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Abstract  13 

Increasingly severe marine heatwaves under climate change threaten the persistence of many marine 14 

ecosystems. Mass coral bleaching events, caused by periods of anomalously warm sea surface 15 

temperatures (SST), have led to catastrophic levels of coral mortality globally. Remotely monitoring 16 

and forecasting such biotic responses to heat stress is key for effective marine ecosystem 17 

management. The Degree Heating Week (DHW) metric, designed to monitor coral bleaching risk, 18 

reflects the duration and intensity of heat stress events, and is computed by accumulating SST 19 

anomalies (HotSpot) relative to a stress threshold over a 12-week moving window. Despite significant 20 

improvements in the underlying SST datasets, corresponding revisions of the HotSpot threshold and 21 

accumulation window are still lacking. Here, we fine-tune the operational DHW algorithm to optimise 22 

coral bleaching predictions using the 5km satellite-based SSTs (CoralTemp v3.1) and a global coral 23 

bleaching dataset (37,871 observations, National Oceanic and Atmospheric Administration). After 24 

developing 234 test DHW algorithms with different combinations of HotSpot threshold and 25 

accumulation window, we compared their bleaching-prediction ability using spatiotemporal Bayesian 26 

hierarchical models and sensitivity-specificity analyses. Peak DHW performance was reached using 27 

HotSpot thresholds less than or equal to Maximum Monthly Mean SST and accumulation windows of 28 

4 – 8 weeks. This new configuration correctly predicted up to an additional 310 bleaching 29 

observations compared to the operational DHW algorithm, an improved hit rate of 7.9 %. Given the 30 

detrimental impacts of marine heatwaves across ecosystems, heat stress algorithms could also be fine-31 

tuned for other biological systems, improving scientific accuracy, and enabling ecosystem 32 

governance. 33 
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Introduction 36 

Anthropocene marine heatwaves are becoming increasingly intense, more frequent and longer lasting 37 

due to climate change (Oliver et al. 2018; Holbrook et al. 2019). These anomalous heat stress events 38 

can have severe implications for a range of marine biota, e.g., influencing shifts in zooplankton 39 

communities, declines in key groups such as krill (Jiménez-Quiroz et al. 2019; Evans et al. 2020; 40 

Işkın et al. 2020), die-offs and reproductive failures of sea-birds (Cavole et al. 2016; Jones et al. 2018; 41 

Piatt et al. 2020), marine mammal strandings (Cavole et al. 2016), and mass coral bleaching and 42 

mortality events (Hughes et al. 2018). While surveying in situ ecosystem responses to climate change 43 

disturbances are essential to assess impact, it is also very costly. Accurate monitoring of ecosystem 44 
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stress remotely and at scale is therefore crucial for effectively managing marine ecosystems and 45 

accurately predicting the impacts of climate change on marine biota. While satellite-based remote 46 

monitoring and forecasting programmes have been implemented across various biological contexts, 47 

we focus this study specifically on remote monitoring and forecasting of coral bleaching. Coral reefs 48 

are highly productive ecosystems that provide habitat to over a million marine species and essential 49 

ecosystem services (e.g., coastal protection, food, fisheries and tourism livelihoods) to hundreds of 50 

millions of people, estimated to be worth over 350,000 USD/ha/yr globally (Costanza et al. 2014; 51 

Ferrario et al. 2014). These ecosystems are increasingly faced with mass coral bleaching and mortality 52 

events (Hughes et al. 2017). The process of coral bleaching involves a breakdown in the symbiosis 53 

between coral hosts and their endosymbiotic phototrophic algae, and can ultimately lead to full or 54 

partial colony mortality (Brown 1997) and sub-lethal effects such as reduced growth (Edmunds 2005). 55 

Coral bleaching is a stress response with a variety of triggers (e.g., 2003anomalous temperature, both 56 

high and low; anomalous increases in the level of light; anomalous levels of salinity, both high and 57 

low; reduction in water quality; and diseases; Skirving et al. 2018). Episodes of mass coral bleaching 58 

occur across large spatial scales, affect numerous coral taxa, and can destroy entire healthy reefs 59 

within months. Pantropical mass bleaching events are becoming recurrent and are caused by the 60 

widespread increasing incidence of marine heatwaves under climate change (Hughes et al. 2017; 61 

Donner et al. 2018; Hoegh-Guldberg et al. 2019). 62 

Over the past two decades, the National Oceanic and Atmospheric Administration’s (NOAA) Coral 63 
Reef Watch (CRW) programme has developed a suite of tools for monitoring coral bleaching risk 64 
using satellite-based sea surface temperature (SST) products. Specifically, the Degree Heating Week 65 
(DHW) metric is used as an indicator of heat stress levels sufficient to induce coral bleaching. DHW 66 
is computed as the accumulation of positive temperature anomalies (HotSpot) above a hypothesised 67 
coral bleaching stress temperature (i.e., 1⁰C above the Maximum of Monthly Means SST climatology 68 
– MMM) over the previous 12 weeks (Liu et al. 2003; Skirving et al. 2020). The DHW algorithm was 69 
designed in the 1990s, and the HotSpot threshold of 1⁰C above MMM and accumulation window of 12 70 
weeks were chosen based on field and experimental evidence from Panama and the Caribbean (Glynn 71 
and D’Croz 1990; Jokiel and Coles 1990). Reflecting the technological advancements in remote-72 
sensing capabilities since then, the SST and DHW products have increased in spatial resolution (50 73 
km to 5 km) and temporal resolution (twice weekly to daily) (Liu et al. 2014). Despite these 74 
improvements, there has not yet been a corresponding revision of the HotSpot threshold and 75 
accumulation window used in the operational DHW algorithm.  76 

Alternate DHW algorithms have been applied to evaluate associations between heat stress and coral 77 
bleaching, mostly at local or regional scales (Weeks et al. 2008; Guest et al. 2012; Kim et al. 2019; 78 
McClanahan et al. 2020; Wyatt et al. 2020). Particularly for weak marine heatwaves associated with 79 
coral bleaching, computing DHWs with a lower HotSpot threshold has proven useful for monitoring 80 
bleaching impacts and severity (Guest et al. 2012; Kim et al. 2019; Wyatt et al. 2020). Evidence also 81 
suggests that using a shorter accumulation window in the DHW algorithm can improve coral 82 
bleaching predictions in some cases (DeCarlo 2020; McClanahan et al. 2020). An optimisation study 83 
in which numerous DHW algorithms are tested against a global coral bleaching dataset could provide 84 
the scientific basis necessary to revise the operational DHW metric. Recently, DeCarlo (2020) showed 85 
that altering the HotSpot threshold and accumulation window can improve global coral bleaching 86 
prediction skill, based on weather forecasting techniques that predict bleaching events (yes or no) 87 
depending on whether DHWs exceed a certain threshold or not. DeCarlo used DHWs computed from 88 
Optimum Interpolation SST (OI-SSTv2) and coral bleaching records from a summative dataset of 100 89 
well-studied coral reefs (Hughes et al. 2018). However, there is a mismatch in spatial scale between 90 
these two datasets; the SST data was extracted from 0.25-degree grid cells, while the area extent of 91 
each reef in the bleaching dataset ranged from 2 km2 (Southwest Rocks, Australia, and St. Lucia, 92 
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South Africa) to over 9000 km2 (Northern Great Barrier Reef, Australia). Accordingly, there are 93 
potential mismatches between DHW values and bleaching data in their study. As such, there is a 94 
pressing need to apply a more comprehensive DHW optimisation study to a global dataset of direct 95 
bleaching observations and DHWs derived from a higher resolution SST dataset.  96 

To construct a global coral bleaching model based on environmental covariates, predictions should 97 

account for spatial and temporal dependencies. For example, corals in certain geographic regions are 98 

likely to respond to heat stress with higher levels of coral bleaching (e.g., areas influenced by the El 99 

Niño Southern Oscillation) (Howells et al. 2016; Romero-Torres et al. 2020) and are likely to change 100 

through time due to coral adaptation and assemblage turnover (Dziedzic et al. 2019; Gouezo et al. 101 

2019). From a statistical standpoint, spatiotemporal uncertainties in the bleaching–environment 102 

relationship must be accounted for to ensure that bleaching predictions are not just artefacts of spatial 103 

or temporal patterns in unmeasured variables. A number of studies modelling coral bleaching globally 104 

as a function of environmental covariates have assumed that the uncertainty of this relationship is 105 

spatiotemporally constant (Safaie et al. 2018; DeCarlo 2020). This assumption is unlikely to be true 106 

for coral bleaching responses, given the potential for coral adaptation (Bay et al. 2017; Matz et al. 107 

2018) and the extent to which post-disturbance turnover can alter the composition of the coral 108 

assemblage (Gouezo et al. 2019) and therefore its tendency to experience subsequent coral bleaching. 109 

To address the spatial issues (but not temporal), Sully et al. (2019) introduced a Bayesian mixed 110 

modelling approach that explicitly resolved spatial variability in the uncertainty of bleaching–111 

environment relationships. This was achieved by treating ecoregion and site as hierarchical random 112 

effects, but this comes at the cost of slow run-time, an issue further compounded by implementing 113 

these models via Monte Carlo Markov Chains (MCMC) which run iteratively and slowly (Rue et al. 114 

2009). Given these issues, such an approach would not be appropriate for a coral bleaching 115 

optimisation study that aims to test hundreds of DHW algorithms whilst also accounting for spatial 116 

and temporal dependencies, since such a study would require a prohibitively large amount of 117 

computing resources.  118 

This study seeks to offer a potential revision to the operational NOAA DHW metric with a view to 119 

improving its ability to predict mass coral bleaching. This will require a suitable methodology that is 120 

robust to spatiotemporal correlated uncertainties and runs with reasonable computational speed. Here, 121 

we apply an alternative approach to modelling bleaching–environment relationships based on 122 

Integrated Nested Laplace Approximation (INLA), which explicitly solves spatial and temporal 123 

uncertainties with much greater computational speed than MCMC (Rue et al. 2009). We aim to 124 

optimise two DHW algorithm parameters, the HotSpot threshold (from MMM – 4 to + 4⁰C) and the 125 

accumulation window (from 2 to 52 weeks) to improve coral bleaching predictions globally whilst 126 

still addressing the common issue of spatial and temporal dependencies. We achieved this by 127 

combining recently developed Bayesian hierarchical modelling techniques using INLA with a 128 

streamlined parallel-computing workflow on a high-performance computing cluster called “The 129 

Rocket”. This allowed hundreds of spatiotemporal INLA models to be run in a short time frame (i.e., 130 

hours instead of weeks as would be the case using MCMC). 131 

Data & Methods 132 

Coral Bleaching Data 133 

The optimisation study presented here was based on a global dataset of 37,871 bleaching survey 134 

records from published and unpublished scientific sources spanning from 1969 to 2017 (Spady et al. 135 

2021). Bleaching estimates were quantified by a wide range of surveying methods, including aerial 136 

surveys, line-intercept transects, belt transects, quadrats, radius plots, rapid visual assessments (e.g., 137 
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manta tows), ad hoc estimates, and interviews with stakeholders. Since data were collected by 138 

hundreds of observers globally over several decades, data collection protocols for these different 139 

general methods are not standardised.  140 

The original dataset underwent four layers of filtering a priori to ensure its suitability this for 141 

analyses. 1) Data were first filtered for errors. This excluded observations that did not have a recorded 142 

month or year, as well as observations in which the coordinates provided did not correspond with a 143 

coral reef location (5,562 observations excluded). 2) Data were removed if the survey date fell outside 144 

the period of peak thermal exposure for that year. As, for the purpose of this study, we are only 145 

interested in coral bleaching that results from thermal stress (i.e., not bleaching due to cold-stress, 146 

nutrient enrichment etc.), instances of bleaching that cannot be linked to the period of peak thermal 147 

exposure may not accurately reflect the status of heat-induced bleaching for that year and location. 148 

We defined the period of peak thermal exposure as the month prior to the month of MMM up to three 149 

months after the month of MMM. For example, if the month of MMM was February for a certain 150 

location, only observations from January-May were included. Further, we ensured that the observation 151 

was not made before the date of maximum DHW in that year (19,292 observations excluded). 3) To 152 

account for different sampling protocols in records of percentage bleaching, we computed bleaching 153 

as a binary variable. Bleaching estimates were reported as means, ranges, or broad categories. First, 154 

we summarised these as representative minimum and maximum percentages. Then, the absence of 155 

ecologically significant bleaching was defined as having a maximum estimation of 10% bleaching or 156 

less, while the presence of ecologically significant bleaching was defined as having a minimum 157 

estimation of 20% or greater. Observations in which the maximum estimation exceeded 10% while 158 

the minimum estimation remained below 20% were filtered out to reduce the chance of 159 

misrepresenting bleaching and no-bleaching observations (Fig. S1) (1,452 observations excluded). 4) 160 

Lastly, to account for spatiotemporal patchiness a priori, we only retained years which had greater 161 

than 100 independent observations, had a qualitatively even global distribution, and were not 162 

temporally isolated (i.e., the proceeding years also needed to meet the previous two criteria). This 163 

resulted in removal of all data before 2003. Despite having 345 bleaching records in 2002, all data 164 

from this year were removed as over 80% of records were from the Great Barrier Reef region alone 165 

(1,185 observations excluded). The resulting dataset included 10,380 unique observations between 166 

2003 and 2017, with >171 observations per year and sufficient spatial representation for each year. 167 

Accumulated heat stress is considered to be the mechanism causing mass coral bleaching (Heron et al. 168 

2016; Skirving et al. 2019), and marine heatwaves typically occur across hundreds to thousands of 169 

kilometres on spatial scales of weather-systems. The vast majority of bleaching observations in the 170 

dataset are associated with mass bleaching events, but despite our filtration process, some bleaching 171 

observations will inevitably result from small scale local heat stress and other non-heat related factors. 172 

Since the models presented in this study are based solely on large scale accumulated heat stress, the 173 

model predictions we present reflect the mechanism of mass coral bleaching which is referred to from 174 

here on. 175 

 176 

 177 
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Figure 1. Distributions of coral bleaching survey records based on estimates of percentage coral 178 

bleaching (< 10% = no, > 20% = yes), measured at 5724 sites from 84 countries between 2003 and 179 

2017 (N = 10,380) after four layers of a priori filtering (i.e., removal of errors, matching surveys with 180 

the period of peak thermal exposure in the year, accounting for inconsistent sampling protocols, and 181 

accounting for spatiotemporal patchiness). 182 

Temperature Data 183 

Heat stress metrics were derived from a combination of CoralTemp v3.1 (Skirving et al. 2020), a gap-184 

free global 5km daily SST dataset from 1985 until present, and corresponding 5km MMM 185 

climatology (Skirving et al. 2020). At each spatially referenced survey record, environmental data 186 

were extracted from the 5km grid cell encompassing that coordinate. These data consisted of a single 187 

MMM value and a time series of daily SST from the start of the pre-survey year until the end of the 188 

survey year.  189 

For the operational DHW metric used by NOAA (DHWop), daily HotSpots were calculated as daily 190 

positive SST anomalies relative to MMM (1). Time series of daily DHWop were then computed using 191 

the standard NOAA CRW method (2). HotSpots greater than 1⁰C were accumulated across a 12-week 192 

moving window (84 days inclusive), where i is the date and n is the earliest date of the accumulation 193 

window. Each daily HotSpot used in the summation is divided by seven a priori, such that 194 

𝐻𝑜𝑡𝑆𝑝𝑜𝑡𝑖  =  𝑆𝑆𝑇𝑖 − 𝑀𝑀𝑀, 𝐻𝑜𝑡𝑆𝑝𝑜𝑡𝑖  ≥ 0 (1) 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐷𝐻𝑊𝑖  =   ∑  (
𝐻𝑜𝑡𝑆𝑝𝑜𝑡𝑛

7
)

𝑖

𝑛=𝑖−83

, 𝑓𝑜𝑟 𝐻𝑜𝑡𝑆𝑝𝑜𝑡𝑛  ≥ 1 (2) 

As an example, consider a 12-week window ending on April 1st for a specific survey location. This 195 

window includes only three daily SSTs that exceed the MMM, equivalent to HotSpots of 0.5, 1.4, and 196 

2.8⁰C. The DHWop value for April 1st is the summation of 1.4 and 2.8⁰C each divided by seven, 197 

which is 0.6⁰C-weeks. The 0.5⁰C HotSpot value was not included in the summation as it was below 198 

1⁰C (Skirving et al. 2020). 199 

We computed a total of 234 test DHW metrics (DHWtest), each with unique combinations of HotSpot 200 

thresholds (9 levels, from – 4 to + 4⁰C relative to MMM) and accumulation windows (26 levels, from 201 

2 to 52 weeks). Unlike the operational metric, HotSpots for DHWtest were calculated relative to the 202 

MMM after an adjustment for the specific threshold in question (3). In the operational metric only 203 

HotSpots > 1⁰C are accumulated, however, in the test metrics all positive HotSpots are accumulated. 204 

Therefore, values of DHWtest are numerically different than DHWop but are conceptually the same (see 205 

Figure 6). Time series of daily DHWtest were computed as the accumulation of HotSpots (4), where i 206 

is the date, n is the earliest date of the accumulation window, and j is the length of the accumulation 207 

window in days minus one, such that 208 

𝐻𝑜𝑡𝑆𝑝𝑜𝑡𝑖  =  𝑆𝑆𝑇𝑖 − 𝑀𝑀𝑀 + 𝐻𝑜𝑡𝑆𝑝𝑜𝑡 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝐻𝑜𝑡𝑆𝑝𝑜𝑡𝑖  ≥ 0 (3) 

𝑇𝑒𝑠𝑡 𝐷𝐻𝑊𝑖  =   ∑  (
𝐻𝑜𝑡𝑆𝑝𝑜𝑡𝑛

7
) , 𝑓𝑜𝑟 𝐻𝑜𝑡𝑆𝑝𝑜𝑡𝑛  ≥ 0

𝑖

𝑛=𝑖−𝑗

 (4) 

 209 

Statistical Approach 210 

The time unit used in the following models is the calendar year. As coral bleaching is more likely at 211 

higher levels of heat stress (Heron et al. 2016), the maximum of daily DHW values was computed 212 
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from the year of each survey record. Thus, all further reference to DHW metrics relate to the annual 213 

maximum summary statistic. Given that the southern hemisphere summer starts before the end of the 214 

calendar year, there was a chance of misclassifying maximum DHW values. For instance, a maximum 215 

DHW on the first or last day of a calendar year will be part of the same heatwave event, however they 216 

will each be assigned to different calendar years. Previously, this has been addressed by adopting 217 

different calendars for each hemisphere (Skirving et al. 2019), however, this was not necessary in the 218 

current study since no such instances were present in the dataset. The relative performance of DHW 219 

metrics for predicting mass coral bleaching were assessed systematically using the following 220 

conceptual framework. 221 

1) For each DHW metric, the association with coral bleaching was tested using a spatiotemporal 222 

Generalised Linear Model (GLM) with a Bernoulli error structure using INLA.  223 

2) Sensitivity-specificity analysis was performed on this GLM to optimise predictions, tally 224 

model successes and failures, and provide metrics for model comparisons.  225 

3) The first two steps were repeated for all DHWtest metrics and DHWop, resulting in 235 226 

separate GLMs and sensitivity-specificity analyses, each run in parallel on separate Intel 227 

Xeon E5-2699 processors via the high-performance computing cluster “The Rocket”.  228 

4) Model comparisons were used to determine the best-performing models and hence the 229 

optimal HotSpot threshold and accumulation window for predicting coral bleaching globally 230 

using DHWs. 231 

Model formulation 232 

We have adopted a spatiotemporal Bayesian modelling approach to predict mass coral bleaching 233 

based on DHWs using the R-INLA package (http://www.r-inla.org) (Rue et al. 2009). Compared to 234 

more commonly used frequentist approaches, Bayesian inference allows uncertainty to be more easily 235 

interpreted. Moreover, using R-INLA over other Bayesian tools (e.g., Monte Carlo Markov Chains) 236 

provides the opportunity to resolve spatiotemporal correlation explicitly and more rapidly (Rue et al. 237 

2009). 238 

Observations of mass coral bleaching are often spatiotemporally correlated due to large-scale climatic 239 

drivers. While basic linear regressions applied to such data ignore these dependencies and lead to 240 

pseudoreplication (Hulbert 1984), R-INLA circumvents these issues. In each time point, spatial 241 

dependencies are dealt with by implementing the Matérn correlation across a Gaussian Markov 242 

random field (GMRF), essentially a map of spatially correlated uncertainty. This is achieved using 243 

stochastic partial differential equations (SPDE) solved on a Delaunay triangulation mesh of the study 244 

area. The parameters (Ω) that determine the Matérn correlation are the range (r – range at which 245 

spatial correlation diminishes) and error (σ). Weakly informative prior estimates of these parameters 246 

(r0 and σ0) are recommended when implementing the Matérn correlation (Fuglstad et al. 2019). 247 

Temporal dependencies among these GMRFs are dealt with by imposing a first order autoregressive 248 

process (AR1), defined by the AR1 parameter (ρ) (9). This allows for correlation in model residuals 249 

through time avoiding pseudoreplication. 250 

To test the effect of DHW metrics on coral bleaching, a triangular mesh (Fig. 2) was defined with a 251 

maximum triangle edge length of 600 km and a low-resolution convex hull (convex = -0.03) around 252 

the study sites to avoid boundary effects (1,790 nodes). This mesh was repeated for each year in the 253 

time series (26,400 nodes). The probability of coral bleaching for a given observation (CBt,i) in a 254 

given year (t) and location (i) was assumed to follow a Bernoulli distribution (πt,i) using the logit-link 255 

function for binary data. Bleaching was modelled as a function of the DHW metric in question (fixed 256 

effect: DHWt,i) whilst accounting for additional underlying spatiotemporal correlation among 257 

bleaching observations (random effect: vt,i), 258 
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𝐶𝐵𝑡,𝑖 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑡,𝑖),        (5) 259 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝐶𝐵𝑡,𝑖) = 𝜋𝑡,𝑖,        (6) 260 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐶𝐵𝑡,𝑖) = 𝜋𝑡,𝑖 × (1 − 𝜋𝑡,𝑖),       (7) 261 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑡,𝑖) = 𝛽0 + 𝛽1 × 𝐷𝐻𝑊𝑡,𝑖 + 𝑣𝑡,𝑖 + 𝜀𝑡,𝑖,    (8) 262 

𝑣𝑡,𝑖 = 𝜌 × 𝑣𝑡−1,𝑖 + 𝑢𝑡,𝑖,           (9) 263 

𝑢𝑡,𝑖 ~ 𝐺𝑀𝑅𝐹(0, 𝛺),     (10) 264 

𝜀𝑡,𝑖 ~ 𝑁(0, 𝜎2),             (11) 265 

where β0 is the intercept, β1 is the DHW parameter estimate, ρ is the AR1 parameter, ut,i represents the 266 

smoothed spatial effect from the GMRF mesh, elements of Ω (r and σ) are estimated from the Matérn 267 

correlation, and εt,i contains the independently distributed residuals. Following the recommendations 268 

from Fuglstad et al. (2019), we specified weakly informative priors for r0 (2000 km) and σ0 (1.15) 269 

based on the residual variogram and error from an intercept-only null Bernoulli GLM (Fig. S2). We 270 

also tested different priors; however, they had a negligible effect on the estimates of any model 271 

parameters. To avoid imposing artificial temporal dependencies, we used a non-informative default 272 

prior for ρ. 273 

 274 

Figure 2. Constrained refined Delaunay triangulation mesh of 1790 nodes used for spatial correlation 275 

in one timestep. The spatiotemporal correlation over 15 years is computed over 15 such meshes 276 

totalling 26,400 nodes. Continents and bleaching survey coordinates (black points) overlay the higher 277 

resolution study area (black mesh) and lower resolution convex hull (grey mesh). 278 

Model Validation 279 

Standard model validation steps were conducted for the best performing GLM and included plotting 280 

bleaching observations against fitted values, assessing model residuals for spatiotemporal correlation 281 

using maps and variograms, and producing a time series of maps showing spatiotemporally correlated 282 

uncertainty (Zuur and Ieno 2017). The dataset presented here was considerably patchy in both space 283 

and time despite prior filtering (e.g., no South Pacific observations in 2003, 2012, or 2013). Patchy 284 

data is a pertinent issue in statistics (Little and Rubin 2002) and can have a considerable effect on 285 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439773doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439773


8 
 

estimated model parameters (Bihrmann and Ersbøll 2015), and model selection criteria (e.g., 286 

Deviance Information Criterion – DIC) (Nakagawa and Freckleton 2008). Thus, to address patchiness 287 

beyond basic filtering, we performed a simulation test (Fig. S3 & Fig. S4). In summary, patchiness 288 

did not have an important effect on estimated model parameters (Fig. S5), validating the broader 289 

model comparison methods and results of the main study. Full details are described in the 290 

Supplementary Materials. 291 

Sensitivity-Specificity Analysis 292 

To optimise binary predictions from each Bernoulli GLM, sensitivity-specificity analyses were 293 

performed using receiver operating characteristic (ROC) curves in R (Robin et al. 2011) without 294 

considering spatiotemporal dependencies. This method is commonly applied in bioinformatics and 295 

medical decision making to determine the performance of binary classifications. Here, sensitivity is 296 

defined as the proportion of correctly classified bleaching observations (true positives), and specificity 297 

as the proportion of correctly classified no-bleaching observations (true negatives). As a probability 298 

cut-off is moved over all possible values, the ROC plot shows the corresponding sensitivity and 299 

specificity at each level. The Area Under the Curve (AUC) from each ROC plot reflects the 300 

performance of that GLM relative to the perfect predictor (AUC = 1) and can be used for multi-model 301 

comparisons based on 95% confidence intervals computed using stratified bootstrap resampling 302 

(Robin et al. 2011). The hit rate, defined as the proportion of observed bleaching events that were 303 

correctly predicted, was also computed at the optimal cut-off level for each model. 304 

Model Comparisons 305 

Model comparisons were based on the Bayesian DIC and two key metrics from the sensitivity-306 

specificity analysis: AUC and hit rate. DIC is a measure of overall model parsimony (Zuur and Ieno 307 

2017), but is based on both the DHW fixed effect and the spatiotemporal random effect. Therefore, 308 

AUC and bootstrapped confidence intervals were used as the preferred model comparison metric, as 309 

this evaluates the overall performance of a binary classifier relative to a perfect predicting model 310 

(Robin et al. 2011), based on the fixed effect only. Hit rate is an additional metric that allows easy 311 

interpretation of model success. 312 

Results 313 

Model Comparisons 314 

For predicting coral bleaching based on DHWtest, we identify (1) a group of worst performing models, 315 

(2) a group of better performing models, and (3) a suite of best performing models. (1) Poor GLM 316 

performance was associated with DHWtest metrics computed on HotSpot thresholds ≥ MMM + 2⁰C or 317 

accumulation windows ≥ 22 weeks. This was evident by low AUC values < 0.7 and high DIC values 318 

> 7000 (Fig. 3, right and upper regions). (2) The remaining GLMs (HotSpot threshold ≤ MMM + 1⁰C, 319 

accumulation window ≤ 20 weeks) were associated with better coral bleaching predictions (AUC) and 320 

model parsimony (DIC) (Fig. 3, lower and lower left regions). (3) Finer determination of the best 321 

models of this subset was made possible by incorporating sensitivity-specificity uncertainty into 322 

model comparisons (Fig. 4, 95% bootstrapped confidence intervals). A performance-optima 323 

relationship was apparent between AUC and the HotSpot threshold and accumulation window, 324 

whereby peak GLM performance was reached when DHW accumulation windows were 4 – 8 weeks  325 

(Fig. 4). When DHW accumulation windows were outside this range (2 weeks or ≥ 10 weeks), 326 

corresponding AUC was significantly lower than the AUC of the best performing GLMs (Fig. 4, blue 327 

shaded region). Notably, of all the GLMs that used the same accumulation window (grey and white 328 

band groupings, Fig. 4), those models applying lower HotSpot thresholds performed better in terms of 329 

AUC and DIC. The 8-week accumulation window resulted in the best overall fit of AUC and DIC 330 
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combined (max DIC = 6812). In summary, the suite of best-performing models (in terms of bleaching 331 

prediction) applied DHWtest metrics based on HotSpot thresholds ≤ MMM and accumulation windows 332 

of 4 – 8 weeks. 333 

 334 

Figure 3. Model comparison heatmaps showing the Deviance Information Criterion (DIC) and Area 335 

Under the Curve (AUC) for 234 Generalised Linear Models (GLMs) that each predict coral bleaching 336 

based on a different DHWtest metric. Raster cells represent individual GLMs plotted by HotSpot 337 

threshold and accumulation window. The threshold and window used for DHWop are shown by red 338 

dashed lines (MMM + 1⁰C, and 12-weeks). Results for the DHWop GLM are not shown on the heat 339 

maps (DIC = 6967, AUC = 0.758). 340 
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 341 

Figure 4. Model comparisons accounting for uncertainty in Area Under the Curve (AUC) showing 342 

the mean and 95% bootstrapped confidence intervals (CI). Each point represents a Generalised Linear 343 

Model GLM that predicts coral bleaching based on a different DHWtest metric, ordered by HotSpot 344 

threshold and accumulation window (both increasing downwards). The hit rate (proportion of 345 

observed bleaching events correctly predicted) is shown for each GLM (point colour) and the AUC of 346 

the best GLM is shown as a blue shaded region. Note the DHWop algorithm is slightly different than 347 

the DHWtest algorithm (Equation 1-4). 348 

Best Model – Validation 349 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439773doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439773


11 
 

The GLM based on the DHWtest metric with HotSpot threshold of MMM + 0⁰C and accumulation 350 

window of 8 weeks (DHWtest-0C-8wk), was a representative of the suite of best-performing models. The 351 

probability of bleaching output from this model (based on DHWtest-0C-8wk and unmeasured 352 

spatiotemporally correlated factors) closely matched the observational bleaching record (Fig. 5A). 353 

Both the fixed effect (DHWtest-0C-8wk) and the random effect (spatiotemporal uncertainty) provided 354 

important contributions to predictions of coral bleaching (Fig. S7). The sensitivity-specificity analysis 355 

reflected the high performance for this model, with an AUC value of 0.783 (Fig. 5B). The range 356 

parameter (r) of GMRFs showed that drivers of bleaching other than DHWtest-0C-8wk were spatially 357 

correlated up to 697 km (Fig. S6), consistent with the spatial scale of climatic and weather systems. 358 

The AR1 parameter (ρ) of 0.62 indicated moderate temporal correlation of uncertainty in predicted 359 

coral bleaching (i.e., drivers other than DHWtest-0C-8wk), meaning that the uncertainty in bleaching 360 

predictions in one year is affected by that of the previous year by a factor of 0.62 (Fig. S6). This can 361 

be seen visually on maps of temporally correlated GMRFs (Fig. S7).  362 

  363 

Figure 5. Exploration of best-performing GLM which predicts coral bleaching based on DHWtest-0C-364 

8wk (HotSpot threshold = MMM, accumulation window = 8 weeks) and spatiotemporal uncertainty. 365 

(A) Fitted values or bleaching probabilities are shown relative to bleaching observations from the 366 

global dataset, showing a clear separation between bleaching and non-bleaching categories. (B) 367 

Sensitivity-specificity analysis is shown for the same GLM without spatiotemporal uncertainty. 368 

Sensitivity is defined as the proportion of correctly classified bleaching observations (true positives), 369 

and specificity as the proportion of correctly classified no-bleaching observations (true negatives). 370 
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Area Under the Curve (AUC) and bootstrapped 95% confidence intervals (shown in brackets) reflect 371 

the distance to a perfect predicting model (AUC = 1). 372 

Best Model – Understanding Heat Stress 373 

Even though lowering the HotSpot threshold and reducing the accumulation window improved 374 

predictions of mass coral bleaching (Fig. 3, Fig. 4), the DHWop metric still categorised bleaching 375 

observations well. DHWop values were greater for bleaching records than for non-bleaching records 376 

(Fig. 6). Of the 517 highest heat stress records (> 95th percentile: > 9.0⁰C-weeks), 78% were 377 

associated with coral bleaching observations, highlighting the importance of heat stress as a proximate 378 

cause of coral bleaching. Such levels of heat stress relate to NOAA CRW Bleaching Alert Level 2. 379 

However, in comparison to DHWop, the test metric DHWtest-0C-8wk showed a higher distribution of heat 380 

stress values overall, but lower extremes values (Fig. 6). This is due to a lower HotSpot threshold and 381 

shorter accumulation window, respectively. This was characterised by fewer DHW values of zero (1 382 

vs. 27%), a higher mean (5.2 vs. 2.5⁰C-weeks), a higher 95th percentile (9.9 vs. 9.0⁰C-weeks), but a 383 

lower 99th percentile (11.3 vs. 12.5⁰C-weeks). The number of bleaching observations associated with 384 

a heat stress of zero was 6 for DHWtest-0C-8wk and 122 for DHWop. Given that DHWtest-0C-8wk had a 385 

lower HotSpot threshold, fewer bleaching observations are associated with heat stress values of zero. 386 

In other words, reducing the HotSpot threshold increased our ability to predict coral bleaching 387 

associated with weak marine heatwaves. 388 

 389 

 390 

Figure 6. DHW distributions for bleaching records (red) and non-bleaching records (blue), shown as 391 

histograms and probability density curves. For comparison of different DHW metrics, the operational 392 

metric used by NOAA (DHWop) is shown alongside one of the best-performing metrics (DHWtest-0C-393 

8wk), calculated using a lower HotSpot threshold (MMM + 0⁰C) and a smaller accumulation window 394 

(8 weeks). 395 
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Discussion 396 

Heat stress can have considerable impacts on marine organisms and entire marine ecosystems (Eakin 397 
et al. 2019; Smale et al. 2019). The DHW metric is a measure of accumulated heat stress widely used 398 
to predict mass coral bleaching caused by anomalous temperatures above typical summertime 399 
conditions (Heron et al. 2016; Safaie et al. 2018; Skirving et al. 2019; Sully et al. 2019). The remote-400 
sensed SST products underpinning the operational NOAA DHW metric have improved stepwise over 401 
the last two decades (Wellington et al. 2001; Liu et al. 2003; Liu et al. 2013; Skirving et al. 2020), 402 
however, there has not yet been a corresponding revision of the HotSpot threshold and accumulation 403 
window used in this algorithm. Here, we developed 234 different DHW algorithm variants each with 404 
a different HotSpot threshold and accumulation window. We assess the performance of these DHWtest 405 
metrics for predicting mass coral bleaching globally. Compared to DHWop, it was possible to improve 406 
the coral bleaching hit-rate by up to 7.9% by using different HotSpot thresholds and accumulation 407 
windows, equating to an additional 310 correctly predicted bleached reefs out of a total of 3895 (also 408 
linked to an increased false negative rate of 3%). Simply reducing the HotSpot threshold to MMM (or 409 
< MMM) rather than MMM + 1⁰C, resulted in up to 6.8% increases in hit rate, whilst using an 410 
accumulation window of 8 weeks instead of 12 weeks maximised this hit rate. Such improvements 411 
were also reflected in model comparison metrics from sensitivity-specificity analyses (increased AUC 412 
of 0.02) and Bayesian inference (decreased DIC of 36). Models using the 4 – 8 week accumulation 413 
window generally performed best, reflecting the typical duration of the vast majority of coral 414 
bleaching heat stress events to date (Oliver et al. 2018). Under climate change, however, average sea 415 
temperatures and the duration of marine heatwaves are predicted to continue increasing (Hoegh-416 
Guldberg et al. 2018; Oliver et al. 2018), meaning in the future, longer DHW accumulation windows 417 
may better capture the levels of heat stress relevant to coral bleaching. Given that baselines are 418 
shifting throughout biotic and abiotic marine systems and that rates of adaptation to future 419 
environmental conditions are yet unknown, the concepts addressed in this study likely need to be 420 
revisited in the future at semi-regular intervals to ensure that the DHW product remains as accurate as 421 
possible. 422 

Complexities of coral bleaching 423 

Coral bleaching is a stress response whereby photosynthetic algal symbionts are lost from the coral 424 
host tissues, resulting in the white coral skeleton becoming progressively more visible (Brown 1997; 425 
Douglas 2003). Given the complexity of this host-symbiont relationship, survey metrics such as ‘coral 426 
bleaching extent’ provide limited information from which to infer biological causes. Coral bleaching 427 
is affected by numerous biological factors including symbiont community composition and their 428 
environmental responses (e.g., more or less heat-tolerant algal taxa) (LaJeunesse et al. 2018), host 429 
heterotrophy (e.g., reliance on the symbiont) (Conti-Jerpe et al. 2020), the capacity for acclimation 430 
and adaptation both genetic and epigenetic (intra- and inter-generational) (Kirk et al. 2018; Liew et al. 431 
2020), and coral taxonomy (e.g., different life history strategies) (Marshall and Baird 2000; Guest et 432 
al. 2012). In addition, other environmental factors can influence bleaching responses in corals, such as 433 
high solar insolation, cloudiness, winds, tidal extremes, thermal variability, cold-water stress and 434 
nutrient enrichment (Mumby et al. 2001; Hoegh-Guldberg et al. 2005; Anthony et al. 2007; Anthony 435 
and Kerswell 2007; Wiedenmann et al. 2013; González-Espinosa and Donner 2020). Given this suite 436 
of biotic and abiotic factors, a perfect-predicting coral bleaching algorithm would need to combine 437 
heat-stress metrics with other environmental and biological parameters that in many cases are often 438 
not available. NOAA CRW are investigating the potential improvements to DHW via the inclusion of 439 
solar insolation with the development of their Light Stress Damage (LSD) satellite-based product 440 
(Skirving et al. 2018). 441 

Here we have refined the ability of a common heat stress metric to predict mass coral bleaching. 442 
Ideally, such an optimisation study would be based on coral bleaching data that relate to only heat 443 
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stress related mechanisms. By filtering the dataset as described, we did our best to achieve this, 444 
however, bleaching observations in the dataset may inevitably have been caused by other biotic or 445 
abiotic factors, contributing to the noise in our results. Bleaching observations from surveys may also 446 
be subject to other inaccuracies such as the assumption that sampling only part of a reef is 447 
representative of the entire reef. Despite these points, the model comparisons performed in this study 448 
remain valid as model biases were applied to all models equally. Given these facts, the AUC and hit 449 
rate from sensitivity-specificity analyses are unlikely to reflect the absolute accuracy of DHW 450 
metrics, but rather allow comparisons of relative accuracy to determine optimal HotSpot thresholds 451 
and accumulation windows. The optimisation study presented here was performed on a global coral 452 
bleaching dataset. For scientists and practitioners aiming to assess global patterns in coral bleaching, 453 
we have shown that bleaching predictions can be improved by computing DHW metrics using an 454 
optimal HotSpot threshold of the MMM + 0⁰C and accumulation window of 8 weeks. These 455 
recommended DHW algorithm refinements are only applicable to global analyses and predictions of 456 
mass coral bleaching caused by heat stress. Moreover, it is important to note that the quasi-457 
opportunistic nature of coral bleaching surveys (i.e., monitoring coral bleaching when DHW values 458 
are high indicating high bleaching risk) can lead to a confirmation bias in studies of coral bleaching 459 
and heat stress. Monitoring programmes should address this limitation, by aiming to survey bleaching 460 
more regularly, even when there is no accumulated temperature stress (i.e., DHW = 0). 461 

Global and regional scales 462 

A regionally sensitive DHW algorithm would likely improve predictions of mass coral bleaching. For 463 
instance, many scientific studies have used variants of the DHW algorithm to better predict coral 464 
bleaching in their study site (Guest et al. 2012; Kim et al. 2019; Wyatt et al. 2019). This will likely 465 
continue, since oceanographic and climatic systems, coral assemblages, and the distribution of algal 466 
symbiont taxa vary geographically and at regional scales (Veron 1995; Clarke 2014; LaJeunesse et al. 467 
2018). For instance, the thermal regime of the tropical Eastern Pacific is distinct from many other 468 
tropical regions, characterised by high variability due to the El Niño Southern Oscillation, with more 469 
intense warm water conditions typical of La Niña years compared to El Niño years (Clarke 2014). 470 
Long-term trends in coral coverage from this region, which have remained very stable over the past 3 471 
decades, are atypical compared to most tropical reefs which have suffered persistent declines (Hughes 472 
et al. 2017; Romero-Torres et al. 2020). Such distinct trends in the tropical Eastern Pacific could be 473 
caused by adaption of corals there to highly variable thermal regimes (Romero-Torres et al. 2020). 474 
This is just one example of a region that could benefit from a specific regional DHW optimisation. 475 
Notably, the methods applied in this study would be easily adapted to develop such regional DHW 476 
products. 477 

Future outlook 478 

Optimising heat stress metrics for specific purposes could also be useful for other marine systems. 479 
Marine heatwaves have contributed to marked ecological disturbances beyond mass coral bleaching 480 
and mortality events (Ummenhofer and Meehl 2017; Frölicher and Laufkötter 2018; Smale et al. 481 
2019), yet specific metrics to predict these other disturbances are not often implemented. The 482 
northeast Pacific warming event of 2013 – 2015, termed “the blob”, was the subject of unusually high 483 
SST anomalies and repeated marine heatwaves (Di Lorenzo and Mantua 2016). The blob was 484 
associated with considerable ecological impacts, including the mass stranding of marine mammals 485 
such as sea lion and whales (Cavole et al. 2016), die-offs and reproductive failure of seabird 486 
populations (Cavole et al. 2016; Jones et al. 2018; Piatt et al. 2020), and reduced survival and growth 487 
of foraging fish (von Biela et al. 2019). In all these cases, evidence suggested that declines in higher 488 
trophic levels were associated not to direct effects of heat stress, but to the cascading effects of heat-489 
mediated declines at lower trophic levels. Reduced abundance and altered composition of zooplankton 490 
communities including krill are highly susceptible to heat stress (Jiménez-Quiroz et al. 2019; Evans et 491 
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al. 2020; Işkın et al. 2020), which can result in reduced food availability for higher trophic level 492 
animals (e.g., Cassin’s auklet and Californian sea lion), their emaciation and mortality (Cavole et al. 493 
2016). The urgency to understand the full extent of ecological impacts associated with marine 494 
heatwaves could in part be addressed by creating new heat stress indicators that are optimised for 495 
specific disturbances using similar methods to those applied here. While this would not allow for 496 
rapid response actions to such events, it would guide marine protected area design (i.e., focus on 497 
conserving thermal refugia) and inform future projections of marine systems and related policy 498 
recommendations. 499 

Conclusion 500 

The Anthropocene is characterised by shifting baselines of biological communities, loss of 501 
biodiversity, and increasingly severe and frequent climatic disturbances. Thus, there is growing need 502 
to understand and be able to predict climatic and anthropogenic disturbances on habitats, particularly 503 
those that provide key ecosystem services to socioecological systems. Here, we have fine-tuned a 504 
commonly used heat stress algorithm to a specific purpose (i.e., predicting mass coral bleaching), and 505 
have shown that simple changes (compared to the operational algorithm) can result in a considerable 506 
improvement in prediction success. The philosophy behind this optimisation study was to remove 507 
prior expectations, run the models, and allow the data to reveal the optimal HotSpot threshold and 508 
accumulation window for predicting mass coral bleaching globally. In this case, coral bleaching 509 
observations were correctly predicted up to 7.9% more often just by reducing the HotSpot threshold 510 
and accumulation window of the DHWtest metric. Broadly, improving bleaching prediction success of 511 
the operational DHW metric can support stakeholders and end-users such as coral reef managers, 512 
inform the design of MPA networks (e.g., including thermal refugia), and provide more accurate 513 
information which can lead to better conservation and restoration decision-making (e.g., shifting 514 
valuable coral nurseries during heatwaves, assisting with decisions on when to relocate acquarium-515 
grown corals to the reef, etc.). Fine-tuning DHWs also has potential for other specific systems, such 516 
as predicting planktonic shifts and associated impacts to higher trophic levels. Increasingly under 517 
climate change, marine heatwaves are shaping species populations, biological food webs and even 518 
ecosystem structure and function (Hughes et al. 2017; Eakin et al. 2019; Smale et al. 2019). Thus, 519 
optimising our predictions of heat stress and the associated ecological impacts will be key to 520 
understanding the future of marine ecosystems. 521 
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