


Figure 3: Transfer learning with HD-AE produces higher quality embeddings than previously proposed full integration
workflow embeddings. (a-b) UMAP plots of seven batches of PBMC data before (a) and after (b) integration using
HD-AE. (c-d) Querying the reference HD-AE model with two previously unseen batches of data. (e-g) Metrics for
evaluating integration performance. Entropy of batch mixing (EBM, (e)) quantifies cell mixing across batches, while
k-nearest neighbors purity (kNN purity, (f)) quantifies the preservation of within-batch local structure. We also
report the sum of these metrics (right) to evaluate how well each method balances the two properties. HD-AE (TL)
refers to HD-AE trained with seven of the nine batches and embedding the remaining batches via transfer learning,
while HD-AE (Full) refers to HD-AE trained with all nine batches. kNN purity and EBM were normalized to lie in
the range [0, 1] to enable comparison across the metrics. For each method we report the mean and standard error
across five random subsamples of the data. (h-i) Separation between cell types in the embedding space as quantified
by the adjusted Rand index (h) and silhouette scores (i).

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.13.439707doi: bioRxiv preprint 



Methods171

Autoencoder Model172

HD-AE extends the standard autoencoder architecture. An autoencoder consists of two173

networks: (1) an encoder network fφ : X → Z parameterized by φ, which maps from an174

input space X ∈ RM to a latent space Z ∈ RD, and (2) a decoder network gψ : Z → X175

parameterized by ψ, which maps the latent space representation of a sample back to the176

original input space. The goal of the encoder network is to learn to map a given sample to the177

latent space Z so that the decoder network can simultaneously learn to faithfully reconstruct178

the original sample from its latent space representation. Moreover, we assume that M >> D;179

therefore, the latent space Z acts like an information bottleneck, capturing the strongest180

sources of variation in the original data in order to perform accurate reconstructions. In181

our implementations, both subnetworks consist of fully connected layers with rectified linear182

unit (ReLU) activations between them. We measure reconstruction loss using mean-squared183

error, so we train our two networks to solve the optimization problem184

min
φ,ψ

E ‖xi − gψ(fφ(xi))‖2
2 ,185

where the expectation is taken over our training data.186

The Hilbert Schmidt Independence Criterion (HSIC)187

For random variables X and Y with probability distribution pXY , the HSIC measures the188

statistical dependence between the two. In particular, an HSIC of zero between X and Y is189

zero if and only if X and Y are independent, while a higher HSIC corresponds to a stronger190

level of dependence.191

If {(xi, yi)}ni=1 are independently and identically distributed samples drawn from pXY ,192

the HSIC can be empirically estimated via193

ĤSIC({(xi, yi)}ni=1) =
1

(n− 1)2
Tr(KHLH).194

Here, Kij = k(xi, xj) and Lij = l(yi, yj) are Gram matrices for kernel functions k and l,195

respectively, where k and l must be universal kernels, a class that includes the widely used196

Gaussian and Laplacian kernels [15]. Moreover, H is a centering matrix, and Tr denotes the197

trace operator. See Supplementary Note 4 for further details on the HSIC.198
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HD-AE199

HD-AE, an extension of the standard autoencoder model, was specifically designed to learn200

batch-effect-free latent representations. To do so, we added a regularization term to the201

autoencoder objective to minimize the empirical HSIC between latent representations and202

batch labels. Removing batch information from the latent space would usually complicate203

an autoencoder’s efforts to reconstruct the data faithfully while preserving true biological204

structure in the latent space; to mitigate this issue, when training HD-AE, we passed batch205

labels to the decoder so that batch-specific transformations could be learned to reconstruct206

the data accurately from the batch-effect-free latent space.207

Suppose we have n total gene expression samples. Let bi denote the batch label for the208

ith sample xi, let B denote the vector of batch labels for all samples, and let (by an abuse209

of notation) fφ(X) ∈ Rn×d denote the matrix of latent representations of the dataset X. We210

then have the HD-AE objective function211

min
φ,ψ

E||xi − gψ(fφ(xi), bi)||22︸ ︷︷ ︸
reconstruction error

+λ · ĤSIC(fφ(X), B)︸ ︷︷ ︸
batch effect penalty

,212

which we can optimize via stochastic gradient descent. In all our experiments Gaussian213

kernel functions with σ2 = 1 were used to compute ĤSIC.214

Datasets and Preprocessing215

Pancreas Data216

Our pancreas data came from the panc8 dataset [21] provided in the SeuratData R pack-217

age available at https://github.com/satijalab/seurat-data. We used data from the218

celseq, fluidigmc1, and indrop batches, as indicated by the tech field in the R object for219

training, and we used cells from the smartseq2 and celseq2 batches for testing generaliza-220

tion performance. We preprocessed the data by first filtering down the collection of datasets221

to the top 2000 highly variable genes as determined by the Seurat R package. For scVI, we222

used this filtered data directly; for other models, we normalized the data using the Seurat223

normalization workflow. For DESC, we also scaled the data after normalization using the224

scale bygroup function from the DESC Python package.225

PBMC Data226

Our PBMC data came from the pbmcsca dataset [18] available in the SeuratData R package.227

For our transfer learning HD-AE model, we used data from the CEL-Seq2, 10x Chromium228
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(v2), 10x Chromium (v2) A, 10x Chromium (v2) B, Drop-seq, Seq-Well, and inDrops229

batches, as indicated by the Method field in the R object for training. During preprocessing,230

we removed any cells with a cell type label of Unassigned; otherwise, our preprocessing231

workflow was the same as for the pancreas data.232

Evaluation Metrics233

Entropy of Batch Mixing234

Letting c denote the number of batches, the entropy of batch mixing (EBM) is defined as235

EBM =
c∑
i=1

xi log(xi),236

where c is the number of batches, xi denotes the proportion of cells originating from a batch237

i in a given region, and
∑c

i=1 xi = 1. To assess the EBM for a given method, we followed238

a standard [11] estimation procedure: we randomly chose 100 cells, calculated “regional”239

EBM values for each cell using the batch proportions from the cell’s 50 nearest neighbors in240

the integrated space, and then averaged over the 100 regional EBMs.241

kNN Purity242

For a given batch, two similarity matrices were constructed. The first was computed using243

that batch’s cells’ gene expression values pre-integration; the second was computed using244

that batch’s cells’ representations in the integrated space. We then computed the ratio245

of the intersection of these matrices’ corresponding k nearest neighbors graphs over their246

union. We repeated this procedure for each batch in a dataset and reported the average of247

this statistic.248

Silhouette Score249

For a given cell i, the sillhouete score s(i) is defined as follows. Let a(i) be the average250

distance between i and the other cells in i’s cluster, and let b(i) be the smallest average251

distance between i and all other cells in a different cluster. The silhouette score s(i) is then252

s(i) =
b(i)− a(i)

max
(
a(i), b(i)

) .253

A silhouette score close to one indicates that i is tightly clustered with cells with the254

same ground truth label. A score close to -1 indicates that a cell has been grouped with cells255

with a different label.256
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Adjusted Rand Index257

The adjusted Rand index (ARI) measures agreement between reference clustering labels and258

labels assigned by a clustering algorithm. Given a set of n cells and two sets of clustering259

labels describing those cells, the overlap between clustering labels can be described using a260

contingency table, where each entry indicates the number of cells in common between the261

two sets of labels. Mathematically, the ARI is calculated as262

ARI =

∑
ij

(
nij

2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]/ (
n
2

)
1
2

[∑
i

(
ai
2

)
+
∑

j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]/ (
n
2

) ,263

where nij is the number of cells assigned to cluster i based on the reference labels and264

cluster j based on a clustering algorithm, ai is the number of cells assigned to cluster i in the265

reference set, and bj is the number of cells assigned to cluster j by the clustering algorithm.266

In our experiments, we assigned cells to clusters using the Leiden community detection267

algorithm. Because the results of this algorithm depend heavily on its resolution hyperpa-268

rameter, for each method we tried a number of resolution values in the range [0.5, 1.0] and269

reported the best resulting ARI for each method.270
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