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ABSTRACT12

A long-term study of Campylobacter sequence types was used to investigate the competitive framework of the Campylobacter

metacommunity, and understand how multiple sequence types simultaneously co-occur in a flock of chickens. A combination of

matrix and patch-occupancy models were used to estimate parameters describing the competition, transmission, and mortality

of each sequence type. It was found that Campylobacter sequence types form a strong hierarchical framework within a flock of

chickens, and occupied a broad spectrum of transmission-mortality trade-offs. Upon further investigation of how biodiversity

is thus maintained within the flock, it was found that the demographic capabilities of Campylobacter, such as mortality and

transmission, could not explain the broad biodiversity of sequence types seen, suggesting that external factors such as host-bird

health and seasonality are important elements in maintaining biodiversity of Campylobacter sequence types.

13

Introduction14

Campylobacter are one of the most frequent causes of food poisoning in the UK1, 2, presenting an estimated £50 million15

direct economic burden to the UK3. The most commonly identified route of transmission to humans is via poultry meat4,16

with seventy three percent of UK supermarket chicken carcasses shown to carry the bacteria5. Whereas some foodborne17

pathogens, such as Salmonella, have been shown to proliferate primarily at the slaughterhouse6, Campylobacter instead emerge18

and spread rapidly at the farm level7, 8. As a result, limiting the spread of Campylobacter within poultry farms has been one19

of the primary goals of the Food Standards Agency (FSA) across the last ten years9, where attempts to-date have focused20
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on biosecurity measures10, 11, such as employing anti-bacterial ‘boot dips’ at the entrance to chicken houses, and greater21

stress placed on farmers to practise consistent hand-washing and facility cleaning. Since Campylobacter have been shown22

to spread from a single bird, to an entire flock, in as little as one week12, the thinking behind such prevention methods is to23

minimise the chance of the bacteria entering the flock in the first instance. Such measures have proved largely ineffective13–15,24

prompting calls for greater study into the ecology of this microbe11, 16, in the hope of gaining insight into how it can be controlled.25

26

Different strains of Campylobacter are commonly categorised by sequence type (ST); genotyping samples by multi-locus27

sequence typing (MLST) of seven house-keeping genes17, 18. Broiler flocks (birds grown for their meat) are grown for only a28

short time, ranging from roughly five weeks for standard flocks, to 12 weeks for organic flocks19. Yet despite this short window29

of time available for Campylobacter to colonise a flock, multiple STs are commonly observed simultaneously within a broiler30

flock20–22. For multiple STs to co-occur within a flock for several weeks implies the presence of regulatory mechanisms driving31

the sustained biodiversity within the flock, that have not yet been identified, let alone studied in depth.32

33

Understanding the inter-strain competition mechanisms amongst different strains of Campylobacter can both aid under-34

standing of the host-pathogen relationship, but also presents new opportunities in disease control. Understanding how certain35

STs may be excluded from colonising a flock by pre-established STs creates the opportunity for manipulation of these dynamics36

to reduce the incidence of certain STs. Strains of Campylobacter are known to vary in their pathogenic potential23, with some37

strains particularly effective at cell invasion24. Introducing competitively superior strains into a transmission source presents a38

way to ensure that particularly pathogenic strains are unable to establish via competitive exclusion, as has been demonstrated in39

experimental studies25. Alternatively, an understanding of these competitive frameworks presents the possibility for the use of40

live vaccine candidates, whereby bacterial strains that have been weakened can be used to trigger an immune response and41

limit pathogenic strains26. While promising results in such vaccine candidates have begun to appear27, reliable effectiveness42

of these approaches requires knowledge of the underlying population dynamics. As of yet, such dynamics are not properly43

understood28.44

45

Understanding of these mechanisms is further exacerbated due to the fact that the exact route of entry into the flock is46

still uncertain. While it is generally considered that horizontal transmission is the most likely source of flock infections29,47

with STs carrying over from other locations on a farm, there still exists evidence of some infections caused due to vertical48

transmission30 and wild bird crossover31. The possibility of multiple points of entry for Campylobacter to enter a flock49

would explain the inability for improved biosecurity alone to reduce outbreak incidence, and may even suggest that stopping50

colonisation outright may be a fruitless endeavour, further supporting the need to utilise the manipulation of competitive51

hierarchies within the host microbiome; if the bacteria cannot be kept out of the farms, perhaps it can yet be kept out of the52

birds.53
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54

Investigations into the varying prevalence of specific STs have shown, experimentally32 and numerically33, that a multi-55

tude of STs can be isolated from a chicken at any given time, and yet within this pattern of co-occurrence only one specific56

ST will usually be seen to dominate the gut, being isolated in far greater proportions than its co-colonisers. Through this57

mechanism, a diverse mix of STs can exist in this way within a flock of many chickens, each carrying their own cohort of STs,58

and each with their own resident dominant strain. This observation constitutes a metacommunity34 of STs. A metacommunity59

is defined as a system where small communities interact with one-another, and influencing the dynamics within each individual60

community. In our instances, the competing STs within a single host chicken can be thought of as a community, with multiple61

STs competing for dominance within one chicken, yet the dynamics within each individual chicken influence neighbouring62

chickens, resulting in a level of flock-wide dynamics as well. By utilising various mathematical frameworks from the wider63

ecological literature, we can begin to uncover how STs can co-exist within the flock, and to then ascertain what dynamic64

properties cause some newly introduced STs to die out, and others to persist.65

66

To investigate this dynamic behaviour, this study utilises two mathematical modeling approaches to query the data from67

a long-term broiler-breeder flock prevalence study by Colles et al. (2015)35, which reports the STs isolated from individual birds68

within a flock across a year. A competition matrix model, such as that outlined by Ulrich et al. (2014)36, is used to estimate a69

global competition matrix, detailing the competitive outcomes of pairwise competition between STs. This matrix quantifies70

the likelihood of specific competitive outcomes, namely if some STs will always outcompete some other STs, or whether71

such competitive outcomes can have unpredictable results. More importantly, they also provide insight into the competitive72

hierarchy seen within the broiler microbiome, whether that be a highly structured hierarchy, whereby dominant STs will73

always out-compete lesser-able STs in a gradually decreasing order of competitive advantages, or perhaps instead a system of74

intransitive competition. Intransitive competition, or ‘rock-paper-scissors’ competition, instead is defined as a system whereby75

loops are observed in the rank of competitive outcomes, for example if ST A outcompetes ST B, ST B outcompetes ST C,76

and ST C then outcompetes ST A37. We refer to this cyclic relationship as an intransitive triad. In such a system, there can be77

frequent turnover of competing organisms, as no one entity is necessarily globally superior. Intransitive competition has been78

shown to have far-reaching implications for ecological stability and biodiversity, enabling species coexistence38, promoting79

biodiversity39, and enabling species cooperation40.80

81

Building on this, we then use the estimated competition matrix within a discrete-time patch-occupancy model to simu-82

late and explore the broader dynamics of how STs move between birds in a flock, displace one another, and capitalise on the83

niches presented by uncolonised birds. Patch-occupancy models simplify a system to a series of ‘patches’, be it spatial units or,84

in our case, individual chickens, where each patch can be occupied by only one organism at a time, in our case, the dominant85

ST of Campylobacter. The turnover in occupation by different organisms is captured by a series of probabilistic transition86
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mechanisms, which have had great success in demonstrating persistence within metacommunities41, due to minimising the87

assumptions placed upon the population dynamics of the system. The mechanisms that allow for sustained biodiversity in88

metapopulation models have been shown to primarily be the demographic factors of transmission and mortality of competing89

species42, 43. i.e. how well a bacteria can invade a host, and how well it can remain there. In our case, we consider transmission90

as a measure of how many subsequent chickens will likely be challenged by the established ST in a host bird in the following91

timestep, the outcome of such a challenge is then decided by the previously estimated competition matrix. Bacterial mortality92

meanwhile is considered as the probability that a dominant ST will die out in the subsequent timestep, leaving the host bird93

susceptible to a new invading ST (not to be confused with bird mortality). By building a simulation of the system from which94

the data was gathered, we estimate these two specific parameters for each ST, and examine how these vary between STs and95

how they correlate with the observed frequency of each ST.96

97

By presenting quantified estimates into the growth, spread, and competitive ability of each individual ST, we are able98

to provide insight into how STs of Campylobacter interact with one another, both within a host chicken, and within a flock as a99

whole.100

Methods101

Data102

In the original study, a flock of 500 broiler breeders was monitored, with 200 birds labelled with leg-rings and monitored for a103

total of 51 weeks. Each week, cloacal swabs were taken from a random selection of 75 of the labeled birds, and tested for the104

presence of Campylobacter through standard culture methods. Positive samples were then genotyped (MLST), enabling the ST105

and species of the Campylobacter isolate to be specified. Note that, while multiple STs can occupy a host-bird simultaneously,106

it is frequently observed, experimentally32 and theoretically33, that a single ST will broadly dominate the gut at any given time.107

Hence the sole ST recorded from a positive bird is a reflection of which STs are most dominantly expressed at that timepoint.108

Furthermore, these dominant STs in a host bird will dominate for roughly a week before being replaced by a competitor33.109

39 distinct STs of varying prevalence were observed across the year within the flock, 25 of Campylobacter jejuni and 14 of110

Campylobacter coli. 19 of these STs appear very rarely, with less than ten total appearances in the data. Due to this limited111

number of data, meaningful conclusions as to their competitive abilities cannot be given, and as such we do not consider these112

STs in our analysis, considering only the 20 STs for which more than ten instances of occurrence were recorded in the data. An113

example layout of a small portion of this data is presented in Figure 1, and the total prevalence of STs over time is displayed114

in Figure 2. Negative samples are not shown in Figure 2, as this data is not used for the competition matrix model. Further115

experimental details can be found in the original publication35.116
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Figure 1. Example portion of the ST prevalence data. From a total flock of 500 broiler breeders, 200 were labelled with
leg-rings. These 200 are captured in the rows of the data frame. Each week 75 of these birds were tested for the presence of
Campylobacter for 51 weeks (columns). Birds were marked as either free from Campylobacter (marked in tan), or if found to
be Campylobacter positive, the sequence type (ST) of the bacteria was recorded. Blank white spaces indicate where a bird was
not tested for that particular week. The whole data set comprises 200 rows, 51 columns, and captures 39 distinct STs.
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Competition Matrix117

We first estimate a competition matrix, detailing all pairwise competition outcomes between all STs. Formally, we define118

that, for a system of n STs, the competition matrix, C, is an n×n square matrix where element Ci, j represents the probability119

that ST i out-competes ST j in a pairwise competition. By definition, the diagonal elements of C are equal to 1, and Ci, j = 1−C j,i.120

121

By using the time-series abundance data of all STs throughout the flock, as shown in Figure 2, one may back-infer the122

pairwise competitive strengths between all STs within the flock. Based upon the methods outlined by Ulrich et al. (2014)36,123

this competition matrix may be estimated by first inferring a transition matrix, P: an n× n square matrix where Pi, j repre-124

sents the probability that a chicken colonised by ST i is instead colonised by ST j in the next time period. Note that this125

matrix P is not the same as the competition matrix C, as the observed transitions could represent the result of multiple sequen-126

tial competitions between STs - the replacing ST has not only outcompeted the present occupant, but also all other incoming STs.127

128

To estimate this transition matrix, P, consider an n× 51 frequency matrix A, where element Ai,t denotes the number of129

chickens that ST i was isolated from at time t, and where n is the number of distinct STs. This matrix is directly built from our130

data, where element Ai,t can be seen as the ‘No. of appearances’ of ST i in week t from Figure 2. This frequency matrix is then131

related to our transition matrix, P, via the equation;132

PAt = At+1 (1)

where At is a column vector of n elements, reporting the abundance of all STs at time t. This provides a method by133

which to estimate P by choosing the matrix P that best fits equation (1). Homogeneous mixing of STs is assumed, however,134

another assumption is made in equation (1) that all STs are present and are capable of appearing at each time point. This is not135

representative of biological reality. We see from Figure 2 that some STs do not appear in the flock until later in the experiment,136

and while it could plausibly be being out-competed in every prior instance, it is more plausible that the ST has simply not yet137

infected the flock. As such, we adapt equation (1) by also implementing a binary-filled ‘presence’ matrix Z, an n×51 matrix,138

where element Zi, j is either 0 or 1, denoting whether or not ST i is present in the flock at time j. i.e. when a ST is not observed139

within a flock in a particular week, we do not consider it’s impact on that week’s transition dynamics.140

141

If ST i is isolated in the data at time t, we mark it as present in matrix Z for times t through to t + 3, to account for the142

possibility of a ST being reduced to low levels, not captured in the data. This three week window was determined from our143

earlier numerical simulations33, showing the average duration for which a low-level “non-dominant" ST might persist within a144
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host. We rewrite equation (1) as:145

(PAt)�Zt+1 = At+1 (2)

where Zt+1 is the (t + 1)th column of Z, and � is the Hadamard (element-wise) product. In essence, Z simply acts as146

a switching mechanism, to switch off the possibility of transitions to a ST that has not yet emerged. This approach carries147

multiple benefits. Primarily, the transition matrix now represents the transition probabilities for a flock where all STs are148

present simultaneously. This inference allows more of the dataset to be utilised, without having to divide our experimental data149

into multiple regions of different sized matrix calculations. A possible limitation to this approach is that it allows inference of150

competitive outcomes between STs that do not appear at the same time in the original dataset. i.e. it can infer based on the151

growth abilities of a ST at a later time how it would fare against a ST from an earlier time. While this inference is useful, these152

limited instances are not experimentally verifiable. As such, we do not display these few “assumed" competitive strengths in153

our results, to avoid confusion.154

155

Once the best fitting P to equation (2) has been found, we may use this P to estimate the associated competition matrix156

C. Ulrich et al. (2014)36 presents such a methodology whereby, assuming homogeneous mixing, the transition matrix P and the157

competition matrix C are linked by the relationship:158

Pi, j = P(1, . . . ,n) [ j→ i] =
1

n−1
Ci, j +

1
n−1

n

∑
k=1,k 6=i, j

C j,kP(1, . . . ,k−1,k+1, . . . ,n) [ j→ i] (3)

for i 6= j, and159

Pi,i =
n

∏
k=1,k 6=i

Ci,k (4)

where the range of summation in (4) is calculated across the subset considered in the notation P(1, . . . ,n). Heuristically,160

one considers the transition probabilities as the proportional outcomes of all possible competitive interactions. In a four-species161

system, equations (3) and (4) would define:162

Pi, j =
1
3

Ci, j +
1
3

(
1
2

Ci, jC j,k +
1
2

Ci, jC j,kC j,l

)
+

1
3

(
1
2

Ci, jC j,l +
1
2

Ci, jC j,lC j,k

)
.

In small systems, the probability of successful transition for each ST could be directly calculated as the proportional163
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outcome of all possible competitive interactions as given in equations (3) and (4). However, for our system of 20 STs this is164

computationally impossible, as the size of equation (3) will rapidly balloon for such a large system. Instead we therefore used165

the approximation approach of Ulrich et al. (2014)36:166

Pi, j ≈
1

m−1

n−2

∑
k=0

(
∏

n
l=1 C j,l

C j, jC j,i

) k
n−2 . (5)

This approximation was found to estimate a randomly drawn 20×20 test competition matrix with a mean value error < 0.001.167

168

The above methodology allows us to choose a trial competition matrix, C, convert this to a transition matrix, P via equation (5),169

and then evaluate how well this transition matrix simulates the observed data, A, via equation (2). All that is required now is an170

approach by which to find the “best" competition matrix C. As such, we estimate the competition matrix C using the above171

equations within a Bayesian framework, using the Just Another Gibbs Sampler (JAGS) program44, a Markov chain Monte172

Carlo (MCMC) sampling program utilising Gibbs sampling. Specifically the model was called and analysed within R by using173

the rjags package45. We considered wide, uninformative, uniform priors on the elements of C. Convergence was considered174

well-achieved, with every element of C’s posterior distribution displaying a potential scale reduction factor (PSRF) < 1.03, and175

a Monte Carlo standard error (MCSE) less than 5% of the standard deviation of the sample. The code used is made available at176

https://osf.io/3rd4e/.177

178

Lastly, we quantify the amount of intransitivity observed from the best-fit competition matrix C. While many metrics179

of measuring intransitivity have been proposed46, the most suitable is generally considered to be Kendall and Babington Smith’s180

ds
47; a measure of the proportion of three-species intransitive loops found within the competition matrix. i.e. we measure the181

number of cyclical intransitive triads seen in the competition matrix, and divide this by the total number of possible triads for a182

competition matrix of that size.183

Patch-occupancy model184

The estimated competition matrix gives insight into the interactions between different Campylobacter STs, however it cannot185

by itself answer our questions as to how biodiversity of STs is maintained within the flock. The previous metacommunity186

modelling studies of May & Nowak (1994)42 and Hanksi & Gyllenberg (1997)43 have demonstrated that persistence can be187

largely managed by differences between the colonising ability and mortality of competing organisms. As such, we estimate188

parameters describing the colonising ability and mortality for each of our 20 considered STs. Figure 2 shows that some STs189

occur with increased frequency compared to other present STs. For example, STs 1487 and 573 both seem to persist within190

the flock throughout the entire recorded experimental duration, and yet ST 573 is observed in far fewer birds throughout this191

time. We hypothesise that differences in the demographic parameters between these STs may explain the differences in the192
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underlying population dynamics.193

194

A patch-occupancy model was designed to simulate the experimental data as closely as possible. In this instance, the195

patches considered are the 500 chickens that make up the flock, and the STs of Campylobacter present are the occupying196

entities.197

198

A 500 × 51 matrix is initialised, where each row denotes a specific chicken in a flock, and each column a time-point199

(a week), so as to replicate the data structure shown in Figure 1. Element (i, t) thus records which ST, if any, has colonised200

chicken i at time t. The first column is initialised to match the proportion of STs recorded in the first week of the dataset201

in Figure 2. Each time-step is then simulated in turn, to iteratively generate the subsequent 50 columns. In each timestep,202

each established ST may be removed for the following timestep with probability, µi, the ST-specific mortality parameter that203

we seek to estimate. STs that persist to the next timestep then have the opportunity to infect other chickens. The number of204

other chickens that are challenged by this resident ST is drawn from a Poisson distribution, Pois(λi), where λi is a ST-specific205

parameter. Borrowing from the parlance of the ecological literature, we refer to this parameter as the average ‘propagules206

released’ by ST i. If a challenged chicken is currently uncolonised by Campylobacter, they then become colonised by the207

invading ST. If a challenged chicken is currently colonised by a different ST, this is treated as a competitive event, whereby208

the winner of the pairwise competition will be the occupying ST for the following timestep, and the loser is removed. This209

outcome is decided by the probabilities estimated in our previous model, given by the matrix C.210

211

When new STs appeared for the first time in the experimental data, they are directly introduced into the patch-occupancy model212

at the proportion and time-step they were first observed. One exception is made for ST 49, which was unobserved for so long in213

the experimental data, that two specific introduction events were allowed. Appendix 1 outlines the pseudo-code detailing this214

model structure. The model was programmed in R and the code is available at https://osf.io/3rd4e/.215

216

Considering transition events on the weekly timescale provided in the original data is considered valid based upon theo-217

retical modelling work showing that dominant STs in a host bird will dominate for roughly one week before being replaced218

by a competitor33. Much like our previous model, this provides a framework whereby a trial solution of µi and λi for each219

ST i can be used, and the resulting ST population dynamics can be compared against the population dynamics observed in220

the original data. We wish to find the values of µi and λi that best capture the patterns seen in Figure 2. We score a trial221

solution by comparing the relative proportions of ST frequency at each time-step with the proportions shown in the original222

data. The specific iterative framework as outlined in Appendix 1 cannot be integrated into a Bayesian system, so we instead223

utilise machine learning techniques to seek the optimum solution.224

We first find an estimate for the average parameter values across all STs to use as an initial trial solution for each individual225
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ST. We collapse the data to a binary state of either Campylobacter-positive or Campylobacter-negative, and use simulated226

annealing to find the average µ and λ values that best simulate the data, using a scoring function defined by the absolute227

difference between the infection proportions in every column and every row between the model data and experimental data.228

This is so that the algorithm selects the parameters that also capture the frequency with which chickens may transition from229

being Campylobacter-positive to Campylobacter-negative. This provided a best-fit solution of µ = 0.7, and λ = 3.2. These230

values were then used as initialisation points for each ST-specific parameter set (µi,λi), which are then iteratively adapted using231

genetic algorithm approaches to find the best-fit solution.232

233

Genetic algorithms, so named for their inspiration by natural selection, generate “mutations" of the initial trial solutions, and the234

resulting mutations which best describe the data will in turn inform the next generation of trial solutions. A genetic algorithm of235

population size 200 was run for 100 iterations, using the (0.7,3.2) estimate as a suggested population element for each specific236

ST.237

Results238

Figure 3 shows the pair-wise competition values for all STs. STs that do not naturally co-occur during the experiment have239

been represented with a grey-box, as meaningful conclusions as to their competitive interactions cannot be drawn. The matrix240

has been re-ordered to maximise the number of values >0.5 in the upper-diagonal, thus showing the identified hierarchy.241

242

A strong hierarchical structure can be observed, with STs at the top of the matrix mostly outcompeting all STs below243

them. Some intransitive loops can be seen within the matrix however, for example ST 607, which is able to out-compete some244

STs higher up the hierarchy. When uniformly sampling the missing values of the matrix shown in Figure 3, an average of 125245

intransitive triads are recorded for the competition network, compared to a hypothetical maximum of 330 for a (complete)246

20× 20 matrix, resulting in an intransitivity score of ds = 0.379 (Kendall and Babington Smith’s ds
47). In comparison, on247

sampling 100,000 random 20×20 competition matrices, the lowest number of intransitive triads generated was 196, hence our248

observation of only 125 triads supports a system of significant hierarchical competition.249

250

The competition matrix shown in Figure 3 is then utilised within the patch-occupancy model to estimate ST-specific transmission251

and mortality parameters. These parameters are displayed below in Figure 4. Mortality (µ) we define as the probability that an252

established ST will die-out from its host bird naturally from one week to the next. To capture ST-specific transmission effects253

we report the average propagules released (λ ), the average number of other chickens that an occupying ST will challenge for254

the following timestep, with the outcome of these challenges decided by the above competition matrix.255

256

The positive logarithmic trend (p < 0.0001) shows a relationship whereby STs with a higher mortality (they die out more257
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Figure 3. Matrix of pairwise competition strengths between Campylobacter STs. Element (i, j) depicts the probability that ST
i out-competes ST j in a pairwise competition. Empty grey boxes depict cases where two STs do not coexist during the
experiment, thus their competitive relationship cannot be estimated. Rows are ordered to maximise the number of values >0.5
above the diagonal. The structure reveals a strong competitive hierarchy, with the strongest competitors at the top of the matrix.

frequently) can maintain their presence in the flock by being able to colonise more chickens.258

Discussion259

Here we have investigated the ecological drivers maintaining Campylobacter diversity within chicken flocks. By quantifying260

competition, transmission, and mortality parameters through two mathematical frameworks, we have highlighted the demo-261

graphic differences between Campylobacter sequence types, and shown that the metacommunity of STs operates within a strict262

competitive hierarchy, with some STs capable of outcompeting other STs, and hence replacing them as the dominant strain263

within host birds.264

265

The competition matrix shown in Figure 3 effectively disproves the hypothesis that ST diversity may have been main-266

tained by a system of intransitive competition, as very few intransitive triads were found within the system. Intransitive loops267

have been shown to theoretically support coexistence of many competing organisms, dependent on growth rate differences268

and intransitive cycle length48, and such effects have been demonstrated in small plant communities49. Despite the wealth269

of theoretical work surrounding the impact of intransitive competition, real-world evidence of such systems is lacking. An270
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Figure 4. ST-specific model parameters for patch-occupancy model. Mortality (µ) depicts the probability that a ST dies out
from one time-point (a week) to the next. If the ST does not vacate a host, it releases propagules that challenge other host
chickens. The average number of chickens challenged (λ ) is a model parameter depicted on the x-axis. The green line displays
the statistically significant (p < 0.0001) logarithmic regression between the two variables. We see a positive trend whereby
higher mortality is compensated by a greater number of propagules being released.

experimental study searching for such effects across five different taxonomic groups by Soliveres et al. (2018)50 was unable to271

find strong evidence of intransitivity in any of their studies other than experiments with mosses, and found zero intransitive272

triads in their bacterial experiment. As such, our inability to identify clear signs of intransitivity is unsurprising. Only STs 53,273

607, and 3120 showed clear evidence of being able to out-compete STs higher in the hierarchy. All three of these STs appear to274

have remained prevalent in the flock from their point of entry to the end of the experiment time, possibly suggesting that STs275

that are able to form an intransitive loop may be more capable of invading and persisting in the flock.276

277

Within this competitive hierarchy, we also show that the magnitude of the respective competitive probabilities are rela-278

tively large. In the the upper diagonal of Figure 3 values are greater than 0.9, suggesting that the competitively superior STs279

not only outcompete a vast number of other STs, but that they outcompete these other STs decisively, winning competitive280

interactions over 90% of the time in most instances. This is in line with experimental studies into inter-strain competition, with281

El-Shibiny et al. (2007)51 demonstrating how a strain of Campylobacter is not only able to outcompete a multitude of other282
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strains, but to do so repeatedly in multiple experiments.283

284

This evidence of a clear competitive hierarchy further stresses how specific mechanisms must underpin the observed main-285

tenance of biodiversity of Campylobacter STs. Under such competitive conditions, biodiversity of a metacommunity has286

been shown to be feasibly maintained by trade-offs between transmission and mortality42, 52–54. Under such a system, the287

co-occurrence of multiple STs can be explained by competitively strong STs displaying high mortality rates, namely that288

after replacing a resident ST, they naturally die out from the host quickly. Alternatively, their transmission ability may be289

compromised such that, although they may be very effective competitors, they are unable to proliferate as fast as other STs,290

and thus may not challenge a high number of other chickens from one week to the next. Likewise, a competitively weak ST,291

such as ST 53 in Figure 3, may not be able to withstand competition from incoming STs, but is able to persist in the flock by292

challenging a higher number of chickens each week (high number of propagules released), and surviving within these host293

birds for a longer period of time (low mortality). The patch-occupancy model presented was designed to specifically quantify294

these mortality and mean propagule release parameters, and are presented in Figure 4.295

296

Figure 4 shows that all STs can be placed somewhere within a life-history trade-off. In general, STs displaying high297

mortality, may persist in the environment by releasing a higher number of average propagules, and vice-versa. May & Nowak298

(1994)42 theoretically showed that for a newly emerging entity into a community to successfully invade a metacommunity, and299

to then persist, they need to fill a yet unrepresented area of this transmission-mortality spectrum. i.e. to persist, they need to300

have no close neighbours in the plot of Figure 4. This may be demonstrated by STs 827 and 53. Both STs can be seen from301

Figure 2 to appear within the flock mid-way through the time span, and to then successfully persist through to the end of the302

experiment. Both of these STs can also be seen from Figure 4 to be outliers on the transmission-mortality spectrum, with303

ST 827 having the lowest mortality of all observed STs, and ST 53 having the highest number of mean propagules released.304

As a further interesting contrast, competitive ability does not appear to have influenced this, as ST 53 is one of the weakest305

competitors in the metacommunity, and ST 827 is one of the strongest, as shown in Figure 3.306

307

However, this mechanism alone has historically been unable to account for the vast amount of sustained biodiversity observed308

in nature. Building on the theoretical findings of May & Nowak (1994)42, Bonsall et al. (2004)53 demonstrated that species309

within a hierarchical competition structure, competing for the same resource, may co-exist by clustering into ‘life-history310

guilds’. Competitively strong species may simultaneously co-exist by sharing similar demographic parameters. At the same311

time, competitively weaker species will also persist in the environment, by also sharing similar demographic capabilities with312

one another. Scheffer and van Nes (2006)54 highlighted the same result, concluding that newly emergent species would only313

persist in the environment if either (i) they were significantly competitively superior to all existing species, or (ii) if they were314

similar enough to existing species, both competitively and demographically, so as to exist within this particular life-history315
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guild niche. Our results however do not show evidence of such ecological guilds.316

317

Figure 4 shows that, while STs do form a life-history trade-off, STs appear in a broadly even distribution across this mortality-318

propagule trade-off. Furthermore, some STs that appear to be demographically similar vary greatly in their competitive ability319

and respective population dynamics. From Figure 2, we can broadly delineate STs by four distinct dynamic profiles: a ST320

may either persist in a flock or die out, and it may exist at high-frequency or low-frequency. It was assumed that one could321

characterise these four distinct dynamic profiles by their competition, average propagule release, and mortality parameters,322

and yet no such pattern has been found in this study. For example, the STs 257, 574, 45, and 1257, could all be characterised323

as appearing in high frequency, before then dying-out. Yet despite these similar dynamical behaviours, all STs place broadly324

across the competition-propagule-mortality spectrum, with no common trends in their placement. Likewise, STs 586, 573, and325

945 could all be categorised as persisting in the flock, though recovered at low frequency, and yet all three STs are found in326

broadly different placements in Figures 3 and 4. In general, STs that appear in high frequency appear to correlate with higher327

competitive potential in Figure 3, though no such trend can be associated with persistence.328

329

Since these STs do not demonstrate the guild-assemblage ‘clumping’ structure in Figure 4 (shown by Bonsall et al. (2004)53
330

to be necessary for biodiversity maintenance in this instance), it suggests that some other mechanism must be enabling the331

co-occurrence and persistence of Campylobacter STs. Based upon the broader wealth of investigations into Campylobac-332

ter dynamics, we can posit three potential hypotheses driving these clearly seen differences in population dynamics between STs:333

334

(i) Host-bird variability. It has been shown in numerous patch-occupancy systems that patch quality (meaning that some335

patches are ‘easier’ to colonise than others) can have a tremendous impact on the overall population dynamics, having even336

greater impact than differences between how patches are connected55, 56. Yu & Wilson (2001)57 theoretically showed that while337

differences in life-history trade-offs were necessary for co-existence, significant heterogeneity in patch quality or density was338

necessary to support a large number of species. Such patch variation also made it possible for newly emergent species to persist339

even if the species was inferior in both competitive and colonisation ability. In our context, variation in patch quality and340

density would translate to host birds varying in their response to bacterial challenge, with some chickens ‘easier’ to colonise341

than others. Indeed, through Bayesian transition models we have shown using this same data set in Rawson et al. (2020)58 that342

a flock contains a mixture of birds that are highly resilient to bacterial challenge, and highly susceptible birds that operate as343

‘super shedders’. These super shedders are consistently being colonised by a variety of Campylobacter STs with high turnover.344

Poor individual bird health and welfare has been previously shown to correlate with a reduced immune response, with measures345

such as stocking density59, 60, food withdrawal, and heat stress61 all contributing to increased Campylobacter colonisation. Yu346

& Wilson’s (2001)57 study directly shows that the host-bird variation seen in Rawson et al. (2020)58 removes the need for347

newly emerging STs to be sufficiently similar to persist in the flock. This further supports the idea that the proliferation of348
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Campylobacter in a flock is influenced primarily by the individual birds.349

350

(ii) Seasonal variation. Broiler flock colonisation by Campylobacter has been well-documented to follow a seasonal trend62, 63,351

with flocks more likely to become colonised in the warmer summer months than the winter. The data behind this modelling352

study was gathered over 51 weeks, January 2004 to January 2005, so would plausibly have been impacted by seasonal variation.353

The original study examining the impact of local environmental variables on the data set we have considered35 (and subsequent354

Bayesian transition analyses58), were unable to identify any temporal trend within the total Campylobacter prevalence, however355

the Campylobacter coli STs did appear less frequently during the summer. It is thus plausible that seasonal variation may356

have impacted the population dynamics of the occupying STs in the flock via some yet-unidentified mechanism. An example357

of this may be seen by comparing the population dynamics of STs 53 and 574. Both STs occupy a similar placement in the358

propagule-mortality spectrum of Figure 4, and yet, despite ST 574 being more competitively able than ST 53, ST 574 does not359

persist in the flock, while ST 53 does. One possible explanation for this is that ST first appeared within the flock in July, while360

ST 574 appeared in February.361

362

(iii) Stochasticity. While our patch-occupancy model is a probabilistic one, the mechanisms by which a metacommunity of363

Campylobacter STs persist is determined by a number of random events. The events of a ST first entering the flock, chickens364

ingesting colonised faeces, and of then establishing themselves within the microbiome all encompass a wide number of365

stochastic events which could change the resulting population dynamics. Coward et al. (2008)28 showed that attempts to366

replicate population dynamics of Campylobacter within broilers were largely unsuccessful, even in the most simple cases of367

just two competing strains. They posited that this was likely due to “founder effects", small variations in population level at first368

inoculation which could have large consequences for the flock-wide population dynamics. We have previously shown this369

effect through a series of stochastic differential equations in Rawson et al. (2019)33, whereby a variety of overall population370

dynamics can be observed dependent on stochastic events when the population of a Campylobacter ST is very low. Likewise,371

upon running the patch-occupancy model for the estimated parameters presented in the results, some STs would persist in372

some actualisations, but not others. Thus, attempting to characterise some dynamical profiles by mortality and transmission373

parameters, may not be possible as our experiment displays only one dynamic outcome of many possible ones.374

375

One important caveat to this work must be stressed. Since broiler flocks are slaughtered anywhere from 5 to 11 weeks376

of age, longitudinal studies into the Campylobacter population dynamics are not possible, birds are not alive for long enough377

for us to observe long-term dynamics from which to extract parameter estimates. As such, this experimental data was gathered378

from a flock of broiler-breeders, the birds that lay the eggs that become broiler flocks. As we have discussed above, host bird379

factors may have significant implications for the overarching population dynamics of the microbiome, meaning that these380

estimated parameters could plausibly be different in commercial broiler flocks. Broiler and breeder flocks are kept under381
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slightly different housing conditions and diet provisions64, and breeder flocks have also been shown to shed smaller amounts of382

Campylobacter than commercial broilers65. Since this study has focused on investigating Campylobacter-specific factors, our383

conclusions remain relevant to commercial broiler flocks, namely that the population dynamics remain deeply susceptible to384

impact from a variety of factors, such as season and host bird health.385

386

The primary finding of this work highlights how the life-history trade-offs we have identified fail to provide an explana-387

tion for the persistence and co-occurrence of multiple Campylobacter STs. This further supports the notion that suppressing and388

controlling outbreaks of Campylobacter cannot be achieved through bio-security alone, and reflects calls for a ‘One Health’66
389

approach, whereby further understanding is needed of how Campylobacter and broilers interact and affect each other. We have390

shown that demographic advantages alone cannot determine which STs of Campylobacter will come to dominate a flock of391

chickens, and that it may instead come down to a ST being in the right place at the right time, or rather, the right chicken in the392

right season.393
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A Appendices531

A.1 Appendix 1 - Patch-occupancy model pseudo-code532

Algorithm 1: Patch-occupancy model pseudo code

1 Initialise chickens with STs in proportion to very first timestep in experimental data.
2 for every timestep do
3 Prepare placeholder vector for current timestep, equal to previous timestep.
4 for every chicken do
5 if chicken currently colonised then
6 Record currently occupying ST s.
7 Draw random number x from uniform distribution U(0,1).
8 if x < µs then
9 Remove ST s from chicken in placeholder vector.

10 else
11 ST s will challenge other chickens:
12 Draw random number y from Pois(λs).
13 Add y to a running tally, Ys, of how many other chickens will be challenged by ST s.
14 end
15 end
16 end
17 end
18 for every ST, s do
19 for j← 1 to Ys do
20 Randomly select a chicken, c, to be challenged by ST s.
21 if c not colonised then
22 Chicken c is now colonised by ST s in placeholder vector.
23 else
24 Record currently occupying ST, r.
25 Draw a random number z from uniform distribution U(0,1).
26 if z <Cs,r then
27 ST s replaces ST r in placeholder vector.
28 else
29 ST r remains in chicken c in placeholder vector.
30 end
31 end
32 end
33 end
34 end
35 end
36 Placeholder vector is assigned as frequency vector for current timestep. Move to subsequent timestep.
37 end
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