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Abstract7

Advances in single-cell RNA-seq (scRNA-seq) technologies are enabling the con-8

struction of large-scale, human-annotated reference cell atlases, creating unprecedented9

opportunities to accelerate future research. However, effectively leveraging information10

from these atlases, such as clustering labels or cell type annotations, remains challeng-11

ing due to substantial technical noise and sparsity in scRNA-seq measurements. To12

address this problem, we present HD-AE, a deep autoencoder designed to extract in-13

tegrated low-dimensional representations of scRNA-seq measurements across datasets14

from different labs and experimental conditions (https://github.com/suinleelab/15

HD-AE). Unlike previous approaches, HD-AE’s representations successfully transfer to16

new query datasets without needing to retrain the model. Researchers without sub-17

stantial computational resources or machine learning expertise can thus leverage the18

robust representations learned by pretrained HD-AE models to compare embeddings19

of their own data with previously generated sets of reference embeddings.20

Main21

New developments in scRNA-seq technologies [1, 2, 3] are dramatically reducing the cost22

of experiments, facilitating the continual release of new scRNA-seq datasets and enabling23

the construction of large-scale, annotated reference atlases such as the Human Cell Atlas24

[4]. Despite this explosion in publicly available data, leveraging knowledge from previ-25

ously studied scRNA-seq datasets to expedite the analysis of new datasets remains difficult26
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Figure 1: HD-AE models learn unified low-dimensional embeddings of scRNA-seq measurements originating from
different experiments. (a) The HD-AE architecture. HD-AE encourages batch effect removal by penalizing the Hilbert-
Schmidt Independence Criterion (HSIC) between samples’ latent representations and their batch labels (Methods).
(b) A sample HD-AE transfer learning workflow. Researchers can download pretrained HD-AE models to embed
their own data and compare with previously generated sets of reference embeddings.
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since substantial nuisance factors of variation inherent in scRNA-seq measurements, such27

as dropout and transcriptional noise, can obscure biological signals of interest [5]. More-28

over, combining measurements from multiple experiments is complicated by batch effects,29

i.e., systematic variations between datasets due to differences in experimental conditions or30

procedures. Batch effects are especially pronounced with scRNA-seq data, since different31

scRNA-seq protocols have unique sources of bias, sensitivity, and accuracy [6].32

To address these challenges, several recent works [7, 8, 9, 10, 11, 12, 13] propose data33

integration methods that produce denoised low-dimensional representations (embeddings) of34

scRNA-seq data. However, these methods are not designed to integrate new query datasets35

with a previous reference set of embeddings without making users rerun the entire integration36

pipeline from scratch. This limitation is problematic; raw data from individual scRNA-seq37

experiments, even those within the same cell atlas, are often stored in different databases and38

in varying formats, necessitating a time-consuming data collection and preprocessing phase39

before integration can be performed (Supplementary Figure 1). Furthermore, current40

integration methods scale poorly in terms of computational cost and memory requirements41

[12] or require specialized hardware (e.g., GPUs), limiting their use to researchers with42

abundant computational resources.43

As a response to these limitations, we introduce the Hilbert-Schmidt Deconfounded Au-44

toencoder (HD-AE, Figure 1a), a deep learning approach based on the widely used autoen-45

coder architecture [14] for learning denoised embeddings of scRNA-seq data. To ensure that46

samples’ embeddings are independent of their batches of origin, we train HD-AE using a loss47

function that penalizes the Hilbert-Schmidt Independence Criterion (HSIC) [15], a nonpara-48

metric measure of statistical independence, between samples’ embeddings and their batch49

labels (Methods). Removing batch information from the latent space would normally make50

it difficult for the autoencoder to reconstruct the data faithfully while also preserving true51

biological structure in the latent space; to mitigate this issue, when training HD-AE, we pass52

samples’ batch labels to the decoder so that batch-specific transformations can be learned53

to reconstruct the data accurately from the batch-effect-free latent space. Unlike previously54

proposed scRNA-seq integration methods, pretrained HD-AE models’ representations suc-55

cessfully generalize to new batches of data not seen during training, even when those batches56

contain previously unseen cell types. This lets researchers reuse previously trained HD-AE57

models off-the-shelf without needing to gather the original data or possess the computational58

expertise or hardware to train the models themselves from scratch (Figure 1b).59

We first applied HD-AE to construct a reference atlas of pancreas islet cell embeddings60

using three datasets, each sequenced using a different scRNA-seq protocol. Using UMAP [16]61

to visualize the raw data, we confirmed that it was clearly separable by batch, even for cells62
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with the same cell type label (Figure 2a). After training an HD-AE model and embedding63

the data into the model’s latent space (Figure 2b), we observed that distinctions between64

batches were removed while cell types remained well-separated, indicating that embedding65

space variations were due to underlying biological differences rather than technical artifacts.66

To validate HD-AE’s transfer learning capabilities, we next used our pretrained model to67

embed a query batch of data collected using the CEL-Seq2 protocol, which was not used68

to generate any data seen by the model during training. We found that embeddings of this69

query batch were well-integrated with training batch embeddings (Figure 2c).70

To further explore the robustness of our pretrained model, we also embedded a second71

query batch of data collected using the Smart-seq2 protocol (Fig 2d). To simulate a poten-72

tially more realistic scenario where new batches of data contain cell types not seen by the73

model during training, we included a cell type (alpha) in this second query batch that was74

held out during training. For cell types shared between the query and reference batches,75

we once again found that query batch cell embeddings were well-integrated with reference76

ones. Moreover, we found that the embeddings of the previously unseen alpha cells formed77

a distinct cluster well separated from other cell types. This behavior persisted for other78

choices of held-out cell types (Supplementary Figure 2). These results further indicate79

that pretrained HD-AE models are able to filter out technical noise between different batches80

of data while preserving meaningful biological variations.81

We compared HD-AE’s transfer learning capabilities to those of three previously proposed82

deep learning methods for producing informative embeddings of scRNA-seq data: SAUCIE83

[17], scVI [11], and DESC [12]. None of these methods was originally designed for transfer84

learning. Nevertheless, their shared reliance on autoencoder-based architectures made it85

straightforward to adapt them for use in the transfer learning setting; we note here, however,86

that, limitations inherent in scVI forced us to disable its batch effect correction feature to use87

it for transfer learning (Supplementary Note 1). In these experiments, we used the same88

split between training and query batches as we did with HD-AE. Unsurprisingly, we found89

that scVI (Figure 2f) failed to produce well-integrated embeddings when not explicitly90

trained to correct for batch effects. Moreover, DESC (Figure 2e) and SAUCIE (Figure91

2g) did not produce contiguous, well-separated clusters for individual cell types, possibly92

due to their choices of network architectures and loss functions (Supplementary Note 2).93

Only HD-AE produced clusters that were both well integrated between batches and well94

separated across cell types.95

We next assessed HD-AE’s performance when applied to a dataset consisting of nine96

batches of peripheral blood mononuclear cells (PBMCs) collected using seven different tech-97

nologies [18]. As we saw with the pancreas islet data, this dataset clearly separated by batch98
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Figure 2: Unlike previously proposed deep learning embedding methods for scRNA-seq data, HD-AE’s representations
generalize to new datasets at test time. (a-b) Three batches of pancreatic islet cells collected using different tech-
nologies from different labs before (a) and after (b) integration with HD-AE. (c-d) Querying the reference HD-AE
model with two previously unseen batches of data. Black circles indicate cell types held out during training. (e-g)
Embeddings produced by three previously proposed deep learning methods for scRNA-seq analysis using the same
reference and query split as in (a-d).
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(Figure 3a). In this experiment, HD-AE was trained using seven of the batches; the re-99

maining two (10x Chromium v3 and Drop-seq) were held out as query batches. Once again,100

we found that batches were well-mixed and distinctions between cell types were preserved in101

the HD-AE embedding space (Figure 3b). Moreover, as we found with the pancreas data,102

our query batch and training batch embeddings were well-integrated (Figure 3c-d).103

Using this dataset, we also compared the quality of HD-AE embeddings to “full integra-104

tion” method embeddings (i.e., those from methods designed to integrate all batches of data105

at once rather than for transfer learning). In particular, we benchmarked HD-AE against106

seven previously proposed data integration methods: Seurat v3 [8], Conos [10], Harmony [9],107

scAlign [13], scVI [11], SAUCIE [17], and DESC [12]. Each baseline method was given access108

to all nine batches of data during training rather than only a set of reference batches. As109

an additional full integration baseline, we trained an HD-AE model using all batches during110

training. We report implementation details and hyperparameter choices for all methods in111

Supplementary Note 3. Qualitatively, we found that many baseline methods struggled112

with this dataset, with only scVI and HD-AE producing well-separated clusters for each cell113

type (Supplementary Figure 3).114

We also computed a suite of quantitative metrics to evaluate the quality of each method’s115

embeddings. To effectively integrate data, a method must balance two potentially opposing116

goals. First, batches should be well-mixed after integration; that is, the set of k-nearest117

neighbors around a given cell should be balanced across different batches. To quantify this118

mixing, we computed the entropy of batch mixing (EBM) [7] for each method’s embeddings119

(Methods). A high EBM can be achieved by randomly mixing the data and disregard-120

ing biologically meaningful variations. Thus, our evaluation also considered how well local121

neighborhoods in individual datasets were preserved in the integrated space. To quantify122

the preservation of this structure, we computed the k-nearest neighbors purity (kNN purity)123

[19] for each method (Methods). A high purity score could trivially be achieved without124

performing any mixing between batches. Thus, we considered performance on both metrics125

when evaluating a given method. To compare across metrics, individual metric values were126

normalized to lie in the range [0, 1].127

We report our results for individual metrics for a neighborhood size k = 50 along with128

the sums of both metrics to indicate how well each method balances the two (Figure 3e-g).129

We found that HD-AE outperformed all baseline methods when considering both metrics.130

This result persisted for varying values of k (Supplementary Figure 4). Remarkably, we131

found that HD-AE’s performance in the transfer learning setting was nearly identical to its132

performance when provided all the data during training.133

To examine how well each method preserved true biological variations, we also quantified134
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how well different cell types clustered after integration. For each method we calculated the135

adjusted Rand index (ARI) to assess agreement between ground truth cell type annotations136

and cluster labels assigned by the Leiden community detection algorithm [20] (Methods).137

We found that HD-AE outperformed all baseline methods on this metric (Figure 3h). We138

also plotted the distributions of silhouette scores (Methods) for each method (Figure 3i).139

Here, we found that HD-AE, even in the transfer learning setting, was only narrowly bested140

by scVI in terms of median silhouette score. Moreover, we once again found that HD-AE’s141

performance on these metrics was nearly unchanged between the full integration and transfer142

learning settings. Taken together, these results further demonstrate HD-AE’s ability to learn143

high-quality transferable representations of scRNA-seq data.144

Finally, we used this dataset to explore how the number of training batches affects HD-145

AE’s generalization performance. To do so, we trained HD-AE models with varying numbers146

of training batches and evaluated the quality of their embeddings of the full dataset as be-147

fore. Qualitatively, we found that providing more batches during training initially produced148

more mixing between batches and more compact, well-separated clusters for each cell type149

(Supplementary Figure 5), though this effect appears to have diminishing returns as the150

number of batches increases. For our quantitative metrics (Supplementary Figure 6),151

we found that HD-AE’s silhouette score and ARI performance did not vary considerably for152

different numbers of training batches; however, we did initially see sharp increases in our153

combined EBM and kNN purity metric as the number of training batches increased. In par-154

ticular, HD-AE began to outperform our full integration baseline models for combined EBM155

and kNN purity when provided with only four of the nine batches during training. These156

results suggest that HD-AE achieves most of its generalization potential when it receives only157

a small number of batches during training, potentially enabling the use of pretrained HD-AE158

models even for tissues or organisms that are less well-studied and for which less data is159

publicly available.160

This work introduced the HD-AE framework for producing transferable representations of161

single cell transcriptomic data. In experiments on pancreas islet cell and PBMC scRNA-seq162

measurements, we found that HD-AE produced well-integrated reference sets of scRNA-seq163

embeddings and that pretrained HD-AE models successfully generalized to new batches at164

test time, even when those batches contained previously unseen cell types. This advancement165

may enable researchers to leverage pretrained deep learning models to obtain embeddings166

of their own data for use in arbitrary downstream tasks without needing to undertake the167

burdensome and skill-intensive process of training the models themselves. As part of future168

work, we envision training HD-AE models on a variety of tissues from various organisms and169

distributing them for the benefit of the wider scRNA-seq research community.170
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Figure 3: Transfer learning with HD-AE produces higher quality embeddings than previously proposed full integration
workflow embeddings. (a-b) UMAP plots of seven batches of PBMC data before (a) and after (b) integration using
HD-AE. (c-d) Querying the reference HD-AE model with two previously unseen batches of data. (e-g) Metrics for
evaluating integration performance. Entropy of batch mixing (EBM, (e)) quantifies cell mixing across batches, while
k-nearest neighbors purity (kNN purity, (f)) quantifies the preservation of within-batch local structure. We also
report the sum of these metrics (right) to evaluate how well each method balances the two properties. HD-AE (TL)
refers to HD-AE trained with seven of the nine batches and embedding the remaining batches via transfer learning,
while HD-AE (Full) refers to HD-AE trained with all nine batches. kNN purity and EBM were normalized to lie in
the range [0, 1] to enable comparison across the metrics. For each method we report the mean and standard error
across five random subsamples of the data. (h-i) Separation between cell types in the embedding space as quantified
by the adjusted Rand index (h) and silhouette scores (i).
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Methods171

Autoencoder Model172

HD-AE extends the standard autoencoder architecture. An autoencoder consists of two173

networks: (1) an encoder network fφ : X → Z parameterized by φ, which maps from an174

input space X ∈ RM to a latent space Z ∈ RD, and (2) a decoder network gψ : Z → X175

parameterized by ψ, which maps the latent space representation of a sample back to the176

original input space. The goal of the encoder network is to learn to map a given sample to the177

latent space Z so that the decoder network can simultaneously learn to faithfully reconstruct178

the original sample from its latent space representation. Moreover, we assume that M >> D;179

therefore, the latent space Z acts like an information bottleneck, capturing the strongest180

sources of variation in the original data in order to perform accurate reconstructions. In181

our implementations, both subnetworks consist of fully connected layers with rectified linear182

unit (ReLU) activations between them. We measure reconstruction loss using mean-squared183

error, so we train our two networks to solve the optimization problem184

min
φ,ψ

E ‖xi − gψ(fφ(xi))‖2
2 ,185

where the expectation is taken over our training data.186

The Hilbert Schmidt Independence Criterion (HSIC)187

For random variables X and Y with probability distribution pXY , the HSIC measures the188

statistical dependence between the two. In particular, an HSIC of zero between X and Y is189

zero if and only if X and Y are independent, while a higher HSIC corresponds to a stronger190

level of dependence.191

If {(xi, yi)}ni=1 are independently and identically distributed samples drawn from pXY ,192

the HSIC can be empirically estimated via193

ĤSIC({(xi, yi)}ni=1) =
1

(n− 1)2
Tr(KHLH).194

Here, Kij = k(xi, xj) and Lij = l(yi, yj) are Gram matrices for kernel functions k and l,195

respectively, where k and l must be universal kernels, a class that includes the widely used196

Gaussian and Laplacian kernels [15]. Moreover, H is a centering matrix, and Tr denotes the197

trace operator. See Supplementary Note 4 for further details on the HSIC.198
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HD-AE199

HD-AE, an extension of the standard autoencoder model, was specifically designed to learn200

batch-effect-free latent representations. To do so, we added a regularization term to the201

autoencoder objective to minimize the empirical HSIC between latent representations and202

batch labels. Removing batch information from the latent space would usually complicate203

an autoencoder’s efforts to reconstruct the data faithfully while preserving true biological204

structure in the latent space; to mitigate this issue, when training HD-AE, we passed batch205

labels to the decoder so that batch-specific transformations could be learned to reconstruct206

the data accurately from the batch-effect-free latent space.207

Suppose we have n total gene expression samples. Let bi denote the batch label for the208

ith sample xi, let B denote the vector of batch labels for all samples, and let (by an abuse209

of notation) fφ(X) ∈ Rn×d denote the matrix of latent representations of the dataset X. We210

then have the HD-AE objective function211

min
φ,ψ

E||xi − gψ(fφ(xi), bi)||22︸ ︷︷ ︸
reconstruction error

+λ · ĤSIC(fφ(X), B)︸ ︷︷ ︸
batch effect penalty

,212

which we can optimize via stochastic gradient descent. In all our experiments Gaussian213

kernel functions with σ2 = 1 were used to compute ĤSIC.214

Datasets and Preprocessing215

Pancreas Data216

Our pancreas data came from the panc8 dataset [21] provided in the SeuratData R pack-217

age available at https://github.com/satijalab/seurat-data. We used data from the218

celseq, fluidigmc1, and indrop batches, as indicated by the tech field in the R object for219

training, and we used cells from the smartseq2 and celseq2 batches for testing generaliza-220

tion performance. We preprocessed the data by first filtering down the collection of datasets221

to the top 2000 highly variable genes as determined by the Seurat R package. For scVI, we222

used this filtered data directly; for other models, we normalized the data using the Seurat223

normalization workflow. For DESC, we also scaled the data after normalization using the224

scale bygroup function from the DESC Python package.225

PBMC Data226

Our PBMC data came from the pbmcsca dataset [18] available in the SeuratData R package.227

For our transfer learning HD-AE model, we used data from the CEL-Seq2, 10x Chromium228
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(v2), 10x Chromium (v2) A, 10x Chromium (v2) B, Drop-seq, Seq-Well, and inDrops229

batches, as indicated by the Method field in the R object for training. During preprocessing,230

we removed any cells with a cell type label of Unassigned; otherwise, our preprocessing231

workflow was the same as for the pancreas data.232

Evaluation Metrics233

Entropy of Batch Mixing234

Letting c denote the number of batches, the entropy of batch mixing (EBM) is defined as235

EBM =
c∑
i=1

xi log(xi),236

where c is the number of batches, xi denotes the proportion of cells originating from a batch237

i in a given region, and
∑c

i=1 xi = 1. To assess the EBM for a given method, we followed238

a standard [11] estimation procedure: we randomly chose 100 cells, calculated “regional”239

EBM values for each cell using the batch proportions from the cell’s 50 nearest neighbors in240

the integrated space, and then averaged over the 100 regional EBMs.241

kNN Purity242

For a given batch, two similarity matrices were constructed. The first was computed using243

that batch’s cells’ gene expression values pre-integration; the second was computed using244

that batch’s cells’ representations in the integrated space. We then computed the ratio245

of the intersection of these matrices’ corresponding k nearest neighbors graphs over their246

union. We repeated this procedure for each batch in a dataset and reported the average of247

this statistic.248

Silhouette Score249

For a given cell i, the sillhouete score s(i) is defined as follows. Let a(i) be the average250

distance between i and the other cells in i’s cluster, and let b(i) be the smallest average251

distance between i and all other cells in a different cluster. The silhouette score s(i) is then252

s(i) =
b(i)− a(i)

max
(
a(i), b(i)

) .253

A silhouette score close to one indicates that i is tightly clustered with cells with the254

same ground truth label. A score close to -1 indicates that a cell has been grouped with cells255

with a different label.256
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Adjusted Rand Index257

The adjusted Rand index (ARI) measures agreement between reference clustering labels and258

labels assigned by a clustering algorithm. Given a set of n cells and two sets of clustering259

labels describing those cells, the overlap between clustering labels can be described using a260

contingency table, where each entry indicates the number of cells in common between the261

two sets of labels. Mathematically, the ARI is calculated as262

ARI =

∑
ij

(
nij

2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]/ (
n
2

)
1
2

[∑
i

(
ai
2

)
+
∑

j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]/ (
n
2

) ,263

where nij is the number of cells assigned to cluster i based on the reference labels and264

cluster j based on a clustering algorithm, ai is the number of cells assigned to cluster i in the265

reference set, and bj is the number of cells assigned to cluster j by the clustering algorithm.266

In our experiments, we assigned cells to clusters using the Leiden community detection267

algorithm. Because the results of this algorithm depend heavily on its resolution hyperpa-268

rameter, for each method we tried a number of resolution values in the range [0.5, 1.0] and269

reported the best resulting ARI for each method.270
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