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7 Abstract

8 Advances in single-cell RNA-seq (scRNA-seq) technologies are enabling the con-
9 struction of large-scale, human-annotated reference cell atlases, creating unprecedented
10 opportunities to accelerate future research. However, effectively leveraging information
11 from these atlases, such as clustering labels or cell type annotations, remains challeng-
12 ing due to substantial technical noise and sparsity in scRNA-seq measurements. To
13 address this problem, we present HD-AE, a deep autoencoder designed to extract in-
14 tegrated low-dimensional representations of scRNA-seq measurements across datasets
15 from different labs and experimental conditions (https://github.com/suinleelab/
16 HD-AE). Unlike previous approaches, HD-AE’s representations successfully transfer to
17 new query datasets without needing to retrain the model. Researchers without sub-
18 stantial computational resources or machine learning expertise can thus leverage the
19 robust representations learned by pretrained HD-AE models to compare embeddings
20 of their own data with previously generated sets of reference embeddings.

» Main

» New developments in scRNA-seq technologies [I}, 2 3] are dramatically reducing the cost
3 of experiments, facilitating the continual release of new scRNA-seq datasets and enabling
2 the construction of large-scale, annotated reference atlases such as the Human Cell Atlas
»s [4]. Despite this explosion in publicly available data, leveraging knowledge from previ-

% ously studied scRNA-seq datasets to expedite the analysis of new datasets remains difficult
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Figure 1: HD-AE models learn unified low-dimensional embeddings of scRNA-seq measurements originating from
different experiments. (a) The HD-AE architecture. HD-AE encourages batch effect removal by penalizing the Hilbert-
Schmidt Independence Criterion (HSIC) between samples’ latent representations and their batch labels (Methods).
(b) A sample HD-AE transfer learning workflow. Researchers can download pretrained HD-AE models to embed
their own data and compare with previously generated sets of reference embeddings.
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27 since substantial nuisance factors of variation inherent in scRNA-seq measurements, such
2 as dropout and transcriptional noise, can obscure biological signals of interest [5]. More-
2 over, combining measurements from multiple experiments is complicated by batch effects,
w0 l.e., systematic variations between datasets due to differences in experimental conditions or
a1 procedures. Batch effects are especially pronounced with scRNA-seq data, since different
2 scRNA-seq protocols have unique sources of bias, sensitivity, and accuracy [6].

3 To address these challenges, several recent works [7], 8, 9l [10] [IT], 12], I3] propose data
1 integration methods that produce denoised low-dimensional representations (embeddings) of
55 sScCRNA-seq data. However, these methods are not designed to integrate new query datasets
s with a previous reference set of embeddings without making users rerun the entire integration
57 pipeline from scratch. This limitation is problematic; raw data from individual scRNA-seq
;s experiments, even those within the same cell atlas, are often stored in different databases and
3 in varying formats, necessitating a time-consuming data collection and preprocessing phase
w before integration can be performed (Supplementary Figure 1). Furthermore, current
s integration methods scale poorly in terms of computational cost and memory requirements
2 [12] or require specialized hardware (e.g., GPUs), limiting their use to researchers with
i3 abundant computational resources.

o As a response to these limitations, we introduce the Hilbert-Schmidt Deconfounded Au-
s toencoder (HD-AE, Figure [1a), a deep learning approach based on the widely used autoen-
s coder architecture [I4] for learning denoised embeddings of scRNA-seq data. To ensure that
s samples’ embeddings are independent of their batches of origin, we train HD-AE using a loss
% function that penalizes the Hilbert-Schmidt Independence Criterion (HSIC) [15], a nonpara-
s metric measure of statistical independence, between samples’ embeddings and their batch
o labels (Methods). Removing batch information from the latent space would normally make
s1 it difficult for the autoencoder to reconstruct the data faithfully while also preserving true
52 biological structure in the latent space; to mitigate this issue, when training HD-AE, we pass
53 samples’ batch labels to the decoder so that batch-specific transformations can be learned
s« to reconstruct the data accurately from the batch-effect-free latent space. Unlike previously
ss proposed scRNA-seq integration methods, pretrained HD-AE models’ representations suc-
ss  cessfully generalize to new batches of data not seen during training, even when those batches
st contain previously unseen cell types. This lets researchers reuse previously trained HD-AE
s models off-the-shelf without needing to gather the original data or possess the computational
s expertise or hardware to train the models themselves from scratch (Figure [1Ip).

60 We first applied HD-AE to construct a reference atlas of pancreas islet cell embeddings
s using three datasets, each sequenced using a different scRNA-seq protocol. Using UMAP [16]

&2 to visualize the raw data, we confirmed that it was clearly separable by batch, even for cells
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3 with the same cell type label (Figure ) After training an HD-AE model and embedding
e the data into the model’s latent space (Figure [2b), we observed that distinctions between
es batches were removed while cell types remained well-separated, indicating that embedding
s Space variations were due to underlying biological differences rather than technical artifacts.
s To validate HD-AE’s transfer learning capabilities, we next used our pretrained model to
¢ embed a query batch of data collected using the CEL-Seq2 protocol, which was not used
s to generate any data seen by the model during training. We found that embeddings of this
w0 query batch were well-integrated with training batch embeddings (Figure )

7 To further explore the robustness of our pretrained model, we also embedded a second
2 query batch of data collected using the Smart-seq2 protocol (Fig ) To simulate a poten-
73 tially more realistic scenario where new batches of data contain cell types not seen by the
7+ model during training, we included a cell type (alpha) in this second query batch that was
7 held out during training. For cell types shared between the query and reference batches,
7 we once again found that query batch cell embeddings were well-integrated with reference
77 ones. Moreover, we found that the embeddings of the previously unseen alpha cells formed
7 a distinct cluster well separated from other cell types. This behavior persisted for other
79 choices of held-out cell types (Supplementary Figure 2). These results further indicate
9o that pretrained HD-AFE models are able to filter out technical noise between different batches
&1 of data while preserving meaningful biological variations.

8 We compared HD-AFE’s transfer learning capabilities to those of three previously proposed
s deep learning methods for producing informative embeddings of scRNA-seq data: SAUCIE
s« [17], scVI [I1], and DESC [12]. None of these methods was originally designed for transfer
&5 learning. Nevertheless, their shared reliance on autoencoder-based architectures made it
s straightforward to adapt them for use in the transfer learning setting; we note here, however,
&7 that, limitations inherent in scVI forced us to disable its batch effect correction feature to use
ss it for transfer learning (Supplementary Note 1). In these experiments, we used the same
o split between training and query batches as we did with HD-AE. Unsurprisingly, we found
o that scVI (Figure 2f) failed to produce well-integrated embeddings when not explicitly
o trained to correct for batch effects. Moreover, DESC (Figure 2e) and SAUCIE (Figure
» 2g) did not produce contiguous, well-separated clusters for individual cell types, possibly
i3 due to their choices of network architectures and loss functions (Supplementary Note 2).
o Only HD-AE produced clusters that were both well integrated between batches and well
os separated across cell types.

% We next assessed HD-AE’s performance when applied to a dataset consisting of nine
o batches of peripheral blood mononuclear cells (PBMCs) collected using seven different tech-

e nologies [I§]. As we saw with the pancreas islet data, this dataset clearly separated by batch
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Figure 2: Unlike previously proposed deep learning embedding methods for scRNA-seq data, HD-AE’s representations
generalize to new datasets at test time. (a-b) Three batches of pancreatic islet cells collected using different tech-
nologies from different labs before (a) and after (b) integration with HD-AE. (c-d) Querying the reference HD-AE
model with two previously unseen batches of data. Black circles indicate cell types held out during training. (e-g)
Embeddings produced by three previously proposed deep learning methods for scRNA-seq analysis using the same
reference and query split as in (a-d).
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o (Figure ) In this experiment, HD-AE was trained using seven of the batches; the re-
100 maining two (10x Chromium v3 and Drop-seq) were held out as query batches. Once again,
w1 we found that batches were well-mixed and distinctions between cell types were preserved in
102 the HD-AE embedding space (Figure ) Moreover, as we found with the pancreas data,
103 our query batch and training batch embeddings were well-integrated (Figure -d).

104 Using this dataset, we also compared the quality of HD-AE embeddings to “full integra-
s tion” method embeddings (i.e., those from methods designed to integrate all batches of data
s at once rather than for transfer learning). In particular, we benchmarked HD-AE against
07 seven previously proposed data integration methods: Seurat v3 [8], Conos [10], Harmony [9],
s scAlign [13], scVI [11], SAUCIE [17], and DESC [12]. Each baseline method was given access
o to all nine batches of data during training rather than only a set of reference batches. As
o an additional full integration baseline, we trained an HD-AE model using all batches during
m  training. We report implementation details and hyperparameter choices for all methods in
2 Supplementary Note 3. Qualitatively, we found that many baseline methods struggled
u3  with this dataset, with only scVI and HD-AE producing well-separated clusters for each cell
s type (Supplementary Figure 3).

115 We also computed a suite of quantitative metrics to evaluate the quality of each method’s
us embeddings. To effectively integrate data, a method must balance two potentially opposing
ur  goals. First, batches should be well-mixed after integration; that is, the set of k-nearest
us neighbors around a given cell should be balanced across different batches. To quantify this
1o mixing, we computed the entropy of batch mizing (EBM) [1] for each method’s embeddings
120 (Methods). A high EBM can be achieved by randomly mixing the data and disregard-
21 ing biologically meaningful variations. Thus, our evaluation also considered how well local
122 neighborhoods in individual datasets were preserved in the integrated space. To quantify
13 the preservation of this structure, we computed the k-nearest neighbors purity (kNN purity)
e [19] for each method (Methods). A high purity score could trivially be achieved without
s performing any mixing between batches. Thus, we considered performance on both metrics
e when evaluating a given method. To compare across metrics, individual metric values were
17 normalized to lie in the range [0, 1].

128 We report our results for individual metrics for a neighborhood size k£ = 50 along with
120 the sums of both metrics to indicate how well each method balances the two (Figure [3e-g).
10 We found that HD-AE outperformed all baseline methods when considering both metrics.
13 This result persisted for varying values of k£ (Supplementary Figure 4). Remarkably, we
12 found that HD-AE’s performance in the transfer learning setting was nearly identical to its
13 performance when provided all the data during training.

134 To examine how well each method preserved true biological variations, we also quantified
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15 how well different cell types clustered after integration. For each method we calculated the
136 adjusted Rand index (ARI) to assess agreement between ground truth cell type annotations
137 and cluster labels assigned by the Leiden community detection algorithm [20] (Methods).
13 We found that HD-AE outperformed all baseline methods on this metric (Figure [Bh). We
13 also plotted the distributions of silhouette scores (Methods) for each method (Figure [3]).
1 Here, we found that HD-AE, even in the transfer learning setting, was only narrowly bested
11 by scVI in terms of median silhouette score. Moreover, we once again found that HD-AE’s
12 performance on these metrics was nearly unchanged between the full integration and transfer
13 learning settings. Taken together, these results further demonstrate HD-AFE’s ability to learn
us  high-quality transferable representations of scRNA-seq data.

145 Finally, we used this dataset to explore how the number of training batches affects HD-
us  AE’s generalization performance. To do so, we trained HD-AE models with varying numbers
17 of training batches and evaluated the quality of their embeddings of the full dataset as be-
us fore. Qualitatively, we found that providing more batches during training initially produced
1 more mixing between batches and more compact, well-separated clusters for each cell type
150 (Supplementary Figure 5), though this effect appears to have diminishing returns as the
151 number of batches increases. For our quantitative metrics (Supplementary Figure 6),
12 we found that HD-AE'’s silhouette score and ARI performance did not vary considerably for
153 different numbers of training batches; however, we did initially see sharp increases in our
155 combined EBM and kNN purity metric as the number of training batches increased. In par-
155 ticular, HD-AE began to outperform our full integration baseline models for combined EBM
155 and kNN purity when provided with only four of the nine batches during training. These
157 results suggest that HD-AFE achieves most of its generalization potential when it receives only
18 a small number of batches during training, potentially enabling the use of pretrained HD-AFE
150 models even for tissues or organisms that are less well-studied and for which less data is
w0 publicly available.

161 This work introduced the HD-AE framework for producing transferable representations of
12 single cell transcriptomic data. In experiments on pancreas islet cell and PBMC scRNA-seq
13 measurements, we found that HD-AE produced well-integrated reference sets of scRNA-seq
s embeddings and that pretrained HD-AE models successfully generalized to new batches at
165 test time, even when those batches contained previously unseen cell types. This advancement
166 ay enable researchers to leverage pretrained deep learning models to obtain embeddings
17 of their own data for use in arbitrary downstream tasks without needing to undertake the
s burdensome and skill-intensive process of training the models themselves. As part of future
1o work, we envision training HD-AE models on a variety of tissues from various organisms and

o distributing them for the benefit of the wider scRNA-seq research community.
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Figure 3: Transfer learning with HD-AE produces higher quality embeddings than previously proposed full integration
workflow embeddings. (a-b) UMAP plots of seven batches of PBMC data before (a) and after (b) integration using
HD-AE. (c-d) Querying the reference HD-AE model with two previously unseen batches of data. (e-g) Metrics for
evaluating integration performance. Entropy of batch mixing (EBM, (e)) quantifies cell mixing across batches, while
k-nearest neighbors purity (kNN purity, (f)) quantifies the preservation of within-batch local structure. We also
report the sum of these metrics (right) to evaluate how well each method balances the two properties. HD-AE (TL)
refers to HD-AE trained with seven of the nine batches and embedding the remaining batches via transfer learning,
while HD-AE (Full) refers to HD-AE trained with all nine batches. kNN purity and EBM were normalized to lie in
the range [0, 1] to enable comparison across the metrics. For each method we report the mean and standard error
across five random subsamples of the data. (h-i) Separation between cell types in the embedding space as quantified
by the adjusted Rand index (h) and silhouette scores (i).
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= Methods

» Autoencoder Model

s HD-AE extends the standard autoencoder architecture. An autoencoder consists of two
s networks: (1) an encoder network fy: X — Z parameterized by ¢, which maps from an
s input space X € RM to a latent space Z € RP, and (2) a decoder network g,: Z — X
e parameterized by ¢, which maps the latent space representation of a sample back to the
7 original input space. The goal of the encoder network is to learn to map a given sample to the
s latent space Z so that the decoder network can simultaneously learn to faithfully reconstruct
7o the original sample from its latent space representation. Moreover, we assume that M >> D;
1o therefore, the latent space Z acts like an information bottleneck, capturing the strongest
111 sources of variation in the original data in order to perform accurate reconstructions. In
1.2 our implementations, both subnetworks consist of fully connected layers with rectified linear
13 unit (ReLLU) activations between them. We measure reconstruction loss using mean-squared

184 error, so we train our two networks to solve the optimization problem

o I;lb}IlEHZIIZ —g¢(f¢(fm))||§a

)

18 where the expectation is taken over our training data.

v The Hilbert Schmidt Independence Criterion (HSIC)

188 For random variables X and Y with probability distribution pxy, the HSIC measures the
19 statistical dependence between the two. In particular, an HSIC of zero between X and Y is
1o zero if and only if X and Y are independent, while a higher HSIC corresponds to a stronger
11 level of dependence.

192 If {(z;,y;)}, are independently and identically distributed samples drawn from pyy,

13 the HSIC can be empirically estimated via

o
(n—1)?

ws Here, K;; = k(z;,x;) and L;; = I(y;,y;) are Gram matrices for kernel functions k and [,

ASIC({ (s, yi)}y) = Tr(KHLH).

w6 respectively, where k and [ must be universal kernels, a class that includes the widely used
w7 Gaussian and Laplacian kernels [I5]. Moreover, H is a centering matrix, and Tr denotes the

108 trace operator. See Supplementary Note 4 for further details on the HSIC.
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w HD-AE

20 HD-AE, an extension of the standard autoencoder model, was specifically designed to learn
20 batch-effect-free latent representations. To do so, we added a regularization term to the
22 autoencoder objective to minimize the empirical HSIC between latent representations and
203 batch labels. Removing batch information from the latent space would usually complicate
204 an autoencoder’s efforts to reconstruct the data faithfully while preserving true biological
205 structure in the latent space; to mitigate this issue, when training HD-AE, we passed batch
206 labels to the decoder so that batch-specific transformations could be learned to reconstruct
207 the data accurately from the batch-effect-free latent space.

208 Suppose we have n total gene expression samples. Let b; denote the batch label for the
200 ith sample x;, let B denote the vector of batch labels for all samples, and let (by an abuse
20 of notation) f,(X) € R™*¢ denote the matrix of latent representations of the dataset X. We
o then have the HD-AE objective function

min Bl — go(fu(w:), |3+ - HSIC(/,(X), B),
7 reconstrl?c?ion error batch effgcrt penalty

213 which we can optimize via stochastic gradient descent. In all our experiments Gaussian

—

2u kernel functions with 02 = 1 were used to compute HSIC.

xs Datasets and Preprocessing
215 Pancreas Data

27 Our pancreas data came from the panc8 dataset [21] provided in the SeuratData R pack-
218 age available at https://github.com/satijalab/seurat-data. We used data from the
219 celseq, fluidigmcl, and indrop batches, as indicated by the tech field in the R object for
20 training, and we used cells from the smartseq2 and celseq2 batches for testing generaliza-
o1 tion performance. We preprocessed the data by first filtering down the collection of datasets
22 to the top 2000 highly variable genes as determined by the Seurat R package. For scVI, we
223 used this filtered data directly; for other models, we normalized the data using the Seurat
24 normalization workflow. For DESC, we also scaled the data after normalization using the

25 scale_bygroup function from the DESC Python package.

2 PBMC Data

27 Our PBMC data came from the pbmcsca dataset [I8] available in the SeuratData R package.

»s For our transfer learning HD-AE model, we used data from the CEL-Seq2, 10x Chromium

10
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20 (v2), 10x Chromium (v2) A, 10x Chromium (v2) B, Drop-seq, Seq-Well, and inDrops
20 batches, as indicated by the Method field in the R object for training. During preprocessing,
2 we removed any cells with a cell type label of Unassigned; otherwise, our preprocessing

22 workflow was the same as for the pancreas data.

»s Evaluation Metrics
2 Entropy of Batch Mixing

25 Letting ¢ denote the number of batches, the entropy of batch mixing (EBM) is defined as

236 EBM = Z:L‘Z log(z;),

i=1
237 where ¢ is the number of batches, x; denotes the proportion of cells originating from a batch
28 4 in a given region, and Y ¢, x; = 1. To assess the EBM for a given method, we followed
20 a standard [II] estimation procedure: we randomly chose 100 cells, calculated “regional”
20 EBM values for each cell using the batch proportions from the cell’s 50 nearest neighbors in

2 the integrated space, and then averaged over the 100 regional EBMs.

22 KNN Purity

a3 For a given batch, two similarity matrices were constructed. The first was computed using
24 that batch’s cells’ gene expression values pre-integration; the second was computed using
25 that batch’s cells’ representations in the integrated space. We then computed the ratio
a6 of the intersection of these matrices’ corresponding k nearest neighbors graphs over their
a7 union. We repeated this procedure for each batch in a dataset and reported the average of

s this statistic.

29 Silhouette Score

20 For a given cell i, the sillhouete score s(i) is defined as follows. Let a(i) be the average
51 distance between i and the other cells in i’s cluster, and let b(z) be the smallest average

22 distance between i and all other cells in a different cluster. The silhouette score s(i) is then

b))
max (a(i), b(i))

254 A silhouette score close to one indicates that i is tightly clustered with cells with the

253

s same ground truth label. A score close to -1 indicates that a cell has been grouped with cells
6 with a different label.

11
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7 Adjusted Rand Index

s The adjusted Rand index (ARI) measures agreement between reference clustering labels and
0 labels assigned by a clustering algorithm. Given a set of n cells and two sets of clustering
x0 labels describing those cells, the overlap between clustering labels can be described using a
1 contingency table, where each entry indicates the number of cells in common between the

x%2  two sets of labels. Mathematically, the ARI is calculated as

Sy (9) - |2 @S]/ )
@) +5,0]-[Z@s, o]/ 6

2 where n;; is the number of cells assigned to cluster 7 based on the reference labels and

263 ARI -

x5 cluster j based on a clustering algorithm, a; is the number of cells assigned to cluster i in the
26 reference set, and b; is the number of cells assigned to cluster j by the clustering algorithm.
267 In our experiments, we assigned cells to clusters using the Leiden community detection
xs algorithm. Because the results of this algorithm depend heavily on its resolution hyperpa-
20 rameter, for each method we tried a number of resolution values in the range [0.5,1.0] and

o reported the best resulting ARI for each method.
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