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Abstract  
~400 words 

 
Host-expressed proteins on both host-cell and pathogen surfaces are widely exploited by 

pathogens, mediating cell entry (and exit) and influencing disease progression and transmission. 

This is highlighted by the diverse modes of coronavirus entry into cells and their consequent 

differing pathogenicity that is of direct relevance to the current SARS-CoV-2 pandemic. Host-

expressed viral surface proteins bear post-translational modifications such as glycosylation that are 

essential for function but can confound or limit certain current biophysical methods used for 

dissecting key interactions. Several human coronaviruses attach to host cell-surface N-linked 

glycans that include forms of sialic acid. There remains, however, conflicting evidence as to if or 

how SARS-associated coronaviruses might use such a mechanism. Here, we show that novel 

protein NMR methods allow a complete and comprehensive analysis of the magnetization transfer 

caused by interactions between even heavily modified proteins and relevant ligands to generate 

quantitative binding data in a general manner. Our method couples direct, objective resonance-

identification via a deconvolution algorithm with quantitative analysis using Bloch-McConnell 

equations to obtain interaction parameters (e.g. KD, kEx), which together enable structural 

modelling. By using an automated and openly available workflow, this method can be readily 

applied in a range of systems. This complete treatment of so-called ‘saturation transfer’ between 

protein and ligand now enables a general analysis of solution-phase ligand-protein binding beyond 

previously perceived limits of exchange rates, concentration or system – this allows ‘universal’ 

saturation transfer analysis (uSTA). uSTA proves critical in mapping direct interaction between 

natural sialoside sugar ligands and SARS-CoV-2-spike glycoprotein by quantitating ligand signal in 

spectral regions otherwise occluded by resonances from mobile spike-protein glycans (that also 

include sialosides). Using uSTA, ‘end on’-binding by SARS-CoV-2-spike protein to sialoside glycan 

is revealed, which contrasts with an observed ‘extended surface’-binding for previously validated 

heparin sugar ligands. Quantitative use of uSTA-derived restraints pinpoints likely binding modes 

to an intrinsically disordered region of the N-terminal domain of SARS-CoV-2-spike trimer. 

Consistent with this, glycan binding is minimally perturbed by antibodies that neutralize via binding 

the ACE2-binding domain (RBD) but strongly disrupted in the B1.1.7 and B1.351 variants-of-

concern that possess hotspot mutations around the identified site. An analysis of beneficial genetic 

variances in cohorts of patients from early 2020 suggests a possible model in which A-lineage-

SARS-CoV-2 may have exploited a specific sialylated-polylactosamine motif found on 

tetraantennary human N-linked-glycoproteins in deeper lung. Since cell-surface glycans are widely 

relevant to biology and pathology, uSTA can now provide a ready, quantitative method for 

widespread analysis of complex, host-derived and post-translationally modified proteins with 

putative ligands relevant to disease even in previously confounding complex systems. 
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Introduction  
~800 words 

Both SARS-CoV-11-3 and SARS-CoV-24,5 gain entry to host cells through the use of 

receptor-binding domains (RBDs) of their respective spike proteins that bind human cell-surface 

protein ACE2. Although other coronaviruses that infect humans, including MERS,6 are thought to 

use cell-surface sugar sialosides6-10 as initial attachment points prior to binding entry receptor 

proteins, the corresponding interaction (despite predictions10,11) has remained unclear for either of 

the SARS-causing viruses to date. In preliminary disclosures, contradictory format-dependent 

observations have been made12,13 as to whether complex sialosides are or are not bound.12,14 

Instead, glycosaminoglycans on proteoglycans, such as heparin, have been suggested as a 

primary cooperative glycan attachment point.14,15 Those studies suggesting sugar binding have all, 

to date, implicated possible binding sites in or close to the RBD. Nonetheless, the region of the 

spike protein that binds sialosides in other coronaviruses, the N-terminal domain (NTD), also 

appears in SARS-CoV-2-spike to display a putative glycan binding groove in currently determined 

structures (Supplementary Figure S1).4,16,17 The unresolved role of host cell surface sialosides in 

this pathogen has been highlighted as an important open question.15 Clear and more detailed 

elucidation of sugar-binding by SARS-CoV-2-spike is therefore needed. 

The classical ‘saturation transfer difference’ (STD) NMR experiment18 is a widely-used 

method to reveal interactions between putative small molecule ligands and proteins19 without the 

need for labelling/modification of the ligand or protein, or the need to attach either ligand or protein 

to a surface or sensor. In the STD experiment the nuclear spin systems inside a given protein are 

moved out of equilibrium using a ‘saturation’ pulse. When a ligand binds to the protein, the two 

cross-relax, which results in magnetization being passed from the ligand to the protein 

(Supplementary Figure S2,3). In a dynamic binding equilibrium, the two then dissociate and the 

cycle repeats during the saturation pulse. Although ‘saturation’ is not itself a measurable 

phenomenon, after a pre-set duration, the remaining reduced signal on the ligand is recorded, and 

the difference in signal for each resonance (the ‘saturation transfer difference’) from a reference 

spectrum indicates that ligand and protein have made contact. This magnetization transfer has 

often been colloquially described in terms of modes of ‘saturation transfer’ and, indeed, sometimes 

given an interpreted converse direction of ‘saturation transfer’ from protein-to-ligand20 although, in 

practice, signal on the ligand is in fact reduced by this process.  

Complex, highly-modified protein systems prove difficult to analyze by current STD 

methods for several reasons. Firstly, mammalian proteins, or those derived from expression in 

mammalian hosts such as SARS-CoV-2-spike, often bear large and highly mobile glycans. 

Critically, in the case of glycoproteins that may themselves bind glycans this leads to contributions 

to the spectra that overlap with putative ligand resonances thereby obscuring signal. Secondly, the 

NMR spectra of glycan ligands are themselves complex, comprising many overlapped resonances 

and their multiplets. This can limit the accurate determination of intensities needed in STD. Finally, 
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it has long been perceived that STD is only possible under certain kinetic regimes and/or under 

certain limiting assumptions about the ligand-to-protein binding equilibrium. This has meant that 

certain regimes and systems have been considered inaccessible to STD. 

Here, by devising a new, complete formulation of magnetization / ‘saturation’ transfer 

(Supplementary Figures S5, S6, S8), we demonstrate that the range of regimes for which the 

experiment can be considered reliable is substantially larger than generally assumed 

(Supplementary Figure S4). By implementing a rigorous theoretical description of the experiment, 

coupled with a computational approach based on a Bayesian deconvolution algorithm to accurately 

extract data, it proved possible to reliably and quantitatively determine precise on and off rates and 

KDs describing the interaction.  

 This ‘universal’ saturation transfer analysis (uSTA) then only requires a series of specific 

simplified magnetization transfer spectra to be acquired on a protein-only sample, and then with a 

range of ligand concentrations (Supplementary Figures S5, S6, S8). The signal intensity from 

individual resonances in these spectra are obtained automatically. These are then converted into 

on and off rates (and KDs) via complete theoretical treatment. These can also provide per 

resonance transfer efficiencies that, when used as constraints to high-level (e.g. HADDOCK) 

computational modelling environments provide exact structural models. In this way, uSTA analysis 

provides an automated pipeline from raw NMR free induction decay (FID) signals all the way to 

protein•ligand structures in a freely available form for the non-expert. 

 uSTA proves effective in a range of model ligand-protein systems and, by evaluating 

multiple glycan ligands, identifies a glycan-binding pocket in the NTD of A-lineage21 SARS-CoV-2 

spike as the most potent, and distinct from other SARS-CoV-2-spike interactions. Notably, this 

binding is strongly ablated in B1.1.7 and B1.351 lineage21 variants of SARS-CoV-2 spike providing 

now an additional, potential molecular explanation for widely different infectivities. These data also 

prove to be consistent with observations made through correlative genetic analyses with disease 

severity in SARS-CoV-2-positive patients infected in early 2020 with A-lineage21 virus, suggesting a 

model by which cell-surface glycans and the modulation of binding by spike-to-sialosides plays a 

role in infection, disease progression and disease evolution. 
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Results 
~ 4500 words 

 
Analysis of the Current Limits to ‘STD’ 

As noted, the classical ‘STD’ experiment cannot be reliably applied to mammalian-derived 

proteins to quantitatively survey ligand binding (Supplementary Figures S6,S8). Our theoretical 

analyses (Supplementary Figure S4), however, suggested that many common assumptions or 

limits that are thought to govern the applicability of the current STD experiment might in fact be 

circumvented and we set out to devise a complete treatment that might accomplish this 

(Supplementary Figures S5,S6,S8).  

First, and perhaps most notably, appreciable transfer of signal can in fact occur for a wider 

range of timescales and strength of protein•ligand interaction than previously recognised 

(Supplementary Figures S2,S4). The sensitivity of such experiments is strictly independent of 

chemical exchange, in that the chemical shift difference between the free and bound ligand 

conformation is not in itself relevant to the mechanism of ‘saturation’/magnetization transfer. 

Instead, such modes are governed by the number of ligands that come into contact with protein 

and the cross relaxation between the two – this does not restrict the saturation transfer to the ‘fast’ 

exchange regime, as is commonly argued.20  

Second, in seeking to precisely quantitate ‘STD’, our analysis also reveals that it is vital to 

systematically vary both the protein and the ligand concentration in order to robustly separate the 

exchange parameters from concentration-independent relaxation processes (Supplementary 

Figure S4).20,22 In this way, forward and backward rates (and KD) can be consistently obtained via 

experiments at multiple concentrations coupled with global, complete analyses of cross-relaxation.  

Third, as in the case of heavily glycosylated human-derived proteins covered by highly 

mobile sugars23 such as SARS-CoV-2 spike, the problems may be greatly exacerbated. The 

conformational flexibility of these groups is such that their R2 relaxation rates become extremely 

short23-25 leading to greatly confounded difference spectra. In conventional STD experiments, using 

for example the ‘group epitope’ method,26 relaxation filters are added at the end of an experiment 

where protein signal is hoped to evenly decay away, ideally leaving only signal from ligands. 

However, in a protein that contains both mobile modifications as well as mobile disordered regions, 

such as SARS-CoV-2-spike, this approach is no longer viable since protein signal remains even 

after aggressive use of such relaxation filters (Supplementary Figures S5,S6,S8). Moreover, 

relaxation filters inevitably result in reduced overall sensitivity and effects of intra-ligand cross-

relaxation via the nuclear Overhauser effect (NOE) and ROE inhibit the elucidation of atom-specific 

data. In principle, relaxation filters however would not be necessary at all with reliable extraction of 

ligand-only signal. We considered that baseline subtraction of residual signal transfer using 

reference to samples containing only protein could prove possible if methods for precise resonance 

identification could be developed. 
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Finally, NMR spectra from biological ligands such as sugars can be extremely complex, 

containing a large number of multiplets across diverse chemical shifts, each of which can be highly 

overlapped. In order to accurately quantify such a spectrum for use in saturation transfer methods, 

it is necessary to accurately determine the degree of magnetization (and its change) for each and 

all observed proton resonances. This too would be addressed by precise resonance identification 

(Supplementary Figures S5,S6,S8). 

 

Design of uSTA based on a Comprehensive Treatment of nOe 

In order to completely and quantitatively model signal intensity via uSTA we first considered 

full aspects of the appropriate spin physics (Supplementary Figure S2). In brief, initially, the 

protein and ligand resonances are at equilibrium. Saturation transfer experiments18 then move spin 

systems inside the protein that are within the bandwith of the ‘pulse’ out of equilibrium (via a 

‘saturation pulse’, Supplementary Figure S2). These resonances then cross-relax with adjacent 

spins in the protein (spin-diffusion) which results in wide-ranging sets of spin systems within the 

protein that are effectively out of equilibrium. During this period, previously free ligand binds the 

protein and the two molecules cross relax via NOE (magnetization is passed from ligand that is in 

equilibrium to protein that is not). Modelling the degree to which signal has passed between the 

ligand and protein is complex; transfer depends on the on and off rates (and hence the KD), and 

the intrinsic cross-relaxation rates, which depend on the tumbling time of the complex 

(Supplementary Figure S4). A model for the complex signal transfer suitable for fitting to data has 

therefore not, to our knowledge, been addressed to date. However, these factors would, in 

principle, be straightforward to accommodate in a theoretical analysis of the transfer, using fully 

comprehensive numerical approaches. In this approach, all relevant interactions could be fully and 

hence quantitatively described by modified Bloch-McConnell equations. Indeed, Bloch-McConnell 

approaches prove successful in other protein NMR methods involving dynamical processes such 

as CEST27,28 or DEST.29 Although it is more parametrically complex to analyze such magnetization 

transfer data using this formalism, all that would be required, in principle, is calculation30 of the ratio 

of signal loss before and after the saturation pulse for each and every identified resonance as well 

as the total concentration of protein and ligand (Supplementary Figure S5, S6, S8). In this way, 

the theoretical description of the experiment would allow calculation of the expected transfer of 

signal with varying Kex and KD values (see Methods).  

Second, as noted above, central to this process is precise resonance identification and 

accurate extraction of signal intensity. This was made possible by the design of a Bayesian 

computational method31 to detect ligand and protein resonances in the raw spectral data, even 

when these are highly complex and/or obscured by competing signals (Supplementary Figure S5, 

S6, S8). By this method, spectra could be automatically reduced to a series of constituent peaks 

and intensities (Figure 1A,B).32,33 To accomplish this, it was necessary to accurately sum the 

intensity from each multiplet that the resonances are split into via scalar coupling. On a 
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fundamental mathematical level these resonances in the NMR spectrum can be described as a 

convolution between a peak shape and a set of weighted delta functions (a ‘delta matrix’, see 

Figure 1A,B and Methods). The uSTA algorithm was therefore also designed to exploit this 

relationship to allow automatic detection of resonances and iteratively return a set of unique delta 

functions that describe the peak position and intensities; this process is executed simultaneously 

for both spectra acquired (pulse on and pulse off) in order to exactly and precisely determine not 

only peak positions, but the change in intensity due to magnetization transfer. Pleasingly, the 

algorithm successfully returned reconvolved spectra that were close to identical to the original 

spectra (Figures 1, 2, 3).  

The consequence was not only resonance identification (‘peak-picking’) but also combined 

multiplicity-determination and overall signal quantification (the latter being critical to precise uSTA, 

see below) (Figure 1B). The results of this algorithm were also demonstrated/tested in the analysis 

of overlapped 1D spectra (Figures 1B – see also overlaps in all subsequent analyses), where 

the algorithm successfully returned the locations and intensities of the 3 source functions used 

to simulate the overlapped spectrum shown. In this way, and in an iterative manner, a ‘near 

perfect’ peak shape was supplied to give an accurate representation of the spectrum (Figure 1A). 

Moreover, when sufficient peaks are combined, then this process also allows the determination of 

multiplicities for a given more complex resonance through the combination of multiple peaks that 

may be similarly re-convolved and compared (Figure 1B). The success of the method was 

immediately evident from the ‘raw’ (unperturbed/reference) data; raw data and algorithmically-

derived spectra were essentially identical in all cases (see all Figures for such overlaps). The peak 

positions identified by the algorithm also mapped exactly to the expected positions of resonances 

as established using conventional, manual NMR assignment (see Supporting Methods). 

Importantly, in the highlighted context of precise resonance identification this enabled signal 

intensity determination in the background of other (possibly confounding) resonances 

(Supplementary Figure S5, S6, S8). Moreover, those background resonances themselves could 

be similarly analyzed. In this way the two contributing components found in any saturation transfer 

experiment (i.e. protein (P) and ligand (L)) were therefore determined with dramatically improved 

precision (Figure 1C). With prior knowledge of the peak positions following analysis of the 1D 

NMR spectrum, only these positions could then be considered as possibilities for providing signal 

in the difference spectrum. This approach thereby provided precision and enabled a detailed 

quantitative analysis via uSTA by revealing signals that would be otherwise ‘hidden’.  
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Figure 1. Development of the uSTA Method.  
A),B): Schematic of process for automatically quantifying the signal intensities in NMR spectra 
using deconvolution. The analysis determined the number of peaks that can give rise to the signal, 
and return a simulated spectrum by convolving these with a peak shape function. Precise peak 
positions and their intensities are returned, which can be attributed to single protons observed in a 
spectrum.  
C): The STD NMR experiment compares two 1D NMR spectra, where the second involves a 
specific saturation pulse that aims to hit the protein but miss the ligand. The uSTA method requires 
these two spectra to be analysed in pairs, one that contains the raw signal, and the second that is 
the difference between the two. We define the ‘transfer efficiency’ as the fractional signal that has 
passed from the ligand to the protein. This measurement allows us to perform a detailed and 
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quantitative analysis that enables us to obtain structural, kinetic and thermodynamic information 
about the interaction between small molecules and proteins.  
D),E), F): Application of uSTA to study the interaction between bovine serum albumin (BSA) and L- 
Tryptophan (Trp). In D the 1D 1H-NMR spectrum of the mixture at 200 µM Trp and 5 µM BSA (= 
p+L, blue) is dominated by ligand but yet the ligand (L) and protein (P) can still be deconvolved 
using universal deconvolution, using a reference obtained from a sample containing protein only. 
This reveals contributions from individual multiplets originating from the ligand (yellow) and the 
protein only baseline (black) allowing precise recapitulation of the sum (red). In E application of 
universal deconvolution to STD spectra with varying concentrations of tryptophan allows uSTA 
analysis using ligand resonances identified in D. This, in turn allows signal intensity in the STD 
spectrum (p + L STD, light blue) to be determined with high precision. While signal-to-noise in the 
STD increases considerably with increasing ligand concentration, the measured atom-specific 
transfer efficiencies as determined by uSTA (C) are remarkably similar (D, middle bar charts and 
right transfer efficiency ‘maps’), showing that the primary contact between protein and ligand 
occurs on the C4a-C7a bridge of the indole aromatic ring.  
G): Application of the same uSTA workflow allows precise determination of even weakly binding 
sugar ligand trehalose (Glc-α1,1α-Glc) to E. coli trehalose repressor TreR. Again, the uSTA allows 
determination of transfer efficiencies with atom-specific precision.  
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Validation of uSTA’s Precision in Model Systems 

To fully establish a working system and test the full potential of the putative uSTA method 

(Figure 1C) we chose next to examine an archetypal, yet challenging, ligand-to-protein interaction. 

This was implemented in an automated manner through software that governed the uSTA workflow 

and that therefore reduced artefacts arising from subjective, manual analyses (Supplementary 

Figure S6). The binding of L-tryptophan (Trp) to bovine serum albumin (BSA, Figure 1D) is a long-

standing benchmark34 in STD analyses due to the plasticity of this interaction based on supposed 

hydrophobicity but also due to a lack of corresponding fully-determined, unambiguous crystal 

structures. This is therefore a system that standard NMR/STD methods are perceived20,35 to have 

already delineated well. We therefore set out to see if we could improve upon this benchmark 

through even more precise analyses via uSTA (Figure 1D-F). 

As for a standard STD experiment, 1D 1H-NMR spectra were determined for both ligand 

and protein. In addition, mixed spectra (p + L) containing both protein and excess ligand were 

determined with and without irradiation at frequencies corresponding to prominent resonance 

within the protein. Using the newly designed uSTA protocol, each of these spectra were processed 

automatically (see Supplementary Figure S6 and Methods). The deconvolved spectrum for 

ligand determined in the presence of protein was matched with high accuracy by uSTA (Figure 

1D). Moreover, we were able to achieve highly consistent ‘heat maps’, comprising atom-specific 

transfer efficiencies over a range of ligand concentrations that describe the pose of the ligand in 

the presence of the protein (Figure 1F see also Supplementary Figures S7,10) – these were 

determined not only at a single concentration but a variety of concentrations, even as low as 40 µM 

where the ability of uSTA to extract accurate signal proved critical (Figure 1F, left). These maps 

used observed proton data mapped onto heteroatoms to enable visual comparison of binding 

modes. Maps were strikingly consistent across a range of concentrations suggesting that a single, 

consistent pose was adopted by Trp when bound by BSA. The determined ‘maps’ of this pose 

suggested much stronger interaction of protein with the heteroaromatic indole side-chain of Trp, 

consistent with prior observations and known crystal structures with other hydrophobic ligands.36 

They also revealed quantitative subtleties to this interaction, suggesting that a stronger interaction / 

‘grip’ is felt by the centre of the indole ring (across bond C4a–C7a) than at its periphery, an 

observation that to our knowledge had not been previously possible using standard methods.   

Next, having demonstrated high precision of the method in a benchmark system and 

greater capability enabled by automated workflow (Supplementary Figure S6,S8) that gives rise 

to consequent quantitative analysis, we chose to analyze a more testing system based instead 

upon sugar-protein interaction. The trehalose repressor system has been analyzed previously by 

STD methods.37 The sugar ligand trehalose binds only weakly in this system and gives rise to a 

more challenging ligand-to-protein interaction analysis. Nonetheless, the uSTA workflow again 

successfully and rapidly determined atom-specific transfer efficiencies with high precision and 

resolution (Figure 1G). It also revealed hotspots of binding around OH-3 and OH-4 in a subtle, 
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atom-precise manner with graduation to reduced binding around both pyranoside rings with only 

minimal/less binding of the primary hydroxyl (Figure 1G). This p+L interaction also proved 

consistent with prior X-ray crystal structural analysis,38 although it should be noted that very low 

ligand occupancy in these prior analyses means that uSTA once again revealed greater detail than 

could be confidently gained previously. 

 

 

Determination of KD in a direct manner using uSTA. 

In this way, via uSTA, variation of concentration also allowed determination of binding 

constants directly from spectra. The transfer of magnetization between ligand and protein here was 

quantitatively analyzed using modified Bloch-McConnell equations,39 (see Methods) that account 

for intrinsic relaxation, cross-relaxation and protein-ligand binding to directly provide 

measurements of equilibrium binding KD and associated kinetics (kex). In the Trp•BSA system this 

readily revealed a KD = 32 ± 12 µM and kon = 6300 ± 2300 M-1s-1, koff = 0.20 ± 0.08 s-1, consistent 

with a prior determination of KD = 40 µM by isothermal calorimetry.35 It should be noted that this 

direct method proved only possible due to the ability of the uSTA method to deconvolute a true 

signal with sufficient precision, even at the lower concentrations used despite lower signal (Figure 

1F); uSTA through its precision vitally enabled atom-mapping and quantitation for ligand binding 

over previous methods. Critically, these values were fully consistent with all observed NMR data 

and independently obtained measures of KD. 

 

 

uSTA allows observation of Cryptic Sugar-Binding with SARS-CoV-2 Spike 

 As noted above, the binding of glycans as a pre-attachment mode during COVID-19 

infection has been predicted, although not yet clearly delineated. Our analysis of the 1D protein 1H-

NMR spectrum of the purified prefusion-stabilised ectodomain construct4 of intact trimeric SARS-

CoV-2-spike protein (see Supplementary Figure S7 for preparation details) revealed extensive 

glycosylation on the protein with sufficient mobility to generate a strong 1H-NMR resonance in the 

region 3.4-4.0 ppm (Figure 2B(i)). Whilst lacking detail, these resonances displayed chemical 

shifts consistent with the described mixed patterns of oligomannose, hybrid and complex N-

glycosylation found on SARS-CoV-2-spike after human expression.40 As such, these mobile 

‘internal’ glycans on SARS-CoV-2-spike contain glycan residues – i.e. sialosides – that are also 

potential competing ligands for any putative pre-attachment interactions. Therefore, their presence 

in the protein NMR analysis presented clear confounding issues for typical STD analyses. As such, 

SARS-CoV-2-spike represented a stringent and important test of the uSTA method. 

 We evaluated a representative panel of both natural and site-specifically-modified unnatural 

sialosides (Figure 2A and Figure 3). Strikingly, whilst use of standard methods provided an 

ambiguous assessment (Supplementary Figure S11), use of uSTA immediately revealed binders 
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and non-binders (Figure 3 and Supplementary Figures S8,S10,S11 and Supplementary Table 

S7).  
First, the simplest sialioside, N-acetyl-neuraminic acid (1), was tested as a mixture of its 

mutarotating anomers (1α  ⇔  1β). When analyzed using uSTA, these revealed (Figure 4 and 

Supplementary Table S7 and Supplementary Figures S11) low affinity but clear interactions by 

1α  as a ligand, mediated primarily by NHAc-5, but no measurable interactions by 1β . It should be 

noted that the detection of selective α-anomer interaction, despite the great dominance of the β-

anomer in solution, provided yet another further demonstration of the precision of the uSTA 

method (Figure 4 and 5A and Supplementary Figure S11). Together these data not only 

unambiguously confirmed interaction of SARS-CoV-2-spike with the smallest natural sialoside 

sugar but also revealed striking configurational selectivity (α  over β) by the protein. This α-

selectivity is notably consistent with the near-exclusive occurrence of α-sialosides on host cell 

surfaces as their α- but not β-linked conjugates (Figure 4).  

 Next, having confirmed simple, selective monosaccharide α-sialoside binding we explored 

extended, α-sialoside ligands that might give further insight into natural endogenous human sugar 

ligands that could be bound by SARS-CoV-2, as well as unnatural variants that could potentially 

modulate and even interrupt such binding. First, oligosaccharides of α-sialic acid were explored. 

Sialosides are often found appended to galactosyl (Gal/GalNAc) residues in either α2,3- (2) linked 

or α2,6- linked form (3); both were tested (Figure 3A(i,ii)). Both exhibited consistent, more 

extended binding surfaces with greater potential for protein interaction. Qualitatively this suggested 

a stronger binding affinity (see below for quantitative analysis). Common features of both binding 

modes were observed: as for monosaccharide 1, NHAc-5 acetamide group at C5 of the terminal 

sialic acid residues (Sia) proved to be a key binding hotspot for both 2 and 3. Differences between 

2 and 3 were also observed: the α2,6-trisaccharide (3) system displayed a more extended binding 

face yet with less intense binding hot-spots (Figure 3A, and corresponding lower overall 

interaction, see below) engaging additionally the side-chain glycerol moiety (C7-C9) of the terminal 

Sia acid as the OH-4 C4 hydroxyl of the galactosyl (Gal) residue. The interaction with α2,3-

trisaccharide (2) was tighter (see below) and more specific to NHAc-5 of the Sia. 

The extended interaction displayed by the C7-C9 Sia side-chain in some of these natural 

ligands caused us to consider whether modification of this side-chain might engage further and/or 

alternative binding modes. To this end, we also constructed modified unnatural sialosides to 

explore this possibility (4-6, Figure 2A). In the simplest variant we replaced the OH-9 hydroxyl 

group of sialic acid Sia to generate deoxygenated azide 4; this too interacted in an anomer-specific 

manner with only the α-variant displaying interaction, despite again the dominance of the β-anomer 

in solution, as for 1. The atom-specific map of 4 (Figure 4C and Supplementary Table S7) 

suggested that some interaction was lost through the removal of OH-9 (consistent also with binding 

analysis – see below). Notably, however, when C9 was instead extended by a biphenyl-
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carboxamide (BPC) moiety to generate 5, a strong additional interaction was generated with this 

introduced hydrophobic portion (Figure 2B,C,D and Figure 3B,C). It is particularly noteworthy that 

uSTA allowed exquisite detail to be determined in this unusual hybrid ligand (Figure 2B,C,D) that 

could not have been determined using standard methods, as these would have been dominated 

simply by the most potent hydrophobic interaction (with ligand sugar protons lost within 

glycoprotein sugar responses). In this way, we could demonstrate that such modified ligands bind 

through all portions of their surfaces but a distinct difference of interaction is observed in hybrid 

ligands: a greater contact was seen with the hydrophobic moiety than with the carbohydrate 

moiety. Such is the precision of uSTA, graded binding even within these two portions of the ligand 

was also determined (see atom-specific scoring, Figure 2C,D). For example in 5, greatest binding 

for the hydrophobic moiety was seen at the tip with lowering, graduated binding towards the amide 

junction at C9. In the sugar portion, despite a quite different contact type, individual gradation was 

also observed: the C7-C9 sidechain bound most strongly but a clear significant contribution from 

the NHAc-5 group can also be discerned (Figure 2C,D). Finally, a variant 6 that is a hybrid with 

both hydrophobic BPC-moiety and extended unnatural trisaccharide was also synthetically 

generated (Supplementary Figure S12) to test the relative dominance of the two most potent 

moieties identified by uSTA. Interestingly, significantly extended binding interfaces were seen in 

both, suggesting a generated synergy in binding. In this way, uSTA rapidly allowed the mapping 

and iterative design of natural and unnatural sugar ligands for SARS-CoV-2-spike.  
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Figure 2. uSTA Reveals Interaction of Sialosides with SARS-CoV-2-spike Protein  
A): A panel of natural, unnatural and hybrid variant sialoside sugars 1-6 was used to probe 
interaction between sialic acid moieties and spike. Unnatural variations (4-6, green) allowed 
mapping of C7-C9 side-chain interactions in the sialoside whilst use of extended sugars probed 
differing cell-surface glycan structures.  
B): Application of the uSTA workflow (Supplementary Figure S6) to SARS-CoV-2-spike protein 
(shown in detail for 5, see also Figure 3) i) The 1D 1H-NMR of SARS-CoV-2-spike protein shows 
considerable signal in the glycan-associated region despite protein size, indicative of mobile 
internal glycans in spike protein. This effectively masks traditional analyses, as without careful 
subtraction of the protein’s contributions to the spectrum (Supplementary Figure S8), the ligand 
cannot be effectively studied. The uSTA process of: ii) ligand peak assignment and deconvolution 
→ iii) p + L peak assignment and deconvolution → iv) application to p + L STD yields precise 
atom-specific transfer efficiencies (Supplementary Figure S6). Note how in ii) individual multiplet 
components, have been assigned (yellow); the back-calculated deconvolved spectrum (red) is an 
extremely close match for the raw data (purple). In iii) the spectrum is a complex superposition of 
the ligand spectrum (and protein only yet uSTA again accurately deconvolves the spectrum 
revealing the contribution of protein only (black) and the ligand peaks (yellow). Using these data, 
uSTA analysis of the STD spectrum in iv) pinpoints ligand peaks and signal intensities. 
C),D): Using these intensities, atom-specific transfer efficiencies can be determined with high 
precision and reveal in hybrid 5 the details of both the unnatural BPC moiety and the natural sialic-
acid moiety. Although the aromatic BPC dominates the interaction for the unnatural ligand 5, the 
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subtleties of the associated sugar contribution in this ligand can nonetheless be determined 
(Supplementary Figure S5,S6).   
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Figure 3. Observation of Sialoside Binding to SARS-CoV-2-spike Protein via uSTA. 
Application of the uSTA workflow (Supplementary Figure S6) reveals atom-specific binding 
modes to spike protein for both natural e.g. sialoside trisaccharides Siaα2,3Galβ1,4Glc (A) and 
Siaα2,6Galβ1,4Glc (B) and unnatural hybrid variants 9-BPC-Sia (C) and 9-BPC-
Siaα2,6Galβ1,4Glc (D). uSTA deconvolution of the 1D spectrum of the p + L mixture (green), 
together with the STD spectrum (blue) allows atom- specific transfer efficiencies to be calculated, 
and rendered onto the molecules as ‘maps’ (Supplementary Figure S6,S8). Notably, even when 
protein preparations contain protein reagents such as glycerol (*), this could be effectively included 
in the analysis and subtracted.  
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Figure 4. Simultaneous observation of binding even within dominated equilibria using uSTA 
In the spectra of sialic acid (1) and azido-sialic acid (4), both α and β anomeric forms could be 
readily identified, with the overall population being dominated by the β form (94 and 95%, 
respectively). Even despite this strong population difference, application of the uSTA method 
following assignment of resonances from the two forms allowed determination of binding surfaces 
simultaneously. Spike shows strong binding preference for the α anomers, as revealed by surfaces 
(A, C) even though its population is minor overall; both surfaces were highly similar for these two 
simpler monosaccharides but closely resemble those of extended trisaccharides 2 and 3 (Figure 
3). While the β form is dominant in terms of population and overall contribution to the 1D NMR 
spectra, its ability to bind spike (B, D), and hence its proportional contribution to the STD spectrum, 
was found to be significantly lower than the α form.  
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Determination of binding potency of sialosides to spike protein. 

Through the use of uSTA and complementary methods we also sought to assess the 

relative binding affinity of spike trimer to our ligands. First, the uSTA method allowed a rapid and 

ready comparison of the relative binding efficiencies of all of the sialosides at pinpointed ligand 

sites (Figure 5B). These revealed that when judged by the level of engagement of the tip-sugar 

sialoside NHAc-5 group, the natural α2,3-trisaccharide 2 and the hybrid, unnatural 

monosaccharide 5 were the most potent ‘end-on’ binders. They also confirmed the conclusions 

drawn from the qualitative analysis (see above): that loss of the OH-9 (to form azide in 4) was 

detrimental to this binding, whereas extension through the BPC moiety proved enhancing (in both 

6 > 3 and 5 >> 1). Interestingly, the hybrid BPC-trisaccharide 6 displayed apparently lower relative 

binding affinity than the simple hybrid monosaccharide 5.  

Next, using variable concentrations of the most potent natural ligands, α2,3-trisaccharide 2 

[6µM spike, 2 at 12µM, 60µM, 1mM and 2mM excitation at 5.3 ppm] and variable concentrations of 

spike protein we used the uSTA method to directly determine an affinity constant (Figure 5C), KD = 

32 ± 12 µM with kon = 630 ± 230 M-1s-1, koff = 0.08 s-1. We also probed binding in a different mode 

by measuring the affinity of spike trimer to the α2,3-trisaccharide 2 when displayed in an 

unorganized form on a modified surface (see Supplementary Figure S13) using surface plasmon 

resonance analysis; the latter generated a corresponding KD = 23 ± 6 µM (kon = 1030 M-1s-1). 

These similar determined values for either single soluble glycan binding to spike protein or when 

displayed on a surface suggests combined avidity for attachment through multivalency41,42 might 

require proper organization on a cell-surface to prove physiologically relevant in infection (see also 

Discussion). 
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Figure 5. uSTA Reveals Selectivity Modes for SARS-CoV-2-spike Protein Sugar-Binding. A): 
uSTA reveals strong alpha over beta selectivity in sialosides for 1 and 4. Ligand 1 exists in a 
mutarotating mixture of configurational isomers. Despite the strong concentration dominance of 1β 
> 1α (top) in this equilibrium, uSTA shows the strong selective binding of 1α > 1β (bottom). See 
also Figure 4.  
B): Normalized uSTA transfer efficiencies of the NAc methyl protons can be determined for each 
ligand studied here. We see not only the same selectivity for Siaα > Siaβ for 1 and 4, but also the 
enhancing effect of unnatural modification BPC (6 > 3 and 5 >> 1). The specific uSTA value for 5 
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and 6 for the biphenylcarboxamide (BPC) moiety ring is approximately 10x that of the NAc, and we 
see no preference for α / β forms, raising the possibility that the BPC may be interacting with the 
protein via a different site (see also Discussion). Errors were determined through a boot-strapping 
procedure where mixing times were sampled with replacement, allowing for the construction of 
histogram of values in the various parameters that robustly reflect their fitting errors.  
2mM overall concentration of Siaalpha is 100 µM. The observed transfer efficiency of Sia α-
anomer at this concentration is similar to that observed for 2,3-SiaLac at 100 µM suggesting similar 
KDs. By contrast, the Sia β-anomer is 1.9mM, and at this concentration its transfer efficiency is 
extremely small. 
C): Quantitative analysis of the STD build up curves using a modified set of Bloch-McConnell 
equations that account for binding and cross relaxation allow us to determine thermodynamic and 
kinetic parameters that describe the interaction, KD, kon, and koff. The values obtain are indicated, 
where the errors come from a boot-strapping procedure. BSA•Trp system (left); SARS-CoV-2•2 
system (right). 
D): Coupling uSTA with an integrative modelling approach such as HADDOCK (High Ambiguity 
Driven DOCKing)43,44 allows generation and, by quantitative scoring against the experimental uSTA 
data, selection of models that provide atomistic insights into the binding of sugars to the SARS-
CoV-2-spike protein. as shown here by superposition of uSTA ‘map’ onto cluster. uSTA mapping 
the interaction between SARS-CoV- 2-spike (based on PDB ID PDB 7c2l, 17) with ligands 1a, 2 and 
3 identifies the NHAc-5 methyl group of the tip sialic acid residue making the strongest interaction 
with the protein. By filtering HADDOCK models against this information, we obtain structural 
models that that describe the interaction between ligand and protein (Supplementary Figure 
S14). Most strikingly, we see the same pattern of interactions between protein and sialic acid 
moiety in each case, where the NAc methyl pocket is described by F79, L77, L18 and R78, 
supported by S255. Additionally, the OH-2 of the galactosyl residue and the COO--1 carboxylate of 
the sialic acid both interact with R21, which is only possible for the α form, not the β form, thus 
explaining the selectivity.  Although sequence and structural homology are low (Supplementary 
Figure S1), MERS-spike protein also appears to possess a corresponding NHAc-binding pocket 
characterized by an aromatic (F39)–hydrogen-bonding (D36)–hydrophobic (I132) triad.9 
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uSTA Allows delineation of spike sugar-binding site. 

The uSTA method also allowed use of atom-specific data describing binding to be 

combined with detailed modelling algorithms. uSTA analyses of ligands 1-4 identified a series of 

atoms as consistently providing the highest transfer efficiencies, most notably the acetamide 

methyl group of the sialic acid residue in all. We sought to combine our measurements with the 

information-driven HADDOCK (High Ambiguity Driven DOCKing) method as an example a highly 

flexible, information-driven docking approach43,44 capable of creating detailed atomistic models for 

binding interactions. Having identified likely sets of interacting residues using sequence alignment 

(Supplementary Figure S1) and structural homology of SARS-CoV-2-spike to other coronavirus 

spikes (PDB ID 6q06, ref. 9), models were generated with HADDOCK for 1α (the alpha anomer of 

sialic acid), and the two natural trisaccharides 2 , 3. The resulting ensembles of models were 

quantitatively scored against the uSTA data (Supplementary Figure S14). In each case, a single 

narrow cluster of poses emerged (Figure 5D) where the acetamide NHAc methyl group of the 

sialic acid moiety is held within a pocket delineated by a SARS-CoV-2-spike sidechain triad of F79, 

T259 and L18 that appear to mediate aromatic, carbonyl-hydrogen-bonding and hydrophobic 

interactions, respectively. Additionally, the OH-2 of the galactosyl residue and the COO--1 

carboxylate of the sialic acid are predicted to both interact with R21 providing a structural rationale 

for why the α anomer binds but the β anomer does not. Notably, C1 carboxylate is a known, key 

recognition point in certain Sia-specific lectins.45 Interestingly, although the sequence and 

structural homology to MERS coronavirus spike protein in this region is seemingly low, the MERS-

spike protein possesses a corresponding NHAc-binding pocket characterized by an aromatic 

(F39), hydrogen-bonding (D36) and hydrophobic (I132) triad.9 uSTA analysis therefore unlocked 

relevant distance restraints that revealed consistent ligand poses in a set of model complexes that 

now pinpoints a glycan binding pocket in the NTD. Notably, this site corresponds to the sites of 

reported hotspot mutations in SARS-CoV-2 variants (see below). 

 

uSTA allows comparison of SARS-CoV-2 glycan attachment mechanism and evolution. 

Several suggested SARS-CoV-2 glycan attachment mechanisms have to date focused on 

the role of spike RBD.13,15 First, we compared the relative potency of the sialoside binding identified 

here to previously identified15 binding of heparin motifs (Figure 6A,B). Heparin tetrasaccharides 7 

and 8 (Figure 6A) were selected to allow a near residue-for-residue comparison with our identified 

trisaccharide (and extended trisaccharide) motifs; 7 and 8 differ from each other only at a single 

glycan residue (residue 2) site. Unlike the ‘end-on’ binding of sialosides, uSTA revealed an 

extended non-localized binding interface (Figure 6B). 

Next, we examined the possible evolution of sialoside binding over emerging lineages of 

SARS-CoV-2 that have been observed to date.21 Two notable ‘variants of concern’ B1.1.7 (so-

called Kent) and B1.351 (so-called South African) have seen some of the highest levels of 

enhanced transmission and/or infectivity in current phases of the pandemic. Strikingly, structural 
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analysis revealed that key mutational hotspots in these variants sit around or in the glycan binding 

pocket identified by uSTA (Figure 6C). When corresponding B1.1.7 and B.1.351 spike-protein 

variants were probed by uSTA, these displayed dramatically ablated binding towards sialoside 2 

as compared to A-lineage spike (Figure 6D and Supplementary Figure S15). 

Finally, to explore the possible role of sialoside binding in relation to ACE2 binding we also 

used uSTA to test the effect upon binding in the presence of a known potent neutralising antibody 

of ACE2•spike binding, C5 (Figure 6D,E and Supplementary Figure S16).46 Notably, assessment 

of binding to sialoside 2 in the presence and absence of antibody at a concentration sufficient to 

saturate the RBD led to only slight reduction in binding. Uniformly modulated atomic transfer 

efficiencies were consistent with a maintained glycan binding pocket with undisrupted topology and 

mode of binding. This suggested that sialoside binding is a mechanism that operates in addition to 

and potentially cooperatively with ACE2 binding in SARS-CoV-2. It also confirmed that the primary 

sialoside glycan binding site SARS-CoV-2-spike is distinct from the RBD. 
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Figure 6. Comparison of SARS-CoV-2 glycan attachment mechanism and evolution. 
A)i, B)i The binding of two heparin-derived tetrasaccharides (7, 8) to A-lineage SARS-CoV-2 spike 
protein is demonstrated through a protein and ligand STD response and a corresponding lack of 
ligand only STD response A)iii, B)iii.  Atom specific bindings are shown A)ii, B)ii. The 
assignments are shown in green, with a * indicating overlapped, ambiguous assignments. 
C): Mutations to the glycan binding pocket identified by uSTA are found in the B.1.351 
(blue) and B.1.1.7 (red) lineage variants of SARS-CoV-2-spike. 
D): These ablated binding of the 2,3-alpha sialyllactoside 2 as measured by the transfer 
efficiency of the NAc protons. 
E,F): When uSTA was used in the presence of the potent neutralizing nanobody C5 to 
probe A-lineage SARS-CoV-2 spike (spike (E i), nanobody-plus-spike (E ii)) essentially 
similar binding pattern was observed with uniformly modulated the atomic transfer 
efficiencies (F). 
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Identification of sialoside trisaccharide as a putative ligand in A-lineage SARS-CoV-2 correlates 

with genetic variation in clinical samples. 

The identification of a putative binding site glycan in sialoside trisaccharide 2 as a functional 

ligand and hence potential attachment point for SARS-CoV-2 highlights a sugar motif (and related 

structures) found commonly on cell surfaces (attached both as glycolipid and glycoprotein glyco-

conjugates). This, in turn, suggested that there may be impact of glycosylation function in humans 

upon infection by SARS-CoV-2 and hence in the presentation and pathology of COVID19 disease. 

Strikingly, analysis following whole exome sequencing of an early 2020 cohort of 533 COVID-19-

positive patients (see Supplementary Table S1) identified two glycan-associated genes within the 

top five most-influential genes upon disease severity. Specifically, recursive feature elimination 

applied to a Least Absolute Shrinkage and Selection Operator (LASSO)-based47 logistic regression 

model identified: LGALS3BP (4th out of >18000 analyzed genes) and B3GNT8 (5th out of >18000) 

(Figure 7A and Supplementary Figure S17). Rare variants in these two genes were beneficially 

associated with less severe disease outcome (Figure 6B,C, see also Supplementary Tables S2-

6 for specific B3GNT8 and LGALS3BP genetic variants, B3GNT8 chi-squared five categories, 

B3GNT8 chi-squared 2x2, LGALS3BP chi-squared five categories, LGALS3BP chi-squared 2x2, 

respectively). 

LGALS3BP encodes for a secreted protein Galectin-3-binding-protein (Gal-3-BP, also 

known as Mac-2-BP) that is an apparent partner and blocker of a specific member (Gal-3) of the 

galectin class of carbohydrate-binding proteins.48 Galectins are soluble, typically secreted and 

implicated in a wide-range of cellular functions.49 Notably Gal-3 binds the so-called poly-N-acetyl-

lactosamine [polyLacNAc or (Gal-GlcNAc)n] chain-extension variants found in tetraantennary N-

linked glycoproteins (Figure 7D), including those displaying sialyl-Gal-GlcNAc motifs, close 

analogues of our discovered ligands for SARS-CoV-2 spike 2 and 3.50,51 Notably, rare variants in 

LGALS3BP were present in in 9/114 (~8%) of a/pauci-symptomatic subjects or mildly-affected 

patients compared to 8/419 (< 2%) of the remaining 419 patients who required more intensive 

care: oxygen support, CPAP/BiPAP or intubation; none of the 69 most seriously affected patients 

(intubated) carried variants of LGALS3BP (Figure 7B). Intact LGALS3BP-gene-product Gal-3-BP 

therefore appears correlated with more severe COVID19 outcome. 

The other implicated gene, B3GNT8 encodes for a protein glycosyltransferase β-1,3-N-

acetyl-glucosaminyltransferase-8 (GlcNAcT8 or β3GnT8) that is responsible for the anchor-point 

initiation of poly-N-acetyl-lactosamine (polyLacNAc) synthesis from tetraantennary N-linked 

glycoproteins (Figure 7D).52 Again, rare variants in B3GNT8 were present in in 11/114 (~10%) of 

a/pauci-symptomatic subjects or mildly-affected patients compared to 10/419 (~2%) of the 

remaining 419 patients who required more intensive care (Figure 7C). 

Finally, to test the possible roles of sialosides in mediating viral entry suggested by this 

model (Figure 7D), we tested the consequences of reducing cell-surface sialosides. Consistent 

with this model, when ACE-2-expressing mammalian (MDCK) cells were treated with a broad-
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activity sialidase (Arthrobacter ureafaciens neuraminidase, see Methods), the consequent uptake 

of pseudovirus displaying SARS-CoV-2-lineage-A-spike and capable of expressing luciferase 

reporter was significantly reduced (Figure 7E). 
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Figure 7. Analyses of Early 2020 SARS-CoV-2-positive Patients Reveals Glycan-Associated 
Genes Suggesting a Model of Glycan Interaction Consistent with uSTA Observations of 
Sialoside Binding in Lineage-A SARS-CoV-2. 
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A): Histogram of the LASSO-based Logistic Regression weightings after Recursive Feature 
Elimination analysis of 533 SARS-CoV-2-positive patients. Positive weights score susceptible 
response of gene variance to COVID19 disease, whereas negative weights confer protective 
action through variance. Variation in glycan-associated genes B3GNT8 and LGALS3BP score 2nd 
and 3rd out of all (>18000) genes as the most protective, respectively (highlighted red). 
B),C): Distribution of rare variants in B3GNT8 and LGALS3BP. B) Rare beneficial mutations 
distributed along the Gal-3-BP protein product of LGALS3BP, divided into the Scavenger Receptor 
Cysteine-Rich (SRCR)-domain (light blue) and the BACK domain (light orange). C) Rare 
beneficial mutations distribution along the βGlcNAcT8 protein product of B3GNT8 divided into the 
predicted transmembrane (TM) domain (light blue) and glycosyltransferase catalytic (GT) domain 
(light orange) which catalyzes the transfer of polyLacNAc-initiating GlcNAc onto tetraantennary N-
linked glycoproteins (see also D). The different colours of the mutation bands (top to bottom) refer 
to the severity grading of the COVID19-postive patients who carried that specific mutation (red: 
Hospitalized intubated; orange: Hospitalized CPAP/BiPAP; pink: Hospitalized Oxygen Support; 
light blue: Hospitalized w/o Oxygen Support; blue: Not hospitalized a/paucisymptomatic). 
D): A proposed coherent model consistent with observation of implicated B3GNT8 and LGALS3BP 
genes and observed Sia-Gal-Glc trisaccharide as ligand by uSTA. Strikingly, although 
independently identified, B3GNT8 and LGALS3BP produce gene products βGlcNAcT8 and Gal-3-
BP, respectively, that manipulate and/or engage with processes associated with a common 
polyLacNAc-extended chain motif found on tetraantennary N-linked glycoproteins. A model 
emerges in which any associated loss-of-function from variance leads either to loss of polyLacNAc-
extended chain (due to loss of initiation by βGlcNAcT8) or enhanced sequestration of by Gal-3 
polyLacNAc-extended chain (which is antagonized by Gal-3-BP). Both, would potentially lead to 
reduced access of virus spike to uSTA-identified motifs. E): ACE-2-expressing MDCK cells were 
pre-treated with sialidase before a 4 h pulse with SARS-CoV-2 pseudovirus. After 48 h, 
pseudoviral entry was evaluated via luciferase reporter assay. Data are represented as the fitted 
logarithmic curve ± the 95% confidence intervals (n = 3). 
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Discussion 
~800 words 

Prior analyses of sugar interaction with coronavirus spike proteins have generated varied 

observations and conclusions as to possible mechanisms. These have largely employed more 

traditional, surface-display biophysical methods for analyzing interaction (e.g. ‘glycochip’/glycan-

array binding analyses). We have devised a protein saturation transfer difference method (uSTA) 

for assessing ligand•protein binding applied here to SARS-CoV-2 spike protein (Supplementary 

Figures S5,S6). Such mammal-derived pathogen proteins are typically a challenging problem in 

NMR analysis, complicated by the presence and signal arising from mobile, protein-linked glycans, 

However, uSTA has effectively and robustly identified intermolecular sugar spike interactions. Our 

workflow does not require the use of relaxation filters and is automated by freely distributed 

software. With these data we have derived structural models for three biologically relevant ligands 

that reveal the sialic acid to be in a consistent binding pose in each.  

Intriguingly we find a clear link between our data and genetic analyses in patients that have 

been correlated with severity of disease. This suggests not only that cell-surface glycans and the 

modulation of binding to spike-to-sialosides may have played a role in infection and disease 

progression but also now identifies two glycan-associated genes. Genetic variations of LGALS3BP 

(which produces galectin-blocker Gal-3-BP) and B3GNT8 (which produces glycosyltransferase 

β3GnT8) that reduce corresponding gene products (Gal-3-BP and β3GnT8, respectively) prove 

beneficial. Strikingly, despite their independent identification here, both Gal-3-BP and β3GnT8 

interact around a common glycan motif: the polyLacNAc chain-extension variants found in 

tetraantennary N-linked glycoproteins (Figure 7D). The simplest explanation is thus that 

modulation of such glycoproteins have played a role in infection and disease progression. 

Consistent with the sialoside ligands we identify here, these glycoproteins contain Sia-Gal-GlcNAc 

motifs within N-linked-polyLacNAc-chains. Notably, these motifs have recently been identified in 

the deeper human lung.53 

These data lead us to suggest that A-lineage SARS-CoV-2 virus may have exploited 

glycan-mediated attachment to host cells (Figure 7D) using N-linked-polyLacNAc-chains as a 

foothold. Reduction of Gal-3-BP function would allow its target, the lectin Gal-3, to bind more 

effectively to N-linked-polyLacNAc-chains, thereby competing with SARS-CoV-2 virus. Similarly, 

loss of β3GnT8 function would ablate the production of foothold N-linked-polyLacNAc-chains 

directly denying the virus a foothold. We cannot exclude other possible mechanisms including, for 

example, the role of N-linked-polyLacNAc-chains in T-cell regulation.54 Notably, this analysis of the 

influence of genetic variation upon susceptibility to virus was confined to ‘first wave’ patients 

infected with A-lineage SARS-CoV-2. Our discovery here also that in B-lineage virus such binding 

to certain sialosides may be ablated further highlights the dynamic role that sugar binding may play 

in virus evolution and may be linked, as was previously suggested for H5N1 influenza A virus, to 

changing sugar preference during zoonotic transitions.55 
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Analyses of the glycosylation of spike protein itself suggests at least 66 N-linked 

glycosylation sites on Asn are occupied in the complete spike trimer40 with some O-glycosylation. 

This glycosylation, at least as determined from mammalian cell expression, appears to be of a 

variety of types including oligomannose, hybrid and complex type – the latter two displaying tip 

sialic acid residues. Comparison of the glycosylation states of viral surfaces reveals56 that SARS-

CoV-2 is more lightly glycosylated than other viruses suggesting, at least in part, that an evolved 

role of these glycans is not to shield the virus for immune evasion, unlike other viruses such as 

heavily glycosylated HIV-1. Recently, advanced simulations have suggested a role of N-glycans in 

altering the conformational dynamics of the RBD with functional consequence.57 Moreover, the 

glycans in the N-terminal region of spike protein are located on highly mobile loops, and it is likely 

that the sugars are also themselves dynamic and flexible with potential for various additional 

modes of interaction with not only receptors but potentially even with spike protein itself intra-

molecularly. This raises the intriguing possibility that in SARS-CoV-2 such a mechanism could 

modulate inter-molecular glycan attachment affinity through intra-molecular use of its own ‘internal 

glycans’ (also sialosides) as competitors. If so, any such interaction may have therefore further 

contributed to the cryptic nature of sialoside binding by SARS-CoV-2. Notably, titration of 

trisaccharide 2 into spike trimer had no measurable effect upon thermal denaturation, suggesting 

that any binding does not grossly affect protein stability or structure (Supplementary Figure S18).  

More generally, uSTA now provides a comprehensive treatment of saturation transfer that 

is a ready method for not only identifying ligands and their binding parameters but that can also be 

linked to identifying binding sites even in relevant heavily-modified proteins. It could also potentially 

be used to similarly restrain structure calculation refinements where atomic resolution in the vicinity 

of a ligand is not possible. Overall, therefore, the uSTA method provides a new pipeline to provide, 

with minimal user input, multi-faceted analysis of ligand engagement even for previously 

challenging protein systems, such as those exploited by pathogens. 
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Methods 
 

Protein expression and purification. 
The gene encoding amino acids 1-1208 of the SARS-CoV-2 spike glycoprotein ectodomain [with 
mutations of RRAR > GSAS at residues 682-685 (the furin cleavage site) and KV > PP at residues 
986-987, as well as inclusion of a T4 fibritin trimerisation domain], using the construct previously 
described as template,58 was cloned into the pOPINTTGneo-BAP vector using the forward primer 
(5'- GTCCAAGTTTATACTGAATTCCTCAAGCAGGCCACCATGTTCGTGTTCCTGGTGCTG -3') 
and the reverse primer (5'- GTCATTCAGCAAGCTTAAAAAGGTAGAAAGTAATAC -3'), resulting in 
an aviTag plus 6His in the 3' terminus of the construct. 

Expi293 cells (Thermofisher Scientific) were used to express the Spike-Bap protein. The 
cells were cultured in expi293 expression media (Thermofisher Scientific) and were transfected 
using PEI MAX 40kDa (Polyscience) if cells were >95% viable and had reached a density of 
between 1.5 - 2 x 106 cells per ml. Following transfection, cells were cultured at 37 ˚C and 5% CO2 
at 120rpm for 17h. Enhancers (6mM Valproic Acid, 6.5mM Sodium Propionate, 50mM Glucose - 
Sigma) were then added and protein was expressed at 30 ˚C for 5 days before purification. 

The media in which the protein spike-bap was secreted was supplemented with 1x PBS 
buffer at pH 7.4 (1:1 v/v) and 5mM NiSO4. The pH was adjusted with NaOH to pH 7.4 and filtered 
using a 0.8um filter. The mixture was stirred at 150 rpm for 2 hours at room temperature. The 
Spike protein was purified on an Akta Express system (GE Healthcare) using a 5mL His trap FF 
GE Healthcare column in PBS, 20mM imidazole pH 7.4 and eluted in PBS, 300mM imidazole pH 
7.4. The protein was then injected on a High load superdex 200 16/600 gel filtration column (GE 
Healthcare) in deuterated PBS buffer pH 7.4. The eluted protein was concentrated using an 
Amicon Ultra-4 100kDa concentrator at 2000 RPM, 16°C, pre-washed multiple times with 
deuterated PBS) to a concentration of roughly 1 mg/mL. 
 
 

Errors 
The errors in the transfer efficiencies were estimated using a bootstrapping procedure. Specifically 
sample STD spectra were assembled through taking random combinations with replacement of 
mixing times, and the analysis to obtain the transfer efficiency was performed on each. This 
process was repeated 100 times to enable evaluation of the mean and standard deviation transfer 
efficiency for each residue. Mean values correspond well with the value from the original analysis, 
and so we take the standard deviation as our estimate in uncertainty. 
 

 

Reagent sources. 
6'-Sialyllactose sodium salt and 3'-Sialyllactose sodium salt were purchased from Carbosynth and 
used directly: 6'-Sialyllactose sodium salt- CAS-157574-76-0, 35890-39-2, 3'-Sialyllactose sodium 
salt - CAS-128596-80-5,35890-38-1. Bovine serum Albumin (BSA) and L-tryptophan were 
purchased from Sigma Aldrich. Heparin sodium salt, from porcine intestinal mucosa, IU≥100/mg 
was purchased from Alfa Aesar. All other chemicals were purchased from commercial suppliers 
(Alfa Aesar, Acros, Sigma Aldrich, Merck, Carbosynth, Fisher, Fluorochem, VWR) and used as 
supplied, unless otherwise stated.  
 

 

Synthesis of 9-BPC-6’-Sialyllactose (6). 
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Lactose (30 mg, 0.087 mmol, 1 eq), BPC-Neu5Ac (48 mg, 0.0974 mmol, 1.12 eq, prepared using a 
procedure adapted from ref. 59) and CTP disodium salt (92 mg, 1.74 mmol, 2 eq) were dissolved in 
buffer 100 mM Tris, 15 mM MgCl2 pH 8.5, 8.39 mL- to give achieve a final concentration of 10 mM 
with respect to the lactose acceptor. Pd-26ST enzyme (261 mL, 1.2 wt%, 1.38 mg/mL) and 
NmCSS enzyme (107.4 mL, 1 wt %, 2.73 mg/mL) were added to the reaction and the mixture 
shaken at 37 oC. After 22 h the reaction mixture was concentrated in vacuo and then purified via 
column chromatography (EtOAc:IPA:H2O 3:2:1à2.5:2:1 and then EtOAc:IPA:H2O: 4:2:1). 
Fractions containing the desired compound were concentrated, redissolved in water and 
lyophilised to yield the product as a white powder (17.7 mg, 0.0218 mmol, 25%) – Note: the 
reaction conversion was very high, however the yield is reflective of difficult isolation of the product. 
LRMS: m/z (ES-) 811 [M-H]-; HRMS: m/z (ESI-): calc. for C36H47O19N2 [M-H]- 811.2779, found 
811.2773; 1H NMR (400 MHz, D2O) δ 7.90 (2H, d, J = 8.5 Hz, ArH), 7.82 (2H, d, J = 8.3 Hz, ArH), 
7.80 – 7.71 (2H, m), 7.61 – 7.53 (2H, m), 7.53 – 7.45 (1H, m), 5.16 (0.4H, d, J = 3.8 Hz, H-1a 
(alpha)), 4.63 (1H, d, J = 8.0 Hz, H-1a (beta)), 4.41 (1H, d, J = 7.8 Hz, H-1b), 4.09 (1H, ddd, J = 
8.8, 7.2, 3.2 Hz, H-8c), 4.04 – 3.48 (m, 16H), 3.35 – 3.26 (1H, m, H-2a (beta)), 2.73 (1H, dd, J = 
12.4, 4.7 Hz, H-3ceq), 2.02 (3H, s, NCOCH3), 1.77 (1H, t, J = 12.2 Hz, H-3cax). 
 

 

Synthesis of Heparin Tetrasaacharides (7, 8). 
Heparin sodium salt (UFH, 100mg) was dissolved in the enzyme preparations in 100mM Tris 
Acetate, 5Mm Ca(OAc)2, pH 6.8 to achieve a final concentration of 30 mg/mL UFH and 1.5mg/mL 
Hep-1-SUMO. The reaction was incubated in a water bath at 28°C and terminated after 36hrs by 
heating at 95 ˚C for 5 min. Upon centrifugation (2000g, 2min), the supernatant was filtered using a 
0.2µm filter (Regenerated Cellulose, Sartorius) and lyophilised to yield a mixture of heparin 
oligosaccharides as a foam. These were then fractionated based on their degree of polymerisation 
on a Superdex Peptide 10/300 column (GE-Healthcare), following a procedure adapted from the 
procedure adapted from ref. 60,61. Briefly, the column was equilibrated before each run with 2CV of 
0.5M (NH4)2CO3 and the elution was monitored at 232nm. Sample application (100uL injection per 
run, ~10mg in sugar content) was followed by an isocratic elution with 0.5M (NH4)2CO3 at a flow 
rate of 0.6mL/min. The fraction collector was set to collect 1mL fractions until well-resolved peaks 
were detected; at that point, fractionation was manually controlled and tetrasaccharide-containing 
fractions from sequential chromatographic runs were pooled together and subjected to serial 
lyophilisation rounds. Approximately 15mg of heparin tetrasaccharides were recovered upon 
removal of the volatile salt; these were further analysed with strong anion exchange HPLC on a 
SAX Propac PA1 column (9x250mm, Thermo Scientific) using H2O, pH 3.5 as solvent A and 2M 
NaCl (HPLC grade) pH 3.5 as solvent B. The column was equilibrated with solvent A for 30min 
prior to sample application (500uL injection per run, 10mg/mL) and the target oligosaccharides 
were eluted following a linear gradient from 30% to 70% solvent B over 180min, at a flow rate of 
1mL/min. Fractions corresponding to the same retention times were pooled, neutralized with 
saturated NaHCO3 (HPLC grade) and lyophilized. Desalting was performed on an AKTA Purifier 
system (GE healthcare) by connecting three 5mL HiTrap Desalting columns (GE Healthcare) in a 
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row. Elution with water was performed at a flow rate of 6mL/min and monitored at 232nm; UV 
absorbing fractions were pooled and lyophilized to yield the pure target tetrasaccharides. 
 

 
Compound 7. White solid. 1H NMR (700 MHz, D2O) δ 5.91 (dd, J4’’’,3’’’ 4.7 Hz, J4’’’,2’’’ 1.4 Hz, 1H, H-
4’’’), 5.50 (d, J1’’,2’’ 3.8 Hz, 1H, H-1’’), 5.43 (d, J1’’’,2’’’ 2.6 Hz, 1H, H-1’’’), 5.39 (d, J1,2 3.5 Hz, 1H, H-1), 
4.55 (m, 1H, H-2’’’), 4.52 (d, J1’,2’ 8.0 Hz, 1H, H-1’), 4.29 – 4.26 (m, 3H, H-6a’’, 6a, 6b), 4.25 (dd, 
J3’’’,4’’’ 4.8 Hz, J3’’’,2’’’ 2.1 Hz, 1H, H-3’’’), 4.13 (dd, J6b’’, 6a’’ 11.3 Hz, J6b’’,5’’ 2.0 Hz, 1H, H-6b’’), 4.08 
(ddd, J5,4 9.7 Hz, J5,6a 4.2 Hz, J5,6b 2.7 Hz, 1H, H-5), 3.91 (ddd, J5’’,4’’ 10.1 Hz, J5’’,6a’’ 4.2 Hz, J5’’,6b’’ 
2.2 Hz, 1H, H-5’’), 3.79 – 3.70 (m, 4H, H-3’, H-4’, H-5’, H-4’’), 3.68 – 3.59 (m, 2H, H-4, H-3), 3.56 
(dd, J3’’,2’’ 10.6 Hz, J3’’,4’’ 8.8 Hz, 1H, H-3’’), 3.31 (dd, J2’,3’ 9.5 Hz, J2’,1’ 7.9 Hz, 1H, H-2’), 3.23 (dd, 
J2’’,3’’ 10.6 Hz, J2’’,1’’ 3.8 Hz, 1H, H-2’’), 3.20 (dd, J2α,3α 10.2 Hz, J2α,1α 3.6 Hz, 1H, H-2), 2.97 (dd, J2β,3β 
10.0 Hz, J2β,1β 8.4 Hz, H-2β). 13C NMR (176 MHz, D2O) δ 169.3 (C-6’’’ - COOH), 160.2 (C-6’ – 
COOH), 144.8 (C-5’’’), 106.0 (C-4’’’), 102.1 (C-1’), 97.7 (C-1’’), 97.1 (C-1’’’), 91.0 (C-1), 78.8 (C-4), 
78.0 (C-4’’), 77.5 (C-4’), 76.4, 75.9 (C-3’,5’), 74.5 (C-2’’’), 72.9 (C-2’), 69.53 (C-3’’), 69.3 (C-3), 68.7 
(C-5’’), 68.1 (C-5), 66.7 (C-6), 66.1 (C-6’’), 62.8 (C-3’’’), 57.6 (C-2), 57.5 (C-2’’). Data consistent 
with previous reports4. LRMS m/z (ESI-): Found 535.5 [M-2H]2-; HRMS: m/z (ESI-) calc. for 
C24H36N2O35S5

2-
 [M-2H]2- 535.9857, found 535.9858. 

 

 
Compound 8. White solid. 1H NMR (700 MHz, D2O) δ 5.91 (dd, J4’’’,3’’’ 4.8 Ηz, J4’’’,2’’’ 1.4 Hz, 1H, Η-
4’’’), 5.43 (d, J1’’’,2’’’ 1.9 Hz, 1H, Η-1’’’), 5.38 (dd, J 3.6, 1.7 Hz, 2H, H-1, H-1’’), 5.13 (d, J1’,2’ 3.4 Hz, 
1H, H-1’), 4.67 (d, J5’,4’ 3.0 Hz, 1H, H-5’), 4.62 (d, J1β,2β 8.3 Hz, 0.1H, H-1β), 4.55 (m, 1H, Η-2’’’), 
4.30 (dd, J6a,6b 11.4 Hz, J6a,5 4.9 Hz, 1H, H-6a), 4.27 (dd, J6b’’,6a’’ 10.7 Hz, J6b’’,5’’ 1.6 Hz, 1H, H-6b’’), 
4.25 – 4.21 (m, 3H, H-6b, H-2’, H-3’’’), 4.18 (dd, J6a’’,6b’’ 11.3 Hz, J6a’’,5’’ 2.0 Hz, 1H, H-6a’’), 4.12 (dd, 
J3’,2’ 6.7 Hz, J3’,4’ 3.9 Hz, 1H, H-3’), 4.07 – 4.02 (m, 2H, H-4’, H-5), 3.97 (m, 1H, H-5’’), 3.75 (at, J 
9.5 Hz, 1H, H-4’’), 3.67 (at, J 9.4 Hz, 1H, H-4), 3.62 (dd, J3,2 10.4 Hz, J3,4 8.9 Hz, 1H, H-3), 3.55 
(dd, J3’’,2’’ 10.6 Ηz, J3’’,4’’ 8.8 Hz, 1H, H-3’’), 3.22 (dd, J2’’,3’’ 10.6 Hz, J2’’,1’’ 3.6 Hz, 1H, Η-2’’), 3.18 (dd, 
J2α,3 10.3 Hz, J2α,1α 3.6 Hz, 1H, Η-2α), 2.97 (dd, J2β,3 10.1 Ηz, J2β,1β 8.4 Hz, H-2β, 0.1H). 13C NMR 
(176 MHz, D2O) δ 174.4 (C-6’ – COOH), 169.2 (C-6’’’ – COOH), 144.8 (C-5’’’), 105.8 (C-4’’’), 99.4 
(C-1’), 97.2 (C-1’’’), 96.5 (C1’’), 91.0 (C-1), 78.1 (C-4’’), 76.9 (C-4), 76.6 (C-2’), 76.3 (C-4’), 74.4 (C-
2’’’), 69.7 (C-5’), 69.6 (C-3’), 69.5 (C-3’’), 69.4 (C-3), 68.8 (C-5’’), 68.4 (C-5), 67.0 (C-6), 66.2 (C-
6’’), 62.7 (C-3’’’), 57.9 (C-2), 57.6 (C-2’’). Data consistent with previous reports4. LRMS m/z (ESI-): 
Found 575.5 [M-2H]2-; HRMS: m/z (ESI-) calc. for C24H36N2O38S6

2-
 [M-2H]2- 575.9641, found 

575.9651. 
 

Protein NMR Experiments.  

All NMR experiments in NMR Methods Table 1 were conducted at 15 °C on a Bruker AVANCE 
NEO 600 MHz spectrometer with CPRHe-QR-1H/19F/13C/15N-5mm-Z helium-cooled cryo-probe. 
Samples were stored in a Bruker SampleJet sample loader while not in magnet, at 4 °C.   
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1D 1H NMR spectra with w5 water suppression were acquired using the Bruker pulse 
sequence zggpw5, using the smooth square Bruker shape SMSQ.10.100 for the pulsed field 
gradients. The spectrum was centered on the water peak, and the receiver gain adjusted. Typical 
acquisition parameters were sweep width of 9615.39 Hz, 16 scans per transient (NS), with 4 
dummy scans, 32768 complex points (TD) and a recycle delay (d1) of 1 s for a total acquisition 
time of 54 s.  Reference 1D spectra of protein only were acquired similarly with 16384 scans per 
transient with a total acquisition time of 12.5 hrs. 

An STD experiment with excitation sculpted water suppression was developed from the 
Bruker pulse sequence stddiffesgp.2. The saturation was achieved using a concatenated series of 
50ms Gaussian shaped pulses to achieve the desired total saturation time (d20). The shape of the 
pulses was specified by the Bruker shape file Gaus.1.1000, where the pulse is divided into 1000 
steps and the standard deviation for the Gaussian shape is 165 steps. The field of the pulse was 
set to 200Hz, which was calculated internally through scaling the power of the high power 90o 
pulse.  

The total relaxation delay was set to 5s, during which the saturation pulse was applied. The 
experiment was acquired in an interleaved fashion, with each individual excitation frequency being 
repeated 8 times (L4) until the total desired number of scans was achieved.  Again, the spectrum 
was centred on the water peak, and the receiver gain optimised. Following recording of the fid, and 
prior to the recycle delay, a pair of water selective pulses are applied to destroy any unwanted 
magnetisation. For all gradients (excitation sculpting and spoil), the duration was 3 ms using the 
smooth-square shape SMSQ10.100. Typical acquisition parameters were sweep width of 9615.39 
Hz with typically 128 scans per transient (NS=16 * L4=8), 32768 complex points in the direct 
dimension and 16 dummy scans were executed prior to data acquisition.   

In a typical experiment, two excitation frequencies were required, one exciting protein, and 
one exciting far from the protein (+20,000Hz, +33ppm from the carrier). A range of mixing times 
were acquired to allow us to carefully quantify the buildup curve to obtain KD  values. A typical set 
of values used was 0.1s, 0.3s, 0.5s, 0.7s, 0.9s, 1.1s, 1.3s, 1.5s, 1.7s, 1.9s, 2.0s, 2.5s, 3.0s, 3.5s, 
4.0s and 5.0s. 

Off and on-resonance spectra were acquired for 16 saturation times, giving a total 
acquisition time of 8.7 hrs 

The experiment was acquired as a pseudo 3D experiment, with each spectrum being 
acquired at a chosen set of excitation frequencies and mixing times. Relaxation delays were set to 
10 s for BSA + tryptophan STDs, and were 5 s otherwise. 
 
NMR Methods Table 1: 
 
Sample: Ligand  

conc / µM 
Protein 
conc / µM 

On-resonance 
frequency / 
ppm 

Total 
acquisition 
time 

Used in 

BSA + Tryp 1000 5    
STD 5.44 13.4hrs Fig 1 D &  

F i) 
STD 10 ms Gaussian duration 5.44 6.7hrs  
STD 25 ms Gaussian duration 5.44 6.7hrs  
STD 50 ms Gaussian duration 5.44 6.7hrs  
      
BSA + Tryp 200 5    
STD 5.44 13.4hrs Fig 1 F ii) 
      
BSA + Tryp 40 5    
STD 5.44 13.4hrs Fig 1 F iii) 
      
BSA None 5    
1D  12.5hrs  
STD 5.44 13.4hrs Fig 1D, F i), 

F ii) & F iii) 
      
SPIKE None 1.5    
1D  12.5hrs  
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STD 5.44 8.7hrs Fig 2 B i), 
B iii), B iv) 
& C 
Fig 3 A ii), 
B i) & B ii) 

      
SPIKE + Neu5Ac 1 200 1.5    
STD 5.44 8.7hrs  
      
SPIKE + 9-azido-
Neu5Ac 4 

200 1.5    

STD 5.44 8.7hrs  
      
SPIKE + BPC-
Neu5Ac 5 

200 1.5    

STD 5.44 8.7hrs Fig 2 B iii), 
B iv) & C 
Fig 3 B i) 

      
SPIKE + 6-SiaLac 3 200 1.5    
STD 5.44 2.5hrs Fig 3 A ii) 
STD 5.44 9.83hrs Fig 3 A ii) 
      
SPIKE + 3-SiaLac 2 200 1.5    
STD 5.44 2.5hrs  
STD 5.44 9.83hrs  
STD 5.44 8.7hrs  
      
SPIKE + BPC-6-
SiaLac 6 

200 1.5    

STD 5.44 8.7hrs Fig 3 B ii) 
    
SPIKE None 6    
STD 5.44 8.7hrs S8 
STD 8.00 7.8hrs Fig 3 A i) 
STD var freq 1 List1 29.3hrs  
      
SPIKE + 3-SiaLac 2 2000 6    
STD 5.44 8.7hrs Fig 5 C 
STD var freq 2 List2 14.1hrs  
      
SPIKE + 3-SiaLac 2 1000 6    
STD 5.44 8.7hrs Fig 5 C 

S6 & S8 
STD 8.00 7.8hrs Fig 3 A i) 

S6 & S8 
STD var freq 3 List3 14.7hrs  
      
SPIKE + 3-SiaLac 2 60 6    
STD 5.44 8.7hrs Fig 5 C 
      
SPIKE + 3-SiaLac 2 12 6    
STD 5.44 8.7hrs Fig 5 C 
      
Neu5Ac 1 1000 None    
1D  1 minute  
    
3-SiaLac 2 1000 None    
1D  1 minute  
STD 5.44 8.7hrs S6 & S8 
STD 8.00 7.8hrs Fig 3 A i) 

S6 & S8 
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STD var freq 2 List2 14.1hrs  
STD var freq 3 List3 14.7hrs  
      
6-SiaLac 3 1000 None    
1D  1 minute  
STD 5.44 8.7hrs Fig 3 A ii) 
STD 8.00 7.8hrs  
      
BPC-6-SiaLac 6 500 None    
1D  18 minutes  
      
9-azido-Neu5Ac 4 1000 None    
1D  1 minute  
      
BPC-Neu5Ac 5 1000 None    
1D  1 minute Fig 2 B ii) 
B.1.1.7-SPIKE None 6    
STD 8.00 7.8 h  
    
B.1.1.7-SPIKE + 3-
SiaLac 2 

2000 6    

STD 8.00 7.8 h  
    
    
 
 
 
For STD 10-50 ms Gaussian experiments, the saturation times used were every other time from 
the default STD: 0.1 s, 0.5 s, 0.9 s, 1.3 s, 1.7 s, 2 s, 3 s, 4 s. 
 
List1: For STD var freq 1, the on-resonance frequencies in Hz relative to an offset of 2820.61 Hz 
are: 337.89, 422.36, 524.93, 736.11, 914.10, 1276.12, 1336.46, 1380.21, 1458.64, 1556.69, 
1693.96, 2494.93, 2597.50, 2790.58, 2930.86, 3362.27, 3663.95, 3986.75, 4099.88, 4326.15, 
4484.53, 4703.25, 4896.33, 5824.01, 6006.53 and 6208.65.  The saturation times used were 2 s, 3 
s, 4 s and 5 s. 
 
List2: For STD var freq 2, the on-resonance frequencies in Hz relative to an offset of 2820.61 Hz 
are: -2399.99, -1979.99, -1530.00, -1050.01, -330.021, 338.096, 1679.95, 1829.94, 1979.94, 
2129.94, 2279.94 and 2579.93. The saturation times used were 0.1 s, 0.5 s, 2 s and 5 s. 
 
List3: For STD var freq 3, the on-resonance frequencies in Hz relative to an offset of 2820.61 Hz 
are: -2579.98, -2459.99, -2339.99, -2039.99, -1488.00, -1120.03,  
-345.02, 311.97, 1079.96, 1379.95, 1679.95, 1979.94, 2279.94 and 2579.93.  The saturation times 
used were 0.1 s, 0.3 s, 0.5 s and 0.9 s. 
 
List4: For STD var freq 4, the on-resonance frequencies in Hz relative to an offset of 2820.61 Hz 
are: -2461.55, -1973.77, -1518.69, -1270.72, -693.69, -274.80, 280.08, 808.02, 1047.05, 2055.57, 
2630.61 and 2979.65.  The saturation times used were 0.1 s, 0.5 s, 0.9 s, 2 s, 3 s and 4 s. 
 
Spectra were also acquired on a 600 MHz spectrometer with Bruker Avance III HD console and 
5mm TCI CryoProbe, running TopSpin 3.2.6, recorded in NMR Methods Table 2, and a 950 MHz 
spectrometer with Bruker Avance III HD console and 5mm TCI CryoProbe, running TopSpin 3.6.1, 
recorded in NMR Methods Table 3.  The 950 used a SampleJet sample changer.  Samples were 
stored at 15 °C. The parameters used for the STD experiments were the same as above, with the 
following varying by instrument: 
 
On the 600, typical acquisition parameters were sweep width of 9615.39 Hz with typically 128 
scans per transient (NS=16 * L4=8), 32768 complex points in the direct dimension and 2 dummy 
scans, executed prior to data acquisition. 
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On the 950, typical acquisition parameters were sweep width of 15243.90 Hz with typically 128 
scans per transient (NS=16 * L4=8), 32768 complex points in the direct dimension and 2 dummy 
scans, executed prior to data acquisition. 
 
NMR Methods Table 2: 
 
Sample: Ligand 

conc. / µM 
Protein 
conc. / µM 

On-resonance 
frequency / 
ppm 

Total acquisition 
time 

Used in 

Trp 1000 None    
STD var freq 4 List 4 19.2hrs S7 
      
BSA None 5    
STD var freq 4 List 4 19.2hrs S7 
      
BSA None 10    
STD 5.44 7.9hrs  
    
BSA + Trp 1000 5    
STD var freq 4 List 4 19.2hrs S7 
      
BSA + Trp 25 10    
STD 5.44 11.9hrs  
      
SPIKE + Neu5Ac 1 2000 3    
STD 8.00 7.9hrs  
    
SPIKE None 3    
STD -1.00 7.9hrs  
    
Heparin B 500 None    
STD -1.00 7.9hrs  
    
Heparin C 500 None    
STD -1.00 7.9hrs  
    
SPIKE + Heparin B 500 3    
STD -1.00 7.9hrs  
    
SPIKE + Heparin C 500 3    
STD -1.00 7.9hrs  
    
SPIKE B.1.351 None 6    
STD -1.00 7.9hrs  
STD 5.44 7.9hrs  
    
3-SiaLac 2 1000 None    
STD -1.00 7.9hrs  
    
SPIKE B.1.351 + 3-
SiaLac 2 

60 6    

STD -1.00 7.9hrs  
    
SPIKE B.1.351 + 3-
SiaLac 2 

200 6    

STD -1.00 7.9hrs  
    
SPIKE B.1.351 + 3-
SiaLac 2 

1000 6    

STD -1.00 7.9hrs  
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SPIKE B.1.351 + 3-
SiaLac 2 

2000 6    

STD -1.00 7.9hrs  
    
    
    
    

 
  

NMR Methods Table 2.1: 
 
Sample: Ligand 

conc. / 
µM 

Protein 
conc. / 
µM 

Nanobody 
conc. / µM 

On-resonance 
frequency / ppm 

Total acquisition 
time 

Used in 

SPIKE None 6 None    
STD  8.00 7.9hrs  
     
3-SiaLac 2 2000 None None    
STD  8.00 7.9hrs  
     
C5 Nanobody None None 6    
STD  8.00 7.9hrs  
     
SPIKE + 3-
SiaLac 2 

2000 None 6    

STD  8.00 7.9hrs  
     
SPIKE + C5 
Nanobody 

None 6 6    

STD  8.00 7.9hrs  
     
SPIKE + 3-
SiaLac 2 + C5 
Nanobody 

2000 6 6    

STD  8.00 7.9hrs  
     
3-SiaLac 2 + 
C5 Nanobody 

2000 None 6    

STD  8.00 7.9hrs  
     
 
 
NMR Methods Table 3: 
 
Sample: Ligand 

conc / µM 
Protein 
conc / µM 

On-resonance 
frequency / 
ppm 

Total 
acquisition 
time 

Used in 

SPIKE None 6    
STD 8.00 7.2hrs Fig 4 A-D 

S9 A & B 
      
SPIKE + Neu5Ac 2000 3    
STD 5.44 7.2hrs Fig 4 A & B 

S9 A 
 

      
SPIKE + 9-Azido-
Neu5Ac 

2000 3    

STD 5.44 7.2hrs Fig 4 C & D 
S9 B 
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Neu5Ac 2000 None    
STD 5.44 7.2hrs Fig 4 A & B 

S9 A 
      
Neu5Ac 5000 None    
STD 5.44 7.2hrs  
    
9-Azido-Neu5Ac 2000 None    
STD 5.44 7.2hrs Fig 4 C & D 

S9 B 
      
 

uSTA Data Analysis. 
NMR spectra with a range of excitation frequencies and mixing times were acquired on 

ligand only, protein only, and mixed protein/ligand samples (Supplementary Figure S6). 
To analyse an STD dataset, two projections were created by summing over all 1D spectra, 

and summing over all corresponding STD spectra. These two projections provide exceptionally 
high signal to noise, suitable for detailed analysis and reliable peak detection. The UnidecNMR 
algorithm was first executed on the raw spectra, to identify peak positions and intensities. Having 
identified possible peak positions, the algorithm then analyses the STD spectra but only allowing 
resonances in places already identified in the 1D spectrum. Both analyses are conducted using the 
protein only baselines for accurate effective subtraction of the protein baseline without the need to 
use relaxation filters (Supplementary Figure S8). 

The results for the ligand only spectra were first analysed. In each case, excellent 
agreement with the known assignments was obtained, providing us with confidence in the 
algorithm. The mixed protein/ligand spectrum was then analysed, which returns very similar results 
to ligand only case. Contributions from the protein, although small however, are typically evident in 
the spectra justifying the explicit inclusion of the protein only baseline during the analysis. When 
analysing the mixture, we included the protein only background as a peak shape whose 
contribution to the spectrum can be freely adjusted. In this way, the spectra of protein/ligand 
mixtures could be accurately and quickly deconvolved, with the identified ligand resonances 
occurring in precisely the positions expected from the ligand only spectra. The results from the 
previous steps were then used to analyse the STD spectra. As these have much lower signal to 
noise, we fixed the ligand peak positions to be only those previously identified. Otherwise the 
protocol performed as described previously, where we used a protein only STD data to provide a 
baseline. 

These analyses allow us to define a ‘transfer efficiency’, which is simply the ratio of the 
signal from a given multiplet in the STD spectrum, to the total expected in the raw 1D experiment. 
To obtain ‘per atom’ transfer efficiencies, signal from the various pre-assumed components on the 
multiplets from each resonance were first summed before calculating the ratio. In the software, this 
is achieved by manually annotating the initial peak list using information obtained from independent 
assignment experiments (see Supplementary Figures S19,S20). 

Over the course of the project, it became clear that subtracting the transfer efficiencies 
obtained from a ligand only sample was an essential part of the method (Supplementary Figure 
S9,S10). Depending on the precise relationship between the chemical shift of excitation, the 
location of the ligand peaks, and the excitation profile of the Gaussian train, we observed small 
apparent STD transfer in the ligand only sample that cannot be attributed to ligand binding, arising 
from a small residual excitation of ligand protons, followed by internal cross relaxation. It is likely 
that this excitation occurs at least in part via resonances of the ligand that are exchange 
broadened, such as OH protons, which are not directly observed in the spectrum. When exciting 
far from the protein, zero ligand excitation is observed, as we would expect, but when exciting 
close to the methyls, or in the aromatic region, residual ligand excitation could be detected in 
ligand only samples (Supplementary Figure S9,S10). Without the ligand only correction, the 
uSTA surface may appear to be highly dependent on choice of excitation frequency. However, with 
the ligand correction, the relative uSTA profiles become invariant with excitation frequency. In 
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general therefore, we advise acquiring these routinely, and so the uSTA analysis assumes the 
presence of this data (Supplementary Figure S6,S8). The invariance of relative transfer efficiency 
with excitation frequency suggest that the internal evolution of magnetization within the protein 
during saturation (likely on the ms timescale) is much faster than the effective cross relaxation rate 
between protein and ligand (occurring on the seconds timescale).  

Having identified the relevant resonances of interest, and performed both a protein, and 
residual ligand subtraction, the spectra were then re-analysed without first summing over the 
different mixing times, in order to develop the quantitative atom-specific build-up curves. These 
were quantitatively analyzed as described below to obtain KD and koff rates. The values we obtain 
performing this analysis on BSA/Trp closely match those measured by ITC, and the values we 
measure for ligand 2 and SPIKE are in good agreement with those measured by SPR as described 
in the text. 

The coverage of protons over the ligands studied here was variable, as for example, there 
are no protons on carboxyl groups. To enable a complete surface to be rendered, the transfer 
efficiencies for each proton were calculated as described above, and the value is then transferred 
to the adjacent heteroatom. For heteroatoms not connected to an observed proton, a 1/r6 weighted 
average score was calculated. This approach allows us to define a unique surface. Caution should 
be exercised when quantitatively interpreting such surfaces where there are no reliable 
measurements of the heteroatom.  

In practice, raw unformatted fids are submitted to the uSTA pipeline, and the various steps 
are performed largely automatically, where a user needs to manually adjust processing settings 
such as phasing and choosing which regions to focus on, iteratively adjust the peak shape to get a 
good match between the final reconvolved spectrum and the raw data, and input manual atomic 
assignments for each observed multiplet. The uSTA analysis pipeline then provides a user with a 
report that shows the results of the various stages of analysis, and uses pymol to render the 
surfaces. The final transfer efficiencies delivered by the program can be combined with a folder 
containing a series of HADDOCK models to provide final structural models (Figure 5).  
 
 
Quantitative analysis via uSTA. 
In principle, a complete description of the saturation transfer experiment can be achieved via the 
Bloch-McConnell equations. If we can setup a density matrix describing all the spins in the system, 
their interactions and their rates of chemical change in an evolution matrix R, then we can follow 
the system with time according to: 
 
ρ(t)= ρ(0)e−Rt   
 
The challenge comes from the number of spins that needs to be included, and the need to 
accurately describe all the interactions between them, which will need to also include how these 
are modulated by molecular motions in order to get an accurate description of the relaxation 
processes. This is illustrated by the CORCEMA method,62 that takes a static structure of a 
protein/ligand complex and estimates STD transfers. The calculations performed to arrive at cross 
relaxation rates assumes the complex is rigid, which is a poor approximation for a protein, and 
because of the large number of spins involved, the calculation is sufficiently intensive such that this 
calculation cannot be routinely used to fitted to experimental data. 

It would be very desirable to extract quantitative structural parameters, as well as chemical 
properties such as interaction strengths and association/dissociation rates directly from STD data. 
In what follows we develop a simple quantitative model for the STD experiment to achieve this 
goal. We will treat the system as comprising just two spins, one to represent the ligand and one to 
represent the protein, and we allow the two spins to exist either in isolation, or in a bound state. We 
can safely neglect scalar coupling and so we only need to allow the x,y and z basis operators for 
each spin, together with an identity operator to ensure the system returns to thermal equilibrium at 
long times. As such, our evolution matrix R will be square matrices with 13 x 13 elements.  

For the spin part, our model requires us to consider the chemical shift of the ligand in the 
free and bound states, and the chemical shifts of the protein in the free and bound states. In 
practice however, it is sufficient to set the free protein state on resonance with the pulse, and 
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ensure that the free ligand chemical shift is far removed from the pulse as we would expect to have 
in the experiment. 

The longitudinal and transverse relaxation rates are calculated for the free and bound 
states using a simple model assuming in each state there are two coupled spins separated by a 
distance R. In addition, cross relaxation between ligand and protein is allowed only when the two 
are bound. The relaxation rates are characterised by an effective distance, and an effective 
correlation time. 
 

R1=
1
4
K J (0)+3J (ω)+6J (2ω)( )

R2 =
1
4
K 5
2
J (0)+ 9

2
J (ω)+3J (2ω)

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

σ=
1
4
K 6J (2ω)− J (0)( )

µ=
1
4
K 2J (0)+3J (2ω)( )

 

 

Which are each parameterized in terms of an interaction constant  K =
µ0!γH

2

4πr3
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

2

and a spectral 

density function J (ω)=
2
5

τ
1+ω2τ 2

 . The longitudinal and transverse relaxation rates R1 and R2 

describe auto-relaxation of diagonal z, and xy elements respectively. The cross-relaxation rates σ  
describes cross relaxation and couples z elements between the ligand and protein in the bound 
state. We ensure that the system returns to equilibrium at long times by adding elements of the 
form R1M0   or σM0  linking the identify element, and the z matrix elements. Overall, the relaxation 
part of the model is parametised by two correlation times, one for the ligand, and one for the 
protein/complex, and three distances, one for the ligand auto relaxation rates, one for protein auto 
relaxation rates, and one for the protein/ligand separation. 

Finally, the chemical kinetics govern the rates at which the spins can interconvert. We will 
take a simple model where PL! P+ L  , whose dissociation constant is given by: 

 
KD = kon / koff = [P][L] / [PL]    

 
The free protein concentration can be determined from knowledge of the KD, and the total ligand 
and protein concentrations: 
 

[P]= 1
2
PTot− LTot−KD+ LTot + KD−PTot( )2+4PTotKD
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟   

 
From which the bound protein concentration, and the free and bound ligand concentrations can be 
easily calculated.  

The density matrix is initialised with the free and bound protein/ligand concentrations 
assigned to the relevant z operators. It was found to be important to additionally include a factor 
that accounts for the increased proton density within the protein. The saturation pulse is then 
applied either as a concatenated series of Gaussian pulses whose duration and peak power in Hz 
needs to be specified, exactly matching the pulse shapes and durations used in the experiment 
(see NMR methods above).   

Build up curves and transfer efficiencies can be easily simulated using this model and 
compared to data, and the various parameters can be optimized to fit to the data. In total, the 
model is characterized by nine parameters: KD, koff, the correlation times of the ligand and the 
protein, the three distances described above and the proton density within the protein. There is 
substantial correlation between the effects of the various parameters. By obtaining data at various 
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protein and ligand concentrations however, it is possible to break this degeneracy and obtain well 
described values as described in the text.  

In practical terms, the initial rate of the buildup curve is predominantly affected by the cross-
relaxation rate and the off rate, and the final height of the buildup curve is mostly influenced by the 
proton density in the protein and KD. Software to perform this analysis has been directly 
incorporated into the uSTA software.  

 
 

Parameters Fitted by the Model 

Overall the model is parameterised by a set of values that characterise the intrinsic and cross 
relaxation. From tG and rIS(ligand) we estimate R1 and R2 of the ligand, from tE, rIS(protein) we 
obtain R1 and R2 of the protein, and from tE and rIS(complex) we calculate the cross relaxation 
rate. These values are combined with a factor that accounts for the larger number of spins present 
in the protein, ‘fac’, and the on and off rates, to complete a set of 8 parameters that specify our 
model. The distances should be considered ‘effective’ values that parasitize the relaxation rates 
though in principle it should be possible to obtain physical insights form their interpretation. The 
concentration independent relaxation rates can be separated from the exchange rates by 
comparing the curves as a ruction of ligand and protein concentration. By treating the system as 
comprising of two spins we are effectively assuming that the cross relaxation within the protein is 
very efficient. In the STD experiment, saturation pulses are applied for several second, which is 
sufficient for near-saturating spin diffusion within a protein. 
 

Thermostability assays. 
Thermal stability assays were performed using a NanoTemper Prometheus NT.48 (Membrane 
Protein Laboratory, Diamond Light Source). To 11 uL of 2 uM Spike (deuterated PBS), 2 uL of 
trisaccharide 2 (deuterated PBS) was titrated to give final concentrations of 0.1, 0.2, 0.4, 0.8, 1.6 
and 2.0 mM. Samples were then loaded into capillaries and heated from 15 to 95 ˚C. Analysis was 
performed using PR.ThermControl v2.3.1 software.   
 

SPR binding measurement assays. 
All experiments were performed on a Biacore T200 instrument. For the immobilisation of SiaLac 
onto sensor chip a flow rate 10 µL/min was used in a buffer solution of HBP-EP (0.01 M HEPES 
pH 7.4, 0.15 M NaCl, 3 mM EDTA, 0.005% v/v Surfactant P20). A CM5 sensor chip 
(carboxymethylated dextran) was equilibrated with HBS-EP buffer at 20°C. The chip was activated 
by injecting a mixture of N-hydroxysuccinimide (50 mM) and EDC-HCl (200 mM) for 10 min 
followed by a 2 min wash step with buffer. Ethylenediamine (1 M in PBS) was then injected for 7 
min followed by a 2 min wash step followed by ethanolamine-HCl (1 M, pH 8.5) for 10 min and then 
a further 1 min wash step. Finally, SiaLac-IME (5.6 mM in PBS) was injected over 10 min and a 
final 2 min wash step was performed (see Supplementary Figure S13) 
 For analysis of spike binding a flow rate 10 µL/min was used at 16 °C. Serial dilutions of 
spike (0.19, 0.50, 1.36, and 3.68 µM) were injected for 30 s association and 150 s dissociation 
starting with the lowest concentration. Buffer only runs were carried out before injection of spike 
and after the first two dilutions. BSA (3.03 µM in PBS) was used as a negative control and a 
mouse serum in a 100-fold dilution was used as a positive control.  
 
 
Analysis of SPR Data. 
To analyse the SPR data, we assume an equilibrium of the form PL! P+ L   characterised by a 

dissociation constant KD =
kon
koff
=
[PL]
[P][L]

. To follow the kinetics of binding and dissociation, we 
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assume the SPR response Γ  is proportional to the bound complex Γ=κ[PL] , which leads to the 
following kinetic equation:  

dΓ
dt
+
koff
κ
Γ−

kon
κ
[P][L]= 0   

This can be solved when restrained by the total number of binding sites, Ltot = [L]+[PL] . Under 
conditions of constant flow, we assume the free protein concentration is constant, which leads to 
the following: 

Γon =
κkonLtot[P]
koff + kon[P]

1−e−(koff+kon[P])t( )   

And similarly, for dissociation where we take the concentration of free protein to be zero: 

 Γoff =κRe
−koff t  

The recovery of the chip was not complete after each protein concentration and wash step, as has 
been observed for shear-induced lectin-ligand binding with glycans immobilised onto a chip 
surface.63 Nevertheless, the data were well explained by a global analysis where the on and off 
rates were held to be identical for each replicate, but the value of k was allowed to vary slightly 

between runs, and an additional constant was introduced to Γoff  to account for incomplete 

recovery of the SPR signal following standard approaches. Concentration of spike was insufficient 
to get the plateau region of the binding, and so the specific time values taken for the on rate affect 
the fitted values.  
 
 
Modelling of the N-terminal Domain of SARS-CoV-2 with Glycans. 
We modelled the structure of the N-terminal domain (NTD) on Protein Data Bank (PDB) entry 7c2l 
17 since it provided significantly better coverage of the area of interest when compared to the 
majority of the templates available on the PDB as of July 15th 2020. The models were created with 
Modeller 64, using the ‘automodel’ protocol without refining the ‘loop’. We generated 10 models 
and ranked them by their DOPE score 65, selecting the top 5 for ensemble docking. 
Docking of 3’-sialyllactose to SARS-CoV-2 NTD 

We docked 3’-sialyllactose to NTD with version 2.4 of the HADDOCK webserver. 43,44 The 
binding site on NTD was defined by comparison with PDB entry 6q06 9, a complex of MERS-CoV 
spike protein and 2,3-sialyl-N-acetyl-lactosamine. The binding site could not directly be mapped 
because of conformational differences between the NTDs of MERS-CoV and SARS-CoV-2, but by 
inspection a region with similar properties (aromatics, methyl groups and positively charged 
residues) could be identified. We defined in HADDOCK the sialic acid as ‘active’ and residues 18, 
19, 20, 21, 22, 68, 76, 77, 78, 79, 244, 254, 255, 256, 258 and 259 of NTD as ‘passive’, meaning 
the sialic acid needs to make contact with at least one of the NTD residues but there is no penalty 
if it doesn’t contact all of them, thus allowing the compound to freely explore the binding pocket. 
Since only one restraint was used we disabled the random removal of restraints. Following our 
small molecule docking recommended settings 66  we skipped the ‘hot’ parts of the semi-flexible 
simulated annealing protocol (‘initiosteps’ and ‘cool1_steps’ set to 0) and also lowered the 
starting temperature of the last two substages to 500 and 300K, respectively (‘tadinit2_t’ and 
‘tadinit3_t’ to 500 and 300, respectively). Clustering was performed based on ‘RMSD’ with a 
distance cut-off of 2Å and the scoring function was modified to: 
 

HADDOCKscore =  1.0 ∗ E!"# + 0.1 ∗ E!"!# + 1.0 ∗ E!"#$% + 0.1 ∗ E!"# 
 
All other settings were kept to their default values. Finally, the atom-specific transfer efficiencies 
determined by uSTA were used to filter cluster candidates. 
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Genetic analysis of clinical samples. 

Variant calling: Reads were mapped to the hg19 reference genome by the Burrow-Wheeler 
aligner BWA. Variants calling was performed according to the GATK4 best practice guidelines. 
Namely, duplicates were first removed by MarkDuplicates, and base qualities were recalibrated 
using BaseRecalibration and ApplyBQSR. HaplotypeCaller was used to calculate Genomic VCF 
files for each sample, which were then used for multi-sample calling by GenomicDBImport and 
GenotypeGVCF. In order to improve the specificity-sensitivity balance, variants quality scores were 
calculated by VariantRecalibrator and ApplyVQSR, and only variants with estimated truth 
sensitivity above 99.9% were retained. Variants were annotated by ANNOVAR.  

Rare variant selection: Missense, splicing and loss of function variants with a frequency 
lower than 0.01 according to ExAC_NFE (Non Finnish European ExAC Database) were 
considered for further analyses. A score of 0 was assigned to each samples where the gene is not 
mutated and the score of 1 was assigned when at least one variant is present on the gene. 
 

 

Genes prioritization by Logistic regression. 

Discriminating genes in COVID-19 disease were interpreted in a framework of feature selection 
analysis using a customized feature selection approach based on the recursive feature elimination 
algorithm applied to the LASSO (Least Absolute Shrinkage and Selection Operator) logistic 
regression model. Specifically, for a set of 𝑛 samples 𝑥! , 𝑦!  (𝑖 = 1,… , 𝑛) each of which consists of 
𝑝 input features 𝑥!,! ∈ 𝜒!   𝑘 = 1, . . . , 𝑝 and one output variable 𝑦! ∈ 𝑌, these features assumed the 
meaning of genes, whereas the samples were the patients involved in the study. The space 
𝜒 = 𝜒!×𝜒!. . .×𝜒! was denoted “input space”, whereas the “hypothesis space” was the space of all 
the possible functions 𝑓:𝜒 → 𝑌 mapping the inputs to the output. Given the number of features (𝑝) 
is substantially higher than the number of samples (𝑛), LASSO regularization47 has the effect of 
shrinking the estimated coefficients to zero, providing a feature selection method for sparse 
solutions within the classification tasks. Feature selection methods based on such regularization 
structures (Embedded methods) were most applicable to our scope because they were 
computationally tractable and strictly connected with the classification task of the ML algorithm.  

As the baseline algorithm for the embedded method, we adopted the Logistic Regression 
(LR) model that is a state-of-the-art ML algorithm for binary classification tasks with probabilistic 
interpretation. It models the log-odds of the posterior success probability of a binary variable as the 
linear combination of the input: 

log
𝑃𝑟(𝑌 = 1|𝑋 = 𝒙)

1− 𝑃𝑟(𝑌 = 1|𝑋 = 𝒙) =  𝛽! +  𝛽!
!

!!!
𝑥! , 

where 𝒙 is the input vector, 𝛽! are the coefficients of the regression and 𝑋 and 𝑌 are the random 
variables representing the input and the output respectively. The loss function to be minimized is 
given by the binary cross-entropy loss 

− y!  log𝑦!   (1− y!)  log(1− 𝑦!)
!

!!!
,  

where 𝑦 = 𝑃𝑟(𝑌 = 1|𝑋 = 𝒙) is the predicted target variable and 𝑦 is the true label. As already 
introduced, in order to enforce both the sparsity and the interpretability of the results, the model is 
trained with the additional LASSO regularization term: 

𝜆  𝛽!
!

!!!
. 
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In this way, the absolute value of the surviving weights of the LR algorithm was interpreted as the 
feature importances of the subset of most relevant genes for the task. Since a feature ranking 
criterion can become sub-optimal when the subset of removed features is large 67, we applied 
Recursive Feature Elimination (RFE) methodology. For each step of the procedure, we fitted the 
model and removed the features with smallest ranking criteria in a recursive manner until a certain 
number of features was reached. 

The fundamental hyper-parameter of LR is the strength of the LASSO term tuned with a 
grid search procedure on the accuracy of the 10-fold cross-validation. The k-fold cross-validation 
provided the partition of the dataset into k batches, then exploited k-1 batches for the training and 
the remaining test batch as a test, by repeating this procedure k times. In the grid search method, 
a cross validation procedure was carried out for each value of the regularization hyperparameter in 
the range [10-4, ..., 106]. Specifically, the optimal regularization parameter is chosen by selecting 
the most parsimonious parameter whose cross-validation average accuracy falls in the range of 
the best one along with its standard deviation. During the fitting procedure, the class unbalancing 
was tackled by penalizing the mis-classification of minority class with a multiplicative factor 
inversely proportional to the class frequencies. For the RFE, the number of excluded features at 
each steps of the algorithm as well as the final number of features was fixed at 100. All data pre-
processing and the RFE procedure was coded in Python; the LR model was used, as included, in 
the scikit-learn module with the liblinear coordinate descent optimization algorithm. 
 

Pseudoviral Cell-entry Asssay. 

A spike-expressing lentivirus in HEK 293T cells was generated using a two-plasmid system. The 
first plasmid encoded an NL4.3ΔEnvΔVifΔVpr backbone and firefly luciferase, and the second 
encoded SARS-CoV-2 Spike (Wuhan strain). Spike expression on pseudovirus was confirmed 
using an ELISA-based assay, capturing with an ACE-2 IgA Fc fusion protein (Absolute Antibody). 
Pseudovirus was detected via CR3022, anti-Human IgG-HRP (Jackson ImmunoResearch Europe) 
and 1-Step Ultra TMB ELISA substrate (Thermo Fisher).  
 
1x104 ACE-2-expressing MDCK cells in PBS were seeded in a flat-bottom 96-well plate and 
treated with 0.3mU Arthrobacter ureafaciens neuraminidase (Merck) or PBS (mock) for 30 minutes 
(37°C, 5% CO2). After repeated washing, cells were resuspended in serially diluted pseudovirus in 
10% FCS DMEM (Thermo Fisher) for 4 h. After removing excess pseudovirus, cells were 
incubated in 1% FCS DMEM for 48 h. Cells were washed and subsequently lysed using Reporter 
Lysis Buffer (Promega) and freeze-thaw cycling. Lysate was incubated with Bright-Glo (Promega) 
according to the manufacturer’s instructions and luminescence was acquired using a SpectraMax 
M5 (Molecular Devices). Data were analysed using Prism 9 (version 9.1.0 for Macintosh). 
 
 
  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439284doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439284
http://creativecommons.org/licenses/by/4.0/


 

 

References 
 

1 Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS 
coronavirus. Nature 426, 450-454, doi:10.1038/nature02145 (2003). 

2 Kuba, K. et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS 
coronavirus–induced lung injury. Nature Medicine 11, 875-879, doi:10.1038/nm1267 
(2005). 

3 Li, F., Li, W., Farzan, M. & Harrison, S. C. Structure of SARS Coronavirus Spike Receptor-
Binding Domain Complexed with Receptor. Science 309, 1864, 
doi:10.1126/science.1116480 (2005). 

4 Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. 
Science 367, 1260-1263, doi:papers3://publication/doi/10.1126/science.abb2507 (2020). 

5 Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human 
ACE2. Science 367, 1444, doi:10.1126/science.abb2762 (2020). 

6 Li, W. et al. Identification of sialic acid-binding function for the Middle East respiratory 
syndrome coronavirus spike glycoprotein. Proceedings of the National Academy of 
Sciences 114, E8508, doi:10.1073/pnas.1712592114 (2017). 

7 Schwegmann-Weßels, C. & Herrler, G. Sialic acids as receptor determinants for 
coronaviruses. Glycoconjugate Journal 23, 51-58, doi:10.1007/s10719-006-5437-9 (2006). 

8 Hulswit, R. J. G. et al. Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic 
acids via a conserved receptor-binding site in spike protein domain A. Proceedings of the 
National Academy of Sciences 116, 2681, doi:10.1073/pnas.1809667116 (2019). 

9 Park, Y.-J. et al. Structures of MERS-CoV spike glycoprotein in complex with sialoside 
attachment receptors. Nat Struct Mol Biol 26, 1151-1157, 
doi:papers3://publication/doi/10.1038/s41594-019-0334-7 (2019). 

10 Qing, E., Hantak, M., Perlman, S. & Gallagher, T. Distinct Roles for Sialoside and Protein 
Receptors in Coronavirus Infection. mBio 11, e02764-02719, doi:10.1128/mBio.02764-19 
(2020). 

11 Morniroli, D., Giannì, M. L., Consales, A., Pietrasanta, C. & Mosca, F. Human Sialome and 
Coronavirus Disease-2019 (COVID-19) Pandemic: An Understated Correlation? Frontiers 
in Immunology 11, doi:10.3389/fimmu.2020.01480 (2020). 

12 Alexander N., B. et al. The SARS-COV-2 Spike Protein Binds Sialic Acids, and Enables 
Rapid Detection in a Lateral Flow Point of Care Diagnostic Device. ChemRxiv, 
doi:10.26434/chemrxiv.12465680.v1 (2020). 

13 Nguyen, L. et al. Sialic acid-Dependent Binding and Viral Entry of SARS-CoV-2. bioRxiv, 
2021.2003.2008.434228, doi:10.1101/2021.03.08.434228 (2021). 

14 Hao, W. et al. Binding of the SARS-CoV-2 Spike Protein to Glycans. bioRxiv, 
2020.2005.2017.100537, doi:10.1101/2020.05.17.100537 (2020). 

15 Clausen, T. M. et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and 
ACE2. Cell 183, 1043-1057.e1015, doi:10.1016/j.cell.2020.09.033 (2020). 

16 Behloul, N., Baha, S., Shi, R. & Meng, J. Role of the GTNGTKR motif in the N-terminal 
receptor-binding domain of the SARS-CoV-2 spike protein. Virus Research 286, 198058, 
doi:10.1016/j.virusres.2020.198058 (2020). 

17 Chi, X. et al. A neutralizing human antibody binds to the N-terminal domain of the Spike 
protein of SARS-CoV-2. Science, eabc6952, doi:10.1126/science.abc6952 (2020). 

18 Mayer, M. & Meyer, B. Characterization of Ligand Binding by Saturation Transfer 
Difference NMR Spectroscopy. Angewandte Chemie International Edition 38, 1784-1788, 
doi:10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-Q (1999). 

19 Wagstaff, J. L., Taylor, S. L. & Howard, M. J. Recent developments and applications of 
saturation transfer difference nuclear magnetic resonance (STD NMR) spectroscopy. 
Molecular BioSystems 9, 571-577, doi:10.1039/C2MB25395J (2013). 

20 Angulo, J., Enríquez-Navas, P. M. & Nieto, P. M. Ligand–Receptor Binding Affinities from 
Saturation Transfer Difference (STD) NMR Spectroscopy: The Binding Isotherm of STD 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439284doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439284
http://creativecommons.org/licenses/by/4.0/


 

 

Initial Growth Rates. Chemistry – A European Journal 16, 7803-7812, 
doi:10.1002/chem.200903528 (2010). 

21 Rambaut, A. et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist 
genomic epidemiology. Nature Microbiology 5, 1403-1407, doi:10.1038/s41564-020-0770-
5 (2020). 

22 Huang, R., Bonnichon, A., Claridge, T. D. W. & Leung, I. K. H. Protein-ligand binding 
affinity determination by the waterLOGSY method: An optimised approach considering 
ligand rebinding. Scientific Reports 7, 43727, doi:10.1038/srep43727 (2017). 

23 Baldwin, A. J. et al. Cytochrome Display on Amyloid Fibrils. Journal of the American 
Chemical Society 128, 2162-2163, doi:10.1021/ja0565673 (2006). 

24 Carver, J. A., Aquilina, J. A., Truscott, R. J. W. & Ralston, G. B. Identification by 1H NMR 
spectroscopy of flexible C-terminal extensions in bovine lens α-crystallin. FEBS Letters 
311, 143-149, doi:10.1016/0014-5793(92)81386-Z (1992). 

25 Hsu, S.-T. D. et al. Structure and dynamics of a ribosome-bound nascent chain by NMR 
spectroscopy. Proceedings of the National Academy of Sciences 104, 16516, 
doi:10.1073/pnas.0704664104 (2007). 

26 Mayer, M. & Meyer, B. Group Epitope Mapping by Saturation Transfer Difference NMR To 
Identify Segments of a Ligand in Direct Contact with a Protein Receptor. Journal of the 
American Chemical Society 123, 6108-6117, doi:10.1021/ja0100120 (2001). 

27 Vallurupalli, P., Bouvignies, G. & Kay, L. E. Studying “Invisible” Excited Protein States in 
Slow Exchange with a Major State Conformation. Journal of the American Chemical 
Society 134, 8148-8161, doi:10.1021/ja3001419 (2012). 

28 Xie, T., Saleh, T., Rossi, P. & Kalodimos, C. G. Conformational states dynamically 
populated by a kinase determine its function. Science 370, eabc2754, 
doi:10.1126/science.abc2754 (2020). 

29 Fawzi, N. L., Ying, J., Torchia, D. A. & Clore, G. M. Probing exchange kinetics and atomic 
resolution dynamics in high-molecular-weight complexes using dark-state exchange 
saturation transfer NMR spectroscopy. Nature Protocols 7, 1523-1533, 
doi:10.1038/nprot.2012.077 (2012). 

30 Allard, P., Helgstrand, M. & Härd, T. The Complete Homogeneous Master Equation for a 
Heteronuclear Two-Spin System in the Basis of Cartesian Product Operators. Journal of 
Magnetic Resonance 134, 7-16, doi:10.1006/jmre.1998.1509 (1998). 

31 Marty, M. T. et al. Bayesian Deconvolution of Mass and Ion Mobility Spectra: From Binary 
Interactions to Polydisperse Ensembles. Analytical Chemistry 87, 4370-4376, 
doi:10.1021/acs.analchem.5b00140 (2015). 

32 Richardson, W. H. Bayesian-Based Iterative Method of Image Restoration*. J. Opt. Soc. 
Am. 62, 55-59, doi:10.1364/JOSA.62.000055 (1972). 

33 Lucy, L. B. An iterative technique for the rectification of observed distributions. 
Astronomical Journal 79, 745 (1974). 

34 McMenamy, R. H. & Oncley, J. L. The Specific Binding of L-Tryptophan to Serum Albumin. 
Journal of Biological Chemistry 233, 1436-1447 (1958). 

35 Fielding, L., Rutherford, S. & Fletcher, D. Determination of protein–ligand binding affinity by 
NMR: observations from serum albumin model systems. Magnetic Resonance in 
Chemistry 43, 463-470, doi:10.1002/mrc.1574 (2005). 

36 Bujacz, A., Zielinski, K. & Sekula, B. Structural studies of bovine, equine, and leporine 
serum albumin complexes with naproxen. Proteins: Structure, Function, and 
Bioinformatics 82, 2199-2208, doi:10.1002/prot.24583 (2014). 

37 Pérez-Victoria, I. et al. Saturation transfer difference NMR reveals functionally essential 
kinetic differences for a sugar-binding repressor protein. Chemical Communications, 
5862-5864, doi:10.1039/B913489A (2009). 

38 Hars, U., Horlacher, R., Boos, W., Welte, W. & Diederichs, K. Crystal structure of the 
effector-binding domain of the trehalose-repressor of Escherichia coli, a member of the 
LacI family, in its complexes with inducer trehalose-6-phosphate and noninducer 
trehalose. Protein Science 7, 2511-2521, doi:10.1002/pro.5560071204 (1998). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439284doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439284
http://creativecommons.org/licenses/by/4.0/


 

 

39 McConnell, H. M. Reaction Rates by Nuclear Magnetic Resonance. J. Chem. Phys. 28, 
430, doi: 10.1063/1.1744152 (1958). 

40 Watanabe, Y., Allen, J. D., Wrapp, D., McLellan, J. S. & Crispin, M. Site-specific glycan 
analysis of the SARS-CoV-2 spike. Science, 
doi:papers3://publication/doi/10.1126/science.abb9983 (2020). 

41 Mammen, M., Choi, S.-K. & Whitesides, G. M. Polyvalent Interactions in Biological 
Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. 
Angewandte Chemie International Edition 37, 2754-2794, doi:10.1002/(SICI)1521-
3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3 (1998). 

42 Lee, R. T. & Lee, Y. C. Affinity enhancement by multivalent lectin–carbohydrate interaction. 
Glycoconjugate Journal 17, 543-551, doi:10.1023/A:1011070425430 (2000). 

43 Dominguez, C., Boelens, R. & Bonvin, A. M. J. J. HADDOCK:  A Protein−Protein Docking 
Approach Based on Biochemical or Biophysical Information. Journal of the American 
Chemical Society 125, 1731-1737, doi:10.1021/ja026939x (2003). 

44 van Zundert, G. C. P. et al. The HADDOCK2.2 Web Server: User-Friendly Integrative 
Modeling of Biomolecular Complexes. Journal of Molecular Biology 428, 720-725, 
doi:10.1016/j.jmb.2015.09.014 (2016). 

45 Imberty, A. et al. An Unusual Carbohydrate Binding Site Revealed by the Structures of Two 
Maackia amurensis Lectins Complexed with Sialic Acid-containing Oligosaccharides. 
Journal of Biological Chemistry 275, 17541-17548 (2000). 

46 Huo, J. et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction 
with ACE2. Nature Structural & Molecular Biology 27, 846-854, doi:10.1038/s41594-020-
0469-6 (2020). 

47 Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. Journal of the Royal 
Statistical Society: Series B (Methodological) 58, 267-288, doi:10.1111/j.2517-
6161.1996.tb02080.x (1996). 

48 Koths, K., Taylor, E., Halenbeck, R., Casipit, C. & Wang, A. Cloning and characterization of 
a human Mac-2-binding protein, a new member of the superfamily defined by the 
macrophage scavenger receptor cysteine-rich domain. Journal of Biological Chemistry 
268, 14245-14249 (1993). 

49 Johannes, L., Jacob, R. & Leffler, H. Galectins at a glance. Journal of Cell Science 131, 
jcs208884, doi:10.1242/jcs.208884 (2018). 

50 Stowell, S. R. et al. Galectin-1, -2, and -3 Exhibit Differential Recognition of Sialylated 
Glycans and Blood Group Antigens. Journal of Biological Chemistry 283, 10109-10123, 
doi:10.1074/jbc.M709545200 (2008). 

51 Kamili, N. A. et al. Key regulators of galectin–glycan interactions. PROTEOMICS 16, 3111-
3125, doi:10.1002/pmic.201600116 (2016). 

52 Togayachi, A. et al. beta 3GNT2 (B3GNT2), A MAJOR POLYLACTOSAMINE SYNTHASE: 
ANALYSIS OF B3GNT2-DEFICIENT MICE. Methods in Enzymology, Vol 502: Protein 
Engineering for Therapeutics, Pt A 479, 185-204, 
doi:papers3://publication/doi/10.1016/S0076-6879(10)79011-X (2010). 

53 Jia, N. et al. The Human Lung Glycome Reveals Novel Glycan Ligands for Influenza A 
Virus. Scientific Reports 10, doi:papers3://publication/doi/10.1038/s41598-020-62074-z 
(2020). 

54 Toscano, M. A. et al. Differential glycosylation of T H 1, T H 2 and T H -17 effector cells 
selectively regulates susceptibility to cell death. Nat Immunol 8, 825-834, 
doi:papers3://publication/doi/10.1038/ni1482 (2007). 

55 Yamada, S. et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza 
A viruses to human-type receptors. Nature 444, 378-382, doi:10.1038/nature05264 (2006). 

56 Watanabe, Y. et al. Vulnerabilities in coronavirus glycan shields despite extensive 
glycosylation. Nature Communications 11, 2688, doi:10.1038/s41467-020-16567-0 (2020). 

57 Casalino, L. et al. Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike 
Protein. ACS Central Science, doi:10.1021/acscentsci.0c01056 (2020). 

58 Huo, J. et al. Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike. Cell 
Host & Microbe 28, 445-454.e446, doi:10.1016/j.chom.2020.06.010 (2020). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439284doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439284
http://creativecommons.org/licenses/by/4.0/


 

 

59 Collins, B. E. et al. High-Affinity Ligand Probes of CD22 Overcome the Threshold Set by 
&lt;em&gt;cis&lt;/em&gt; Ligands to Allow for Binding, Endocytosis, and Killing of B Cells. 
The Journal of Immunology 177, 2994, doi:10.4049/jimmunol.177.5.2994 (2006). 

60 Chuang, W.-L., McAllister, H. & Rabenstein, D. L. Chromatographic methods for product-
profile analysis and isolation of oligosaccharides produced by heparinase-catalyzed 
depolymerization of heparin. Journal of Chromatography A 932, 65-74, 
doi:10.1016/S0021-9673(01)01241-9 (2001). 

61 Powell, A. K., Ahmed, Y. A., Yates, E. A. & Turnbull, J. E. Generating heparan sulfate 
saccharide libraries for glycomics applications. Nature Protocols 5, 821-833, 
doi:10.1038/nprot.2010.17 (2010). 

62 Jayalakshmi, V. & Krishna, N. R. Complete Relaxation and Conformational Exchange 
Matrix (CORCEMA) Analysis of Intermolecular Saturation Transfer Effects in Reversibly 
Forming Ligand–Receptor Complexes. Journal of Magnetic Resonance 155, 106-118, 
doi:10.1006/jmre.2001.2499 (2002). 

63 Nakamura, K. et al. Immobilized glycosylated Fmoc-amino acid for SPR: comparative 
studies of lectin-binding to linear or biantennary diLacNAc structures. Carbohydrate 
Research 382, 77-85, doi:10.1016/j.carres.2013.10.003 (2013). 

64 Sali, A. Comparative protein modeling by satisfaction of spatial restraints. Molecular 
Medicine Today 1, 270-277, doi:10.1016/S1357-4310(95)91170-7 (1995). 

65 Shen, M.-y. & Sali, A. Statistical potential for assessment and prediction of protein 
structures. Protein Science 15, 2507-2524, doi:10.1110/ps.062416606 (2006). 

66 Koukos, P. I., Xue, L. C. & Bonvin, A. M. J. J. Protein–ligand pose and affinity prediction: 
Lessons from D3R Grand Challenge 3. Journal of Computer-Aided Molecular Design 33, 
83-91, doi:10.1007/s10822-018-0148-4 (2019). 

67 Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. Gene Selection for Cancer Classification 
using Support Vector Machines. Machine Learning 46, 389-422, 
doi:10.1023/A:1012487302797 (2002). 

68 Lepre, C. A., Moore, J. M. & Peng, J. W. Theory and Applications of NMR-Based 
Screening in Pharmaceutical Research. Chemical Reviews 104, 3641-3676, 
doi:10.1021/cr030409h (2004). 

69 Viegas, A., Manso, J., Nobrega, F. L. & Cabrita, E. J. Saturation-Transfer Difference (STD) 
NMR: A Simple and Fast Method for Ligand Screening and Characterization of Protein 
Binding. Journal of Chemical Education 88, 990-994, doi:10.1021/ed101169t (2011). 

70 Abragam, A. The Principles of Nuclear Magnetism.  (Clarendon Press, 1961). 
71 Taylor, J. R. & Taylor, S. L. L. J. R. Introduction To Error Analysis: The Study of 

Uncertainties in Physical Measurements.  (University Science Books, 1997). 
 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439284doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439284
http://creativecommons.org/licenses/by/4.0/

