1	Distinct nociresponsive region in mouse primary somatosensory cortex
2	Hironobu Osaki ^{1,*} , Moeko Kanaya ¹ , Yoshifumi Ueta ¹ , and Mariko Miyata ^{1,*}
3	¹ Division of Neurophysiology, Department of Physiology, Graduate School of
4	Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
5	
6	
7	
8	
9	
10	
11	*Corresponding authors:
12	Hironobu Osaki, MD, PhD
13	Division of Neurophysiology, Department of Physiology, Graduate School of Medicine,
14	Tokyo Women's Medical University, Kawada-Cho 8-1, Shinjuku-ku, Tokyo 162-8666,
15	Japan.
16	Fax/Tel: +81-3-5269-7413
17	e-mail: osaki.hironobu@twmu.ac.jp
18	
19	Mariko Miyata, MD, PhD
20	Division of Neurophysiology, Department of Physiology, Graduate School of Medicine,
21	Tokyo Women's Medical University, Kawada-Cho 8-1, Shinjuku-ku, Tokyo 162-8666,
22	Japan.
23	Fax/Tel: +81-3-5269-7412
24	e-mail: mmiyata@twmu.ac.jp

Osaki et al.

25 Abstract

26	Nociception, somatic discriminative aspects of pain, is represented in the primary
27	somatosensory cortex (S1), as is touch, but the separation and the interaction of the two
28	modalities within S1 remain unclear. Here, we show the spatially-distinct tactile and
29	nociceptive processing in the granular barrel field (BF) and the adjacent dysgranular
30	region (Dys) in mouse S1. Simultaneous recording of the multiunit activity across
31	subregions reveals that Dys responses are selective to noxious input whereas those of
32	BF are to tactile input. At the single neuron level, nociceptive information is represented
33	separately from the tactile information in Dys layer 2/3. In contrast, both modalities are
34	converged in a layer 5 neuron in each region. Interestingly, the two modalities interfere
35	with each other in both regions. We further demonstrate that Dys, but not BF, activity is
36	critically involved in neuropathic pain and pain behavior, and thus provide evidence that
37	Dys is a center specialized for nociception in S1.

Osaki et al.

38 Introduction

39 The primary somatosensory cortex (S1) plays a central role in tactile information processing¹. The tactile representation in S1 is orderly arranged in a somatotopic 40 fashion². On the other hand, S1 is responsible for somatic discriminative aspects of pain 41 processing, such as the location, intensity, and quality of pain³⁻¹⁰. S1 receives 42 thalamocortical nociceptive information¹¹ and relays it to other pain-related cortical 43 areas, such as the anterior cingulate cortex, which is responsible for the affective aspects 44 of pain^{12,13}. S1 also modulates noxious inputs via the corticotrigeminal¹⁴ and 45 corticospinal¹⁵ pathways under both acute and chronic pain conditions. Therefore, S1 46 can be viewed as a network hub of pain processing and a target for interventions to 47 control pain. However, it remains unclear how S1 processes nociceptive information 48 and somatic tactile information distinctively. 49 Mouse S1 is divided into two subregions based on the cytoarchitecture: the 50 granular region known as the barrel field (BF), which is identified by unique clusters of 51 52 layer (L4) neurons, and the adjacent dysgranular region (Dys), which has poorly defined L4^{6,16}. The two subregions are thought to be functionally different. For instance, BF is 53 the center for processing tactile input from whiskers¹⁷⁻¹⁹, while Dys receives 54 proprioceptive input by deep muscle stimulation or joint rotation^{20,21}. In nociception, BF 55 neurons in deeper layers receive noxious inputs^{11,22,23}. Similarly, Dys neurons in the 56 deeper layers respond to noxious pinching and pruriceptive inputs^{24,25}. However, it is 57 still unclear how each subregion processes nociceptive information with/without tactile 58 information because a direct comparison between the two subregions is lacking. 59 Here, we found that nociceptive and tactile information is separately 60 represented in Dys and BF, respectively, by simultaneous recording from both 61

- 62 subregions. Dys was also predominantly activated under neuropathic pain condition.
- 63 Reflecting the spatially-distinct representation of nociception, optogenetic inhibition of
- 64 neuronal activity of Dys, but not BF, reduced pain behavior. Thus, we clarified a distinct
- 65 functional role in nociceptive processing of Dys, which generates proper escape
- 66 behavior from noxious inputs and is a potential target for pain relief.

Osaki et al.

67 **Results**

68 Nociceptive information is mainly processed in Dys First, we sought to identify the area responding to noxious input in S1 by observing the 69 expression of c-Fos, a neural activity marker, after capsaicin was injected into the 70 71 whisker pad (Fig. 1a, b). The number of c-Fos-positive neurons increased significantly in L4 of Dys after capsaic injection ($P = 1.2 \times 10^{-5}$) but not in L4 of BF (P = 0.97, 72 Fig. 1b and Supplementary Table 1). The noxious stimulus-induced increase in L4 c-73 74 Fos-positive neurons was also detected in the hindpaw area of Dys when formalin was 75 injected into the hindpaw (Extended Data Fig. 1). Thus, Dys neurons responded to 76 noxious input in a somatotopic manner. Next, we compared response properties between Dys and BF, during a noxious 77 heat stimulus (noxH; 45–50°C) applied to the whisker pad (Fig. 1c, d). We recorded 78 multiunit activities (MUA) simultaneously from Dys and BF neurons in layer 2/3 79 (L2/3), L4, and layer 5 (L5) (Fig. 1e). The MUA in Dys increased in all of the recorded 80 layers when the temperature of the Peltier device reached a noxious range (45–50°C) 81 (Fig. 1e), while the responses differed among the layers in BF; MUA to noxH did not 82 increase in BF L2/3 or L4 but increased slightly in L5 (Fig. 1e, bottom charts). To 83 84 evaluate the selectivity to noxH, the signal-to-noise ratio (S/N; see Methods) was 85 calculated. The response to noxH (labeled S, beige shaded region in Fig. 1e) was used 86 as the signal, and the response to an innocuous heat range (33–45°C, labeled N, grey shaded region in Fig. 1e) was used as the noise. When comparing the S/N values for the 87 same layers between Dys and BF(n = 8 animals), the S/N in Dys was significantly 88 89 higher than that in BF (Fig. 1f) in L2/3 and L5 by a multiple-comparisons test (P = 0.9).

90	Although L4 neurons did not show the significant difference in Figure. 1f, the
91	comparisons of simultaneously recorded neural pairs showed that L4 neurons in Dys
92	were significantly more selective to noxH than those in BF (Extended Data Fig. 2, $P =$
93	0.0056). Within BF, the S/N was significantly higher in L5 than L2/3 ($P = 0.025$, Fig.
94	1e). This difference between layers for noxH responses in BF was reported in the
95	previous studies ^{22,23,26} . Together, the MUA analyses indicate that Dys responded more
96	selectively to noxH than BF (Fig. 1g).
97	We next assessed response selectivity to tactile stimuli by comparing the S/Ns
98	in response to whisker deflection (see Methods). Neurons in BF responded precisely to
99	the onset of each whisker deflection, whereas those in Dys did not (Extended Data Fig.
100	3a, b). The S/Ns to whisker deflection were higher in BF than Dys in each layer
101	(Extended Data Fig. 2, right, and 3c), indicating that the selectivity to tactile stimuli was
102	higher in BF than Dys (Extended Data Fig. 3d).
103	
104	Nociceptive information is processed separately from tactile information in Dys
105	L2/3
106	The results of the MUA analysis indicated that nociceptive information was mainly
107	processed in Dys rather than BF (Fig. 1). Thus, we examined the modality specificity of
108	single neurons in the two subregions. The peristimulus time histograms (PSTHs) of the
109	well-isolated neurons in L2/3 simultaneously recorded from the two subregions are
110	shown in Fig 2a; recorded neurons were sorted by the time of peak response to a heat
111	stimulus. In Dys, the steepness of peak responses to a heat stimulus increased within the
112	noxious heat range, indicating that many neurons responded to the noxious heat,

Osaki et al.

114	the other hand, many BF neurons, but only a few Dys neurons, in L2/3 responded well
115	to tactile stimuli (whisker deflections). Notably, the noxious heat-responding neurons in
116	Dys L2/3 did not respond to the tactile stimuli (white box in Fig. 2a, right column).
117	In L5, the steepness of peak responses to heat stimulus increased within the
118	noxious heat range in both regions (white boxes in Fig. 2b, left column). In contrast to
119	that in L2/3, many nociceptive neurons in L5 of both Dys and BF responded to tactile
120	stimuli (white boxes in Fig. 2b, right column). Thus, Dys neurons in L2/3 process
121	mainly nociceptive information separately from tactile information, whereas neurons in
122	L5 of both subregions tend to respond to tactile and noxious inputs.
123	To quantify these observations, we classified the neurons into nociceptive,
124	tactile, integrative, and nonselective types according to S/Ns to noxH and tactile stimuli
125	(Fig. 2c and Extended Data Fig. 4). The distributions of the S/Ns clustered according to
126	the median S/Ns for all recorded neurons (1.81 for nociceptive and 1.46 for tactile,
127	Extended Data Fig. 4b, d). In addition, normalized PSTHs of neurons classified
128	according to these values represented the characteristics of each neuron group (Fig. 2c):
129	nociceptive-type neurons responded to noxious heat but not to the tactile stimulus,
130	tactile-type neurons responded to tactile input but not to noxious heat, and integrative-
131	type neurons responded to both stimuli. Therefore, we used the median S/Ns as the
132	cutoff values for classification. According to this classification, the proportion of
133	neurons of each type in each subregion was calculated (Fig. 2d). Consistent with the
134	population PSTH (Fig. 2a, b), in L2/3, nociceptive information was processed
135	separately in Dys while tactile information was processed in BF. On the other hand,
136	nociceptive and tactile information tended to be integrated at L5 neurons of both
137	subregions (Fig. 2d, bottom).

138	In the population PSTHs (Fig. 2a, b), the onset of the response to heat stimuli
139	varied across neurons, indicating that they responded to various temperatures.
140	Therefore, we examined the thermal threshold of neurons in response to the onset of a
141	heat stimulus (Fig. 2e). The histogram of the thermal thresholds of L2/3 neurons shows
142	that many Dys neurons started to respond near noxious temperatures (42-44°C). By
143	contrast, BF neurons responded to a broad range of temperatures ($P = 0.013$),
144	suggesting that BF neurons encode cutaneous temperature ^{27,28} . In L5, the distribution in
145	Dys was sharply tuned to a noxious heat range, although the difference between the
146	distributions for Dys and BF was insignificant ($P = 0.056$). These data demonstrate a
147	preference of Dys neurons for noxious heat.
148	The averaged PSTHs (Fig. 2c) show that the responses of tactile and
149	nonselective neurons were suppressed by noxH. Because the S/Ns of these neurons
150	were <1, we estimated the proportion of neurons suppressed by noxH in each region. In
151	L2/3 of BF, 60% of neurons were suppressed by noxH. This proportion is significantly
152	larger than that in Dys (22%, $P = 5.4 \times 10^{-8}$, Fig. 2f). In L5, on the other hand, the
153	proportion of neurons that were suppressed by tactile stimuli was larger in Dys than BF
154	(P = 0.048, Fig. 2f). These data may provide the neural mechanism underlying the
155	interference between touch and pain ²⁹⁻³¹ .
156	In summary, the data show that nociceptive information is processed separately
157	from tactile information in Dys. The majority of nociresponsive neurons in BF were the
158	integrative type in both $L2/3$ and $L5$. The difference in thermal thresholds indicates that
159	Dys processes noxious heat input, and BF is responsible for temperature coding.
160	Furthermore, the modalities interacted with each other in a way that each suppresses the
161	other's region.

Osaki et al.

162

163 **Dys is involved in neuropathic pain**

S1 is also activated under chonic pain condition^{12,13,32,33}. Thus, we next investigated 164 how cortical representation would shift from tactile to nociceptive information in S1 165 during the developing of tactile allodynia induced by nerve injury. We ligated the 166 infraorbital nerve (ION) as a trigeminal neuralgia model. For ION ligation, we used an 167 absorbable surgical thread (see Methods), which enabled us to observe the S1 regions 168 responding to tactile stimulus both during nerve injury and after recovery (Fig. 3a, b). 169 170 Intrinsic signals in BF induced by whisker stimulation were observed before ligation 171 (Fig. 3b, left). At postoperative day 7 (POD 7), when the tensile strength of the surgical thread is reduced to \sim 50%, the signal in BF disappeared but was enhanced in the 172 173 adjacent region (Fig. 3b, middle). Subsequent histological analyses confirmed that the adjacent region was Dys (Fig. 3c and Extended Data Fig. 5). At POD 21, during 174 recovery from the ligation when the tensile strength is reduced to 0% of the maximum 175 176 strength, the signal in BF reappeared (Fig. 3b, right). In population analyses, ION ligation increased the signal in Dys (Fig. 3d). Consistent with this, the number of c-Fos-177 positive neurons in Dys was significantly increased after ION ligation (Extended Data 178 179 Fig. 6a-c). Moreover, mechanical allodynia at the whisker pad was also observed (Extended Data Fig. 6d, e), suggesting that Dys may be related to the peripheral nerve 180 181 injury-induced neuropathic pain. The activated region changed dynamically according to the extent of peripheral nerve injury. This suggests that the activation of Dys and the 182 deactivation of BF reflect the cortical representation of pain. 183

184

Osaki et al.

185 Dys is involved in generating pain behavior

Finally, we examined whether Dys is involved in pain behavior, such as escape from 186 harmful stimuli. For this, we monitored the behaviors of head-restrained animals freely 187 moving on a spherical treadmill³⁴ in response to an innocuous or noxious infrared (IR) 188 laser applied to the left whisker pad (Fig. 4a). Application of the IR laser for 500 and 189 1,500 ms increases the skin temperature to 39°C and 52°C, respectivelv³⁵, which we 190 191 thus refer to as innocuous heat (innH) and noxH, respectively. In response to noxH, the traveling speed increased until 5 s after the onset of the IR laser stimulus as the mice 192 193 attempted to escape from noxious input (Fig. 4b-d and Extended Data Fig. 7a). The 194 animals also exhibited eye blink and tightening (Extended Data Fig. 7a), which are considered expressions of pain³⁶⁻³⁸. Thus, this system was suitable for quantifying pain 195 196 behaviors in response to noxH.

Using this system, we determined the effect of modulating Dys activity on pain 197 198 behavior. We monitored pain behaviors induced by noxH during optogenetic 199 suppression of various cortical areas, including Dys (Fig. 4e). For these experiments, we did not assess eye blink and tightening, which involve reflex actions via the brainstem 200 or the cerebellum³⁹. We used a transgenic line that expresses channelrhodopsin-2 201 (ChR2)-EYFP in parvalbumin (PV)-expressing interneurons (PV-Cre × Ai32), and 202 photoactivated PV interneurons to inhibit cortical pyramidal neurons locally⁴⁰(Fig. 4e). 203 204 Photoinhibition of Dys significantly decreased the escape speed in response to noxH 205 (for 1.5 to 2 s in position 3 (P3) and P4, P < 0.05; and for 2 to 2.5 s for P4, n = 6, Fig. 4f); photoinhibition of other S1 regions, such as BF or paw regions, had no effect (P >206 0.05, Extended Data Fig. 8). Similar trends were observed for the maximal speed (P <207 0.01 at P3 and P4; not significant at other positions, Fig. 4g), and for changes in the 208

Osaki et al.

209	escape direction and distance (Extended Data Fig. 7b). In control mice that did not
210	express ChR2, blue laser stimulation did not affect the escape speed (Extended Data
211	Fig. 9). These results indicate that optogenetic local suppression of Dys neurons reduced
212	noxH evoked pain behaviors.
213	Conversely, pain behaviors were also affected by Dys activation. Because the
214	medial posterior nucleus (Po) neurons are thought to bring nociceptive information from
215	the thalamus to S1 ¹¹ , we confirmed the connection from Po neurons to Dys by retro- and
216	antero-grade tracers (Extended Data Fig. 10) ¹⁶ and utilised mice with virus-induced
217	expression of ChR2 (AAV9-hSyn-ChR2(H134R)-EYFP) in Po neurons ¹⁶ .
218	Photoactivation of Dys (Fig. 4h) in response to innH resulted in treadmill speed profiles
219	resembling those in response to the noxH condition (Fig. 4i). Similarly, the maximal
220	speed with innH condition paired with Dys photoactivation was not different from that
221	in response to the noxH condition ($P = 0.99$, Fig. 4j). Photoactivation of Dys increased
222	the escape speed at 2.5–3 s after innH onset compared with that without photoactivation
223	(P < 0.001, n = 3, Extended Data Fig. 11c, d). Notably, this same increase was observed
224	with ChR2 activation of Dys in the absence of innH ($P = 0.016$, Extended Data Fig.
225	11b). Similar trends were also observed in the escape direction and distance (Extended
226	Data Fig. 7c). This suggests that ChR2-mediated photoactivation of Dys enhanced pain
227	behaviors. In control mice that did not express ChR2 in Po, blue laser stimulation had
228	no effect (Extended Data Fig. 12). In summary, the optogenetic studies demonstrate that
229	Dys activation induces pain behaviors in response to innH, whereas Dys inhibition
230	reduces them, revealing the role of Dys in generating pain behavior.

Osaki et al.

231 Discussion

232	The results of this study reveal that Dys shows much higher selectivity to noxious heat
233	input, whereas BF is more selective to tactile input. In particular, nociceptive
234	information is processed separately from tactile information in Dys L2/3. Dys is also
235	responsive to neuropathic pain. Reflecting the spatially-distinct representation of
236	nociception, optogenetic suppression of Dys activity reduced noxious heat-evoked pain
237	behaviors, whereas the same manipulation in BF showed no behavioral effect. These
238	results indicate that Dys is mainly involved in nociception and in generating pain
239	behaviors in S1.
240	
241	Separation and interaction of nociceptive and tactile processing
242	Previous studies have reported that nociresponsive cortical neurons are located in the
243	deeper layers of BF ^{11,22,23} and Dys ²⁴ , but the functional differences between the two
244	subregions remain unknown. Here, we demonstrate that Dys and BF have clearly
245	segregated roles in nociceptive and tactile processing, especially in L2/3. Our
246	neurophysiological data further show that noxH input suppresses neural activity in BF
247	L2/3. This suppression may be the neural basis for disrupting the acuity of tactile
248	sensation during pain ^{29,30} .
249	In contrast to that in $L2/3$, the segregation of nociceptive and tactile
250	information processing was less clear in L5, with larger proportions of integrative
251	neurons in both regions. However, the preference for tactile stimuli in L5 BF neurons
252	was maintained; BF neurons showed greater selectivity to tactile input than Dys neurons
253	(Extended Data Fig. 4c), while tactile input tended to suppress neural activity in Dys
254	(Fig. 2f). Because L5 neurons are suggested to modulate nociceptive input through the

Osaki et al.

corticofugal pathway^{14,15}, BF L5 neurons might relate to touch-induced pain relief under
normal conditions³¹, whereas Dys L5 neurons might contribute to mechanical allodynia
(Fig. 3).

The notably finding in the present study is that Dys, but not BF, is involved in 258 generating pain behavior (Fig.4). Several lines of anatomical evidence suggest that Dys 259 closely relates to motor function. For instance, Dys receives proprioceptive inputs via 260 $Po^{16,20,21}$ and projects to the primary motor cortex⁴¹. Therefore, it is expected that 261 somatic nociceptive information may integrate with proprioception in Dys. This 262 263 combined information may exert influence over the motor pathway, which leads to 264 proper escape behavior from noxious inputs. Because the descending projections from Dys terminate in areas distinguishable from those from S1 cutaneous areas⁴², the 265 266 functional differences of the outputs from Dys and BF should be examined in more detail in future studies. 267

268

269 Possibility of S1 intervention for pain relief based on S1 functional structure

Although deep brain stimulation of the somatosensory thalamus, the ventral 270 271 posterolateral nucleus and ventral posteromedial nucleus, had been utilized to treat chronic pain⁴³, it is not currently used as a medical treatment because of its limited 272 therapeutic effect^{44,45}. The reason why the limitation may be the fact that the sensory 273 274 pathways are not selectively stimulated. Therefore, we guess that the selective inhibition of nociresponsive region in S1 could overcome it and have more therapeutic effects. 275 Neurons in primate area 3a, which is also a dysgranular region in cytoarchitecture⁴⁶, 276 responds to noxious ^{46,47} and proprioceptive inputs⁴⁸. Thus, primate area 3a could be an 277 evolutionally homologue to rodent Dys. Considering Dys inhibition reduced pain 278

Osaki et al.

- behavior (Fig. 4), inhibition of area 3a might work as pain relief. However, area 3a is
- 280 buried in the fundus of the central sulcus in humans⁴⁹, the selective intervention of area
- 3a is challenging and needs to be resolved for effective treatment of chronic pain in the
- future^{46,47}. Nevertheless, our results provide evidence that the distinctive nociceptive
- region in S1 is a potential therapeutic target for pain relief.

Osaki et al.

285 Acknowledgments

- 286 We thank Sachie Sekino and Yumi Tani for their excellent technical assistance. This
- research was supported by JSPS KAKENHI grant numbers JP15K21387, JP15H01667,
- JP17H05912, JP18K14854, and The Uehara Memorial Foundation to H.O. This
- research was also partially supported by JSPS KAKENHI grant numbers JP20H05481,
- 290 JP20H05916, JP20K21508, JP17H05752 and the SHISEIKAI Scholarship Fund for
- 291 Basic Researcher of Medical Science, Keiko Watanabe Award to M.M. and the program
- 292 for Brain Mapping by Integrated Neurotechnologies for Disease Studies
- 293 (Brain/MINDS) from the Japan Agency for Medical Research and Development,
- AMED, under grant number JP19dm0207057.

295

296 Author contributions

- 297 HO and MM designed the experiments. HO, MK, and YU performed the experiments
- and analyzed the data. HO and MM wrote the original draft.

299

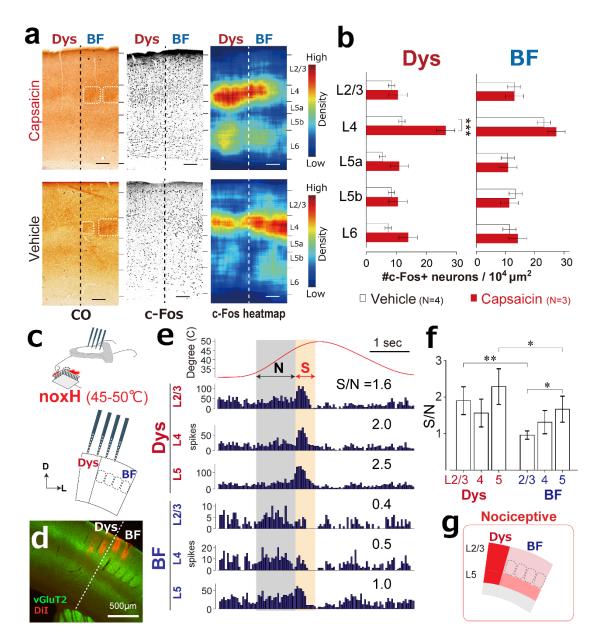
300 Competing interests

301 All authors have no competing interest to declare.

302

Osaki et al.

304 **References**


305	1	Iwamura, Y. Hierarchical somatosensory processing. Current Opinion in Neurobiology 8, 522-
306		528, doi:10.1016/S0959-4388(98)80041-X (1998).
307	2	Penfield, W. & Boldrey, E. SOMATIC MOTOR AND SENSORY REPRESENTATION IN THE
308		CEREBRAL CORTEX OF MAN AS STUDIED BY ELECTRICAL STIMULATION. Brain 60,
309		389-443, doi:10.1093/brain/60.4.389 (1937).
310	3	Apkarian, V. A., Bushnell, C. M., Treede, RD. & Zubieta, JK. Human brain mechanisms of
311		pain perception and regulation in health and disease. European Journal of Pain 9, 463-463,
312		doi:10.1016/j.ejpain.2004.11.001 (2005).
313	4	Kenshalo, D. R. & Isensee, O. Responses of primate SI cortical neurons to noxious stimuli.
314		Journal of Neurophysiology 50, 1479-1496, doi:10.1152/jn.1983.50.6.1479 (1983).
315	5	Bushnell, M. C. et al. Pain perception: Is there a role for primary somatosensory cortex?
316		Proceedings of the National Academy of Sciences 96, 7705-7709, doi:10.1073/pnas.96.14.7705
317		(1999).
318	6	Wimmer, V. C., Bruno, R. M., de Kock, C. P. J., Kuner, T. & Sakmann, B. Dimensions of a
319		projection column and architecture of VPM and POm axons in rat vibrissal cortex. Cerebral
320		cortex (New York, N.Y.: 1991) 20, 2265-2276, doi:10.1093/cercor/bhq068 (2010).
321	7	Chen, L. M., Friedman, R. M. & Roe, A. W. Area-specific representation of mechanical
322		nociceptive stimuli within SI cortex of squirrel monkeys. Pain 141, 258-268,
323		doi:10.1016/j.pain.2008.11.018 (2009).
324	8	Vierck, C. J., Whitsel, B. L., Favorov, O. V., Brown, A. W. & Tommerdahl, M. Role of primary
325		somatosensory cortex in the coding of pain. PAIN® 154, 334-344,
326		doi:10.1016/j.pain.2012.10.021 (2013).
327	9	Treede, RD., Kenshalo, D. R., Gracely, R. H. & Jones, A. K. P. The cortical representation of
328		pain. Pain 79, 105-111, doi:10.1016/s0304-3959(98)00184-5 (1999).
329	10	Hofbauer, R. K., Rainville, P., Duncan, G. H. & Bushnell, C. M. Cortical Representation of the
330		Sensory Dimension of Pain. Journal of Neurophysiology 86, 402-411,
331		doi:10.1152/jn.2001.86.1.402 (2001).
332	11	Frangeul, L. et al. Specific activation of the paralemniscal pathway during nociception.
333		European Journal of Neuroscience 39, 1455-1464, doi:10.1111/ejn.12524 (2014).
334	12	Eto, K. et al. Inter-regional Contribution of Enhanced Activity of the Primary Somatosensory
335		Cortex to the Anterior Cingulate Cortex Accelerates Chronic Pain Behavior. The Journal of
336		Neuroscience 31, 7631-7636, doi:10.1523/JNEUROSCI.0946-11.2011 (2011).
337	13	Singh, A. et al. Mapping Cortical Integration of Sensory and Affective Pain Pathways. Current
338		<i>biology : CB</i> , doi:10.1016/j.cub.2020.02.091 (2020).

339	14	Castro, A. et al. Cortical Regulation of Nociception of the Trigeminal Nucleus Caudalis. The
340		Journal of Neuroscience 37 , 11431-11440, doi:10.1523/jneurosci.3897-16.2017 (2017).
341	15	Liu, Y. <i>et al.</i> Touch and tactile neuropathic pain sensitivity are set by corticospinal projections.
342		<i>Nature</i> 561 , 547-550, doi:10.1038/s41586-018-0515-2 (2018).
343	16	Koralek, KA., Jensen, K. F. & Killackey, H. P. Evidence for two complementary patterns of
344		thalamic input to the rat somatosensory cortex. Brain Research 463, 346-351, doi:10.1016/0006-
345		8993(88)90408-8 (1988).
346	17	Petersen, C. C. H. Sensorimotor processing in the rodent barrel cortex. <i>Nature Reviews</i>
347		Neuroscience 20, 533-546, doi:10.1038/s41583-019-0200-y (2019).
348	18	Kleinfeld, D. & Deschênes, M. Neuronal basis for object location in the vibrissa scanning
349		sensorimotor system. Neuron 72, 455-468, doi:10.1016/j.neuron.2011.10.009 (2011).
350	19	Estebanez, L., Férézou, I., Ego-Stengel, V. & Shulz, D. E. Representation of tactile scenes in the
351		rodent barrel cortex. <i>Neuroscience</i> 368 , 81-94, doi:10.1016/j.neuroscience.2017.08.039 (2018).
352	20	Chapin, J. K. & Lin, C. S. Mapping the body representation in the SI cortex of anesthetized and
353		awake rats. Journal of Comparative Neurology 229, doi:10.1002/cne.902290206 (1984).
354	21	Welker, W., Sanderson, K. J. & Shambes, G. M. Patterns of afferent projections to transitional
355		zones in the somatic sensorimotor cerebral cortex of albino rats. Brain Research 292, 261-267,
356		doi:10.1016/0006-8993(84)90762-5 (1984).
357	22	Lamour, Y., Guilbaud, G. & Willer, J. C. Rat somatosensory (SmI) cortex: II. Laminar and
358		columnar organization of noxious and non-noxious inputs. Experimental Brain Research 49, 46-
359		54, doi:10.1007/bf00235540 (1983).
360	23	Sun, J. J., Yang, J. W. & Shyu, B. C. Current source density analysis of laser heat-evoked intra-
361		cortical field potentials in the primary somatosensory cortex of rats. Neuroscience 140, 1321-
362		1336, doi:10.1016/j.neuroscience.2006.03.018 (2006).
363	24	Khasabov, S. G. et al. Responses of neurons in the primary somatosensory cortex to itch- and
364		pain-producing stimuli in rats. Journal of neurophysiology, doi:10.1152/jn.00038.2020 (2020).
365	25	Favorov, O. V. et al. A newly identified nociresponsive region in the Transitional Zone (TZ) in
366		rat sensorimotor cortex. Brain Research, doi:10.1016/j.brainres.2019.04.028 (2019).
367	26	Kallioma"ki, J., Weng, HR., Nilsson, HJ. r. & Schouenborg, J. Nociceptive C fibre input to the
368		primary somatosensory cortex (SI). A field potential study in the rat. Brain Research 622, 262-
369		270, doi:10.1016/0006-8993(93)90827-a (1993).
370	27	Bokiniec, P., Zampieri, N., Lewin, G. R. & Poulet, J. F. A. The neural circuits of thermal
371		perception. Current Opinion in Neurobiology 52, 98-106, doi:10.1016/j.conb.2018.04.006
372		(2018).
373	28	Paricio-Montesinos, R. et al. The Sensory Coding of Warm Perception. Neuron,
374		doi:10.1016/j.neuron.2020.02.035 (2020).

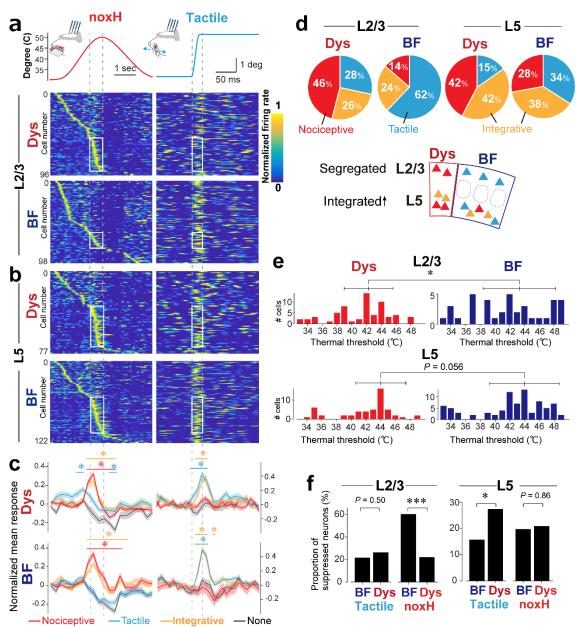
375	29	Apkarian, V. A., Stea, R. A. & Bolanowski, S. J. Heat-Induced Pain Diminishes Vibrotactile
376		Perception: A Touch Gate. Somatosensory & motor research 11, 259-267,
377		doi:10.3109/08990229409051393 (2009).
378	30	Adamczyk, W. M., Saulicz, O., Saulicz, E. & Luedtke, K. Tactile acuity (dys)function in acute
379		nociceptive low back pain. PAIN 159, 427-436, doi:10.1097/j.pain.000000000001110 (2018).
380	31	Inui, K., Tsuji, T. & Kakigi, R. Temporal Analysis of Cortical Mechanisms for Pain Relief by
381		Tactile Stimuli in Humans. Cerebral Cortex 16, 355-365, doi:10.1093/cercor/bhi114 (2006).
382	32	Kim, S., Eto, K. & Nabekura, J. Synaptic structure and function in the mouse somatosensory
383		cortex during chronic pain: in vivo two-photon imaging. Neural plasticity 2012, 640259,
384		doi:10.1155/2012/640259 (2012).
385	33	Moisset, X. & Bouhassira, D. Brain imaging of neuropathic pain. NeuroImage 37,
386		doi:10.1016/j.neuroimage.2007.03.054 (2007).
387	34	Dombeck, D. A., Khabbaz, A. N., Collman, F., Adelman, T. L. & Tank, D. W. Imaging Large-
388		Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice. Neuron 56, 43-57,
389		doi:10.1016/j.neuron.2007.08.003 (2007).
390	35	Plaghki, L. & Mouraux, A. How do we selectively activate skin nociceptors with a high power
391		infrared laser? Physiology and biophysics of laser stimulation. Neurophysiologie
392		Clinique/Clinical Neurophysiology 33, 269-277, doi:10.1016/j.neucli.2003.10.003 (2003).
393	36	Cho, C. et al. Evaluating analgesic efficacy and administration route following craniotomy in
394		mice using the grimace scale. Scientific reports 9, 359, doi:10.1038/s41598-018-36897-w
395		(2019).
396	37	Deuis, J. R., Dvorakova, L. S. & Vetter, I. Methods Used to Evaluate Pain Behaviors in Rodents.
397		Frontiers in Molecular Neuroscience 10, 284, doi:10.3389/fnmol.2017.00284 (2017).
398	38	Langford, D. J. et al. Coding of facial expressions of pain in the laboratory mouse. Nature
399		methods 7, 447-449, doi:10.1038/nmeth.1455 (2010).
400	39	McCormick, D. A., Steinmetz, J. E. & Thompson, R. F. Lesions of the inferior olivary complex
401		cause extinction of the classically conditioned eyeblink response. Brain Research 359, 120-130,
402		doi:10.1016/0006-8993(85)91419-2 (1985).
403	40	Sato, T. R. et al. Interhemispherically dynamic representation of an eye movement-related
404		activity in mouse frontal cortex. eLife 8, doi:10.7554/elife.50855 (2019).
405	41	Kim, U. & Lee, T. Intra-areal and corticocortical circuits arising in the dysgranular zone of rat
406		primary somatosensory cortex that processes deep somatic input. The Journal of comparative
407		neurology 521, 2585-2601, doi:10.1002/cne.23300 (2013).
408	42	Lee, T. & Kim, U. Descending projections from the dysgranular zone of rat primary
409		somatosensory cortex processing deep somatic input. The Journal of Comparative Neurology
410		520 , 1021-1046, doi:10.1002/cne.22767 (2012).

411	43	Hosobuchi, Y., Adams, J. E. & Rutkin, B. Chronic Thalamic Stimulation for the Control of
412		Facial Anesthesia Dolorosa. Archives of Neurology 29, 158-161,
413		doi:10.1001/archneur.1973.00490270040005 (1973).
414	44	Keifer, O., Riley, J. P. & Boulis, N. M. Deep Brain Stimulation for Chronic Pain Intracranial
415		Targets, Clinical Outcomes, and Trial Design Considerations. Neurosurgery Clinics of North
416		America 25, 671-692, doi:10.1016/j.nec.2014.07.009 (2014).
417	45	Farrell, S., Green, A. & Aziz, T. The Current State of Deep Brain Stimulation for Chronic Pain
418		and Its Context in Other Forms of Neuromodulation. Brain Sciences 8, 158,
419		doi:10.3390/brainsci8080158 (2018).
420	46	Whitsel, B. L., Vierck, C. J., Waters, R. S., Tommerdahl, M. & Favorov, O. V. Contributions of
421		Nociresponsive Area 3a to Normal and Abnormal Somatosensory Perception. The journal of
422		pain : official journal of the American Pain Society, doi:10.1016/j.jpain.2018.08.009 (2018).
423	47	Chen, L. Cortical Representation of Pain and Touch: Evidence from Combined Functional
424		Neuroimaging and Electrophysiology in Non-human Primates. Neuroscience Bulletin 34, 165-
425		177, doi:10.1007/s12264-017-0133-2 (2018).
426	48	Iwamura, Y., Tanaka, M., Sakamoto, M. & Hikosaka, O. Functional subdivisions representing
427		different finger regions in area 3 of the first somatosensory cortex of the conscious monkey.
428		Experimental Brain Research 51, 315-326, doi:10.1007/bf00237868 (1983).
429	49	Geyer, S., Schleicher, A. & Zilles, K. Areas 3a, 3b, and 1 of Human Primary Somatosensory
430		Cortex 1. Microstructural Organization and Interindividual Variability. NeuroImage 10, 63-83,
431		doi:10.1006/nimg.1999.0440 (1999).
432		

Osaki et al., (Figures)

1

2 Figure 1


3 Dysgranular region in S1 responds to noxious input.

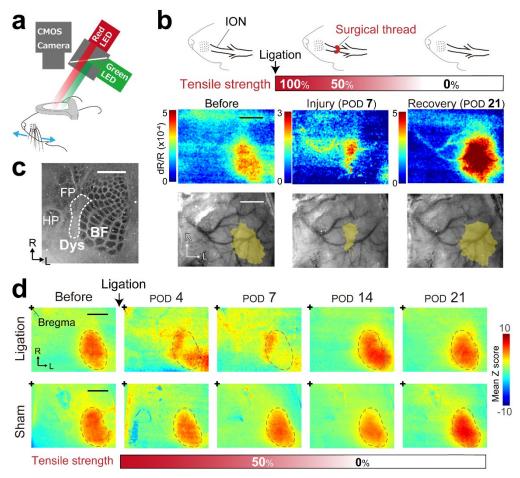
a, Neurons in the dysgranular region (Dys) were activated by injecting capsaicin into the whisker 4 5 pad. *Left*, cytochrome c oxidase (CO) staining identified the boarder of Dys and the whisker barrel 6 field (BF). Middle, c-Fos immunostaining of adjacent slices is shown. Right, Heat maps indicate the density of c-Fos-positive neurons. Scale bars, 100 µm. b, Capsaicin injection into the whisker 7 pad increased the number of c-Fos-positive neurons in Dys L4 (mean \pm SEM; *** $P = 1.2 \times 10^{-5}$, 8 one-way ANOVA followed by Tukey-Kramer test) but not in BF L4 (P = 0.97). c, Setup for 9 10 simultaneous recordings from Dys and BF after application of noxious heat stimulus (noxH) to 11 whisker pad. d, Brain section showing electrode tracks (DiI, red). vGluT2 (green) staining shows

Osaki et al., (Figures)

- 12 the border of Dys and BF. e, Peristimulus time histograms of representative multiunit activity
- 13 recordings to noxH in L2/3, 4, and 5 of Dys and BF. The shaded areas indicate regions for
- 14 calculating ratios of signal (S) to noise (N). **f**, Statistical comparison of S/N responses to noxH.
- 15 *P < 0.05, **P < 0.01, n = 8 animals; Kruskal–Wallis test followed by Dunn's test. **g**, Summary
- 16 diagram indicates that S/N for noxH was higher in Dys than BF.

Osaki et al., (Figures)

17


18 **Figure 2**

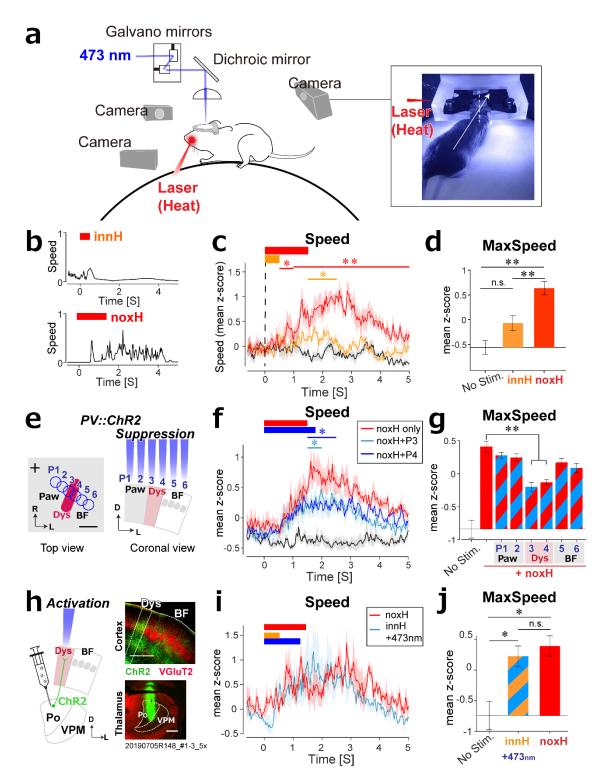
19 Separate processing and interaction of nociception and tactile information in S1.

20 Peristimulus time histograms for the responses of the same L2/3 (a) and L5 (b) neurons to noxious 21 heat (noxH) (left) and tactile (right) stimuli. 50 ms/bin for heat stimulus, 5 ms/bin for tactile 22 stimulus. Each row was sorted by peak response time for noxH, and firing rate was normalized 23 by peak response (boxed areas) in each row. c, Mean values from the histograms in panels a and 24 b sorted according to S/Ns to noxH and tactile stimuli: nociceptive, tactile, integrative (nociceptive and tactile), and nonselective cells (none) (see Extended Data Fig. 4). *P < 0.0525 versus nonselective. **d**, Cell type distributions in L2/3 and L5 of each area and summary diagram. 26 27 e, Distributions of the thermal thresholds, determined from the temperature at which the neural Osaki et al., (Figures)

- 28 responses reached 80% of peak spike rate. Dys neurons were tuned to noxious heat whereas BF
- 29 neurons responded to various temperatures (L2/3 median \pm SD: BF, 43.9°C \pm 4.6°C; Dys, 42.9°C
- $30 \pm 3.4^{\circ}$ C; *P = 0.013, two-sample Ansari–Bradley test for dispersions) (L5 median \pm SD: BF,
- $43.9^{\circ}C \pm 4.7^{\circ}C$; Dys, $44.3^{\circ}C \pm 3.4^{\circ}C$). f, Proportions of neurons for which responses were
- 32 suppressed (S/N < 1) or facilitated (S/N \ge 1). **P* = 0.048, ****P* = 5.4 × 10⁻⁸, 2×2 χ^2 test between
- BF and Dys.

Osaki et al., (Figures)

34


35 Figure 3

```
36 Tactile activated region was shifted from the barrel field to the dysgranular region during
```

37 peripheral nerve injury.

38 **a**, Schematic showing intrinsic signal imaging during whisker stimulation by the piezo device. 39 Red LED was used for intrinsic signal imaging, and green LED was used for obtaining the vessel 40 pattern of the brain surface. **b**, *Top*, Schematic of the time course for infraorbital nerve (ION) ligation by an absorbable surgical thread. *Middle*, Typical examples of the intrinsic signal images 41 42 of an animal. Bottom, Overlaid images of the signal region (yellow) and vessel pattern used for 43 alignment. c, Cytochrome c oxidase staining of a tangential section of S1 L4. FP, forepaw; HP, 44 hindpaw. **d**, Averaged z-scored images (ligation group, n = 5; sham group, n = 3). The dotted areas 45 indicate BF activated by whisker stimulation before ligation. R, rostral; L, lateral; POD, 46 postoperative day. Scale bars, 1 mm.

Osaki et al., (Figures)

48 Figure 4

49 Dysgranular region activity drives nocifensive escape behavior.

- 50 **a**, Schematic for monitoring escape behaviors induced by applying an 808 nm infrared (IR)
- 51 laser to the whisker pad of a head-restrained freely moving animal on a spherical treadmill.

Osaki et al., (Figures)

- 52 Motion direction and the speed were monitored by a camera at the back, and facial expression
- and forelimb movement were monitored by side cameras. **b**, Examples of escape speed in
- response to 500 and 1,500 ms IR stimulation, corresponding to 0.09 (innocuous heat, innH) and
- 55 0.27 J/mm² (noxH), respectively. **c**, Average speed profiles with (innH, orange; noxH, red) and
- 56 without (black) IR stimulation (n = 6 mice). **d**, Maximum speeds induced by IR stimulation. **e**,
- 57 Scheme for silencing six S1 positions (430 µm apart) via 473 nm photoactivation of
- 58 channelrhodopsin-2 (ChR2) during noxH stimulation. Scale bar, 1 mm. +, bregma; R, rostral; L,
- 59 lateral; D, dorsal. f, Average speed profiles show that optogenetic suppression at P3 (blue) and
- 60 P4 (cyan) significantly reduced the escape speed to noxH (n = 6 mice). g, Mean z-scores of the
- 61 maximum speed. **h**, Scheme for activating the thalamocortical fibers from the posterior nucleus
- 62 (Po) and an example of ChR2 expression in Po and in the thalamocortical fibers in Dys. Scale
- 63 bars, 500 μm. i, Average speed profile for optogenetic activation with innH matched that for
- 64 noxH (n = 3 mice). **j**, Mean z-scores of the maximum speed. n.s., not significant; *P < 0.05, **P
- 65 < 0.01, ***P < 0.001; one-way ANOVA followed by Tukey–Kramer test. Shading and error
- 66 bars indicate SEMs for mice.

Osaki et al., (Supplementary table)

Layer	Dys			BF		
	Density of c-Fos ⁺		P value	Density of c-Fos ⁺		P value
	neurons (cells/ $10^4 \mu m^2$)			neurons (cells/ $10^4 \mu m^2$)		
	Capsaicin	Vehicle		Capsaicin	Vehicle	
L23	10.5±2.3	8.5±0.6	0.99	13.1±1.8	13.0±0.4	1.0
L4	26.4±2.5	11.8±2.0	1.2×10 ⁻⁵	27.3±5.0	23.1±3.6	0.97
L5a	11.0±1.5	5.4±0.4	0.25	10.9±2.3	10.8±1.9	1.0
L5b	10.6±0.8	8.4±1.0	0.99	11.3±2.4	13.5±1.7	1.0
L6	13.9±0.8	7.3±1.7	0.10	14.2±1.9	11.3±2.4	1.0

Supplementary Table 1. Capsaicin injection into the whisker pad increases the number of c-Fos-positive neurons in Dys L4.

Values are means \pm SEMs; *P* values are from Tukey–Kramer test (capsaicin, *n* = 3; vehicle, *n* = 4). The same data were used in the bar graphs in Fig. 1b.

Osaki et al., (Methods)

1 Methods

2 Animals and surgery

3	All surgical procedures and postoperative care were performed according to the
4	guidelines of the Animal Care and Use Committee of Tokyo Women's Medical
5	University. The animal experiment was approved under number AE19-109. C57BL/6N
6	(Sankyo Lab. Service Corp., Tokyo, Japan), PV-Cre (JAX stock #008069), and Ai32
7	(Rosa-CAG-LSL-ChR2[H134R]-EYFP-WPRE; JAX stock #012569) mouse lines were
8	used in this study. PV-Cre mice were crossed with Ai32 mice, and the resulting mouse
9	line was designated PV-ChR2. Male mice of 8 weeks or older in age were used. The
10	animals were group-housed in a cage maintained at $23^{\circ}C \pm 1^{\circ}C$ with a 12 h light/dark
11	cycle, and all behavioral tests were performed during the dark period. Every effort was
12	made to minimize the number of mice used and their suffering in this study. For surgical
13	procedures, each animal was anesthetized with an intraperitoneal injection of ketamine
14	(100 mg/kg body weight) and xylazine (16 mg/kg body weight), and isoflurane was
15	supplemented to maintain the anesthesia. Lidocaine was applied subcutaneously at the
16	incision site and to the wound margins for topical anesthesia. For intrinsic signal optical
17	imaging, electrophysiological recordings, and behavioral testing on a spherical
18	treadmill, a custom-built headplate was attached to the skull with dental acrylic clear

Osaki et al., (Methods)

19	resin (Super-Bond; Sun Medical, Shiga, Japan). The head plate-implanted animals were
20	returned to the home cage and allowed to recover from the surgery for at least 4 days.
21	
22	Capsaicin injection
23	For capsaicin injections into the whisker pad, mice were anaesthetized with 2%
24	isoflurane. Capsaicin (Wako Pure Chemical Industries, Ltd., Osaka, Japan) was
25	dissolved in 100% ethanol (229 ul), and then mixed with 7% Tween 80 in saline (3.04
26	ml). Capsaicin (10 mM, 50 μ l) was injected into the left whisker pad. A solution
27	containing 100% ethanol, 7% Tween 80, and saline was used as the vehicle ¹ . One hour
28	after the injection, the animals were perfused with 4% paraformaldehyde with picric
29	acid followed by c-Fos immunohistochemistry using the diaminobenzidine (DAB)
30	protocol described below.
31	
32	c-Fos immunohistochemistry using DAB
33	After the brains were postfixed, 50-µm-thick slices were made, and alternate slices were
34	reacted with cytochrome c oxidase to identify BF, and with c-Fos
35	immunohistochemistry. For c-Fos immunohistochemistry, the slices were processed
36	with 1% H ₂ O ₂ in phosphate buffer to deactivate the intrinsic peroxidase and then

Osaki et al., (Methods)

37	incubated with an anti-c-Fos antibody (1:10,000, rabbit; Merck KGaA, Darmstadt,
38	Germany) in 10% normal goat serum in phosphate-buffered saline with 0.3% Triton X-
39	100 (PBS-X) at 4°C overnight. The slices were then incubated with a biotinylated goat
40	anti-rabbit IgG antibody (1:200; Vector Laboratories, Burlingame, CA, USA) and
41	reacted with avidin-biotin-peroxidase complex (ABC kit; Vector Laboratories). The
42	slices were incubated in a DAB solution (0.02% DAB, 0.3% nickel ammonium sulfate
43	in Tris-buffered saline) and $1\% H_2O_2$ for visualization. Images were acquired with an
44	upright microscope with a charge-coupled-device camera (DP70; Olympus, Tokyo,
45	Japan). The neurons expressing c-Fos were counted by a custom-written MATLAB
46	(MathWorks, Natick, MA, USA) program with edge detection by a Sobel filter followed
47	by binarisation. The numbers of c-Fos-positive neurons in two different slices were
48	averaged to minimize selection bias.
49	
50	Electrophysiological recording
51	For electrophysiological recordings from Dys and BF regions, each mouse was
52	anaesthetized with isoflurane (0.4-0.8%) supplemented with an intraperitoneal injection
53	of chlorprothixene hydrochloride (2 mg/kg body weight) ² . As the nociceptive response
54	depends on the level of anaesthesia ³ , the respiration rate (70–120 cycles/s) was

Osaki et al., (Methods)

55 monitored to control the level of anesthesia.

56	After identifying the border between Dys and BF regions according to intrinsic
57	signal imaging, 32-channel four-shank electrodes (A4x8 or Buzsaki32; NeuroNexus,
58	Ann Arbor, MI, USA) were inserted into S1 to record from Dys and BF regions
59	simultaneously. Raw electrical signals were amplified and digitized at 40 kHz (Plexon,
60	Dallas, TX, USA) and then processed for spike sorting. The spike sorting comprised
61	automated spike detection and clustering using Klusta followed by manual sorting using
62	Kwik GUI ⁴ . First, noise artifacts determined from the waveform were extracted.
63	Second, multiunit activity (MUA) was determined from the waveform with low
64	amplitude and without a refractory period (>2 ms) in autocorrelograms. Third, after
65	merging and/or splitting clusters using auto- and cross-correlograms and principal-
66	component features, single-unit activity (SUA), which has a clear refractory period (>2
67	ms) in autocorrelograms, or MUA was determined. To estimate the depth of recorded
68	neurons, the maximum amplitudes of waveforms from each probe were compared and
69	determined for the nearest probe for each SUA/MUA. For MUA analysis, SUA is
70	included in MUA ($n = 8$ animals, 128 probe sites for simultaneously recorded MUA
71	analysis).

72

Osaki et al., (Methods)

73 Calculation of the S/N for noxious and tactile stimuli

74	We calculated the S/N to identify the area or cell properties and assessed selectivity to
75	noxious heat and tactile stimuli. For the S/Ns for the noxious heat response, the
76	response for 500 ms over 45° C of the Peltier device (45–50°C, beige shading, Fig. 1e)
77	was counted as the S response. The innocuous heat response (for 1,000 ms until 45° C
78	corresponding to 33–45°C, grey shading, Fig. 1e) was counted as the N response. This
79	definition helped to select noxious heat-selective neurons by excluding the temperature-
80	coding neurons.
81	For tactile stimulus, the response for 30 ms after the onset of the whisker
82	deflection (blue arrows, Fig. 2a, right; Extended Data Fig. 3) was counted as the S
83	response. The response for 60 ms until the onset of the whisker deflection was counted
84	as the N response (Extended Data Fig. 3). All deflections were used for this calculation
85	(Extended Data Fig. 3). This definition helped to detect how the neuron responds to
86	sequential whisker deflection ⁵ .
87	
88	Formalin injection and c-Fos immunofluorescence

Each mouse received an intraplantar injection into the left hind paw of 50 µl of a 5.0%
formalin solution using a 27-gauge needle. One hour later, the animals were perfused

Osaki et al., (Methods)

91	with 4% paraformaldehyde with picric acid. The brains were removed, and the right
92	hemispheres were flattened between two glass slides. After the brains were postfixed,
93	tangential 50- μ m-thick sections were made, followed by c-Fos and vesicular glutamate
94	transporter type 2 (vGluT2) immunostaining and Nissl staining. Briefly, the sections
95	were incubated with anti-c-Fos antibody (1:5,000, rabbit; Merck KGaA) and anti-
96	vGluT2 antibody (1:500, vGluT2-GP-Af810; Frontier Science, Ishikari, Japan) in 10%
97	normal donkey serum in PBS-X at $4^{\circ}C$ overnight. The sections were then incubated
98	with the following secondary antibodies: anti-rabbit antibody (Alexa Fluor 568
99	conjugated, 1:1,000, donkey; Invitrogen) and anti-guinea pig antibody (Alexa Fluor 647
100	conjugated, 1:200, donkey; Jackson ImmunoResearch, West Grove, PA, USA). Images
101	were acquired with an epifluorescence microscope (Axio Scope.A1; Carl Zeiss) with a
102	cooled charge-coupled-device camera (RS 6.1; Quantum Scientific Imaging) and by
103	using μ Manager (http://www.micro-manager.org) and ImageJ software
104	(https://imagej.nih.gov/ij). The neurons expressing c-Fos were counted by a custom-
105	written MATLAB program with edge detection by a Sobel filter, followed by
106	binarisation.
107	

108 Anterograde/retrograde labelling

Osaki et al., (Methods)

109	For retrograde labeling, cholera toxin subunit B conjugated with Alexa Fluor 555
110	(0.2%) or with Alexa Fluor 488 (1%) were applied after intrinsic signal imaging to
111	identify the Dys or BF region, respectively. Three days later, the mouse was deeply
112	anaesthetized with sodium pentobarbital (60 mg/kg body weight, intraperitoneally) and
113	transcardially perfused with a fixative solution (4% paraformaldehyde and 0.2% picric
114	acid in 0.1 M phosphate buffer). The brains were removed and cut coronally into 50 μm
115	sections. Sections were incubated overnight with a guinea pig polyclonal antibody
116	against vGluT2 (1:500; vGluT2-GP-Af810) followed by NeuroTrace 435/455 (1:100;
117	Thermo Fisher Scientific, Waltham, MA, USA).
118	For anterograde labeling, biotinylated dextran amine (molecular weight:
119	10,000, 10% in saline; Thermo Fisher Scientific) was injected into the Po (1.7 mm
120	posterior to bregma and 1.3 mm lateral to the midline). Seven days later, the mouse was
121	deeply anesthetized and brain sections were cut, as described above. Sections were
122	incubated overnight with vGluT2-GP-Af810 antibody followed by Alexa Fluor 594-
123	conjugated secondary antibody (1:500; Jackson ImmunoResearch), Alexa Fluor 488-
124	conjugated streptavidin (Thermo Fisher Scientific), and subsequently with NeuroTrace
125	435/455 (1:100; Thermo Fisher Scientific).

Osaki et al., (Methods)

127 Intrinsic signal optical imaging

128	At least 4 days after the head plate implantation, intrinsic signal imaging was performed
129	to measure the responses from BF. The mouse was anesthetized as described above in
130	"Electrophysiological recording". The respiration rate and heart rate were monitored via
131	a video-based respiration monitor with a 30 Hz web camera (C920; Logitech, Lausanne,
132	Switzerland) and an acceleration monitor on the back of the animal. Intrinsic signal
133	images were obtained with a CMOS camera (MV1-D1024E-160-CL; Photonfocus,
134	Lachen, Switzerland) with the tandem lens of an achromatic doublet (Thorlabs, Newton,
135	NJ, USA) and long-pass and short-pass filters (BLP01-488R-25 and FF01-650/SP-25;
136	Semrock, Rochester, NY, USA). Frames were acquired at a rate of 20 Hz, and the frame
137	size was 600×500 pixels and represented 5.5×4.5 mm of cortical area. The brain
138	surface was illuminated by a green LED (M530L3; Thorlabs) to obtain the vessel
139	pattern or a red LED (M617L3; Thorlabs) to obtain the intrinsic signal. Images were
140	recorded through the skull covered with dental acrylic clear resin. The dental acrylic
141	resin was covered with a nail topcoat and silicone immersion oil (Olympus) to reduce
142	glare.
143	Whisker stimulations as tactile stimuli were generated using a piezoelectric
144	device as described previously ⁵ . To visualize the cortical response to tactile stimuli, we

Osaki et al., (Methods)

145	calculated the reflectance ratio in each frame (dR/R, where dR is the difference of
146	reflectance R from the base image that is the average from 20 frames taken before
147	stimulus onset). To map the change in cortical activity, images taken on different
148	experimental days were aligned according to vessel patterns using a custom-written
149	MATLAB program. For population analysis, we calculated the z-scored image from
150	dR/R using the following equation:
151	$z - score(pixel) = \frac{\frac{dR}{R}(pixel) - mean(\frac{dR}{R}(all pixels))}{SD(all pixels)},$
152	where SD is the standard deviation. The positions of bregma were used for alignment
153	between the animals.
154	
155	ION ligation and behavioral assay using von Frey filaments
156	To produce a neuropathic pain model, the ION was tightly ligated by a surgical thread
157	(Vicryl Rapide; Ethicon, Bridgewater, NJ, USA). This thread enables us to observe
158	changes in BF activity during both nerve injury and recovery, as the tensile strength of
159	the thread gradually reduces inside the body (within 2–3 weeks); the tensile strength is
160	reduced to almost 50% at POD 7 and 0% at POD 21, corresponding to the phases of
161	nerve injury and recovery, respectively. For the behavioral assay of neuropathic pain,
162	the animals were trained to enter a 50 ml tube with a custom-made tube holder.

Osaki et al., (Methods)

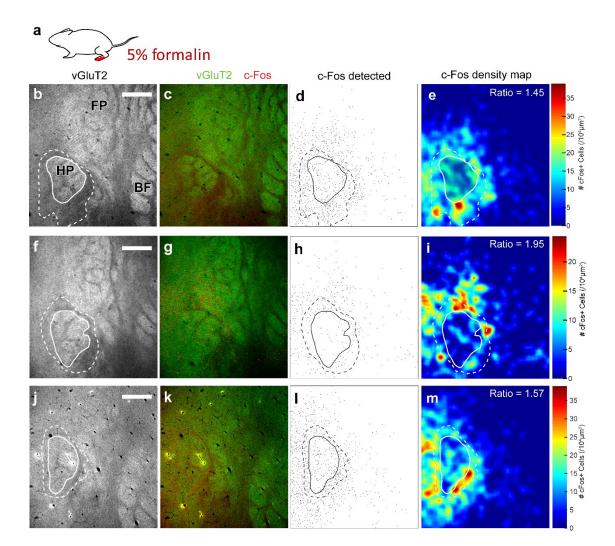
163	Behavioral training began after the mice had restricted access to water (1 ml/day) before
164	at least 7 days of left ION ligation or sham operation. The water was restricted to 1.5 ml
165	for 1 day during the behavioral experiment. The animals were trained to enter the tube
166	and keep their snouts protruded through a hole to drink water. While the animals were
167	drinking, the left whisker pad was stimulated by von Frey filaments (1.4, 2, 4, 6, 8, and
168	10 g; Ugo Basile, Varese, Italy) to measure the escape threshold ⁶ . During stimulation by
169	the filament, visual information was blocked by a black cover (Extended Data Fig. 6).
170	
171	Environmental enrichment
172	At 7 or 21 days after ION ligation and 7 days after sham operation, the mice were
173	placed into an enriched environment for 1 h to enhance whisking while exploring
174	several objects (Extended Data Fig. 6). Then, the mice were perfused with 4%
175	paraformaldehyde with picric acid followed by c-Fos immunohistochemistry using the
176	DAB protocol described above.
177	
178	Measurement and analysis for pain behavior on a spherical treadmill
179	Mice were first trained to enter a tube to obtain a water reward for 3-4 days. Mice were
180	then head-fixed and free to run on a spherical treadmill (Ø 30 cm) under a white noise

Osaki et al., (Methods)

181	sound condition ⁷ for 3–4 days. After this, the behaviors of the mice towards the IR laser
182	stimulus on the left whisker pad were monitored. For the noxious heat stimulus, an IR
183	diode laser (Ø 1 mm on the whisker pad, wavelength of 808 nm, SSL-808-1000-10TM-
184	D-LED; Shanghai Sanctity Laser Technology Co., Ltd., Shanghai, China) was used. The
185	stimulus duration was set to 500 or 1,500 ms, corresponding to 0.09 or 0.27 J/mm^2 ,
186	respectively, to increase the skin temperature to 39°C or 52°C ⁸ . At the start and end of
187	each session, the animals obtained a water reward on the treadmill but not during the
188	stimulus sessions. Each session was composed of various stimulus conditions: each
189	condition was randomly chosen and presented to the animal five times in one session.
190	The animals were imaged with three cameras at 30 Hz (the IR filter on the CMOS
191	sensor was removed, C922; Logitech, Lausanne, Switzerland) set behind and to each
192	side of the animal to record behaviors such as escape direction, speed, moving distance,
193	eyeblink, and left forelimb movement. These parameters were analyzed by calculating
194	the difference of the region of interest of each parameter frame by frame. These
195	parameters were calculated into z-scores for comparisons among the animals by a
196	custom-written MATLAB code. If the animal ran continuously on the treadmill and did
197	not show any difference in the maximum speed between trials, the session was excluded
198	from the analysis. At least 2 sessions were used for calculation of z-scores. A notch filter

Osaki et al., (Methods)

199	(808 nm OD4 notch filter, 86-702; Edmund Optics) was placed in front of the left side
200	camera to prevent sensor white-out and to identify the precise position and size of the
201	IR laser stimulation. Custom-made LED illuminators (940 nm) were placed in front of
202	each camera to illuminate the animals.
203	
204	Optogenetic activation and suppression of Dys
205	To activate the thalamocortical fibers from Po into Dys, a virus (AAV9-hSyn-
206	hChR2(H134R)-EYFP) was injected into the right Po (1.7-1.9 mm caudal and 1.2 mm
207	lateral to bregma; depth, 2,800 and 3,000 μ m from the brain surface; 50 nl at each
208	depth) (QSI; Stoelting, Wood Dale, IL, USA). A blue laser (473 nm; Lasos, Germany)
209	was coupled to an optic fiber cable (Ø 200 μ m; Thorlabs). The output of the optic fiber
210	and the surface of the cortex were placed on conjugate planes using a fiber port and an
211	achromatic lens. The x and y Galvano mirrors (Galvano scanning system, GVS002;
212	Thorlabs) were placed in the infinity space to control the position of the stimulus. A
213	dichroic mirror was also placed in the infinity space, and the reflected light was focused
214	onto the sensor of a CMOS camera (Grasshopper3; FLIR). This design enabled
215	monitoring of the precise location of the stimulated site ⁹ .
216	An optical chopper (pulse width, 2.5 ms, MC2000B; Thorlabs) was used to

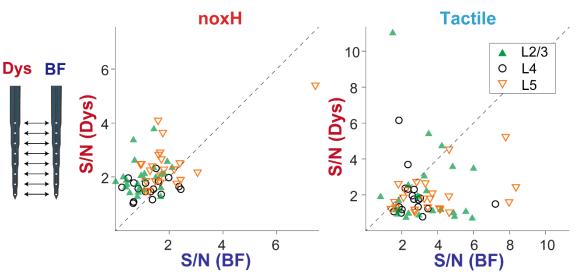

Osaki et al., (Methods)

217	activate PV interneurons with a 40 Hz pulse ¹⁰ . To investigate the suppressive effect of
218	Dys activity, the six positions covering Dys were stimulated by a blue laser focused on
219	the brain surface by an achromatic doublet lens (AC254-60-A; Thorlabs). The centers of
220	the stimulation sites were 430 μm apart, the spot diameter was 1.5 mm, and the power
221	was ~0.9 mW per location.
222	
223	Code and data availability
224	All codes used for analysis in this study were implemented in MATLAB. The codes and
225	the data are available from the corresponding author upon reasonable request.
226	
227	
228	
229	
230	
231	
232	
233	
234	

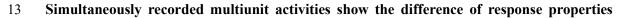
Osaki et al., (Methods)

236	References		
237			
238	1	Noma, N. et al. Organization of pERK - immunoreactive cells in trigeminal spinal nucleus	
239		caudalis and upper cervical cord following capsaicin injection into oral and craniofacial regions	
240		in rats. Journal of Comparative Neurology 507, 1428-1440, doi:10.1002/cne.21620 (2008).	
241	2	Niell, C. M. & Stryker, M. P. Highly selective receptive fields in mouse visual cortex. The	
242		Journal of neuroscience : the official journal of the Society for Neuroscience 28, 7520-7536,	
243		doi:10.1523/JNEUROSCI.0623-08.2008 (2008).	
244	3	Borges, M. & Antognini, J. F. Does the Brain Influence Somatic Responses to Noxious Stimuli	
245		during Isoflurane Anesthesia? Anesthesiology 81, 1511-1515, doi:10.1097/00000542-	
246		199412000-00027 (1994).	
247	4	Rossant, C. et al. Spike sorting for large, dense electrode arrays. Nature neuroscience 19, 634-	
248		641, doi:10.1038/nn.4268 (2016).	
249	5	Fukui, A. et al. Layer-specific sensory processing impairment in the primary somatosensory	
250		cortex after motor cortex infarction. Scientific reports 10, 3771, doi:10.1038/s41598-020-60662-	
251		7 (2020).	
252	6	Kitagawa, J. et al. Mechanisms involved in modulation of trigeminal primary afferent activity in	
253		rats with peripheral mononeuropathy. European Journal of Neuroscience 24, 1976-1986,	
254		doi:10.1111/j.1460-9568.2006.05065.x (2006).	
255	7	Hu, L. et al. Was it a pain or a sound? Across-species variability in sensory sensitivity.	
256		PAIN 156, 2449-2457, doi:10.1097/j.pain.0000000000000316 (2015).	
257	8	Plaghki, L. & Mouraux, A. How do we selectively activate skin nociceptors with a high power	
258		infrared laser? Physiology and biophysics of laser stimulation. Neurophysiologie	
259		Clinique/Clinical Neurophysiology 33, 269-277, doi:10.1016/j.neucli.2003.10.003 (2003).	
260	9	Sato, T. R. et al. Interhemispherically dynamic representation of an eye movement-related	
261		activity in mouse frontal cortex. eLife 8, doi:10.7554/elife.50855 (2019).	
262	10	Cardin, J. A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory	
263		responses. Nature 459, 663, doi:10.1038/nature08002 (2009).	
264			

Osaki et al., (Extended Data Figures)


1

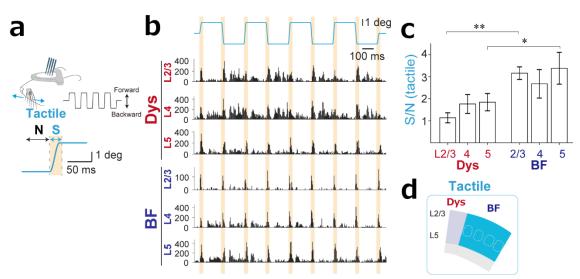
2 Extended Data Fig. 1.


3 Noxious input into hind paw activates Dys L4 of the hindpaw area.

a, Formalin (5%) was injected into the left hind paw. b,f,j, Tangential sections of S1 L4 from
different mice. The granular areas of hindpaw (HP, white trace) and Dys (white dotted trace) were
determined by immunostaining of the vesicular glutamate transporter-2 (vGluT2). FP, forepaw;
BF, whisker barrel field. Scale bars, 400 μm. c,g,k, Co-immunostaining of vGluT2 (green) and cFos (red) after formalin injection into HP. d,h,l, Maps of c-Fos-positive neurons. e,i,m, Colour
maps of c-Fos density overlayed with granular and dysgranular regions for the hind paws. Ratio
of c-Fos-positive neurons (Dys/HP) of each mouse is shown.

Osaki et al., (Extended Data Figures)

1112 Extended Data Fig. 2.

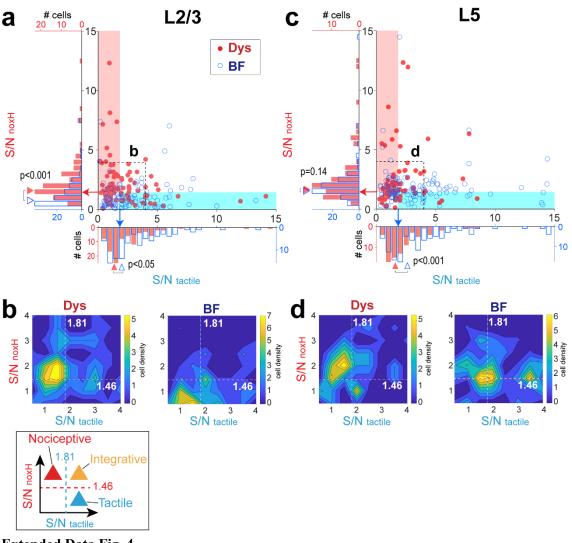

14 between Dys and BF to noxH and tactile stimuli.

15 The diagonal indicates unity. Left, Scatter plot of S/N to noxious heat (noxH) stimulus. P =

16 0.000023 for L2/3 (n = 25), 0.0056 for L4 (n = 17), and 0.062 for L5 (n = 22) by Wilcoxon signed-

- 17 rank test. *Right*, Scatter plot of S/N to tactile stimulus. P = 0.00382 for L2/3 (n = 25), 0.028 for
- 18 L4 (n = 17), and 0.00020 for L5 (n = 22) by Wilcoxon signed-rank test.

Osaki et al., (Extended Data Figures)


20 Extended Data Fig. 3.

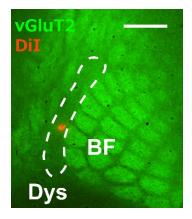
19

21 **BF** responds more selectively to tactile input than Dys.

a, *Top*, Setup for recording responses to tactile stimulation of whiskers. The four-shank electrodes 22 23 were inserted into Dys and BF. Bottom, Shaded area indicates the time used as signal (S) and 24 noise (N) in S/N calculation of tactile input. b, Examples of perstimulus time histograms of 25 multiunit activity to tactile stimulus in L2/3, 4, and 5 of Dys and BF recorded at the same time 26 (see also Fig. 1e). The S/Ns to tactile stimuli were 1.1 (L2/3), 1.8 (L4), and 1.8 (L5) in Dys and 3.2 (L2/3), 2.7 (L4), and 3.4 (L5) in BF. **c**, S/Ns to a tactile stimulus were higher in BF in L2/3 (P = 5.427 $\times 10^{-4}$) and L5 (P = 0.031) (compare with Fig. 1e). *P < 0.05; **P < 0.01 by Kruskal–Wallis test 28 followed by Dunn's test; n = 8 animals. **d**, Summary diagram indicates that S/N for tactile stimuli 29 30 was higher in BF than Dys.

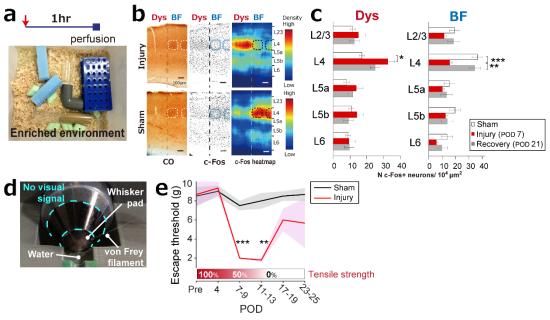
Osaki et al., (Extended Data Figures)

32 Extended Data Fig. 4


- **a**, Scatter plot of S/Ns to a tactile stimulus against S/Ns to noxious heat stimulus (noxH) for
- 36 L2/3 neurons. The neurons in the blue shaded area are the tactile input-preferring neurons, for
- 37 which S/Ns to a tactile stimulus were higher than 1.81 (the median of all neurons, blue arrow),
- 38 and the S/Ns to noxH were lower than 1.46 (the median of all neurons, red arrow). The neurons
- 39 in the red shaded area are the noxious input-preferring neurons, for which S/Ns to a tactile
- 40 stimulus were lower than 1.81, and the S/Ns to noxH were higher than 1.46. The distribution of
- 41 S/Ns for noxH of Dys is significantly higher than that of BF ($P = 4.82 \times 10^{-9}$, two-sample
- 42 Kolmogorov–Smirnov test). Red arrowhead on the *y* axis indicates the median S/N for noxH of
- 43 Dys neurons, 1.60; blue arrowhead indicates median of BF neurons, 0.77. The distribution of
- 44 S/Ns for tactile stimulus in Dys is significantly lower than that in BF (P = 0.012, two-sample
- 45 Kolmogorov–Smirnov test). Red arrowhead on the *x* axis indicates the median S/N for tactile

Segregation and integration of noxious heat and tactile information were observed in the
 scatter plots of S/Ns of all neurons.

Osaki et al., (Extended Data Figures)


- 46 stimulation of Dys neurons, 1.36; blue arrowhead indicates median of BF neurons, 2.00. b,
- 47 Density map of S/Ns to tactile stimulus against S/Ns to noxH of L2/3 neurons, with each S/N
- 48 <4. c, Same as for panel b but for L5 neurons. The distributions are not significantly different
- 49 from each other for S/Ns for noxH (P = 0.14, two-sample Kolmogorov–Smirnov test). Red
- 50 arrowhead on the y axis indicates the median S/N for noxH of Dys neurons, 1.65; blue
- 51 arrowhead indicates the median of BF neurons, 1.52. The distributions of S/Ns for tactile
- 52 stimulation are different from each other (P = 0.00056, two-sample Kolmogorov–Smirnov test).
- 53 The red arrowhead on the x axis indicates the median S/N for tactile stimulation of Dys neurons,
- 54 1.58; blue arrowhead indicates median of BF neurons, 2.57. d, Same as for panel c but for L5
- 55 neurons. *Bottom*, Cell classification (see also Fig. 2c).

Osaki et al., (Extended Data Figures)

- 57 Extended Data Fig. 5.
- 58 **Region adjacent to BF was identified as Dys.**
- 59 An electrode stained with DiI (red) was inserted into the region adjacent to BF after intrinsic
- 60 signal imaging was performed. Immunohistochemistry was performed on a tangential section of
- 61 L4 to identify BF via vGluT2 (green). Scale bar, 500 μm.

Osaki et al., (Extended Data Figures)

62

63 Extended Data Fig. 6.

64 Infraorbital nerve ligation by absorbable surgical thread induced allodynia and activated Dys.

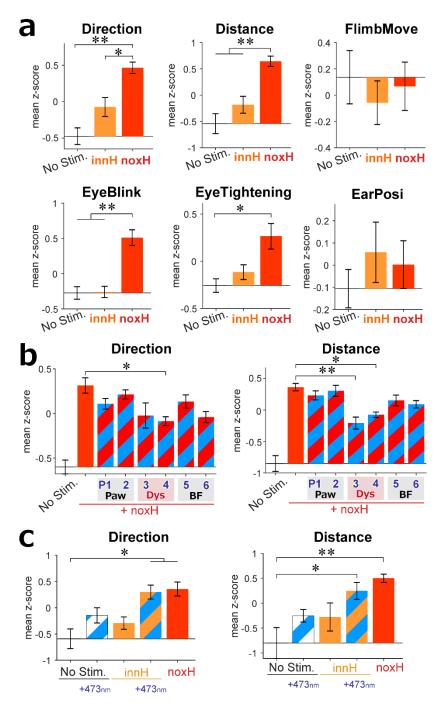
65 **a-c**, Dysgranular area was activated under enriched environmental conditions during infraorbital nerve

66 ligation. **a**, Animals were placed in the enriched environment for 1 h before perfusion. **b**, Examples

67 of CO staining, c-Fos expression, and c-Fos density heat map 7 days after ligation/sham operation

68 (POD7). c, L4 of Dys was activated at day 7. c-Fos expression in L4 of BF decreased at day 7

69 and recovered to sham level at day 21. *P = 0.0485, **P = 0.00318, ***P = 0.000242 by one-


70 way ANOVA followed by Tukey–Kramer test; sham, n = 4; injury, n = 3; recovery, n = 3. **d**, Setup

for von Frey test. **e**, Mechanical allodynia was observed at 7–9 (***P = 0.0002) and 11–13 (**P

72 = 0.0015) days after nerve ligation (one-way ANOVAs followed by Dunnett's test). Error bars

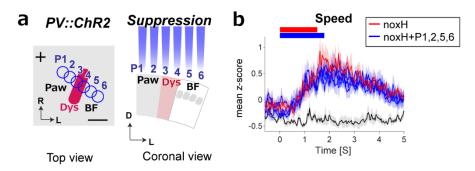
and shading indicate SEMs. Sham, n = 3; injury, n = 3.

Osaki et al., (Extended Data Figures)

74

75 **Extended Data Fig. 7.**

a, Indices to measure nocifensive responses to IR laser exposure for 0 (no stim), 500 (innH), and
1,500 ms (noxH). Direction, the moving direction; a high z-score indicates the animal moved
contralateral to the direction of the IR laser. Distance, the total distance traveled during 4 s after
the onset of IR laser. FlimbMove, the number of touches or covering of the left whisker pad by


81 the left forelimb. EyeBlink, the number of eye blinks. Eye tightening, sustained closure of left

⁷⁶ Nocifensive responses taken from the behavioural experiment using a spherical treadmill.

Osaki et al., (Extended Data Figures)

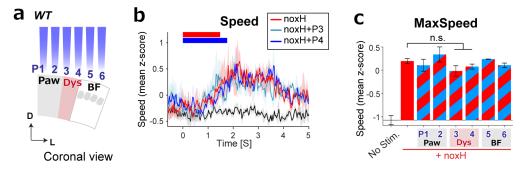
- 82 eyelid. Error bars indicate SEMs (n = 6). **b**, Study of the activation of PV interneurons in different
- 83 anatomical positions (n = 6). c, Indices of the activation of thalamocortical fiber from Po after IR
- 84 laser stimulation (n = 3). *P < 0.05, **P < 0.01 by one-way ANOVA followed by Tukey–Kramer
- 85 test.

Osaki et al., (Extended Data Figures)

87 Extended Data Fig. 8.

88 Blue light stimulation of BF did not reduce escape speed.

a, Same setup as shown in Fig. 4e. **b**, Blue light stimulation of P1, 2, 5, and 6 did not reduce the


90 escape speed to noxH. The difference between the IR-only condition and P1, 2, 5, 6 activation

91 combined with IR stimulation was statistically insignificant at all time points (one-way ANOVA

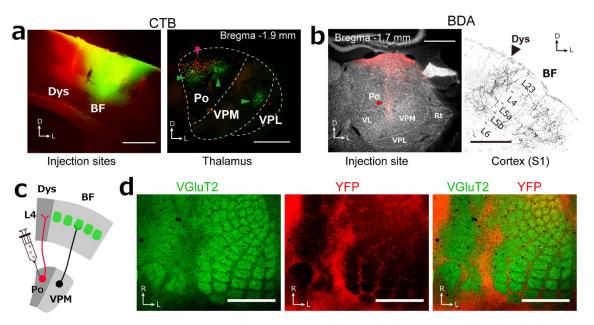
92 followed by Tukey–Kramer test).

93

Osaki et al., (Extended Data Figures)

95 Extended Data Fig. 9.

96 Blue light stimulation of Dys in control animals did not reduce the escape speed.

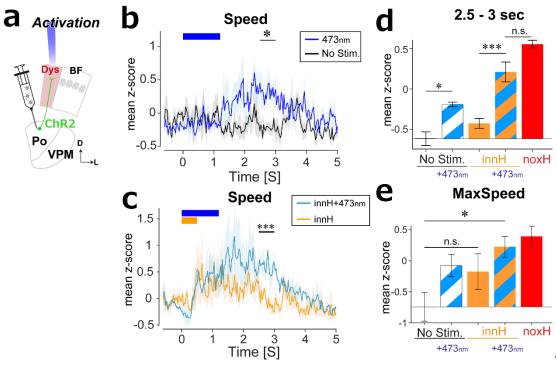

97 **a**, Same setup as shown in Fig. 4e but in ChR2-negative wild-type (WT) animals. **b**, Blue light

98 stimulations of P3 and 4 did not reduce the escape speed in WT mice (n = 3). c, Blue light

99 stimulation at any position did not affect MaxSpeed (one-way ANOVA followed by Tukey-

100 Kramer test).

Osaki et al., (Extended Data Figures)


101

102 Extended Data Fig. 10.

103 Dys receives input from the posterior medial thalamic nucleus.

104 a, Retrograde labeling of posterior medial thalamic nucleus (Po) neurons after injection of Alexa Fluor 555- and 488-labelled cholera toxin subunit B into Dys (red) and BF (green), respectively. 105 106 Left, Injection sites. Right, Somas of neurons projecting to Dys were observed in Po. The somas of neurons projecting to BF were observed in the ventral posterior medial nucleus (VPM) and Po. 107 108 VPL, ventral posterior lateral nucleus. Scale bars, 500 µm. b, Left, Injection site of biotinylated 109 dextran amine (BDA), an anterograde tracer. Right, Axon terminals from neurons in Po. VL, ventral lateral nucleus; Rt, reticular nucleus. Scale bars, 500 µm. c, Schema of AAV-DJ-YFP 110 injection. d, Tangential section of S1 L4 co-labelled with anti-vGluT2 antibody (green) and axon 111 terminals from Po (red). Scale bars, 1 mm. See also other tracer studies ^{1,2}. 112 113

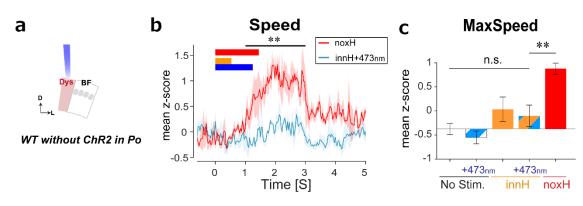
Osaki et al., (Extended Data Figures)

114

115 Extended Data Fig. 11.

116 Optogenetical activation of thalamocortical fibers projecting to Dys induced escape 117 responses.

a, Same setup as shown in Fig. 4h. **b**, Average speed profiles with (473 nm, blue) and without


119 (No Stim, black) optogenetic activation (n = 3 mice). c, Average speed profiles under innH

120 condition with (innH + 473nm, cyan) and without (innH, orange) optogenetic activation **d**, Mean

121 z-scores of the speed at 2.5–3 s. e, Means z-scores of MaxSpeed. n.s., not significant; *P < 0.05,

122 ***P < 0.001 by one-way ANOVA followed by Tukey–Kramer test.

Osaki et al., (Extended Data Figures)

124

125 **Extended Data Fig. 12.**

126 Blue light stimulation itself does not affect escape speed in animals not expressing ChR2.

127 **a**, Same setup as the behavioral experiment in Fig. 4h in WT mice without AAV-ChR2 injection

128 into Po. **b**, Mean z-scores of the speed profiles under the noxH condition and innH + 473 nm

129 condition. Shading indicates SEM over three mice. c, Mean z-scores for maximum speed. The

130 blue light (473 nm) combined with/without IR stimulation did not increase MaxSpeed. n.s., not

- 131 significant; **P < 0.01 by one-way ANOVA followed by Tukey–Kramer test (n = 3).
- 132

Osaki et al., (Extended Data Figures)

133 **References**

- Wimmer, V. C., Bruno, R. M., de Kock, C. P. J., Kuner, T. & Sakmann, B. Dimensions of a projection column and architecture of VPM and POm axons in rat vibrissal cortex. *Cerebral cortex* (*New York, N.Y. : 1991*) 20, 2265-2276, doi:10.1093/cercor/bhq068 (2010).
 Koralek, K.-A., Jensen, K. F. & Killackey, H. P. Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex. *Brain Research* 463, 346-351, doi:10.1016/0006-8993(88)90408-8 (1988).
- 140