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Abstract	
Antigen-specific	 immunotherapies	 (ASI)	 require	 successful	 loading	 and	 presentation	 of	
antigen	peptide	into	the	major	histocompatibility	complex	(MHC)	binding	cleft.	One	route	
of	ASI	design	is	to	mutate	native	antigens	for	either	stronger	or	weaker	binding	interaction	
to	 MHC.	 Exploring	 all	 possible	 mutations	 is	 costly	 both	 experimentally	 and	
computationally.	To	reduce	experimental	and	computational	expense,	here	we	investigate	
the	 minimal	 amount	 of	 prior	 data	 required	 to	 accurately	 predict	 the	 relative	 binding	
affinity	 of	 point	 mutations	 for	 peptide-MHC	 class	 II	 (pMHCII)	 binding.	 Using	 data	 from	
different	 residue	 subsets,	 we	 interpolate	 pMHCII	 mutant	 binding	 affinities	 by	 Gaussian	
process	(GP)	regression	of	residue	volume	and	hydrophobicity.	We	apply	GP	regression	to	
an	experimental	dataset	from	the	Immune	Epitope	Database,	and	theoretical	datasets	from	
NetMHCIIpan	and	Free	Energy	Perturbation	 calculations.	We	 find	 that	GP	 regression	 can	
predict	binding	affinities	of	9	neutral	residues	from	a	6-residue	subset	with	an	average	R2	
coefficient	of	determination	value	of	0.62	±	0.04	 (±95%	CI),	 average	error	of	0.09	±	0.01	
kcal/mol	 (±95%	 CI),	 and	 with	 an	 ROC	 AUC	 value	 of	 0.92	 for	 binary	 classification	 of	
enhanced	or	diminished	binding	affinity.	Similarly,	metrics	increase	to	an	R2	value	of	0.69	±	
0.04,	average	error	of	0.07	±	0.01	kcal/mol,	and	an	ROC	AUC	value	of	0.94	for	predicting	7	
neutral	residues	from	an	8-residue	subset.	Our	work	finds	that	prediction	is	most	accurate	
for	 neutral	 residues	 at	 anchor	 residue	 sites	 without	 register	 shift.	 This	 work	 holds	
relevance	to	predicting	pMHCII	binding	and	accelerating	ASI	design.	
	
	
Keywords—	Antigen-specific	immunotherapies,	Peptide-MHCII	binding,	Gaussian	process	
regression,	In-silico	mutagenesis	
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Introduction	
Major	histocompatibility	complex	class	II	(MHCII)	antigen	binding	and	presentation	to	the	
T-cell	 receptor	 (TCR)	of	CD4+	T-cells	 represents	a	 critical	 immunological	 interaction	with	
dysfunction	 being	 implicated	 in	 autoimmune	 diseases	 such	 as	 Type-1	 Diabetes1-3,	 Celiac	
Disease4-5,	 and	 Multiple	 Sclerosis6-7.	 Antigen	 specific	 immunotherapies	 (ASI)	 such	 as	
vaccines	 and	 HLA	 blockers	 work	 by	modulating	 this	 MHCII-antigen-TCR	 interaction4,	8-9.	
Oftentimes,	a	known	antigen	is	used	as	a	template	for	ASI	design,	which	is	then	mutated	for	
enhanced	 or	 reduced	 binding	 interaction	 with	 MHCII	 and/or	 TCR10-11.	 Computational	
techniques,	 such	 as	 sequence-based12-13,	 or	 structure-based14-18	 methods,	 aim	 to	 predict	
native	 antigen-MHC	 binding	 and	 mutations	 to	 accelerate	 ASI	 design	 and	 limit	 costly	
mutagenesis	experiments.		
	 Gaussian	 Process	 (GP)	 regression	 is	 a	 powerful	 Bayesian	 supervised	 machine	
learning	 method,	 which	 innately	 provides	 uncertainty	 estimates	 of	 predictions19.	 GP	
regression	 has	 been	 used	 widely	 in	 diverse	 fields	 such	 as	 geostatistics20	 and	 imaging	
microscopy21.	 For	biological	applications,	GP	regression	has	been	used	 to	predict	protein	
stability22-23	and	turnover24,	protein	structure	prediction25	and	optimization26-27,	as	well	as	
protein-protein	binding22,	28	and	quantitative	structure	activity	relationship	(QSAR)	models	
for	therapeutic	design29-31.	GP	regression	has	also	been	used	to	study	MHC	class	I	antigen	
binding	 from	 sequence32-33.	 These	 models,	 however,	 have	 not	 been	 extended	 to	 the	
arguably	more	challenging	task	of	predicting	MHCII	antigen	peptide	(pMHCII)	binding,	with	
ambiguous	 registers	 and	 variable	 sized	 epitopes,	 nor	 of	 predicting	 the	 mutational	
landscape	 at	 specific	 sites.	 We	 note	 that	 many	 sequence-based	 MHC-binding	 prediction	
models	make	use	of	complex	machine	learning	architectures13,	34,	and	that	neural	networks,	
in	the	limit	of	infinite	network	width,	are	equivalent	to	GP	models35.	Hence,	the	extension	of	
GP	models	for	pMHCII-binding	prediction	and	characterization	of	mutational	landscapes	is	
a	logical	outgrowth	of	current	affinity	prediction	methods.	
	 In	 this	 work,	 we	 explore	 the	 minimal	 data	 required	 to	 predict	 relative	 binding	
affinities	 of	 pMHCII	 antigen	 mutants	 using	 GP	 regression	 across	 residue	 volume	 and	
hydrophobicity.	We	study	both	experimental	and	theoretical	binding	affinity	datasets	from	
the	Immune	Epitope	Database	and	Analysis	Resource	(IEDB),	NetMHCIIpan-4.0	server,	and	
Free	 Energy	 Perturbation	 (FEP)	 calculations.	We	 find	 that	 GP	 regression	 can	 accurately	
predict	pMHCII	mutant	binding	affinities	for	neutral	residues	at	anchor	residue	sites.	More	
specifically,	 we	 find	 that	 GP	 regression	 across	 6-	 and	 8-	 residue	 subsets	 can	 accurately	
capture	 the	 binding	 affinities	 of	 remaining	 neutral	 residues.	 The	 corresponding	 R2	
coefficient	of	determination	values	are	0.61	±	0.04	and	0.69	±	0.04	(±	95%CI),	respectively,	
with	AUC	values	of	0.92	and	0.94	for	binary	classification	of	residues	with	either	enhanced	
or	diminished	binding	affinity.	Finally,	we	discuss	how	GP	regression	can	be	used	to	direct	
mutagenesis	 experiments	 and	 FEP	 calculations	 for	 increased	 efficiency,	 which	 provides	
opportunities	to	accelerate	MHCII	ASI	design.	
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Results		
	

	
Figure	 1.	 MHCII-antigen	 structure	 and	 Gaussian	 process	 (GP)	 prediction	 framework.	A.	
MHCII	 in	 complex	 with	 antigen	 CARQRFWSGPLFDYW	 from	 ref2	 with	 epitope	 in	 bold	
underline.	 Only	 the	 α1	 and	 β1	 HLA	 domains	 are	 shown	 for	 clarity.	B.	 Example	 antigen	
mutation	 of	 anchor	 residue	 Serine	 to	 Isoleucine.	MHC	 shown	 in	 gray,	 antigen	 in	 cyan.	C.	
Twenty	standard	amino	acids	presented	by	Eisenberg	hydrophobicity	values	and	residue	
volume	 in	 Å3.	 (Inset,	 right)	 Close-up	 view	 of	 amino	 acid	 plot.	 Pearson	 R2	 correlation	
between	hydrophobicity	and	volume	for	neutral	residues	(in	blue)	is	shown	in	the	top	left	
corner.	Pearson	R2	correlation	for	all	20	standard	amino	acids	is	0.01.	D.	GP	workflow:	use	
an	experimental	or	theoretical	mutant	binding	affinity	residue	subset	(★,right)	to	train	GP	
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regression	 model	 across	 residue	 volume	 and	 residue	 hydrophobicity	 and	 then	 predict	
mutational	binding	affinities	for	the	remaining	residues	(�,right).		
	
Figure	 1	 presents	 the	 MHCII-antigen	 system	 together	 with	 the	 Gaussian	 process	 (GP)	
affinity	 prediction	 workflow.	 MHCII	 is	 a	 heterodimer	 consisting	 of	 HLA-α	 and	 HLA-β	
protein	chains.	These	chains	construct	an	antigen	binding	cleft	from	two	α-helices	and	one	
β-sheet,	with	the	antigen	binding	between	the	helices.	Unlike	MHCI,	MHCII	antigens	range	
in	length	from	9	to	25	residues,	with	most	around	15	residues36.	A	9-residue	binding	core	
epitope	of	the	antigen	binds	deeply	into	the	MHCII	binding	cleft,	while	the	flanking	domains	
contact	 exterior	 portions	 of	MHCII.	 From	 this	 9-residue	 epitope,	 4	 anchor	 residues	 bury	
deeply	into	the	MHCII	(p1,	p4,	p6,	and	p9)	while	the	remaining	5	residues	point	toward	the	
TCR.	For	ASI	design,	antigen	mutations,	such	as	the	Serine	(Ser)	to	Isoleucine	(Ile)	mutation	
of	one	residue	illustrated	in	Fig.	1B,	are	tested	to	identify	peptide	sequences	with	desired	
change	in	binding	affinity.		
	 For	 this	 work,	 we	 distinguish	 amino	 acids	 by	 3	 properties:	 residue	 volume	
measured	in	Å3	taken	from	ref37,	residue	hydrophobicity	according	to	consensus	Eisenberg	
hydrophobicity	 values	 taken	 from	 ref38,	 and	 residue	 charge.	 The	 two-dimensional	
landscape	of	residue	volume	and	residue	hydrophobicity	as	shown	in	Fig.	1C	is	sufficient	to	
distinguish	 the	 20	 standard	 amino	 acids.	 In	 addition,	 there	 is	 low	 linear	 correlation	
between	 residue	 volume	 and	 residue	hydrophobicity.	 The	Pearson’s	 correlation	R2	 value	
between	 the	 two	 features	 for	 all	 20	 residues	 and	 15	 neutral	 residues	 are	 0.01	 and	 0.17,	
respectively.	
	 The	GP	 framework	we	 employ	 for	 this	work	 is	 shown	 in	 Fig.	 1D.	We	 start	with	 a	
subset	of	previously	determined	mutant	residue	binding	affinities,	either	from	experiment	
or	computation,	for	a	residue	of	a	particular	MHCII	antigen.	We	then	generate	a	GP	model	
across	residue	volume	and	hydrophobicity,	 fitting	to	the	known	affinity	values.	Lastly,	we	
use	the	fitted	GP	model	to	predict	binding	affinities	of	the	remaining	residues.	For	example,	
we	start	with	a	5-residue	subset	of	Gln,	Gly,	Ile,	Thr,	and	Trp	binding	affinities	for	residue	
site	 4	 in	 a	 particular	 antigen.	 We	 next	 fit	 a	 GP	 model	 across	 residue	 volume	 and	
hydrophobicity	to	the	 five	known	binding	affinities.	We	then	use	the	GP	model	 to	predict	
the	binding	affinities	 for	 the	remaining	15	standard	residues:	Ala,	Arg,	Asn,	Asp,	Cys,	Glu,	
His,	Leu,	Lys,	Met,	Phe,	Pro,	Ser,	Tyr,	and	Val.	After	initial	testing	of	all	20	standard	amino	
acids,	we	found	that	excluding	charged	residues	improved	predictive	results	(see	Fig.	S1).	
Charged	residues	are	distinguishable	on	the	2-D	plane	of	residue	volume-hydrophobicity,	
but	 long-range	 electrostatic	 interactions	 between	 the	 antigen	 and	MHCII	 may	 affect	 the	
binding	 site	 conformation	 and	 shift	 registers10,	 39-40,	 lowering	 GP	 prediction	 accuracy.	
Hence,	we	excluded	charged	residues	and	only	focused	on	the	15	standard	neutral	residues	
for	GP	prediction.	Although	our	GP	models	are	built	only	across	two	dimensions	(volume	
and	 hydrophobicity),	 there	 is	 an	 implicit	 third	 dimension	 of	 charge,	 which	 we	 are	
accounting	for	by	only	targeting	neutral	residues.	
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Figure	 2.	 Gaussian	 process	 regression	 for	 Free	 Energy	 Perturbation-calculated	 binding	
affinities.	A-B.	Gaussian	process	regression	of	mutant	binding	affinities	for	residues	boxed	
in	 magenta.	 Epitope	 sequences	 are	 in	 bold	 underline	 and	 are	 taken	 from	 ref2.	 (Plots)	
Gaussian	 process	 regression	 error	 and	 R2	 coefficient	 of	 determination	 for	 all	 neutral	
residues,	 excluding	 Proline.	 For	 k=13	 subset	 size,	 only	 1	 residue	 ΔG	 value	 is	 predicted,	
leaving	 R2	 undefined.	 Error	 bars	 are	 95%	 CI.	 C-D.	 Interpolated	 Gaussian	 process	 free	
energy	surfaces	of	neutral	residues	constructed	from	a	6-residue	subset	(shown	as	white	

B. CARQRFWSGPLFDYWCARQEDTAMVYYFDYWA. 
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stars,	with	native	residue	labeled).	Surfaces	represent	maximum	R2	models.	E-F.	Gaussian	
process	 free	 energy	 surfaces	 of	 neutral	 residues	 constructed	 from	 all	 neutral	 residues	
(shown	as	stars,	excluding	Pro).	A,C,E.	Tyr6	mutations	of	CARQEDTAMVYYFDYW.	B,D,F.	
Ser8	mutations	of	CARQRFWSGPLFDYW.		
	
Figure	 2	 presents	 GP	 regression	 results	 for	 Free	 Energy	 Perturbation	 (FEP)-predicted	
binding	 affinities.	 The	 pMHCII	 systems	 are	 the	 X-idiotype	 and	 healthy	 control	 antigens	
taken	from	Ahmed	et	al.2	with	sequences	shown	in	Fig.	2A-B.	We	focused	on	mutations	of	
the	 anchor	 residues	 Tyr6	 of	 the	 X-idiotype	 and	 Ser4	 of	 the	 healthy	 control	 antigens,	 as	
highlighted	 in	magenta	boxes	 in	Fig.	2A-B.	We	 first	 computed	all	neutral	 residue	 relative	
binding	 affinities	 using	 FEP	 as	 described	 previously2,	15.	 Proline	was	 excluded	 due	 to	 its	
combined	 sidechain-backbone	 structure	 creating	 an	 ambiguity	 in	 sidechain	mutation	 for	
the	FEP	method.	We	next	studied	the	accuracy	of	all	possible	residue	combination	subsets	
and	 prediction	 sets	 for	 GP	 regression	 models.	 For	 instance,	 for	 a	 subset	 size	 of	 k=5	
residues,	we	 tested	a	 total	of	C(n=14,r=5)	=	2002	combinations,	 including	a	subset	of	Ala,	
Cys,	 Phe,	 Gly,	 Ile	 residues	 to	 predict	 Leu,	 Met,	 Asn,	 Gln,	 Ser,	 Thr,	 Val,	 Trp,	 Tyr	 residue	
affinities,	a	subset	of	Cys,	Phe,	Gly,	Ile,	Leu	residues	to	predict	Ala,	Met,	Asn,	Gln,	Ser,	Thr,	
Val,	 Trp,	 Tyr	 residues	 affinities,	 etc.	 We	 then	 looked	 at	 the	 distribution	 of	 GP	 model	
accuracy	 compared	 to	 FEP-predicted	 affinities	 as	 measured	 by	 R2	 coefficient	 of	
determination	 values,	 and	 error,	 as	 shown	 in	 Fig.	 2A-B.	We	 found	 that	 R2	 of	 the	 highest	
scoring	 models	 reached	 0.82	 and	 0.71	 with	 error	 below	 1	 kcal/mol	 by	 subset	 size	 k=6	
residues	 for	 both	 antigen	 systems.	 An	 important	 caveat	 of	 the	 FEP	 data	 is	 that	 from	
previous	studies41,	FEP-predicted	affinities	only	agree	to	within	1	kcal/mol	of	experimental	
values,	so	GP-predicted	values	to	within	1	kcal/mol	error	agrees	to	the	highest-accuracy	of	
the	FEP	method.	To	further	illustrate	the	highest	performing	GP	models,	we	present	the	GP-
interpolated	 free	 energy	 landscapes	 from	 k=6	 residues	 in	 Fig.	 2C-D	 as	 well	 as	 the	 GP	
landscapes	 using	 the	 complete	 set	 of	 14	 neutral	 residues	 (absent	 Proline)	 in	 Fig.	 2E-F.	
Although	 the	complete	 landscapes	hold	more	detail,	 the	GP-interpolated	 landscapes	 from	
residue	subset	data	(Fig.	2C-D)	largely	capture	overall	free	energy	trends.			
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Figure	 3.	 Gaussian	 process	 regression	 for	 experimentally	 determined	 binding	 affinities	
from	the	Immune	Epitope	Database	(IEDB).	A.	Gaussian	process	regression	R2	coefficient	of	
determination	and	error	 for	15	neutral	 residues.	k	 is	 the	 subset	 size	used	 for	prediction,	
e.g.,	for	k=4,	4	residue	ΔG	values	were	used	to	predict	the	remaining	11	residue	ΔG	values.	
Averages	 are	 taken	 across	 the	 n=167	 systems.	 *Subset	 size	 k=14	 is	 excluded	 as	 only	 1	
residue	ΔG	value	is	predicted,	leaving	R2	undefined.	B.	IEDB	binding	affinity	values	do	not	
account	for	register	shifts,	where	the	antigen	moves	in	the	MHCII	binding	cleft,	resulting	in	
a	different	binding	conformation	and	different	anchor	residues	(red)	binding	to	MHCII.	C.	
Gaussian	process	regression	R2	coefficient	of	determination	and	error	for	all	systems	and	
select	 subsets	 of	 anchor	 residues	 and	 register-constrained	 anchor	 residues.	∗	and	∗∗	
indicate	 statistical	 significance	with	 p<0.05	 and	 p<0.005	 for	 a	 one-sided	 t-test	with	 null	
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hypothesis:	the	average	best	R2	value	of	the	anchor	(or	register-constrained	anchor)	set	is	
not	 greater	 than	 the	 average	 best	 R2	 of	 all	 sets.	 Accounting	 for	 register	 shifts	 as	well	 as	
focusing	on	 the	anchor	 residues	 improved	 the	accuracy	of	 the	models.	All	 error	bars	 are	
95%	CI.	
	
Figure	 3	 presents	 GP	 prediction	 results	 using	 mutant	 affinity	 data	 from	 the	 Immune	
Epitope	 Database	 and	 Analysis	 Resource	 (IEDB)42.	 For	 details	 on	 the	 IEDB	 dataset,	 see	
Methods.	From	Fig.	3A,	the	overall	R2	coefficient	of	determination	values	are	lower	than	the	
FEP	dataset;	however,	 the	prediction	error	 remains	 low.	Also	 seen	 in	Fig.	3A	 is	 the	 large	
difference	between	the	maximum	R2	models	and	the	average	of	the	highest	scoring	models,	
indicating	that	high	accuracy	can	be	achieved,	but	is	limited	over	the	average.	We	explored	
this	 difference	 in	 prediction	 accuracies	 by	 generating	 scatterplots	 of	 the	 highest	 scoring	
models	at	k=12,	as	presented	in	Fig.	S2.	We	found	that	neither	the	inner-quartile	range	of	
affinity	values,	ΔG	IQR,	nor	the	residue	position	show	a	marked	trend	with	high	scoring	R2	
models.	
	 We	 suspected	 that	 structural	 properties	 inherent	 in	 the	 pMHCII	 system	 but	 not	
accounted	 for	 in	 the	 IEDB	dataset	might	explain	 the	difference	 in	high-	and	 low-accuracy	
models.	 For	 instance,	 though	 MHCII	 antigens	 are	 ~15	 residues	 long,	 the	 9-residue	 core	
epitope,	termed	the	antigen	register,	has	the	greatest	contact	with	the	MHCII	core	binding	
cleft.	Furthermore,	 in	 this	9-residue	core	epitope,	residue	positions	1,	4,	6,	and	9,	 termed	
anchor	residues,	maintain	large	interactions	with	MHCII,	because	these	residues	sidechains	
are	 buried	 into	 deep	 MHCII	 binding	 pockets.	 Importantly,	 the	 IEDB	 does	 not	 provide	
information	 on	 which	 register	 the	 antigen	 is	 binding,	 nor	 which	 residues	 are	 anchor	
residues.	If	the	register	is	shifted	by	one	position,	the	anchor	residues	as	well	as	the	TCR-
facing	 residues	 will	 completely	 change,	 as	 shown	 in	 Fig.	 3B.	 For	 the	 GP	 regression	 we	
calculate	 here,	 we	 implicitly	 assume	 that	 the	 binding	 register	 will	 not	 change	 upon	
mutation:	mutations	capture	 the	same	MHCII	residue	environment,	and	 the	remainder	of	
the	 binding	 surface	 remains	 unchanged.	 The	 IEDB	 data	 is	 not	 register	 constrained,	
therefore	 the	 mutations	 we	 are	 interpolating	 may,	 in	 fact,	 be	 entirely	 different	 binding	
surfaces.	 To	 investigate	 further	 into	 this	 hypothesis,	 we	 compared	 average	 GP	 model	
results	for	all	systems	to	GP	model	results	from	anchor	residues	and	register-constrained	
anchor	 residues,	 as	 shown	 in	 Fig.	 3C.	 We	 used	 the	 NetMHCIIpan	 4.012,	34	 webserver	 to	
predict	 binding	 registers	 for	 all	 167	 IEDB	 systems,	 and	 then	 selected	 wild-type	 anchor	
residue	systems	(n=42)	based	on	residue	position	and	register-constrained	anchor	residue	
systems	 (n=13)	 based	 on	 systems	 where	 the	 binding	 register	 did	 not	 change	 for	 all	 15	
neutral	 mutations.	 We	 found	 that	 GP	 models	 of	 register-constrained	 anchor	 residue	
systems	were	the	most	accurate,	followed	in	accuracy	by	anchor	residue	systems,	and	lastly	
all	 systems	 combined.	 Given	 the	 favorable	 results	 of	 building	 GP	models	 for	 anchor	 and	
register-constrained	 systems,	 we	 next	 sought	 to	 further	 explore	 GP	 model	 accuracy	 for	
these	systems	using	a	larger	NetMHCIIpan	4.0	dataset.		
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Figure	4.	Gaussian	process	regression	for	register-constrained	binding	affinities	from	the	
NetMHCIIpan	 4.0	 server.	A.	 Gaussian	 process	 regression	 R2	 coefficient	 of	 determination	
and	 error	 for	 neutral	 residues	 at	 anchor	 residue	 positions.	 k	 is	 the	 subset	 size	 used	 for	
prediction,	e.g.,	for	k=4,	4	residue	ΔG	values	were	used	to	predict	the	remaining	11	residue	
ΔG	 values.	 Averages	 are	 taken	 across	 the	 n=100	 systems.	 *	 For	 k=14	 subset	 size,	 only	 1	
residue	ΔG	value	is	predicted,	leaving	R2	undefined.	Error	bars	are	95%	CI.	B.	Average	error	
per	residue	for	each	k	subset	size	for	the	top	n=100	R2	models.	Error	bars	are	95%	CI.	k=14	
was	excluded	from	B.	as	explained	in	A.	C.	ROC	curve	for	multiple	subset	sizes,	k	with	AUC	
values	for	classifying	either	enhanced	or	diminished	binding	affinity.	D-G.	Gaussian	process	
regression	binding	 affinity	predicted	 surfaces	 for	 k=6	 residue	 subsets	 (D-E.)	 and	 the	 full	
neutral	 residue	 sets	 (k=15,	 F-G.).	D.-E.	 Surfaces	 represent	 maximum	 R2	 models	 for	 k=6	
residue	subset	shown	as	white	stars	with	native	residue	labeled.	Two	examples	are	shown,	
(D,F.)	 predicting	 A1	 mutants	 of	 AATQFEPLA	 binding	 to	 HLA-DQA10501-DQB10201	
favoring	 larger,	 hydrophobic	 residues,	 and	 (E,G.)	 predicting	V6	mutants	 of	EDTAMVYYF	
binding	to	HLA-DQA10103-DQB10601	favoring	smaller	residues.	Note	that	the	full	antigen	
sequence	in	D,F	was	included	in	the	NETMHCIIpan	training	set,	while	the	sequence	in	E,G	
was	not.			
	
In	addition	to	FEP-calculated	and	experimentally	determined	binding	affinity	datasets,	we	
further	 compared	 the	 prediction	 accuracy	 of	 GP	 regression	 with	 sequence-based	
computing	methods.	 Figure	4	presents	 results	 from	GP	 regression	prediction	of	 register-
constrained	 binding	 affinities	 predicted	 by	 the	 NetMHCIIpan	 4.0	 webserver.	 In	 this	
analysis,	 we	 assume	 NetMHCIIpan	 predictions	 to	 be	 ‘ground	 truth’	 values	 in	 order	 to	
compare	 the	 two	 methods;	 however,	 we	 note	 that	 NetMHCIIpan	 is	 itself	 a	 predictive	
method.	 To	 exclude	 the	 effect	 of	 possible	 register	 shifts	 on	 prediction	 results,	 for	 the	
NetMHCIIpan	 dataset,	 we	 only	 predicted	mutant	 binding	 affinities	 of	 the	 9-residue	 core	
epitope	without	the	flanking	domains,	thereby	implicitly	constraining	the	binding	register.	
Further,	 to	 ensure	we	 are	 capturing	 the	 binding	 interaction	 between	 the	MHCII	 and	 the	
antigen,	 we	 limited	 our	 dataset	 to	 anchor	 residue	 positions.	 The	 antigens	 selected	 for	
NetMHC	 prediction	 included	 antigen/MHCII	 systems	 from	 the	 IEDB	 dataset	 as	 well	 as	
systems	 implicated	 in	Type-1	Diabetes2,	43.	For	more	details	on	 the	NetMHCIIpan	dataset,	
see	 Methods.	 Following	 our	 IEDB	 analysis,	 we	 focused	 on	 neutral	 mutations	 of	 anchor	
residues.	We	 found	 that	average	best	R2	 coefficient	of	determination	values	were	greater	
than	 0.54	 as	 k	≥ 4,	 as	 shown	 in	 Fig.	 4A.	 The	minimum	 error	 for	 the	 top	 performing	 R2	
models	remains	 low,	around	0.2	kcal/mol,	with	the	average	maximum	error	for	the	same	
models	around	0.3	kcal/mol	with	the	maximum	error	value	observed	for	all	systems	falling	
below	1.0	kcal/mol	at	k=4	(Fig.	S3).	When	we	decompose	the	error	between	GP	prediction	
and	 NetMHCIIpan	 prediction	 in	 Fig.	 4B,	 certain	 residues	 have	 higher	 error,	 particularly	
residues	Ala,	Cys,	Gly,	and	Pro.	 	Meanwhile,	residues	Leu	and	Ser	consistently	have	lower	
error	and	are	predicted	with	higher	accuracy	than	other	residues.	We	further	decomposed	
GP	models	by	residue	occurrence,	calculating	if	certain	residues	occurred	in	top-scoring	GP	
models	 more	 frequently	 than	 others,	 but	 we	 did	 not	 find	 large	 differences	 (Fig.	 S4).	
Similarly,	scatterplot	charts	analogous	to	Fig.	S2	do	not	reveal	marked	trends	between	R2,	
ΔG	IQR,	or	residue	position	(Fig.	S5).	To	evaluate	whether	GP	regression	can	be	generalized	
to	 perform	 binary	 classification	 of	 either	 enhanced	 or	 reduced	 binding	 affinity,	 we	
computed	ROC	curves	and	area	under	 the	 curve	 (AUC)	values,	 shown	 in	Fig.	4C.	Positive	
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binding	 affinity	 values	 relative	 to	 the	 native	 antigen	 are	 considered	 reduced	 binding	
affinity	while	negative	relative	binding	affinity	values	are	considered	enhanced.	As	shown,	
from	 the	 ROC	 curve	 of	 the	 raw	 data	 (Fig.	 4C),	 GP	 regression	 has	 high	 accuracy	 for	
predicting	the	net	binding	affinity	effects	of	mutations,	with	AUC	values	greater	than	0.83	
for	all	subsets	with	the	maximum	AUC	of	0.96	for	k=12.	Other	antigen	binding	prediction	
models	 including	 NetMHCIIpan	 4.0,	 which	 use	 the	 entire	 antigen	 sequence,	 report	 AUC	
values	 ranging	 from	 0.7	 to	 0.9	 compared	 to	 experiment12,	44-46.	 Our	method	 differs	 from	
these	 models	 by	 focusing	 on	 individual	 residue	 sites	 for	 guiding	 in-vivo	 or	 in-situ	
mutagenesis,	incorporating	predetermined	information	to	increase	the	prediction	accuracy	
in	real	time.	
	 Fig.	4D-G	shows	the	GP-interpolated	 free	energy	surfaces	 for	2	systems,	with	both	
partial	 k=6	 residue	 GP	 predictions	 (Fig.	 4D-E),	 and	 complete	 set	 surfaces	 (Fig.	 4F-G).	
Similar	 to	GP-interpolated	surfaces	of	 the	FEP	values,	 the	complete	set	 surfaces	preserve	
more	detail	than	the	partial	subset	surfaces,	but	the	partial	subsets	are	still	able	to	capture	
broad	 trends	 and	 accurately	 predict	mutant	 affinity	 values	with	 0.05	 and	 0.06	 kcal/mol	
average	 error.	 Importantly,	 unlike	 other	 machine	 learning	 techniques	 which	 commonly	
favor	 large,	 hydrophobic	 residues	 for	 enhanced	 binding	 affinity,	 the	 GP	 prediction	
technique	we	 employ	here	does	not,	 as	 seen	by	 the	 energy	 surfaces	 in	 Fig.	 4E,G.	Our	GP	
prediction	technique	implicitly	captures	the	actual	MHCII-antigen	binding	interaction	and	
then	 interpolates	 that	 interaction	 to	 other	mutant	 residues.	 Hence,	 hydrophilic	 residues,	
and	likewise	more	easily	deliverable	antigens,	may	also	be	favorably	predicted.	
	
	
Discussion	and	future	directions	
	
GP	regression	can	accelerate	 immunotherapy	design	by	guiding	mutagenesis	and	thereby	
decreasing	the	experimental	and	computational	cost	of	determining	MHCII	binding	affinity.	
We	show	that	GP	regression	across	a	 two-dimensional	 surface	of	neutral	 residue	volume	
and	 hydrophobicity	 is	 sufficient	 to	 classify	 enhanced	 and	 reduced	 affinity	 mutations	
(AUC~0.9+)	and	capture	affinity	 trends	across	 the	mutational	 landscape	(R2	coefficient	of	
determination	greater	than	0.6	and	low	errors	of	0.1-1.0	kcal/mol).	This	prediction	method	
can	 be	 used	 concurrently	 with	 experimental	 and	 theoretical	 investigations	 to	 direct	
mutagenesis	 with	 real-time	 data.	 From	 a	 small	 residue	 subset,	 we	 can	 determine	which	
residues	 are	 predicted	 to	 be	 favorable	 or	 have	 large	 uncertainty,	 and	 then	 select	 those	
particular	residues	to	investigate	next	via	experiment	or	computation.	Furthermore,	our	GP	
prediction	 method	 benefits	 from	 two	 aspects.	 First,	 GP	 regression	 offers	 an	 estimate	 of	
error,	 so	 that	we	 have	 knowledge	 of	 prediction	 confidence.	 Likewise,	 our	 GP	 regression	
method	across	a	two-dimensional	surface	is	intuitive;	the	impact	of	residue	hydrophobicity	
and	residue	volume	can	be	easily	grasped	rather	than	black	box	neural	network	methods	
or	common	QSAR	techniques	with	large	feature	spaces.	
	 For	our	GP	prediction	method,	we	implicitly	assume	antigen	mutations	do	not	affect	
binding	 register.	 Bound	 antigens	 are	 known	 to	 be	 dynamic47-49,	 and	 localized	 T-cell	
populations	 can	 recognize	 different	 register	 shifts	 of	 the	 same	 antigen50.	 However,	 for	
many	 ASI	 design	 studies,	 the	 target	 antigen,	 along	 with	 a	 probable	 binding	 register	 is	
known	beforehand.	Another	assumption	of	our	 technique	 is	 that	 the	bound	antigens	will	
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not	change	binding	conformations	upon	mutation,	and/or	that	any	residue	size-dependent	
conformational	changes	will	be	captured	by	the	GP	model.	For	some	proteins,	single	point	
mutations	 can	 drastically	 change	 structure51-52.	 But	 assuming	 the	 antigens	 are	 initially	
bound	in	the	MHCII	binding	cleft,	 large	structural	changes	are	not	anticipated,	and	if	they	
do	occur,	we	anticipate	the	binding	effects	will	be	implicitly	captured	by	the	GP-predicted	
free	energy	landscape.	
	 We	 selectively	 chose	 to	 score	 GP	 regression	 models	 with	 coefficient	 of	
determination	 R2	 values	 rather	 than	 Pearson	 product	moment	 correlation	 coefficient	 R2	
values.	Indeed,	as	presented	in	Fig.	S6,	we	tested	scoring	GP	models	by	Pearson	R2	values	
for	the	FEP	systems	of	Fig.	2	and	found	quite	high	Pearson	R2	values	of	0.7	to	0.9	for	subset	
size	k=4.	However,	Pearson	R2	 values	only	quantify	 the	existence	of	 a	 linear	 relationship	
between	the	predicted	affinities	and	the	actual	values.	Pearson	R2	values	do	not	account	for	
the	 variance	 of	 the	 data,	 so	 even	 though	 a	 GP	 model	 might	 have	 high	 Pearson	 R2	
correlation,	it	may	also	have	high	error	between	the	predicted	affinities	and	actual	values.	
The	 R2	 coefficient	 of	 determination	 normalizes	 the	 error	 to	 the	 variance	 of	 the	 actual	
values,	 ensuring	 that	 high	 R2	 coefficient	 of	 determination	 values	 also	 have	 low	 error	
between	predicted	affinities	and	actual	values.	Further,	scikit-learn53,	the	machine	learning	
library	used	to	generate	the	GP	models,	implicitly	scores	models	based	on	the	R2	coefficient	
of	determination	values.	We	therefore	conclude	that	the	R2	coefficient	of	determination	is	a	
more	logical	metric	of	model	accuracy	and	use	it	here	for	all	investigations.			
	 Our	GP	prediction	method	also	opens	doors	for	 incorporating	non-standard	amino	
acids54	into	antigen-specific	immunotherapies.	If	a	particular	region	of	the	interpolated	GP	
landscape	 is	 predicted	 to	 be	 beneficial	 but	 not	 contain	 a	 standard	 amino	 acid,	 a	 non-
standard	amino	acid	 in	that	region	would	be	recommended	for	affinity	testing.	Extending	
ASI	 design	 to	 multiple	 mutation	 predictions	 simultaneously	 is	 also	 an	 area	 where	 GP	
regression-prediction	methods	might	be	useful.	This	would	allow	GP	regression	to	gather	
information	 from	 alanine	 scan	mutations55	 and	 other	multiple	 mutants	 with	 differential	
MHCII	affinity.		
	
	
Methods	
	
Datasets.	Free	Energy	Perturbation,	FEP.	FEP	data	were	taken	from	references2,	15	based	on	
mutagenesis	 calculations	 of	 antigens	 from	a	Type-1	Diabetes-implicated	 cell	 line.	 Briefly,	
two	 antigens	were	 studied	here,	 the	X-idiotype:	 CARQEDTAMVYYFDYW	and	 the	healthy	
control:	 CARQRFWSGPLFDYW.	 These	 antigens	were	modeled	 binding	 to	HLA-DQ8,	with	
the	core	epitope	in	bold	underline.	After	500ns	of	MD	simulation	to	ensure	stable	pMHCII	
binding,	FEP	was	conducted	following	protocols	developed	in	previous	works41,	56	using	a	
custom	short-range	potential	on	NAMD257.	FEP	was	conducted	over	34λ	windows	with	at	
least	200ps/window	and	5	replicas/mutation.	All	error	bars	are	95%	CI	unless	otherwise	
noted.		
	 Immune	Epitope	Database	and	Analysis	Resource,	IEDB.	 The	 IEDB	webserver42	 was	
accessed	 on	 Nov.	 15,	 2020	 and	 the	 MHC-II	 binding	 dataset	 was	 downloaded	 from: 
http://tools.iedb.org/mhcii/download/.	 The	 IEDB	 dataset	 contains	 antigen	 binding	 data	
across	multiple	HLA	types.	An	internal	program	was	written	to	collect	and	collate	antigens	
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and	their	mutants,	as	well	as	convert	binding	affinity	values	to	kcal/mol.	Only	antigens	with	
binding	affinity	data	for	all	20	standard	amino	acids	were	selected	for	analysis.	In	total,	167	
systems	 across	 6	 antigens	 and	 11	 HLA	 types	 met	 these	 criteria	 and	 were	 used	 for	 GP	
regression.	The	systems	are	presented	in	Table	S1.	
	 NetMHCIIpan	4.0	webserver.	 The	NETMHCIIpan	4.0	webserver12,	34,	58	was	 accessed	
at	http://www.cbs.dtu.dk/services/NetMHCIIpan/	on	Feb.	1,	2021.	Twenty	antigens	were	
selected	 for	 prediction	 based	 on	 their	 occurrence	 in	 the	 IEDB	 as	 well	 as	 implication	 in	
Type-1	 Diabetes.	 The	 systems	 are	 presented	 in	 Table	 S2.	 The	 epitopes	 were	 register-
constrained	 during	 the	 NetMHCIIpan	 prediction	 by	 truncating	 the	 flanking	 domains,	
leaving	only	the	predicted	9-residue	epitope	core.	Only	mutants	for	anchor	residues	1,	4,	6	
and	 9	were	 computed,	 leading	 to	 a	 total	 of	 20	 antigens	 x	 4	 anchors	 =	 100	 systems.	 The	
binding	affinity	rather	than	the	eluted	ligand	metric	was	used	for	affinity	values.			
	
Gaussian	 Process	 (GP)	 Regression.	 GP	 models	 were	 generated	 using	 scikit-learn’s	
machine	 learning	 python	 library53.	 A	 constant	 kernel	 combined	with	 an	 RBF	 kernel	was	
used	 for	model	 generation.	Median	 kernel	 parameters	 are	presented	 in	 Fig.	 S7.	 For	 each	
system,	all	possible	residue	subset	combinations	were	tested	for	GP	generation,	only	saving	
the	top	100-best	scoring	and	minimum	error	models.		
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Figure	S1.	Gaussian	process	regression	results	using	all	20	standard	amino	acids	in	color,	
compared	to	using	15	neutral	amino	acids	in	gray.	Data	is	experimentally	determined	
binding	affinities	from	the	Immune	Epitope	Database	(IEDB).	R2	is	the	coefficient	of	
determination.	For	the	20	standard	amino	acids,	GP	regression	was	evaluated	for	k=2,4,16,	
and	18	subset	sizes,	while	neutral	residues	were	evaluated	at	k=2,4,6,8,10,12,	and	14.	
Averages	are	taken	across	the	n=167	systems.	The	neutral	comparison	plots	in	gray	are	the	
same	as	presented	in	Figure	3	in	main	text.	Error	bars	are	95%	confidence	intervals.	
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Figure	S2.	ΔG	interquartile	range	(IQR)	and	Gaussian	process	regression	performance	for	
the	n=167	experimentally	determined	systems	from	the	Immune	Epitope	Database	(IEDB).	
A.	Binding	affinity	ΔG	IQR	for	n=167	systems	as	a	function	of	Gaussian	process	regression	
R2	coefficient	of	determination	values	for	the	k=12	subset	size.	B.	Binding	affinity	ΔG	IQR	
for	n=167	systems	as	a	function	of	residue	position	in	the	MHCII	antigen.	C.	Gaussian	
process	regression	R2	values	for	the	k=12	subset	size	across	residue	position	in	the	MHCII	
antigen.	A-C.	Avg	ΔG	IQR	from	expt.	and	Avg	R2	values	for	k=12	subset	size	is	shown	in	
olive	and	red	lines	respectively.		
	
	
	
	
	
	

A. 

IEDB MHC-II experimental binding dataset:  
n = 167 systems, neutral residues only 

B. 

C. 

Avg. ΔG IQR 

Avg. R2,k=12  
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Figure	S3.	Gaussian	process	regression	R2	coefficient	of	determination	and	error	for	only	
neutral	residues	(15	total	neutral	residues)	using	the	NETMHCIIpan	dataset.	k	is	the	subset	
size	used	for	prediction,	e.g.	for	k=4,	4	residue	ΔG	values	were	used	to	predict	the	
remaining	11	residue	ΔG	values.	Averages	are	taken	across	the	n=100	register-constrained	
systems	predicted	from	NetMHCIIpan	4.0.	Error	bars	are	95%	CI.	“Best	R2	Max	Error”	
means	the	highest	residue	error	of	the	top	scoring	models	for	the	n=100	systems	at	k	
subset	size.	
	
	

	
Figure	S4.	Residue	occurrence	in	Gaussian	process	regression	models	across	subset	size,	k	
for	the	NetMHCIIpan	dataset.	Note:	only	neutral	residues	are	shown,	charged	residues	were	
excluded	from	our	analysis.		
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Figure	S5.	ΔG	interquartile	range	(IQR)	and	Gaussian	process	regression	performance	for	
the	n=100	register-constrained	NetMHCIIpan	4.0-predicted	set.	A.	Binding	affinity	ΔG	IQR	
for	n=100	systems	as	a	function	of	Gaussian	process	regression	R2	values	for	the	k=12	
subset	size.	R2	is	the	coefficient	of	determination.	B.	Binding	affinity	ΔG	IQR	for	n=100	
systems	as	a	function	of	residue	position	in	the	MHCII	antigen.	C.	Gaussian	process	
regression	R2	values	for	the	k=12	subset	size	across	residue	position	in	the	MHCII	antigen.	
A-C.	Avg	ΔG	IQR	from	expt.	and	Avg	R2	values	for	k=12	subset	size	is	shown	in	olive	and	red	
lines	respectively.		
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Figure	S6.	Gaussian	process	results	comparing	scoring	by	Pearson’s	product	moment	
correlation	coefficient	(A-B)	and	the	coefficient	of	determination	(C-D).	Note	that	systems	
are	the	same	as	shown	in	Fig.	2.	Error	bars	represent	95%	confidence	intervals.	Although	
the	Pearson	correlation	coefficient	is	high,	the	variance	of	the	data	is	not	accounted	for,	
hence	the	overall	error	does	not	decrease	with	increasing	correlation	coefficient	values.	In	
contrast,	the	R2	coefficient	of	determination	does	account	for	data	variance	or	spread,	and	
thus	higher	coefficient	of	determination	values	generally	results	in	lower	errors.	
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Figure	S7.	Gaussian	process	regression	kernel	parameters	found	from	the	NetMHCIIpan	
dataset.	A	constant	kernel	and	a	radial	basis	function	kernel	were	used	from	scikit-learn’s	
framework.	(A)	The	C	kernel	parameter	median	value	and	(B)	the	RBF	kernel	parameters	
median	values	across	k,	subset	size:	RBF1=RBF	parameter	volume,	RBF2=RBF	parameter	
hydrophobicity.		
	
	
Table	S1.	IEDB	dataset	

# MHCII  Antigen Sequence, with mutation "." 
1 HLA-DQA1*0102-DQB1*0602 A.ATAGTTVYGAFAA 
2 HLA-DQA1*0102-DQB1*0602 AA.TAGTTVYGAFAA 
3 HLA-DQA1*0102-DQB1*0602 AAATA.TTVYGAFAA 
4 HLA-DQA1*0102-DQB1*0602 AAATAGT.VYGAFAA 
5 HLA-DQA1*0102-DQB1*0602 AAATAGTTV.GAFAA 
6 HLA-DQA1*0102-DQB1*0602 AAATAGTTVY.AFAA 
7 HLA-DQA1*0102-DQB1*0602 AAATAGTTVYG.FAA 
8 HLA-DQA1*0501-DQB1*0201 .FILDGDNLFPKV 
9 HLA-DQA1*0501-DQB1*0201 A.ILDGDNLFPKV 

10 HLA-DQA1*0501-DQB1*0201 AF.LDGDNLFPKV 
11 HLA-DQA1*0501-DQB1*0201 AFI.DGDNLFPKV 
12 HLA-DQA1*0501-DQB1*0201 AFIL.GDNLFPKV 
13 HLA-DQA1*0501-DQB1*0201 AFILD.DNLFPKV 
14 HLA-DQA1*0501-DQB1*0201 AFILDG.NLFPKV 
15 HLA-DQA1*0501-DQB1*0201 AFILDGD.LFPKV 
16 HLA-DQA1*0501-DQB1*0201 AFILDGDN.FPKV 
17 HLA-DQA1*0501-DQB1*0201 AFILDGDNL.PKV 
18 HLA-DQA1*0501-DQB1*0201 AFILDGDNLF.KV 
19 HLA-DQA1*0501-DQB1*0201 AFILDGDNLFP.V 
20 HLA-DQA1*0501-DQB1*0201 AFILDGDNLFPK. 
21 HLA-DQA1*0501-DQB1*0301 .VKFPGGGQIVGGVY 
22 HLA-DQA1*0501-DQB1*0301 D.KFPGGGQIVGGVY 
23 HLA-DQA1*0501-DQB1*0301 DV.FPGGGQIVGGVY 
24 HLA-DQA1*0501-DQB1*0301 DVK.PGGGQIVGGVY 
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25 HLA-DQA1*0501-DQB1*0301 DVKF.GGGQIVGGVY 
26 HLA-DQA1*0501-DQB1*0301 DVKFP.GGQIVGGVY 
27 HLA-DQA1*0501-DQB1*0301 DVKFPG.GQIVGGVY 
28 HLA-DQA1*0501-DQB1*0301 DVKFPGG.QIVGGVY 
29 HLA-DQA1*0501-DQB1*0301 DVKFPGGG.IVGGVY 
30 HLA-DQA1*0501-DQB1*0301 DVKFPGGGQ.VGGVY 
31 HLA-DQA1*0501-DQB1*0301 DVKFPGGGQI.GGVY 
32 HLA-DQA1*0501-DQB1*0301 DVKFPGGGQIV.GVY 
33 HLA-DQA1*0501-DQB1*0301 DVKFPGGGQIVG.VY 
34 HLA-DQA1*0501-DQB1*0301 DVKFPGGGQIVGG.Y 
35 HLA-DQA1*0501-DQB1*0301 DVKFPGGGQIVGGV. 
36 HLA-DQA1*0101-DQB1*0501 .KKYFAATQFEPLAA 
37 HLA-DQA1*0101-DQB1*0501 E.KYFAATQFEPLAA 
38 HLA-DQA1*0101-DQB1*0501 EK.YFAATQFEPLAA 
39 HLA-DQA1*0101-DQB1*0501 EKK.FAATQFEPLAA 
40 HLA-DQA1*0101-DQB1*0501 EKKY.AATQFEPLAA 
41 HLA-DQA1*0101-DQB1*0501 EKKYF.ATQFEPLAA 
42 HLA-DQA1*0101-DQB1*0501 EKKYFA.TQFEPLAA 
43 HLA-DQA1*0101-DQB1*0501 EKKYFAA.QFEPLAA 
44 HLA-DQA1*0101-DQB1*0501 EKKYFAAT.FEPLAA 
45 HLA-DQA1*0101-DQB1*0501 EKKYFAATQ.EPLAA 
46 HLA-DQA1*0101-DQB1*0501 EKKYFAATQF.PLAA 
47 HLA-DQA1*0101-DQB1*0501 EKKYFAATQFE.LAA 
48 HLA-DQA1*0101-DQB1*0501 EKKYFAATQFEP.AA 
49 HLA-DQA1*0101-DQB1*0501 EKKYFAATQFEPL.A 
50 HLA-DQA1*0101-DQB1*0501 EKKYFAATQFEPLA. 
51 HLA-DQA1*0301-DQB1*0302 .KKYFAATQFEPLAA 
52 HLA-DQA1*0301-DQB1*0302 E.KYFAATQFEPLAA 
53 HLA-DQA1*0301-DQB1*0302 EK.YFAATQFEPLAA 
54 HLA-DQA1*0301-DQB1*0302 EKK.FAATQFEPLAA 
55 HLA-DQA1*0301-DQB1*0302 EKKY.AATQFEPLAA 
56 HLA-DQA1*0301-DQB1*0302 EKKYF.ATQFEPLAA 
57 HLA-DQA1*0301-DQB1*0302 EKKYFA.TQFEPLAA 
58 HLA-DQA1*0301-DQB1*0302 EKKYFAA.QFEPLAA 
59 HLA-DQA1*0301-DQB1*0302 EKKYFAAT.FEPLAA 
60 HLA-DQA1*0301-DQB1*0302 EKKYFAATQ.EPLAA 
61 HLA-DQA1*0301-DQB1*0302 EKKYFAATQF.PLAA 
62 HLA-DQA1*0301-DQB1*0302 EKKYFAATQFE.LAA 
63 HLA-DQA1*0301-DQB1*0302 EKKYFAATQFEP.AA 
64 HLA-DQA1*0301-DQB1*0302 EKKYFAATQFEPL.A 
65 HLA-DQA1*0301-DQB1*0302 EKKYFAATQFEPLA. 
66 HLA-DQA1*0401-DQB1*0402 .KKYFAATQFEPLAA 
67 HLA-DQA1*0401-DQB1*0402 E.KYFAATQFEPLAA 
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68 HLA-DQA1*0401-DQB1*0402 EK.YFAATQFEPLAA 
69 HLA-DQA1*0401-DQB1*0402 EKK.FAATQFEPLAA 
70 HLA-DQA1*0401-DQB1*0402 EKKY.AATQFEPLAA 
71 HLA-DQA1*0401-DQB1*0402 EKKYF.ATQFEPLAA 
72 HLA-DQA1*0401-DQB1*0402 EKKYFA.TQFEPLAA 
73 HLA-DQA1*0401-DQB1*0402 EKKYFAA.QFEPLAA 
74 HLA-DQA1*0401-DQB1*0402 EKKYFAAT.FEPLAA 
75 HLA-DQA1*0401-DQB1*0402 EKKYFAATQ.EPLAA 
76 HLA-DQA1*0401-DQB1*0402 EKKYFAATQF.PLAA 
77 HLA-DQA1*0401-DQB1*0402 EKKYFAATQFE.LAA 
78 HLA-DQA1*0401-DQB1*0402 EKKYFAATQFEP.AA 
79 HLA-DQA1*0401-DQB1*0402 EKKYFAATQFEPL.A 
80 HLA-DQA1*0401-DQB1*0402 EKKYFAATQFEPLA. 
81 HLA-DQA1*0501-DQB1*0201 .KKYFAATQFEPLAA 
82 HLA-DQA1*0501-DQB1*0201 E.KYFAATQFEPLAA 
83 HLA-DQA1*0501-DQB1*0201 EK.YFAATQFEPLAA 
84 HLA-DQA1*0501-DQB1*0201 EKK.FAATQFEPLAA 
85 HLA-DQA1*0501-DQB1*0201 EKKY.AATQFEPLAA 
86 HLA-DQA1*0501-DQB1*0201 EKKYF.ATQFEPLAA 
87 HLA-DQA1*0501-DQB1*0201 EKKYFA.TQFEPLAA 
88 HLA-DQA1*0501-DQB1*0201 EKKYFAA.QFEPLAA 
89 HLA-DQA1*0501-DQB1*0201 EKKYFAAT.FEPLAA 
90 HLA-DQA1*0501-DQB1*0201 EKKYFAATQ.EPLAA 
91 HLA-DQA1*0501-DQB1*0201 EKKYFAATQF.PLAA 
92 HLA-DQA1*0501-DQB1*0201 EKKYFAATQFE.LAA 
93 HLA-DQA1*0501-DQB1*0201 EKKYFAATQFEP.AA 
94 HLA-DQA1*0501-DQB1*0201 EKKYFAATQFEPL.A 
95 HLA-DQA1*0501-DQB1*0201 EKKYFAATQFEPLA. 
96 HLA-DQA1*0501-DQB1*0301 .KKYFAATQFEPLAA 
97 HLA-DQA1*0501-DQB1*0301 E.KYFAATQFEPLAA 
98 HLA-DQA1*0501-DQB1*0301 EK.YFAATQFEPLAA 
99 HLA-DQA1*0501-DQB1*0301 EKK.FAATQFEPLAA 

100 HLA-DQA1*0501-DQB1*0301 EKKY.AATQFEPLAA 
101 HLA-DQA1*0501-DQB1*0301 EKKYFA.TQFEPLAA 
102 HLA-DQA1*0501-DQB1*0301 EKKYFAA.QFEPLAA 
103 HLA-DQA1*0501-DQB1*0301 EKKYFAAT.FEPLAA 
104 HLA-DQA1*0501-DQB1*0301 EKKYFAATQ.EPLAA 
105 HLA-DQA1*0501-DQB1*0301 EKKYFAATQF.PLAA 
106 HLA-DQA1*0501-DQB1*0301 EKKYFAATQFE.LAA 
107 HLA-DQA1*0501-DQB1*0301 EKKYFAATQFEP.AA 
108 HLA-DQA1*0501-DQB1*0301 EKKYFAATQFEPL.A 
109 HLA-DQA1*0102-DQB1*0602 .NEPTAAAIAYGLDR 
110 HLA-DQA1*0102-DQB1*0602 I.EPTAAAIAYGLDR 
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111 HLA-DQA1*0102-DQB1*0602 IN.PTAAAIAYGLDR 
112 HLA-DQA1*0102-DQB1*0602 INE.TAAAIAYGLDR 
113 HLA-DQA1*0102-DQB1*0602 INEP.AAAIAYGLDR 
114 HLA-DQA1*0102-DQB1*0602 INEPT.AAIAYGLDR 
115 HLA-DQA1*0102-DQB1*0602 INEPTA.AIAYGLDR 
116 HLA-DQA1*0102-DQB1*0602 INEPTAA.IAYGLDR 
117 HLA-DQA1*0102-DQB1*0602 INEPTAAA.AYGLDR 
118 HLA-DQA1*0102-DQB1*0602 INEPTAAAI.YGLDR 
119 HLA-DQA1*0102-DQB1*0602 INEPTAAAIA.GLDR 
120 HLA-DQA1*0102-DQB1*0602 INEPTAAAIAY.LDR 
121 HLA-DQA1*0102-DQB1*0602 INEPTAAAIAYG.DR 
122 HLA-DQA1*0102-DQB1*0602 INEPTAAAIAYGL.R 
123 HLA-DQA1*0102-DQB1*0602 INEPTAAAIAYGLD. 
124 HLA-DQA1*0401-DQB1*0402 .NEPTAAAIAYGLDR 
125 HLA-DQA1*0401-DQB1*0402 I.EPTAAAIAYGLDR 
126 HLA-DQA1*0401-DQB1*0402 IN.PTAAAIAYGLDR 
127 HLA-DQA1*0401-DQB1*0402 INE.TAAAIAYGLDR 
128 HLA-DQA1*0401-DQB1*0402 INEP.AAAIAYGLDR 
129 HLA-DQA1*0401-DQB1*0402 INEPT.AAIAYGLDR 
130 HLA-DQA1*0401-DQB1*0402 INEPTA.AIAYGLDR 
131 HLA-DQA1*0401-DQB1*0402 INEPTAA.IAYGLDR 
132 HLA-DQA1*0401-DQB1*0402 INEPTAAA.AYGLDR 
133 HLA-DQA1*0401-DQB1*0402 INEPTAAAI.YGLDR 
134 HLA-DQA1*0401-DQB1*0402 INEPTAAAIA.GLDR 
135 HLA-DQA1*0401-DQB1*0402 INEPTAAAIAY.LDR 
136 HLA-DQA1*0401-DQB1*0402 INEPTAAAIAYG.DR 
137 HLA-DQA1*0401-DQB1*0402 INEPTAAAIAYGL.R 
138 HLA-DQA1*0401-DQB1*0402 INEPTAAAIAYGLD. 
139 HLA-DQA1*0101-DQB1*0501 .QDLELSWNLNGLQAY 
140 HLA-DQA1*0101-DQB1*0501 S.DLELSWNLNGLQAY 
141 HLA-DQA1*0101-DQB1*0501 SQ.LELSWNLNGLQAY 
142 HLA-DQA1*0101-DQB1*0501 SQD.ELSWNLNGLQAY 
143 HLA-DQA1*0101-DQB1*0501 SQDLE.SWNLNGLQAY 
144 HLA-DQA1*0101-DQB1*0501 SQDLEL.WNLNGLQAY 
145 HLA-DQA1*0101-DQB1*0501 SQDLELSW.LNGLQAY 
146 HLA-DQA1*0101-DQB1*0501 SQDLELSWN.NGLQAY 
147 HLA-DQA1*0101-DQB1*0501 SQDLELSWNL.GLQAY 
148 HLA-DQA1*0101-DQB1*0501 SQDLELSWNLN.LQAY 
149 HLA-DQA1*0101-DQB1*0501 SQDLELSWNLNG.QAY 
150 HLA-DQA1*0101-DQB1*0501 SQDLELSWNLNGL.AY 
151 HLA-DQA1*0101-DQB1*0501 SQDLELSWNLNGLQA. 
152 HLA-DQA1*0301-DQB1*0302 .QDLELSWNLNGLQAY 
153 HLA-DQA1*0301-DQB1*0302 S.DLELSWNLNGLQAY 
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154 HLA-DQA1*0301-DQB1*0302 SQ.LELSWNLNGLQAY 
155 HLA-DQA1*0301-DQB1*0302 SQD.ELSWNLNGLQAY 
156 HLA-DQA1*0301-DQB1*0302 SQDL.LSWNLNGLQAY 
157 HLA-DQA1*0301-DQB1*0302 SQDLE.SWNLNGLQAY 
158 HLA-DQA1*0301-DQB1*0302 SQDLEL.WNLNGLQAY 
159 HLA-DQA1*0301-DQB1*0302 SQDLELS.NLNGLQAY 
160 HLA-DQA1*0301-DQB1*0302 SQDLELSW.LNGLQAY 
161 HLA-DQA1*0301-DQB1*0302 SQDLELSWN.NGLQAY 
162 HLA-DQA1*0301-DQB1*0302 SQDLELSWNL.GLQAY 
163 HLA-DQA1*0301-DQB1*0302 SQDLELSWNLN.LQAY 
164 HLA-DQA1*0301-DQB1*0302 SQDLELSWNLNG.QAY 
165 HLA-DQA1*0301-DQB1*0302 SQDLELSWNLNGL.AY 
166 HLA-DQA1*0301-DQB1*0302 SQDLELSWNLNGLQ.Y 
167 HLA-DQA1*0301-DQB1*0302 SQDLELSWNLNGLQA. 

	
	
Table	S2.	NetMHCIIpan	4.0	sequence	dataset.	

# 

Source/ 
Protein 
antigen HLA Full Antigen Sequence 

NETMHCII-
predicted 
epitope core 

*Anchor 
residues applied 
GP regression 

1 IEDB 
HLA-DQA1*0102-
DQB1*0602 AAATAGTTVYGAFAA TAGTTVYGA *AGTTVYGA 

2     TAG*TVYGA 
3     TAGTT*YGA 
4     TAGTTVYG* 

5 IEDB 
HLA-DQA1*0501-
DQB1*0201 AFILDGDNLFPKV FILDGDNLF *ILDGDNLF 

6     FIL*GDNLF 
7     FILDG*NLF 
8     FILDGDNL* 

9 IEDB 
HLA-DQA1*0501-
DQB1*0301 DVKFPGGGQIVGGVY PGGGQIVGG *GGGQIVGG 

10     PGGGQ*VGG 
11     PGG*QIVGG 
12     PGGGQIVG* 

13 IEDB 
HLA-DQA1*0102-
DQB1*0602 INEPTAAAIAYGLDR TAAAIAYGL *AAAIAYGL 

14     TAA*IAYGL 
15     TAAAI*YGL 
16     TAAAIAYG* 

17 IEDB 
HLA-DQA1*0401-
DQB1*0402 INEPTAAAIAYGLDR EPTAAAIAY *PTAAAIAY 

18     EPT*AAIAY 



	 29	

19     EPTAA*IAY 
20     EPTAAAIA* 

21 IEDB 
HLA-DQA1*0101-
DQB1*0501 SQDLELSWNLNGLQAY LELSWNLNG *ELSWNLNG 

22     LEL*WNLNG 
23     LELSW*LNG 
24     LELSWNLN* 

25 IEDB 
HLA-DQA1*0301-
DQB1*0302 SQDLELSWNLNGLQAY WNLNGLQAY *NLNGLQAY 

26     WNL*GLQAY 
27     WNLNG*QAY 
28     WNLNGLQA* 

29 IEDB 
HLA-DQA1*0101-
DQB1*0501 EKKYFAATQFEPLAA FAATQFEPL *AATQFEPL 

30     FAA*QFEPL 
31     FAATQ*EPL 
32     FAATQFEP* 

33 IEDB 
HLA-DQA1*0301-
DQB1*0302 EKKYFAATQFEPLAA FAATQFEPL *AATQFEPL 

34     FAA*QFEPL 
35     FAATQ*EPL 
36     FAATQFEP* 

37 IEDB 
HLA-DQA1*0401-
DQB1*0402 EKKYFAATQFEPLAA FAATQFEPL *AATQFEPL 

38     FAA*QFEPL 
39     FAATQ*EPL 
40     FAATQFEP* 

41 IEDB 
HLA-DQA1*0501-
DQB1*0201 EKKYFAATQFEPLAA AATQFEPLA *ATQFEPLA 

42     AAT*FEPLA 
43     AATQF*PLA 
44     AATQFEPL* 

45 IEDB 
HLA-DQA1*0501-
DQB1*0301 EKKYFAATQFEPLAA AATQFEPLA *ATQFEPLA 

46     AAT*FEPLA 
47     AATQF*PLA 
48     AATQFEPL* 

49 
Insulin 
+ DQ8 

HLA-DQA1*0301-
DQB1*0302 SHLVEALYLVCGERG EALYLVCGE *ALYLVCGE 

50     EAL*LVCGE 
51     EALYL*CGE 
52     EALYLVCG* 
53 Insulin HLA-DQA1*0501- SHLVEALYLVCGERG LYLVCGERG *YLVCGERG 
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+ DQ2 DQB1*0201 
54     LYL*CGERG 
55     LYLVC*ERG 
56     LYLVCGER* 

57 
Insulin 
+ DQ7 

HLA-DQA1*0301-
DQB1*0301 SHLVEALYLVCGERG VEALYLVCG *EALYLVCG 

58     VEA*YLVCG 
59     VEALY*VCG 
60     VEALYLVC* 

61 
X-id + 
DQ8 

HLA-DQA1*0301-
DQB1*0302 CARQEDTAMVYYFDYW DTAMVYYFD *TAMVYYFD 

62     DTA*VYYFD 
63     DTAMV*YFD 
64     DTAMVYYF* 

65 
X-id+ 
DQ2 

HLA-DQA1*0501-
DQB1*0201 CARQEDTAMVYYFDYW EDTAMVYYF *DTAMVYYF 

66     EDT*MVYYF 
67     EDTAM*YYF 
68     EDTAMVYY* 

69 
X-id + 
DQ7 

HLA-DQA1*0301-
DQB1*0301 CARQEDTAMVYYFDYW EDTAMVYYF *DTAMVYYF 

70     EDT*MVYYF 
71     EDTAM*YYF 
72     EDTAMVYY* 

73 
X-id + 
DQ6 

HLA-DQA1*0103-
DQB1*0601 CARQEDTAMVYYFDYW EDTAMVYYF *DTAMVYYF 

74     EDT*MVYYF 
75     EDTAM*YYF 
76     EDTAMVYY* 
77 GAD65 HLA-DR0401 MNILLQYVV MNILLQYVV *NILLQYVV 
78     MNI*LQYVV 
79     MNILL*YVV 
80     MNILLQYV* 
81 GAD65 HLA-DR0401 LIAFTSEHS LIAFTSEHS *IAFTSEHS 
82     LIA*TSEHS 
83     LIAFT*EHS 
84     LIAFTSEH* 
85 GAD65 HLA-DR0401 FTSEHSHFS FTSEHSHFS *TSEHSHFS 
86     FTS*HSHFS 
87     FTSEH*HFS 
88     FTSEHSHF* 
89 GAD65 HLA-DR0405 LYNIIKNREG YNIIKNREG *NIIKNREG 
90     YNI*KNREG 
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91     YNIIK*REG 
92     YNIIKNRE* 
93 GAD65 HLA-DR0405 SLRTLEDNEE LRTLEDNEE *RTLEDNEE 
94     LRT*EDNEE 
95     LRTLE*NEE 
96     LRTLEDNE* 
97 GAD65 HLA-DR0405 FFRMVISNPAA FRMVISNPA *RMVISNPA 
98     FRM*ISNPA 
99     FRMVI*NPA 

100     FRMVISNP* 
	
	
	
	


