relevant 

lineages could be evaluated. In the second test the variations obtained by the genotyping array 

were used to impute the entire genome and the assigned lineages are compared against whole-

genome results. Finally, the imputation tool was used in a third test to solve a real case in which 

an experimental RUO test warned of a potential VOC but the confirmatory WGS was of poor 

quality in a scenario where a quick informed decision was required. Then, the poor-quality 

sequence was used to impute the whole-genome sequence and lineage. The resolution of this 

case proves the level of resolution and accuracy of the imputation procedure presented here. 

 

RT-PCR detection of variants SARS-CoV-2 B.1.1.7, B.1.351 and B.1.1.28.1 

An alternative experimental detection of variants SARS-CoV-2 B.1.1.7, B.1.351 and B.1.1.28.1, 

was performed by RT-PCR using a RUO kit (SARS-CoV-2 variants RT-PCR, Vitro SA) to detect 

the presence and/or absence of specific targets in ORF1ab gen (deletion SGF 3675-3677) and 

Spike gen (deletion HV 69-70). 

 

Genotyping array and whole genome sequencing of viral samples 

Eight SARS-CoV-2 naso-pharingeal samples were sequenced following the manufacturer 

DeepChek®-8Plex-CoV2 genotyping array protocol [29]. WGS of the same samples was carried 

out following the ARTIC protocol [28] with the hCoV-2019/nCoV-2019 v3 Amplicon Set [27]. 

Whole-genome samples were sequenced in a NextSeq 500 sequencer by Illumina with 150bp 

paired-end reads and a total coverage of about 500k reads per sample. 

 

Sequence data preprocessing 

Sequencing data (150bpx2) were analyzed using in-house scripts and the nf-core/viralrecon 

pipeline software [38]. Briefly, after read quality filtering, sequences for each sample were aligned 

to the SARS-CoV-2 isolate Wuhan-Hu-1 reference genome (MN908947.3) using bowtie 2 

algorithm [39], followed by primer sequence removal and duplicate read marking using iVar [40] 

and Picard [41] tools respectively. Genomic variants are identified through iVar software, using a 

minimum allele frequency threshold of 0.25 for calling variants and a filtering step to keep variants 

with a minimum allele frequency threshold of 0.75. Using the set of high confidence variants and 

the MN908947.3 genome, a consensus genome per sample is finally built using iVar. 

Results 

Imputation of randomly simulated missing regions 

Each of the 10 test subsets in the 10-fold cross-validation was reduced by randomly simulating 

missing regions in increasing percentages (10%-90%). This process was repeated 3 times for 
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each missing percentage. Classification metrics (MCC, BACC and F1-score) were obtained for 

each reduced test dataset as shown in Figure 1A for one random region (missing continuous 

blocks), Figure 1B for randomly selected variants (missing sites) and Figure 1C for randomly 

selected amplicons (missing discontinuous blocks). In all cases, imputation performance metrics 

averaged >0.65 even for the worst scenario (imputing only with 10% of known genome). 

Imputation progressively improves when known sequence percentages are increasing, reaching 

average values >0.95 for those tests with 90% known genomes. Interestingly, the performance 

metrics presented a higher dispersion (including some lower outliers) when imputing only 10% of 

the genome in one continuous block (Figure 1A) whereas this dispersion is more marked at the 

opposite side of the range of values, for 90% missing regions for missing variants and 

discontinuous blocks (Figure 1B and C). This behavior might be related to the fact that leaving 

only one small random block to impute can involve regions where mutations are rare and harder 

to impute, even with the remaining 90% known ones. The imputation by missing sliding windows 

proposed below (see next Section) will help to confirm that hypothesis. Finally, even for extremely 

high missing percentages like the genotyping assays (~80%) or only spike regions used below, 

the obtained metrics suggest a reasonably accurate imputation. 

 

Effects of missing specific locations 

As previously noted, imputation performance is strongly associated with the region missing 

coverage in the SARS-CoV-2 genome. Therefore, the importance of selecting adequate regions 

when sequencing SARS-CoV-2 samples and its influence in a subsequent imputation of the 

remaining regions is analyzed here. For this purpose, a 3kb window was iteratively removed and 

imputed from the entire genome, repeating the process by 1.5kb steps. For the sake of clarity, 

only key metrics such as precision, recall and MCC of each imputed window along the entire 

genome are shown in Figure 2. Additional metrics BACC and F1-Score are available at Additional 

File 1: Fig.S1. Several hotspots (4 regions) have been identified as critical positions where 

variants are harder to impute when the block around is missing. More specifically, uncovered 

regions in positions around 3k, 12k, 16.5k (orf1ab protein, replicase polyprotein 1ab) and 24k (S 

protein, spike glycoprotein) would slightly reduce imputation ability. As previously suggested, note 

that those identified hotspots are strongly associated with regions where variants are less frequent 

in the reference panel (“dashed green” line). 

 

Imputation from genotyping assay and spike regions 

Once we have validated the robustness of our imputation against different missing regions 

scenarios, the validation will focus on the imputation of variants for sequences reduced to the 

genotyping assay regions previously described and Spike protein regions. Table 1 shows 

imputation performance metrics for both cases per test subset. Also, these metrics were 

calculated against the frequency of imputed variants in the reference panel (Figure 3). In both 

cases, we kept only the representative metrics precision, recall and MCC. Detailed results for the 

other mentioned metrics (BACC and F1-Score) can be found in Additional File 1: Table S1 and 

Additional File 1: Fig S2. As shown in Table 1, the imputation performance overcomes 0.81 in the 

three averaged metrics, being precision the highest with >0.96 for both regions while recall 

remains at 0.86 and 0.81 for genotyping assay and spike regions, respectively. Regarding Figure 

3, variant imputation quickly raises to >0.96 in the three performance metrics (recall, precision 
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and MCC) for variants with frequencies >0.01 and >0.03 for the genotyping array and spike region 

imputations, respectively. The imputation from genotyping array sequences reaches its maximum 

values (>0.996) from frequencies over 0.33 for precision and recall metrics, whereas MCC slightly 

drops to 0.895 after the same frequency threshold. For imputation from the spike region, an 

improvement is also observed from variant frequencies >0.33 reaching performance values of 

0.998 and 0.969 for recall and precision, respectively but a more drastic fall is observed in MCC. 

This MCC decrease is correlated in both cases with the drop in the number of variants (“green” 

line). When variant frequency increases, a smaller number of variants are found but datasets are 

inversely unbalanced (more variant than reference positions) which metric-wise is better captured 

by the MCC. Nevertheless, imputing positive cases (variants) in those situations are more 

relevant, so results in recall and precision metrics are more informative.   

 

Lineage classification 

The previously imputed variants for the simulated genotyping arrays and spike region subsets are 

used to rebuild the consensus whole genome sequences and assign their corresponding lineages 

with PANGOLIN. The quality of the imputed lineage has been measured by the accuracy metric 

against real lineages and compared to two baseline models (Figure 4). Briefly, these two models 

respectively filled missing regions with random variants assigned by frequency (“Random fill”) or 

with nucleotides from the reference sequence (“Reference fill”) (see Implementation section for 

details). Also, accuracy was calculated for the different levels of the hierarchical tree in 

PANGOLIN lineages. As shown, the first level in the hierarchical classification of lineage was 

almost always correctly determined (>98%), even for the two baseline models. That is, the 

information provided by the already known regions (genotyping array and spike protein) was 

enough to classify this first level. However, the imputed solution becomes more relevant as a 

lower level has to be determined. Hence, imputation clearly outperformed both baseline methods 

when lineages were assigned at 3rd and 4th level, achieving 77% and 68% accuracy for 

genotyping array and spike regions, respectively. As expected, imputation from the genotyping 

array positions comes up with higher lineage accuracies than the solution with spike, since this 

kit was specifically designed to capture relevant regions in the SARS-CoV-2 genome. Even so, 

imputation still produces strong benefits in the lineage assignment for the genotyping array 

regions, clearly improving lineage assignments with simple baseline models. 

Additionally, a detailed view about lineage classification for the top frequent lineages (>500 

sequences) is shown in Figure 5. As noted, there are lineages that are more commonly 

misclassified. For instance, several sequences are wrongly classified as B.1.1.119 when imputing 

from the genotyping array regions. Similarly, lineage B.1 is frequently assigned when sequences 

truly belong to a more specific lineage (lower level in the hierarchical tree) in the imputation from 

spike. In the first case, this misclassification is produced by the fact that lineage B.1.1.119 is 

partially constituted by three variants in positions 28881-28883, which are not captured by the 

used genotyping array. This situation makes sequences from other close lineages like B.1, 

B.1.1.214 or B.1.1.282 identical to B.1.1.119, from the genotyping array perspective. 

Consequently, these close lineages are frequently imputed as B.1.1.119 (30%, 88% and 73%, 

respectively). Likewise, given the lack of certain regions when imputing from spike region, several 

sub-branches like B.1.1.119, B.1.1.214, B.1.1.282, or B.1.1.284 are wrongly classified as the 

parent node B.1 (80%, 75%, 87% and 57%, respectively). 
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Imputation of new independent datasets 

Previous sections have extensively validated the proposed imputation system under several 

configurations and strategies. This section will show several use cases and test results produced 

by independent datasets over the final imputation reference panel (239,301 sequences).  

Firstly, two recently emerging lineages, B.1.1.7 (British lineage) and B.1.351 (South African 

lineage), have also been studied in this final testing phase to evaluate the performance of the 

imputation in new lineages. Sequences recently added to GISAID (not included in our current 

reference panel) under these lineages were selected: 64,398 and 970 sequences, respectively. 

Their percentage of correctly classified lineages after imputation when missing a 3kb window 

(10%) along the entire genome are then calculated (Figure 6). 

As shown in Figure 6, even when these lineages are underrepresented in the current reference 

panel (23 and 105 sequences, respectively), the methodology has captured the LD structure at 

such precision that it can accurately impute the B.1.1.7 and B.1.351 lineages from other 

sequences. Specifically, both lineages obtained 100% accuracy for almost any missing 3kb 

region. The imputation accuracy resulted slightly reduced in the British lineage (B.1.1.7) when the 

missing regions are located around the center of S protein (99.5% accuracy) or at ORF8 and N 

proteins (99% accuracy). This behavior is clearly associated with the loss of constitutive variants 

for the British lineage like N501Y, A570D or P681H, among others [42]. In the case of the South 

African lineage (B.1.351), performance vaguely dropped at the beginning of protein S (99.5%) as 

well as around E and M proteins (99.8%). Again, these small decreases are associated with 

important variants associated with the lineage like Q57H or P71L [43]. 

 

Imputation for sequencing kits and low-quality sequences 

Eight SARS-CoV-2 samples were sequenced using the DeepChek®-8-plex CoV-2 genotyping 

array (see Table 2). The partial sequences covering about 20% of the whole viral genome were 

used to impute the remaining non-covered 80% genome with impuSARS. Then, the same 

samples were subjected to WGS. The imputed whole genome sequences and lineages were 

subsequently compared against each other, rendering a highly reliable imputation sequence and 

100% successful lineage imputation. FASTQ files as well as consensus whole genome 

sequences for both genotyping array and whole-genome sequencing of these 8 samples are 

available for download at the European Nucleotide Archive (ENA) under the accession ID 

PRJEB43882. Also, imputation results (both imputed consensus whole genome sequences and 

lineages) are provided in a Zenodo repository (https://doi.org/10.5281/zenodo.4616731). 

Coverage distribution from initial genotyping array results are provided in Additional File 1: Fig. 

S3. The three main quality metrics and imputed lineages are shown in Table 2. A more detailed 

table including variant counts and additional metrics is provided in Additional File 1: Table S2. 

To further illustrate the usefulness of the imputation system in a real clinical scenario, a use case 

of the Hospital Virgen del Rocio is described. In a routine survey a sample was analyzed by RT-

PCR using a RUO kit (see Implementation section for details), which raised a warning suggesting 

it may belong to the emerging South African lineage (B.1.351), a VOC. The sample was 

immediately submitted to confirmatory WGS, that resulted in a poor-quality sequencing, with only 

28.91% of SARS-CoV-2 genome covered, having 71 amplicons completely non-covered and 3 

covered at low depth (<20x). Lineage assignation with current tools like PANGOLIN is impossible 
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in this low-quality scenario. However, there was an urgency in confirming or discarding the 

presence of a VOC for epidemiologic surveillance and medical decision making. Therefore, 

impuSARS was used on this poor-quality sequence and lineage imputation was carried out with 

PANGOLIN producing a B.1.1.7 lineage assignment, also a VOC, but currently more extended in 

Spain. Detailed analysis of the pattern of available mutations also supported this lineage 

assignation (See Table 3).  

Conclusions 

Whole genome sequence imputation from partial sequences from commercial kits or from low-

quality WGS has demonstrated to produce highly reliable results and be an excellent tool for 

lineage assignment. Given the short response times required for the identification of samples for 

decision support or for epidemiological surveillance in a clinical context, re-sampling and/or re-

sequencing are not realistic options. Therefore, imputation constitutes an accurate and useful tool 

to complement and improve SARS-CoV-2 WGS pipelines in clinics.  

Availability and requirements 

     Project name: impuSARS (SARS-CoV-2 imputation) 

     Project home page: https://github.com/babelomics/impuSARS 

     Operating system(s): Platform independent (Docker container) 

     Programming language: Python, Bash 

     Other requirements: Docker 

     License: MIT License. 

     Any restrictions to use by non-academics: none 

List of abbreviations 

BACC: Balanced accuracy  

LD: linkage disequilibrium 

MCC: Matthews correlation coefficient  

RT-PCR: Real Time Polymerase Chain Reaction 

RUO: Research use only  

VCF: Variant Calling Format 

VOC: variants of concern  

VOI: variants of interest  

WGS: Whole Genome Sequencing 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2021. ; https://doi.org/10.1101/2021.04.13.439668doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.13.439668
http://creativecommons.org/licenses/by-nc/4.0/


Declarations 

Ethics approval and consent to participate 

Not applicable 

Consent for publication 

Not applicable 

Availability of data and materials 

• The SARS-CoV-2 sequences used to train the impuSARS tool were taken from GISAID: 

https://www.gisaid.org/epiflu-applications/hcov-19-reference-sequence/   

• The hCoV-19/Wuhan/WIV04/2019 sequence (EPI_ISL_402124) was taken from 

GISAID: https://platform.gisaid.org/epi3/start/CoV2020 

• The 8 SARS-CoV-2 whole genome sequences generated in this study are available at 

the European Nucleotide Archive: https://www.ebi.ac.uk/ena/browser/view/PRJEB43882. 

• The Imputation results (both imputed whole genome sequences and lineages) are 

provided in the Zenodo repository: https://doi.org/10.5281/zenodo.4616731 

Competing interests 

The authors declare that they have no competing interest. 

Funding 

This work is supported by grant PT17/0009/0006 from the Spanish Ministry of Economy and 

Competitiveness, COVID-0012-2020 from Consejería de Salud y Familias,Junta de Andalucía, 

and postdoctoral contract PAIDI2020- DOC_00350 for CL, from Junta de Andalucía, co-funded 

by the European Social Fund (FSE) 2014-2020 

Authors' contributions 

FO performed most of the analysis and wrote the draft of the manuscript, CL carried out the 

statistic part of the work, CCS and JPF contributed to the analysis of the samples, JAL, PCM, 

LMD carried out the use case of the RUO kit, AS, NC and FG carried out the commercial kit use 

case, and JD conceived the work and wrote the manuscript 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2021. ; https://doi.org/10.1101/2021.04.13.439668doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.13.439668
http://creativecommons.org/licenses/by-nc/4.0/


References 

 

1. Novel Coronavirus – China [https://www.who.int/csr/don/12-january-2020-novel-
coronavirus-china/en/] 

2. Boni MF, Lemey P, Jiang X, Lam TT-Y, Perry BW, Castoe TA, Rambaut A, Robertson 
DL: Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for 
the COVID-19 pandemic. Nature Microbiology 2020, 5:1408-1417. 

3. Alm E, Broberg EK, Connor T, Hodcroft EB, Komissarov AB, Maurer-Stroh S, Melidou A, 
Neher RA, O’Toole Á, Pereyaslov D: Geographical and temporal distribution of 
SARS-CoV-2 clades in the WHO European Region, January to June 2020. 
Eurosurveillance 2020, 25:2001410. 

4. Hodcroft EB, Zuber M, Nadeau S, Comas I, Candelas FG, Stadler T, Neher RA: 
Emergence and spread of a SARS-CoV-2 variant through Europe in the summer of 
2020. medRxiv 2020. 

5. Babiker A, Marvil CE, Waggoner JJ, Collins MH, Piantadosi A: The importance and 
challenges of identifying SARS-CoV-2 reinfections. Journal of clinical microbiology 
2021, 59. 

6. Dos Santos WG: Impact of virus genetic variability and host immunity for the 
success of COVID-19 vaccines. Biomedicine & Pharmacotherapy 2021:111272. 

7. Nasir JA, Kozak RA, Aftanas P, Raphenya AR, Smith KM, Maguire F, Maan H, Alruwaili 
M, Banerjee A, Mbareche H: A Comparison of Whole Genome Sequencing of SARS-
CoV-2 Using Amplicon-Based Sequencing, Random Hexamers, and Bait Capture. 
Viruses 2020, 12:895. 

8. Phylogenetic Assignment of Named Global Outbreak LINeages (PANGOLIN) 
[https://github.com/cov-lineages/pangolin] 

9. Marchini J, Howie B: Genotype imputation for genome-wide association studies. 
Nature Reviews Genetics 2010, 11:499-511. 

10. Li Y, Willer C, Sanna S, Abecasis G: Genotype imputation. Annual review of genomics 
and human genetics 2009, 10:387-406. 

11. Browning BL, Browning SR: A unified approach to genotype imputation and 
haplotype-phase inference for large data sets of trios and unrelated individuals. 
The American Journal of Human Genetics 2009, 84:210-223. 

12. Marchini J, Howie B, Myers S, McVean G, Donnelly P: A new multipoint method for 
genome-wide association studies by imputation of genotypes. Nature genetics 
2007, 39:906-913. 

13. Fuchsberger C, Abecasis GR, Hinds DA: minimac2: faster genotype imputation. 
Bioinformatics 2015, 31:782-784. 

14. Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew EY, Levy 
S, McGue M: Next-generation genotype imputation service and methods. Nature 
genetics 2016, 48:1284-1287. 

15. Pistis G, Porcu E, Vrieze SI, Sidore C, Steri M, Danjou F, Busonero F, Mulas A, 
Zoledziewska M, Maschio A: Rare variant genotype imputation with thousands of 
study-specific whole-genome sequences: implications for cost-effective study 
designs. European Journal of Human Genetics 2015, 23:975-983. 

16. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR: Fast and accurate 
genotype imputation in genome-wide association studies through pre-phasing. 
Nature genetics 2012, 44:955-959. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2021. ; https://doi.org/10.1101/2021.04.13.439668doi: bioRxiv preprint 

https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/
https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/
https://github.com/cov-lineages/pangolin
https://doi.org/10.1101/2021.04.13.439668
http://creativecommons.org/licenses/by-nc/4.0/


17. Smith B, Chen Z, Reimers L, Van Doorslaer K, Schiffman M, DeSalle R, Herrero R, Yu 
K, Wacholder S, Wang T: Sequence imputation of HPV16 genomes for genetic 
association studies. Plos one 2011, 6:e21375. 

18. Sequencing of SARS-CoV-2 
[https://www.ecdc.europa.eu/sites/default/files/documents/sequencing-of-SARS-CoV-
2.pdf] 

19. SARS-CoV-2 genomic sequencing for public health goals: Interim guidance 
[https://www.who.int/publications/i/item/WHO-2019-nCoV-genomic_sequencing-2021.1] 

20. Communication from the commission to the European Parliament, the European 
Council and the Council. A united front to beat COVID-19 
[https://ec.europa.eu/transparency/regdoc/rep/1/2021/EN/COM-2021-35-F1-EN-MAIN-
PART-1.PDF] 

21. Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high 
throughput. Nucleic acids research 2004, 32:1792-1797. 

22. Shu Y, McCauley J: GISAID: Global initiative on sharing all influenza data–from 
vision to reality. Eurosurveillance 2017, 22:30494. 

23. Bogner P, Capua I, Lipman DJ, Cox NJ: A global initiative on sharing avian flu data. 
Nature 2006, 442:981-981. 

24. The official development repository for BCFtools. 
[https://samtools.github.io/bcftools/] 

25. Rambaut A, Holmes EC, O’Toole Á, Hill V, McCrone JT, Ruis C, du Plessis L, Pybus 
OG: A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist 
genomic epidemiology. Nature microbiology 2020, 5:1403-1407. 

26. Di Tommaso P, Palumbo E, Chatzou M, Prieto P, Heuer ML, Notredame C: The impact 
of Docker containers on the performance of genomic pipelines. PeerJ 2015, 
3:e1273. 

27. ARTIC hCoV-2019/nCoV-2019 Version 3 Amplicon Set 
[https://artic.network/resources/ncov/ncov-amplicon-v3.pdf] 

28. A quick guide to tiling amplicon sequencing and downstream bioinformatics 
analysis [https://artic.network/quick-guide-to-tiling-amplicon-sequencing-
bioinformatics.html] 

29. DeepChek®-8-plex CoV-2 Genotyping Assay [https://www.ablsa.com/laboratory-
applications/deepchek-8plex-cov2-genotyping-assay/] 

30. Lokman SM, Rasheduzzaman M, Salauddin A, Barua R, Tanzina AY, Rumi MH, 
Hossain MI, Siddiki AZ, Mannan A, Hasan MM: Exploring the genomic and proteomic 
variations of SARS-CoV-2 spike glycoprotein: a computational biology approach. 
Infection, Genetics and Evolution 2020, 84:104389. 

31. Huang Y, Yang C, Xu X-f, Xu W, Liu S-w: Structural and functional properties of 
SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. 
Acta Pharmacologica Sinica 2020, 41:1141-1149. 

32. Grubaugh ND, Hodcroft EB, Fauver JR, Phelan AL, Cevik M: Public health actions to 
control new SARS-CoV-2 variants. Cell 2021, 184:1127-1132. 

33. Chicco D, Tötsch N, Jurman G: The Matthews correlation coefficient (MCC) is more 
reliable than balanced accuracy, bookmaker informedness, and markedness in 
two-class confusion matrix evaluation. BioData mining 2021, 14:1-22. 

34. Luque A, Carrasco A, Martín A, de las Heras A: The impact of class imbalance in 
classification performance metrics based on the binary confusion matrix. Pattern 
Recognition 2019, 91:216-231. 

35. Jurman G, Riccadonna S, Furlanello C: A comparison of MCC and CEN error 
measures in multi-class prediction. PloS one 2012, 7:e41882. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2021. ; https://doi.org/10.1101/2021.04.13.439668doi: bioRxiv preprint 

https://www.ecdc.europa.eu/sites/default/files/documents/sequencing-of-SARS-CoV-2.pdf
https://www.ecdc.europa.eu/sites/default/files/documents/sequencing-of-SARS-CoV-2.pdf
https://www.who.int/publications/i/item/WHO-2019-nCoV-genomic_sequencing-2021.1
https://ec.europa.eu/transparency/regdoc/rep/1/2021/EN/COM-2021-35-F1-EN-MAIN-PART-1.PDF
https://ec.europa.eu/transparency/regdoc/rep/1/2021/EN/COM-2021-35-F1-EN-MAIN-PART-1.PDF
https://samtools.github.io/bcftools/
https://artic.network/resources/ncov/ncov-amplicon-v3.pdf
https://artic.network/quick-guide-to-tiling-amplicon-sequencing-bioinformatics.html
https://artic.network/quick-guide-to-tiling-amplicon-sequencing-bioinformatics.html
https://www.ablsa.com/laboratory-applications/deepchek-8plex-cov2-genotyping-assay/
https://www.ablsa.com/laboratory-applications/deepchek-8plex-cov2-genotyping-assay/
https://doi.org/10.1101/2021.04.13.439668
http://creativecommons.org/licenses/by-nc/4.0/


36. Detection of B.1.351 SARS-CoV-2 variant strain — Zambia, December 2020 
[https://stacks.cdc.gov/view/cdc/102801] 

37. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, Pearson CA, 
Russell TW, Tully DC, Washburne AD: Estimated transmissibility and impact of 
SARS-CoV-2 lineage B. 1.1. 7 in England. Science 2021. 

38.  nf-core/viralrecon: nf-core/viralrecon v1.1.0 - Steel Pangolin (Version 1.1.0) 
[https://zenodo.org/record/3905178#.YBumlOhKi71] 

39. Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods 
2012, 9:357-359. 

40. Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, Tan AL, 
Paul LM, Brackney DE, Grewal S: An amplicon-based sequencing framework for 
accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome 
biology 2019, 20:1-19. 

41. Picard. A set of command line tools (in Java) for manipulating high-throughput 
sequencing (HTS) data and formats such as SAM/BAM/CRAM and VCF. 
[http://broadinstitute.github.io/picard/] 

42. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the 
UK defined by a novel set of spike mutations [https://virological.org/t/preliminary-
genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-
novel-set-of-spike-mutations/563] 

43. CoVariants [https://covariants.org/] 
 

 

 

  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2021. ; https://doi.org/10.1101/2021.04.13.439668doi: bioRxiv preprint 

https://stacks.cdc.gov/view/cdc/102801
https://zenodo.org/record/3905178#.YBumlOhKi71
http://broadinstitute.github.io/picard/
https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
https://covariants.org/
https://doi.org/10.1101/2021.04.13.439668
http://creativecommons.org/licenses/by-nc/4.0/


 

Figures 

 

 
 

Figure 1. Imputation performance metrics (precision, recall, F1-score, MCC and BACC) 

depending on missing genome percentage. (A) One random continuous block of the 

genome; (B) Random selection of missing variants; (C) Random selection of missing amplicons 
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Figure 2. Imputation performance metrics (precision, recall and MCC) based on the position of a missing 3kb window along 

the SARS-CoV-2 genome. Left y-axis values represent variant frequencies (dashed green line). SARS-CoV-2 protein regions are 

represented by colored background and names specified at the top. 
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Figure 3. Principal imputation performance metrics (precision, recall and MCC) calculated depending on imputed variant 

frequencies. (A) Imputation quality when imputing from the genotyping array positions; (B) Imputation quality when imputing from 

spike protein positions. Left y-axis (green) represents the number of variants for those frequency threshold (log scale) 
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Figure 4. Lineage classification accuracy compared against two baseline models. (A) Lineage accuracy when imputing from 

the genotyping array positions; (B) Lineage accuracy when imputing from spike protein region. Levels represent lineage specification.  
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Figure 5. Accuracy obtained for each pair of lineages (real vs imputed) for the top frequent lineages (>500 sequences). Left 

heatmap represents the obtained values for genotyping array imputation whereas right heatmap represents accuracies for imputation 

from spike protein region. Color represents the percentage of sequences in each real lineage classified by each imputed lineage (the 

darker, the higher). 
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Figure 6. Lineage classification accuracy. Accuracy is estimated for a missed region in sliding windows of 3kb for the recent 

British and South African lineages (B.1.1.7 and B.1.351, respectively) 
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Table 1. Performance metrics (Recall, Precision and MCC)  

Subset 
Imputation from genotyping assay kit Imputation from Spike region 

Recall Precision MCC Recall Precision MCC 

1 0.8595 0.9612 0.9088 0.8129 0.9618 0.8841 

2 0.8578 0.9597 0.9072 0.8121 0.9620 0.8838 

3 0.8562 0.9614 0.9072 0.8100 0.9625 0.8829 

4 0.8609 0.9622 0.9101 0.8106 0.9616 0.8828 

5 0.8589 0.9603 0.9081 0.8109 0.9619 0.8831 

6 0.8593 0.9602 0.9083 0.8106 0.9608 0.8824 

7 0.8586 0.9600 0.9078 0.8126 0.9613 0.8837 

8 0.8597 0.9614 0.9091 0.8106 0.9624 0.8831 

9 0.8579 0.9605 0.9077 0.8115 0.9622 0.8835 

10 0.8574 0.9609 0.9076 0.8121 0.9629 0.8842 

Avg±Std 0.8586 

±0.0013 

0.9608 

±0.0008 

0.9082 

±0.0009 

0.8114 

±0.0010 

0.9619 

±0.0006 

0.8834 

±0.0006 

Metrics obtained for 10-fold cross-validation subsets imputing from the genotyping assay and 

Spike protein regions. Values are calculated for the entire test subset imputation. 
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Table 2. Variant imputation metrics (precision, recall and MCC) and lineage classification  

Sample Recall Precision MCC Real Lineage Imputed 

AND00023 0.9000 1 0.9486 B.1.1.7 B.1.1.7 

AND00040 0.8571 1 0.9258 B.1.1.7 B.1.1.7 

AND00065 0.8636 1 0.9293 B.1.1.7 B.1.1.7 

AND00073 0.8571 1 0.9258 B.1.1.7 B.1.1.7 

AND00123 0.9231 1 0.9607 B.1.1.7 B.1.1.7 

AND00128 0.6000 1 0.7745 B.1.1.7 B.1.1.7 

AND00132 0.8696 1 0.9324 B.1.1.7 B.1.1.7 

AND00139 0.9091 1 0.9534 B.1.1.7 B.1.1.7 

Avg ±Std Dev 0.8475±0.103 1.0000±0.00 0.9188±0.06 
 

100% 

Values for eight independent samples internally sequenced with both the genotyping array and 

whole-genome sequencing. 
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Table 3 Study of AND00344 variants 

 

Mutation Found in variant Present Coverage South Africa UK Brazil 

L18F South Africa / Brazil no none ? 
 

? 

T20N Brazil no none 
  

? 

P26S Brazil no none 
  

? 

del_21765 UK no none 
 

? 
 

D80A South Africa no none ? 
  

D138Y Brazil no none 
  

? 

del_21991 UK no none 
 

? 
 

R190S Brazil no none 
  

? 

D215G South Africa no none ? 
  

del_22281 South Africa no covered no 
  

R246I South Africa no covered no 
  

K417N South Africa / Brazil no none ? 
 

? 

E484K South Africa / Brazil no low no? 
 

no? 

N501Y UK / South Africa / Brazil yes covered yes? yes? yes? 

A570D UK no none 
 

? 
 

D614G UK / South Africa / Brazil no none ? ? ? 

H655Y Brazil no covered 
  

no 

P681H UK yes covered no yes no 

A701V South Africa no covered no 
  

T716I UK yes covered no yes no 

S982A UK no none 
 

? 
 

T1027I Brazil no none 
  

? 

D1118H UK no none 
 

? 
 

Q57H South Africa no covered no 
  

P71L South Africa no covered no 
  

Q27stop UK yes covered no yes no 

T205I South Africa no low no? 
  

    
NO YES (Most likely) NO (most likely) 

Comparison of the available variation in the low coverage sequence of vial sample AND00344 with 

respect to the South Africa (B.1.351), UK (B.1.1.7) and Brazil (P.1) VOCs  
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Additional Files 

 

Additional file 1 

PDF format  .PDF 

Supplementary Tables and figures: 

Table S1. Supplementary imputation performance metrics (BACC and F1)  

Table S2. Variant counts and additional metrics  

Fig. S1. More imputation performance metrics (F1 and BACC) based on the position of a 

missing 3kb window along the SARS-CoV-2 genome.  

Left y-axis values represent variant frequencies (dashed green line). SARS-CoV-2 protein 

regions are represented by colored background and names specified at the top. 

Fig. S2. Supplementary imputation performance metrics (BACC and F1) calculated 

depending on imputed variant frequencies. (A) Imputation quality when imputing from the 

genotyping array positions; (B) Imputation quality when imputing from spike protein positions. 

Left y-axis (green) represents the number of variants for those frequency threshold (log scale) 

Fig S3. Coverage distribution from genotyping array in the eight samples studied. 

Fig. S1. More imputation performance metrics (F1 and BACC) based on the position of a 

missing 3kb window along the SARS-CoV-2 genome.  

Left y-axis values represent variant frequencies (dashed green line). SARS-CoV-2 protein 

regions are represented by colored background and names specified at the top. 
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