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Abstract 17 

Neutrophils are required for host resistance against Streptococcus pneumoniae but their 18 

function declines with age. We previously found that CD73, an enzyme required for antimicrobial 19 

activity, is down-regulated in neutrophils from aged mice. This study explored transcriptional 20 

changes in neutrophils induced by S. pneumoniae to identify pathways controlled by CD73 and 21 

dysregulated with age. Ultrapure bone marrow-derived neutrophils isolated from wild type (WT) 22 

young, old, and CD73KO young mice were mock-challenged or infected with S. pneumoniae ex 23 

vivo. RNA sequencing was performed to identify differentially expressed genes (DEGs). We found 24 

that infection triggered distinct global transcriptional changes across hosts, that were strongest in 25 

CD73KO neutrophils. Surprisingly, there were more down-regulated than up-regulated genes in 26 

all groups upon infection. Down-regulated DEGs indicated a dampening of immune responses in 27 

old and CD73KO hosts. Further analysis revealed that CD73KO neutrophils expressed higher 28 

numbers of long non-coding RNAs (lncRNAs) compared to WT controls. Predicted network 29 

analysis indicated that CD73KO specific lncRNAs control several signaling pathways. We found 30 

that genes in the JNK-MAPK-pathway were up-regulated upon infection in CD73KO and WT old 31 

but not in young mice. This corresponded to functional differences, as phosphorylation of the 32 

downstream AP-1 transcription factor component c-Jun was significantly higher in infected 33 

CD73KO and old mice neutrophils. Importantly, inhibiting JNK/AP-1 rescued the ability of these 34 

neutrophils to kill S. pneumoniae. Altogether, our findings revealed that neutrophils modify their 35 

gene expression to better adapt to bacterial infection and that this capacity declines with age and 36 

is regulated by CD73.  37 

 38 

 39 
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Introduction  40 

Streptococcus pneumoniae (pneumococcus) is an opportunistic pathogen that normally 41 

resides in the human nasopharynx but has the capacity to cause life-threatening infections that 42 

result in more than a million deaths annually (1). Pneumococcal infections are particularly a 43 

problem for elderly individuals. Despite the availability of vaccines and antibiotic therapies, S. 44 

pneumoniae remain a leading cause of community-acquired bacterial pneumonia in individuals 45 

above 65 years of age (2). According to a recent Active Bacterial Core surveillance report, 46 

individuals ≥50 years of age accounted for 71% of S. pneumoniae cases and 82% of associated 47 

deaths (3). Novel interventions are thus required to prevent a significant loss of life in the elderly 48 

and to combat the health and economic burden posed by this infection (4).  49 

Neutrophils (also known as polymorphonuclear leukocytes or PMNs) play a central role in 50 

the clearance of S. pneumoniae infections. We and others found that PMNs are required for host 51 

resistance against pneumococcal infections (5-7) as depletion of PMNs prior to pneumococcal 52 

pulmonary challenge results in significantly higher bacteria burden in the lungs and increases 53 

lethality (7). It is well known that PMN antibacterial function declines with age (8, 9). We 54 

previously found that this could be recapitulated in mouse models where we observed a significant 55 

decrease in opsonophagocytic killing of S. pneumoniae by PMNs isolated from old mice compared 56 

to young controls (10). Strikingly, adoptive transfer of PMNs from young mice reversed the 57 

susceptibility of aged mice to pneumococcal pneumonia (10). This emphasizes the importance of 58 

PMNs in immunity and highlights their potential as targets for interventions that boost resistance 59 

of elderly hosts against infection. However, the host pathways that drive the age-associated decline 60 

in PMN function remain to be fully elucidated. 61 
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The extracellular adenosine (EAD) pathway plays an important role in host resistance to 62 

pneumococcal infection (7). Upon infection, ATP released by damaged or injured cells is 63 

converted into EAD by the sequential action of two extracellular enzymes: CD39 which converts 64 

ATP to AMP and CD73 which then dephosphorylates AMP to EAD (11). We previously found 65 

that genetic ablation or pharmacological inhibition of CD73 in mice results in higher pulmonary 66 

pneumococcal loads and systemic spread of infection (7). CD73 is required for the ability of PMNs 67 

to kill S. pneumoniae as PMNs isolated from young CD73KO mice fail to kill pneumococci ex 68 

vivo (7, 10, 12) . Importantly, age-driven changes in EAD pathway impair PMN anti-bacterial 69 

function. PMNs from old mice express significantly less CD73 than PMNs from young controls 70 

and supplementation with EAD reverses the age-driven decline in the ability of PMNs to kill S. 71 

pneumoniae (10).  72 

The aim of this study was to investigate how aging impairs the antimicrobial activity of 73 

PMNs and what aspect of this is regulated by CD73. Although it was previously thought that PMNs 74 

are transcriptionally quiescent cells that kill bacteria with pre-packaged antimicrobial compounds, 75 

recent work has demonstrated that PMNs also undergo significant changes in their transcriptome 76 

in response to inflammation and bacterial infection (13, 14). Therefore, we examined global 77 

transcriptional changes in PMNs in response to S. pneumoniae infection ex vivo and how these 78 

responses are altered with aging and the absence of CD73. We found that infection with S. 79 

pneumoniae significantly altered the transcriptional profiles of PMNs from all host groups and 80 

that, importantly, active transcription was required for the ability of PMNs to kill bacteria. 81 

Surprisingly, we found that many more genes were down-regulated than up-regulated in response 82 

to infection. Down-regulated genes indicated a dampening of pro-inflammatory immune responses 83 

in PMNs from CD73KO and wild type (WT) old, but not in young hosts. Interestingly, higher 84 
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numbers of long non-coding RNAs (lncRNAs) were found to be differentially expressed in PMNs 85 

from CD73KO mice compared to the PMNs from WT mice upon pneumococcal challenge. 86 

Predicted network analysis of these lncRNAs indicated that various immune signaling pathways 87 

are potentially regulated downstream of the EAD pathway. We also found an increased expression 88 

of Mitogen Activated Protein Kinase (MAPK) signaling pathway genes in PMNs from old and 89 

CD73KO but not young hosts. We confirmed that the activation of c-Jun N-terminal 90 

kinase/Activator protein-1 (JNK/AP-1), one of the MAPK- signaling pathways, was significantly 91 

up-regulated in PMNs from CD73KO and old mice compared to young controls in response to S. 92 

pneumoniae infection. Importantly, pharmacological inhibition of JNK/AP-1, reversed the defect 93 

in pneumococcal killing by PMNs from old and CD73KO mice, indicating that this pathway can 94 

potentially be targeted to reverse the age-related dysregulation of PMN responses. 95 

 96 
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Materials and Methods 108 

Mice. Wild type (WT) young (4 months) and old (22-24 months) C57BL/6 mice were purchased 109 

from Jackson Laboratories (Bar Harbor, ME) and the National Institute on Aging colonies. CD73 110 

knock-out (CD73KO) mice on a C57BL/6 background (15) were purchased from Jackson 111 

Laboratories and bred at a specific-pathogen free facility at the University at Buffalo. Young (4 112 

months) CD73KO mice were used. Due to the limited availability of aged animals, male mice were 113 

used in all experiments. This work was performed in accordance with the recommendations from 114 

the Guide for Care and Use of Laboratory Animals published by the National Institutes of Health. 115 

All procedures were reviewed and approved by the Institutional Animal Care and Use Committee 116 

at the University at Buffalo.  117 

Bacteria. S. pneumoniae TIGR4 AC316 strain (serotype 4) (16) was a kind gift from Andrew 118 

Camilli. Bacteria were grown at 37°C in 5% CO2 in Todd-Hewitt broth supplemented with 0.5% 119 

yeast extract and oxyrase until cultures reached the mid-exponential phase. Aliquots were frozen 120 

at -80°C in growth media with 20% (v/v) glycerol. Aliquots were thawed on ice, washed, and 121 

diluted in PBS prior to use. Bacterial CFU were enumerated by serial dilution and dribble plating 122 

on TSA agar plates supplemented with 5% sheep blood (Northeast Laboratory).  123 

PMN isolation. Femurs and tibias of uninfected mice were flushed with RPMI 1640 supplemented 124 

with 10% FBS and 2 mM EDTA, and bone marrow cells were resuspended in PBS as described 125 

previously (12). PMNs were obtained through density gradient centrifugation using Histopaque 126 

1119 and Histopaque 1077 as previously described (17). This method yields PMNs with 85-90% 127 

purity (12). To obtain ultrapure PMNs for RNA sequencing, negative selection EasySep Mouse 128 

Neutrophil Enrichment kit (StemCell#19762) was used following the manufacturer’s protocol. 129 

PMN purity was determined through flow cytometry and > 98% of cells were Ly6G+ (Fig S1).  130 
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PMN infection and total RNA extraction. Ultrapure PMNs were isolated from young WT, old 131 

WT and young CD73KO mice. From each mouse, 106 ultrapure PMNs were either infected with 132 

S. pneumoniae TIGR4 strain (MOI of 4) opsonized with 3% homologous mouse sera or mock- 133 

treated with 3% sera in buffer alone for 40 minutes at 37°C. Three mice per strain were used to 134 

obtain three distinct biological replicates of infected and mock-treated PMNs for a total of 18 135 

samples. Following bacterial challenge, RNA was extracted from PMNs using RNeasy Mini Kit 136 

(Qiagen) as per the manufacturer’s protocol. TURBO deoxyribonucleic acid (DNA)-free kit 137 

(Invitrogen) was used to digest DNA from the samples. RNA concentrations and 260/280 ratios 138 

were determined using NanoDrop 1000 (Thermo Fischer Scientific).  139 

Illumina library preparation and RNA sequencing. Agilent 2100 Bioanalyzer was used to 140 

determine the integrity, purity and concentration of RNA samples. RNA integrity (RIN) score of 141 

6.5 or above was considered acceptable for further analysis. Quality check revealed improper 142 

fragmentation of one sample (one mock-infected CD73KO sample), which was omitted from 143 

further analysis. Total RNA was enriched for mRNA using poly-(A)-selection (Illumina). NEB 144 

stranded RNA library prep kit (NEB) and NEB Ultra II RNA library prep kit (NEB) were used to 145 

prepare complementary DNA (cDNA) libraries for the remaining 17 samples, according to 146 

manufacturer’s protocol. RNA sequencing was carried out on an Illumina HiSeq2500 (Illumina) 147 

with a mid-output 75-cycle paired end with 10-20 million reads per sample at the Genomics and 148 

Bioinformatics core facility at the University at Buffalo. Details of the RNA samples along with 149 

RNA concentration and RIN score are provided in Supplementary Table I. 150 

Differential gene expression analysis. Per-cycle basecall (BCL) files generated by the Illumina 151 

HiSeq2500 were converted to per-read FASTQ files using bcl2fastq version 2.20.0.422 with 152 

default settings. FastQC version 0.11.5 was used to review the sequencing quality while FastQ 153 
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Screen version 0.11.1 was used to determine any potential contamination. FastQC and FastQ 154 

Screen quality reports were summarized using MultiQC version 1.5 (18). Genomic alignments 155 

were performed using HISAT2 version 2.1.0 using default parameters (19). To differentiate 156 

between bacterial vs mammalian RNA, the resulting reads were aligned to NCBI GRCh38 as the 157 

reference genome. Sequence alignments were compressed and sorted into binary alignment map 158 

(BAM) files using samtools version 1.3. Counting of mapped reads for genomic features was 159 

performed using Subread FeatureCounts version 1.6.2 (20) (parameters:-s2–g gene_id –t exon –Q 160 

60) and the annotation file specified with (–a) was the NCBI GRCh38 reference provided by 161 

Illuminas iGenomes. MultiQC software was used to summarize alignment as well as feature 162 

assignment statistics (18). Differentially expressed genes were detected using the Bioconductor 163 

package DESeq2 version 1.20.0 (21). Genes with one count or less were filtered out, and alpha 164 

was set to 0.05. Log2 fold-changes were calculated using DESeq2 using a negative binomial 165 

generalized linear models, dispersion estimates, and logarithmic fold changes integrated with 166 

Benjamini-Hochberg procedure to control the false discovery rate (FDR). A list of differentially 167 

expressed genes (DEGs) was generated through DESeq2. We defined a significant up- or down-168 

regulation as a (fold change) ≥2 with FDR value < 0.05. The PCA plots were generated in ggplot2 169 

package and the volcano plots were made using the Bioconductor package EnhancedVolcano. 170 

Gene ontology (GO) enrichment analysis. Functional enrichment analysis of significantly up- or 171 

down-regulated DEGs was performed on the Database for Annotation, Visualization and 172 

Integrated Discovery (DAVID) (22) using the default settings. For each comparison, gene 173 

functions were categorized into biological process, molecular function, and cellular components. 174 

These gene functions were analyzed separately for up- or down-regulated DEGs. DAVID was used 175 

to further perform pathway analysis and to retrieve pathway maps based on the identified DEGs. 176 
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All functional categories and pathways with p-value < 0.05 were considered significant. The 177 

complete data are available as Supplementary material and on NCBI website with accession 178 

number GSE150811.  179 

LncRNA network analysis. In order to elucidate the possible function and biological process of 180 

long non-coding RNAs (lncRNAs) identified in this screen, we performed computational 181 

prediction of the potential lncRNA-target interaction. LncRNAs bind to complementary sequence 182 

of neighboring or target genes to repress expression. Thus, if a lncRNA is up-regulated, it is 183 

predicted to down-regulate the expression of the target gene and vice versa. We performed 184 

computational prediction of lncRNA-target interactions using LncTar software for prediction of 185 

lncRNA-RNA interactions through free energy minimization. Using the normalized binding free 186 

energy (ndG), we selected a value of -0.02 as cutoff for the analysis as previously described (23). 187 

In order to confirm the reliability of our prediction analysis, we further used LncRRIsearch, an 188 

online server for prediction of lncRNA-target interaction to validate the result from the previous 189 

analysis. Briefly, we searched the genomic location of all our lncRNAs from the mouse genome 190 

(GRCm38.p6) and nucleotide sequences of the lncRNAs and their neighboring genes were 191 

retrieved for prediction of potential lncRNA-RNA interactions. In order to gain understanding of 192 

the possible biological process and physiological pathways, we catalogued all potential target 193 

genes and performed functional enrichment analysis to identify significantly affected pathways 194 

using a combination of gene ontology (GO) term, PANTHER and KOBAS 195 

(http://kobas.cbi.pku.edu.cn/kobas3) as previously described (24, 25). Networks were then 196 

generated indicating the likelihood of the focus lncRNAs, gene targets and biological process in 197 

the network being found together by chance including concomitant lncRNAs co-regulating one or 198 
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more targets (26). The networks, pathways, and biological functional classification were generated 199 

using Cytoscape version 3.7.2. 200 

RNA sequencing data accession number. The data presented and discussed in this manuscript 201 

along with all the RNA sequencing files and raw data files have been deposited in the NCBI’s 202 

Gene Expression Omnibus (GEO), and is accessible through GEO Series accession number 203 

GSE150811 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150811). 204 

Real time PCR. RT-PCR was used to validate the expression of some of the differentially 205 

expressed genes identified in RNA sequencing. For this, the same RNA samples previously used 206 

to prepare Illumina libraries were used. Following treatment with indicated inhibitors and 207 

challenge with S. pneumoniae, RNA was extracted from 1 x 106 PMNs/condition and DNA 208 

digested as described above. For all RT-PCR reactions, 500 ng of each sample was converted into 209 

cDNA using Super-Script VILOTM cDNA synthesis kit (Life Technologies) according to the 210 

manufacturer’s protocol. RT-PCR was performed using CFX96 Touch TM Real-Time PCR 211 

Detection System from Bio-Rad. CT (cycle threshold-values) were determined using the following 212 

TaqMan probes from Life Technologies (Thermo Fischer Scientific): GAPDH 213 

(Mm99999915_m1), IL-10 (Mm01288386_m1), c-FOS (Mm00487425_m1), Cybr4 214 

(Mm01144487_m1), Hsp72 (Mm01159846_s1), Rgl1 (Mm00444088_m1), ADOR2B 215 

(Mm00839292_m1), Rrad (Mm00451053_m1), Tnip1 (Mm01288484_m1), DUSP1 216 

(Mm00457274_g1), c-JUN (Mm00495062_s1), Nr4a1 (Mm01300401_m1), Sifn1 217 

(Mm00624380_m1), Tubb6 (Mm00660543_m1), and Atf3 (Mm00476032_m1).  All samples 218 

were run in duplicates. Data were analyzed by the comparative threshold cycle (2-ΔCT) method, 219 

normalizing the CT values obtained for target gene expression to those for GAPDH of the same 220 

sample. For comparison of expression levels upon infection, relative quality of transcripts (RQ) 221 
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were calculated by the ΔΔCT method by using the formula RQ = 2-(ΔΔCT)  (27). ΔΔCT values were 222 

obtained by using the formula ΔΔCT = ΔCTinfected – ΔCTuninfected. 223 

Opsonophagocytic killing assay (OPH). The ability of PMNs to kill S. pneumoniae ex vivo was 224 

measured using a well-established OPH killing assay as previously described (7, 10, 12, 28). 225 

Briefly, 1×105 PMNs were incubated with 1×103 bacteria grown to mid-log phase and pre-226 

opsonized with 3% mouse sera in 100μl reactions of HBSS containing 0.1% gelatin. Reactions 227 

were then rotated at 37°C for 45 minutes. Where indicated, PMNs were incubated with 228 

Actinomycin D (transcription inhibitor), Cycloheximide (translation inhibitor), Anisomycin (JNK 229 

stimulator), SR11302 (AP-1 inhibitor), JNK-IN-8 (JNK inhibitor), or HBSS (vehicle control) for 230 

30 minutes prior to infection. Anisomycin and SR11302 were purchased from Tocris Biosciences 231 

and Actinomycin D, Cycloheximide and JNK-IN-8 from Sigma. Percent killing was determined 232 

by dribble plating on blood agar plates and calculated in comparison to the no PMN control under 233 

the same conditions (+/− treatments). 234 

Phosphorylated c-Jun measurement. The ability of S. pneumoniae to induce phosphorylation of 235 

c-Jun was measured by flow cytometry. Briefly, 5×105 PMNs were challenged with pre-opsonized 236 

S. pneumoniae TIGR4 at MOI of 4 in 100μl reactions of HBSS containing 0.1% gelatin. Reactions 237 

were then rotated at 37°C for indicated time points. Where indicated, PMNs were incubated with, 238 

Anisomycin (JNK stimulator), SR11302 (AP-1 inhibitor), JNK-IN-8 (JNK inhibitor), or HBSS 239 

(vehicle control) for 30 minutes prior to infection. Following incubation, cells were fixed with 240 

Cytofix (BD Bioscience) and permeabilized by ice cold methanol. Cells were then stained for 241 

fluorophore-tagged antibodies against Ly6G (BD Bioscience # 5605991), phospho c-Jun (Ser73) 242 

(Cell Signaling # 12714S) (29) and total c-Jun (Cell Signaling # 15683S) at 1:50 dilutions per 243 
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manufacturer’s protocol. Fluorescence intensities were measured on a BD Fortessa and at least 244 

10,000 events were analyzed using FlowJo.  245 

Flow cytometry. Anti-Ly6G (IA8, BioLegend) antibodies were used to determine the purity of 246 

isolated PMNs. Staining was performed in the presence of Fc-block (BD Bioscience). 247 

Fluorescence intensities were measured on a BD Fortessa and at least 2,000 events were analyzed 248 

using FlowJo. 249 

Statistics. OPH and flow cytometry data were analyzed using Prism8 (Graph Pad). Bar graphs 250 

represent the mean values +/- SD. 1-sample t-test or Student’s t-test were used to determine 251 

significant differences as indicated. Correlation of mRNA expression by RNA-Seq and qPCR was 252 

assessed by Pearson correlation analysis.  All p-values less than 0.05 were considered significant 253 

(as indicated by asterisks). 254 

 255 

 256 

 257 

 258 
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 260 
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 263 

 264 

 265 
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Results 267 

Active transcription and translation are important for the ability of PMNs to kill S. 268 

pneumoniae 269 

We previously reported that PMNs from old mice fail to efficiently kill S. pneumoniae, in 270 

part due to a decline in the surface expression of CD73 and extracellular adenosine production 271 

(10). In this study, we wanted to explore whether CD73 and age-driven changes in the 272 

transcriptome impair PMN antimicrobial function. As PMNs are known to have antimicrobial 273 

products pre-synthesized and packaged during maturation for rapid immune response (30), we 274 

investigated the importance of active transcription and translation in the ability of PMNs to kill S. 275 

pneumoniae. To do this, we used a well-established ex vivo opsonophagocytic killing assay (7, 31) 276 

where we isolated PMNs (Ly6G+) from the bone marrow of young C57BL/6 wild type (WT) mice 277 

and treated them with either Actinomycin D (transcription inhibitor (32)) or Cycloheximide 278 

(translation inhibitor (33)) at concentrations that do not impair cellular viability (32, 34) prior to 279 

infection with S. pneumoniae. We found that treating PMNs with Actinomycin D caused a 280 

significant 2-fold decrease in bacterial killing compared to vehicle control (VC), while treatment 281 

with Cycloheximide completely abrogated the ability of PMNs to kill bacteria and instead enabled 282 

bacterial growth in the presence of PMNs (Fig. 1A). These findings suggest that active 283 

transcription of new mRNAs and formation of new proteins is crucial for optimal anti-284 

pneumococcal responses.  285 

 286 

Profiling of mRNA expression  287 

We wanted to test whether there are age-related changes in mRNA expression that renders 288 

PMNs ineffective in their antimicrobial function. In addition, we were interested in investigating 289 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439887doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439887


whether any of the age-driven changes were shared by PMNs that lack CD73. We first re-290 

confirmed that aging and lack of CD73 significantly blunts the ability of PMNs to kill S. 291 

pneumoniae ex vivo (Fig. 1B). Next, RNA sequencing was used to compare the transcriptional 292 

profiles of PMNs from young WT, old WT, and young CD73KO mice at baseline and upon 293 

infection. For RNA isolation, we obtained an ultrapure PMN population (approximately 99% 294 

purity, Fig S1) from the bone marrow of mice using negative selection (see materials and methods). 295 

Three mice were used per strain. Efficient killing of pneumococci by PMNs from young controls 296 

requires opsonization (35). Therefore, to more closely mimic in vivo conditions and the 297 

opsonophagocytic killing assay (Fig. 1B), PMNs isolated from each mouse were either challenged 298 

with S. pneumoniae TIGR4 strain (at a multiplicity of infection or MOI 4) opsonized with 299 

homologous mouse sera from the same mouse for 40 minutes or mock-challenged with sera 300 

containing buffer. We focused on the 40-minute time point as this is a standard time used in ex 301 

vivo killing assays (7, 10, 12) and it allows us to examine differences in antimicrobial function 302 

(Fig. 1B), while maintaining PMN viability (£ 20% PMN necrosis (PI+), Fig. S4B). Detailed 303 

methods on ultrapure PMN isolation and subsequent RNA sequencing workflow are in the 304 

materials & methods section and summarized in Fig. 2A. Differentially expressed genes (DEGs) 305 

were analyzed using DESeq2 and significant differential expression of a gene was defined as 306 

expression with fold change value of ≥ 2.0 and a false discovery rate (FDR) < 0.05.   307 

 308 

Mock-infected PMNs from young, old and CD73KO mice show limited differences in mRNA 309 

profiles 310 

  To determine if there is an intrinsic age-driven change in expression of genes that shape 311 

antimicrobial responses, we compared mRNA expression profiles of mock-challenged PMNs from 312 
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old WT mice to that of young WT controls. Keeping the expression of PMNs from young WT 313 

mice as baseline, we found a total of 23 DEGs to be up-regulated in PMNs from old mice (Table 314 

I). Surprisingly, 15 of these DEGs corresponded to the category of either Immunoglobulin heavy 315 

chain variable regions or Immunoglobulin kappa chain variable region (Table I). mRNA levels of 316 

certain variable region genes have been previously shown to vary in PMNs, although these cells 317 

do not express immunoglobulins (36). PMNs from old WT mice also showed up-regulation of a 318 

few other genes including Calca (calcium regulation and cAMP activity), Mt2 (metal ion 319 

regulation), Ces1d (lipase activity), Col5a1 (type V collagen) and C130026l21Rik (unannotated 320 

lncRNA) (Table I). Interestingly, none of the genes known for their role in PMN antimicrobial 321 

function showed an age-driven differential expression under baseline conditions.  322 

To determine if there is an intrinsic CD73-driven change in expression of genes that shape 323 

antimicrobial responses, we then compared mRNA expression profiles of mock-stimulated PMNs 324 

from young CD73KO mice to that of young WT mice. As shown in Table II, we noted that only 8 325 

genes that were differentially expressed in resting PMNs with an equal number of up-regulated 326 

and down-regulated DEGs. Up-regulated DEGs included Gm11868 (a lncRNA with predicted 327 

histone demethylase activity in Drosophila), Gm13456 (a pseudogene related with somatic muscle 328 

development activity in Drosophila), Gm6548 (unannotated pseudogene), and Ighv9-4 329 

(corresponds to the category of Immunoglobulin heavy chain variable region). As expected, the 330 

down-regulated DEGs included NT5E (that encodes for CD73). Other down-regulated DEGs 331 

included Fam63b (ubiquitin carboxyl-terminal hydrolase activity), Aqp9 (transmembrane 332 

transporter activity) and Cyb5r4 (NADPH-cytochrome reductase activity). As observed in old 333 

mice, none of the known antimicrobial genes showed a differential expression in mock-challenged 334 
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CD73KO PMNs. In summary, we found limited differences in mRNA expression in mock-335 

challenged PMNs from WT and CD73KO mice as well as across host age. 336 

 337 

S. pneumoniae induces global changes in transcriptome profiles 338 

We next wanted to determine whether S. pneumoniae infection induced any transcriptional 339 

changes in PMNs. To do that, the global transcriptome profiles of infected and mock-challenged 340 

PMNs were characterized for each mouse group. Principal Component Analysis (PCA) was done 341 

prior to and after pneumococcal infection to investigate changes in patterns of mRNA expression 342 

between the different groups. We found that infection with S. pneumoniae resulted in major 343 

transcriptome changes in all three PMN types (Fig. 2B). Analysis of PMNs from each mouse group 344 

clearly showed distinct patterns of mRNA expression between the mock-infected and infected 345 

samples with combined total variance of 49% (PC1 and PC2), suggesting a distinct response of 346 

PMNs to S. pneumoniae. In PMNs from all three mouse groups, the mock-challenged samples 347 

formed a cluster separate from the corresponding infected samples (Fig. 2B). When we compared 348 

infected PMNs across the different mouse groups, we found that while CD73KO PMNs showed 349 

variation, PMNs from young WT mice clustered distinctly from the corresponding old mice (Fig. 350 

2C). In summary, infection with S. pneumoniae triggers global changes in PMN transcriptome 351 

profiles that differed across host age. 352 

 353 

Genes and functional categories up-regulated in response to S. pneumoniae 354 

   We then explored the genes whose expression was up-regulated upon PMN infection and 355 

how this varied among the different host groups. By selecting DEGs with at least 2-fold change in 356 

expression compared to mock-infected controls for each mouse group, we surprisingly found only 357 
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a small number of genes (10 per group) that were up-regulated in PMNs from WT mice in response 358 

to pneumococcal challenge, regardless of age (Fig. 3A and 4A). In contrast, CD73KO PMNs 359 

showed the strongest transcription response to bacterial infection with 36 up-regulated genes (Fig. 360 

5A). Some of the up-regulated DEGs were common in PMNs from all three mouse groups (Fig. 361 

6A). The six overlapping DEGs (Osm, Fos, Jun, Zfp36, Egr1 and Atf3) belonged to the categories 362 

of growth regulators, transcription factors and transcription and translation regulators. When we 363 

compared DEGs that were commonly up-regulated in PMNs from old WT and CD73KO, but not 364 

in young WT mice, we found only two DEGs (Fig. 6A): Slfn1 that has a known role in cell 365 

proliferation and immune response and Nr4a1, a transcription factor. When examining the DEGs 366 

that were up-regulated in response to infection that were specific to CD73KO PMNs, we found 367 

increased expression of Btg2 (regulation of cell cycle), Zcchc4 (nucleic acid binding and 368 

methyltransferase activity), Dusp1 (phosphatase activity), Klhl42 (ubiquitin-protein transferase 369 

activity), Snai1 and Hlx (sequence specific DNA binding activity), F3 (phospholipid binding and 370 

cytokine receptor activity), Hspa1a and Hspa1b (ubiquitin protein ligase binding and protein 371 

folding chaperone), Tacstd2 (calcium signaling), and Rhob (GDP and GTP binding activity). A 372 

number of up-regulated DEGs from CD73KO PMNs belonged to the category of lncRNAs that 373 

have not been functionally annotated, thus their roles in cellular function are currently unknown. 374 

We next grouped up-regulated genes into different functional categories (Supplementary 375 

Tables II, IV and VI).  Overall, there was a significant overlap in the annotated processes between 376 

PMN from the three mouse groups with DEGs falling mainly into the categories of DNA binding, 377 

transcription regulation and transcription factor activity (Fig. 3C, 4C and 5C) as many of these 378 

DEGs are known to regulate gene expression either as co-activators, regulators or transcription 379 

factors (Fos, Jun, Egr1, Atf3, Sertad3, Nr4a1, F3 and Hlx). These data indicate that upon challenge 380 
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with S. pneumoniae, PMNs may have undergone transcriptional reprogramming as indicated by 381 

up-regulation of genes involved in transcription activation or transcription regulation. 382 

 383 

Genes and functional categories down-regulated in response to S. pneumoniae 384 

Genes whose expression was down-regulated upon PMN infection were examined 385 

including their variation among the different host groups. Interestingly, we found more genes (2-386 

3-fold more) that were down-regulated than up-regulated in PMNs in response to infection in all 387 

mouse groups (Fig 3A, 4A, and 5A).  A total of 56 genes were down-regulated in PMNs from 388 

young mice, while only 35 genes were down-regulated in PMNs from old mice in response to 389 

pneumococcal challenge (Fig. 3A and 4A). As observed with the up-regulated DEGs, CD73KO 390 

PMNs showed strongest transcriptional response following S. pneumoniae challenge with 67 391 

down-regulated DEGs (Fig. 5A). Overall, there was considerable overlap observed between PMN 392 

from the three mouse groups (Fig. 6B). The 24 overlapping DEGs belong to categories of immune 393 

and inflammatory response (Tnip3, Icam1, Sgk1, Prdm1, Cxcl16, and Prdm1), MAPK-signaling 394 

(Dusp4), cell-surface signaling (Adora2b, Treml4, P2ry10, and Itga5), transcription regulation 395 

(Jmy, Rora and Nab2), microtubule organization (Kif1a), protein regulation (Trim13), cell cycle 396 

and cell-cell adhesion (Avp1 and Serpinb8), actin cytoskeleton (Phldb1), podocyte function 397 

(Schip1), apoptosis (Ggct), metallopeptidase (Astl), embryonic development function and 398 

tumorigenesis (Olfml3) and Notch-signaling (Chac1). Comparison of DEGs that were commonly 399 

down-regulated in PMNs from old WT and CD73KO mice showed 6 overlapping down-regulated 400 

DEGs that were not differentially expressed in PMNs from young WT mice (Fig. 6B). These 401 

included Tubb6 (microtubule organization), Rgl1 (guanine nucleotide exchange factor), Rrad 402 

(GTPase activity), Cd40 (immune and inflammatory response), Tnip1 (inflammatory response) 403 
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and Emp1 (cell-cell interaction and cell proliferation). These findings point towards an overall age-404 

related decrease in immune and inflammatory response, characteristics of which are also shared 405 

by CD73KO PMNs.  406 

To further understand how CD73 regulates the transcriptional profile during infection, we 407 

examined the distribution of DEGs that were only down-regulated in CD73KO, but not in WT 408 

PMNs (Fig. 6B). These included migration related genes Cxcr5 (C-X-C-chemokine receptor 409 

activity), Cccl2 (CCR2 chemokine receptor binding), and Icam4 (integrin binding); G-protein 410 

coupled receptors related genes S1pr1 (G protein-coupled receptor binding) and Gpr84 (G protein-411 

coupled peptide receptor activity); GTP related genes Gbp5 (GTP hydrolysis),  Rnd1 (GTPase 412 

activity), and Tbc1d4 (GTPase activator activity); kinase related genes Sdc4 (protein kinase C 413 

binding), Itk (Tyrosine kinase activity), Nuak1 and Pim2 (serine/threonine protein kinase activity); 414 

and genes involved in other processes Bcl2a1a (apoptotic process), Gpatch3 (nucleic acid 415 

binding), Clec2d (transmembrane signaling receptor activity), Lgmn (endopeptidase activity), Lfng 416 

(acetylglucosaminyl transferase activity) and F10 (calcium and phospholipid binding).  These data 417 

suggest potential dysregulation in PMN migration in response to S. pneumoniae in the absence of 418 

CD73, which is consistent with our previous findings (7). 419 

To elucidate the PMN responses dampened upon pneumococcal challenge in susceptible 420 

vs. resistant hosts, we compared the distribution of DEGs that were down-regulated in PMNs from 421 

young WT mice only but not in PMNs from old WT or CD73KO PMNs. These included Dusp8 422 

(tyrosine/serine/threonine phosphatase activity), Ctla4 (negative regulator of T-cell responses), 423 

Bhlhe40 (transcriptional repressor activity), Tnfrsf8 (transmembrane signaling receptor activity), 424 

Cish (1-phosphatidylinositol-3-kinase regulator activity), Rgs1 (GTPase activator activity) and 425 

Jag2 (calcium ion binding and growth factor activity). These data suggest that select genes that 426 
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inhibit immune responses are down-regulated in young WT hosts to better respond to S. 427 

pneumoniae challenge. 428 

We further categorized down-regulated genes into different functional categories 429 

(Supplementary Tables III, V and VII). As expected, many genes were shared by more than one 430 

functional category. Overall, the functional categories which were commonly down-regulated in 431 

all three PMN types included cellular response to lipopolysaccharide, inflammatory response, 432 

gamma-glutamylcyclotransferase activity, and genes coding components of cell-surface and 433 

external side of plasma membrane (Fig. 3B, 4B and 5B). Interestingly, PMNs from both old WT 434 

and CD73KO but not young WT mice showed down-regulation of NF-κβ signaling regulation 435 

upon S. pneumoniae challenge. In summary, the majority of down-regulated DEGs across all three 436 

PMN types belonged to the categories of transcription regulators and immune regulators.  437 

 438 

S. pneumoniae induces changes in lncRNA expression in the absence of CD73 439 

 Further analysis identified a total of 22 lncRNAs which were either significantly up- or 440 

down-regulated in CD73KO PMNs upon pneumococcal challenge (Fig. 7). We observed a lower 441 

number of lncRNAs (n=5) in WT PMNs from young mice (Fig 8), while PMNs from WT old mice 442 

had none. We made several searches in all available gene ontology (GO) and annotation databases 443 

and found to the best of our knowledge that these lncRNAs have not been previously functionally 444 

annotated. We therefore performed prediction and network analysis (see materials and methods) 445 

of CD73KO specific lncRNAs and found a total of 105 potential target interactions including 3 446 

genes (Il10, Icam1 and Rora) identified in our RNA sequencing analysis (Fig 7 and Supplementary 447 

Table VIII). Since lncRNAs could directly bind to the target mRNA through complementary base 448 

pairing and thus determine the regulation of gene expression, we therefore inferred the biological 449 
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functions of our lncRNAs based on their direct interaction with the gene targets, which, in turn, 450 

perturb the biological process in the disease pathway. For example, Gm37747 can bind to several 451 

gene targets including Cers6-205, Atp8a1-207, Spc25, Lpr2, Il10, Icam1, Atf3 and Ldb2-204 which 452 

perturb signal transduction, regulation of cell adhesion and cellular response to tumor necrosis 453 

factor. This would signify that Gm37747 is an important lncRNAs in these pathways. Importantly, 454 

we identified 5 pathways (Longevity regulation pathway, MAPK signaling pathway, Apoptosis 455 

signaling pathway, Nuclear receptor transcription pathway and Metabolic pathway) which were 456 

regulated by these lncRNAs (Fig.7). Among the predicted biological processes (Fig.7) were 457 

several signaling pathways including Signal transduction by protein phosphorylation cascade, 458 

Positive regulation of MAPK, Interferon signaling, Cytokine signaling in immune system, Cellular 459 

response to Tumor Necrosis Factor, Positive regulation of protein kinase C and Negative 460 

regulation of protein kinase B signaling. For young WT PMNs, lncRNA network analysis 461 

predicted different target genes (Supplementary Table VIII) but only one biological process was 462 

found and it connected to Reep3 in the network (Olfactory signaling pathway and cellular 463 

component organization or biogenesis) (Fig. 8). These findings suggest that during S. pneumoniae 464 

infection, expression of lncRNAs in PMNs is controlled by CD73. 465 

 466 

RT-PCR validation 467 

 To validate our RNA sequencing data, we tested the expression of a subset of differentially 468 

expressed genes through RT-PCR. The selection of genes tested was based on following 469 

categories: role in PMN function (Il10 and Adora2b), role in MAPK pathways (Fos, Jun, Hspa1a, 470 

Atf3) or selected randomly (Rrad and Rgl1). The same samples on which RNA sequencing was 471 

performed were converted to cDNA for RT-PCR validation. Data were analyzed by the 472 
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comparative threshold cycle (2 -ΔΔCT) method, normalizing the CT values obtained for target gene 473 

expression to those for GAPDH of the same sample. Average of fold change values of target 474 

mRNA expression in infected samples was calculated relative to un-infected controls and then 475 

converted to log2 scale, as described for the RNA sequencing data. Multiple targets were tested in 476 

the CD73KO RNA samples as this group showed the strongest transcriptional response to S. 477 

pneumoniae challenge. Overall, the average log2 fold change values obtained during RT-PCR and 478 

RNA sequencing were consistent for the tested target genes (Fig. S2A, Fig. 9C and 9D) with a 479 

Pearson correlation coefficient of 0.8632 and p-value <0.01 (Fig. S2B). 480 

 481 

The MAPK signaling pathway is differentially up-regulated in PMNs from CD73KO and old 482 

mice in response to S. pneumoniae infection 483 

 DEGs significantly down-regulated or up-regulated in PMNs from young WT, old WT and 484 

CD73KO PMNs upon pneumococcal challenge were analyzed separately to identify pathways 485 

responsive to S. pneumoniae challenge. As the number of significant DEGs (FDR value < 0.05) 486 

identified was low, we first used a liberal approach to perform functional category analysis using 487 

DAVID where all functional categories and pathways with p-value < 0.05 were considered 488 

significant. We found that for PMNs from young WT mice, Autoimmune thyroid disease and 489 

Cytokine-cytokine receptor interaction pathway terms were down-regulated (Fig. 3B). No down-490 

regulated KEGG pathway was observed in PMNs from old WT mice. In contrast, down-regulated 491 

pathways were identified in CD73KO PMNs (Table III) and included; Malaria, Cytokine-cytokine 492 

receptor interaction, Chemokine-signaling pathway, Allograft rejection, Cell adhesion molecules 493 

and Autoimmune thyroid disease (Fig. 5B). When comparing pathways that were up-regulated, 494 

we did not find any in PMNs from young WT mice. In contrast, in PMNs from old WT mice, the 495 
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up-regulated pathway terms included HTLV-1 infection, MAPK signaling pathway, 496 

Leishmaniasis and Colorectal cancer (Fig. 4C), while the up-regulated pathways in CD73KO 497 

PMNs included MAPK signaling pathway, Estrogen signaling pathway, HTLV-1 infection and 498 

Influenza A (Fig. 5C).  499 

Importantly, PMNs from old WT and CD73KO mice shared two common up-regulated 500 

pathways including the MAPK signaling pathway (Fig. 9A and B). This pathway was also 501 

significantly up-regulated in CD73KO PMNs upon infection when the analysis was performed 502 

with FDR value < 0.05 criteria. KEGG analysis indicated that S. pneumoniae induced up-503 

regulation of JNK as one of the common MAPK pathways in PMNs from old WT and CD73KO 504 

mice (Fig S3). We observed upregulation of Fos and Jun the components of activator protein-1 505 

(AP-1) transcription complex which is regulated downstream of JNK signaling (37). Differential 506 

expression of select genes (Fos, Jun, and Hspa1a) in this pathway upon infection of PMNs from 507 

WT old and CD73KO mice was further confirmed using RT-PCR (Fig 9 C and D). To determine 508 

whether changes at the gene expression levels translated to functional differences in JNK pathway 509 

signaling, we quantified the proportion of c-Jun that undergoes phosphorylation in response to 510 

pneumococcal challenge. When phosphorylated, c-Jun forms part of the AP-1 transcription factor 511 

complex that is activated downstream of JNK signaling (37). We found increased phosphorylation 512 

of c-Jun in response to S. pneumoniae infection (Fig. 10) and importantly the portion of c-Jun that 513 

was phosphorylated was significantly higher in infected PMNs from old WT and CD73KO mice 514 

in comparison to young controls (Fig. 10B). These findings demonstrate age and CD73-driven 515 

changes in MAPK signaling in PMNs in response to pneumococcal infection.  516 

 517 
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 Blocking JNK/AP-1 signaling pathway boosts bacterial killing in PMNs from old and 518 

CD73KO mice   519 

We then wanted to explore whether the age and CD73-driven changes in the JNK MAPK 520 

pathway had an effect on PMN function. The JNK/AP-1 signaling pathway is well known for its 521 

role in stress-induced apoptotic cell death (38-40). Therefore, we tested whether there were 522 

differences in apoptosis between the mouse groups. Using Annexin-V- /Propidium iodide (PI) 523 

staining and flow cytometry we found that the percentage of apoptotic PMNs increased following 524 

infection (Fig S4A-C); however, there were no differences among the mouse groups. This was 525 

further confirmed using a lactate dehydrogenase (LDH) release assay (Fig S4D). 526 

 To determine whether JNK/AP-1 signaling played a role in PMN antibacterial function, 527 

we treated PMNs from young WT mice with the JNK stimulator Anisomycin and measured their 528 

ability to kill bacteria using our opsonophagocytic killing assay. The ability of Anisomycin to 529 

activate the JNK pathway was confirmed by measuring the extent of c-Jun phosphorylation by 530 

flow cytometry (Fig. 10B). Interestingly, we found a significant 2-fold reduction in the ability of 531 

PMNs from young mice to kill S. pneumoniae upon treatment with Anisomycin (Fig. 11A). As 532 

activation of JNK signaling blunted PMN antimicrobial function, we then asked whether the 533 

function of PMNs from old WT and CD73KO mice can be rescued by inhibiting this pathway. To 534 

do this, PMNs from old WT or CD73KO mice were treated with JNK-IN-8 or SR11302 prior to 535 

infection. JNK-IN-8 is a selective and high affinity inhibitor that irreversibly blocks the catalytic 536 

domain of JNK (41) while SR11302 is a selective inhibitor of AP-1 complex (42). The ability of 537 

JNK-IN-8 to inhibit phosphorylation of c-Jun was also confirmed by flow cytometry (Fig. 10B). 538 

We found that strikingly, treatment of PMNs with SR11302 or JNK-IN-8 significantly enhanced 539 

their ability to kill S. pneumoniae by 5- and 10-fold respectively, in both old and CD73KO mice 540 
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(Fig 11 B and C). None of the JNK pathway inhibitors or activators had any significant effect on 541 

bacterial viability directly (Fig S5). These data indicate that blocking the JNK/AP-1 pathway 542 

reverses the defect in pneumococcal killing by PMNs from old WT and CD73KO mice. 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 
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 559 

 560 

 561 

 562 

 563 
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Discussion  564 

 PMN antimicrobial function declines with aging and is in part driven by changes in 565 

extracellular adenosine production and signaling (10). The aim of this study was to examine 566 

transcriptional changes in PMNs in response to S. pneumoniae infection across different hosts to 567 

better understand how aging impairs PMN function and what aspect of this was controlled by the 568 

extracellular adenosine-producing enzyme CD73. We found very limited differences in mRNA 569 

expression in mock-stimulated PMNs across the different hosts, indicating that either the intrinsic 570 

age-related defect in PMN function occurs at the protein level, or it is the transcriptional response 571 

following external stimulation which drives the difference in PMN responses, or both. In fact, S. 572 

pneumoniae infection triggered global transcriptional changes that were distinct across the 573 

different hosts.  574 

A surprising finding was that there were 2-3-fold more down-regulated than up-regulated 575 

genes in response to infection across all host groups. Sixty percent of the up-regulated genes in 576 

WT mice were the same regardless of host age while the majority of the down-regulated DEGs 577 

were shared across the three different hosts suggesting an overall blunting of transcriptional 578 

activity and expression of only select transcripts in activated PMNs. This is reminiscent of stress 579 

responses observed in yeast cells where only genes required for resistance against a particular 580 

stressor are expressed while the rest are shut off, possibly to conserve energy (43-46).  Overall, 581 

the number of DEGs in response to infection was not high (ranged from 45-103 genes across the 582 

different hosts), which is consistent with the lower amount of mRNA and overall transcriptional 583 

activity observed in PMNs as compared to other immune cells (47, 48). However, even these 584 

relatively moderate changes were key for efficient antimicrobial function as inhibition of 585 

transcription significantly impaired the ability of PMNs to kill pneumococci. It is possible that 586 
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larger changes in gene expression would be observed with time as indicated by up-regulation of 587 

genes involved in transcription activation or transcription regulation across all hosts. Here, we 588 

limited our study to observing changes within forty minutes of infection due to concerns about the 589 

effects of bacterial infection on PMN viability in culture (49). In summary, this study shows that 590 

PMNs undergo transcriptional reprogramming which is required for their ability to efficiently kill 591 

bacteria.  592 

CD73KO neutrophils displayed the strongest transcriptional response to S. pneumoniae, 593 

with 40% more differentially expressed genes during infection as compared to WT age-matched 594 

controls. This correlated with significant changes in expression of more than 20 lncRNAs in 595 

response to infection, 77% of which were up-regulated. In contrast, PMNs from young WT 596 

controls displayed only 5 differentially expressed lncRNAs, all of which were down-regulated, 597 

while PMNs from old mice had none. These findings suggest that during S. pneumoniae infection, 598 

lncRNA expression in PMNs is negatively controlled by CD73 or extracellular adenosine 599 

production. Extracellular adenosine was previously shown to activate expression of MEG3, a 600 

lncRNA in a liver cancer cell line (50). This study, to our knowledge, is the first to report a link 601 

between the EAD pathway and lncRNA expression in PMNs in response to infection. Furthermore, 602 

our data suggest that in the absence of CD73, changes in lncRNA expression dysregulates several 603 

biological processes in the cell, including those important for PMN antimicrobial activity. Recent 604 

studies have highlighted the role of lncRNAs in transcriptional regulation of inflammatory 605 

responses of several immune cells (51), including macrophages (52, 53) and human PMNs (54, 606 

55). Interestingly, polymorphisms in LncRNAs expressed in neutrophils was associated with 607 

pneumococcal bacteremia in children in Kenya (56).  608 
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Of particular interest in our study, were genes that were up- and down-regulated only in 609 

PMNs from WT old and CD73KO mice but not in the young controls. Among genes that were 610 

down-regulated were Rrad and CD40, that have a role in oxidative responses. Binding of CD40 to 611 

its ligand activates downstream PI3K/NF-κβ leading to PMN oxidative burst (57) and defect in 612 

CD40 signaling is associated with blunted respiratory burst and antimicrobial activity in human 613 

PMNs (57). We previously found that CD73KO PMNs were defective in reactive oxygen species 614 

(ROS) production upon pneumococcal challenge (12). While PMNs from old mice do not show a 615 

defect in ROS production (10), aging is often associated with a buildup of reactive oxygen species, 616 

which if not controlled, can lead to cellular damage (58). Rrad (Ras-related associated with 617 

diabetes) is a GTP binding and calmodulin binding protein involved in reducing oxidative stress 618 

and preventing cellular senescence (59). Thus, reduction in Rrad expression could indicate an age-619 

related decline in the ability of PMNs to counteract the oxidative stress induced following S. 620 

pneumoniae challenge. Among the genes up-regulated only upon infection in PMNs from old WT 621 

and CD73KO mice were Slfn1 and Nr4a1. Slfn-1 is known for its role as inducer of cell cycle 622 

arrest in immune cells (60). Nr4a1 on the other hand belongs to family of nuclear receptor proteins 623 

that are rapidly induced under stress conditions and play an important role in DNA repair. 624 

Members of this family show aberrant expression in inflamed tissues and have emerged as key 625 

regulators of various diseases affecting the aging population (61). Interestingly, DNA damage and 626 

cell cycle arrest are characteristic features of cellular senescence (58). Overall, shared changes in 627 

gene expression in PMNs from old WT and CD73KO mice in response to infection, suggest an 628 

overall decline in the ability of these cells to aptly adapt to the infection-mediated stress, which in 629 

part is regulated by CD73.  630 
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KEGG pathway analysis showed that S. pneumoniae up-regulated MAPK-pathways in 631 

PMNs from both CD73KO and old mice but not in PMNs from young host. MAPK-pathways 632 

include JNK, p38, and ERK1/2, all of which regulate various cellular processes in response to 633 

external stimuli (62). Importantly, certain aspects of PMN function are attributed to different 634 

MAPK pathways. These include p38 MAPK and ERK mediated chemotaxis and respiratory burst 635 

(63, 64), MEK/ERK-mediated oxidative burst and phagocytosis (65) and p38 MAPK-mediated 636 

degranulation (66). Here, we observed upregulation of Fos and Jun, the components of activator 637 

protein-1 (AP-1) transcription complex which is regulated downstream of JNK signaling (37). We 638 

found that upon infection, c-Jun is phosphorylated in all mouse groups; however, the proportion 639 

of c-Jun undergoing phosphorylation was significantly higher in PMNs from old WT and CD73KO 640 

mice in comparison to young controls, indicating an increase in MAPK activation in these PMNs. 641 

Interestingly, host aging has been reported to be associated with an increase in basal levels of 642 

activation of other mitogen-activated protein kinase (MAPK) pathways including ERK1/2 and 643 

p38MAPK in PMNs (67-70). Importantly, these changes impair the ability of PMNs to respond to 644 

acute stimuli and impair their function (67, 71). For example, elevated activation of ERK1/2 645 

impairs the ability of inflammatory signals to delay apoptosis in PMNs from elderly donors (68, 646 

72). In fact, pharmacologically targeting these pathways has been shown to improve PMN function 647 

in elderly hosts. In sterile injury of the skin, oral administration of a p38 MAPK inhibitor resulted 648 

in enhanced PMN clearance in elderly donors (73). Similarly, here we found that stimulation of 649 

JNK/AP-1 blunted PMN anti-pneumococcal responses in young hosts while inhibition of this 650 

pathway rescued the ability of PMNs from old and CD73KO mice to kill S. pneumoniae, indicating 651 

that over-activation of JNK/AP-1 impairs PMN antimicrobial function. The role of  JNK/AP-1 652 
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may be pathogen specific as inhibition of the JNK pathway decreased ROS production and release 653 

of NETs by PMNs in response to the Gram-negative bacteria E. coli and P. aeruginosa (74).  654 

In conclusion, this study demonstrated the ability of PMNs to modify their gene expression 655 

to better adapt to bacterial infection and found that this capacity declines with age and is in part 656 

regulated by CD73. Importantly, we identified JNK/AP-1 signaling as a potential target for 657 

therapeutic intervention that can boost resistance of vulnerable hosts against S. pneumoniae 658 

infection. 659 
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Figures and Legends 967 

 968 

Figure 1. Active transcription and translation are required for the ability of PMNs to kill S. 969 

pneumoniae. (A) PMNs isolated from the bone marrow of C57BL/6 young WT mice were treated 970 

with 5µg/mL of Actinomycin D (Act.D) or 10µg/mL of Cycloheximide (CHX), or PBS (vehicle 971 

control) for 30 minutes at 37°C. Treated neutrophils were then infected with S. pneumoniae TIGR4 972 

pre-opsonized with homologous sera for 45 minutes at 37°C. Reactions were plated on blood agar 973 

plates and the percentage of bacteria killed compared to a no PMN control under the same 974 

condition was calculated. Positive percent killing indicates bacterial death while negative percent 975 

indicates bacterial growth. (B) PMNs isolated from the bone marrow of C57BL/6 young WT, old 976 

WT and CD73KO mice were infected with S. pneumoniae TIGR4 pre-opsonized with homologous 977 

sera for 45 minutes at 37°C. Reactions were plated on blood agar plates and the percentage of 978 

bacteria killed compared to a no PMN control under the same condition was calculated for each 979 

strain. (A and B) Data shown are pooled from six separate experiments (n=6 biological replicates) 980 

where each condition was tested in triplicate (n=3 technical replicates) per experiment. Asterisks 981 

indicate significant differences between the indicated groups as calculated by Student’s t-test.  982 

 983 

 984 

A. B.

Fig 1

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439887doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439887


 985 

Figure 2. RNA sequencing experimental approach. (A) Schematic diagram of PMN isolation, 986 

sample preparation, and RNA sequencing analysis. (B and C) Principal component analysis (PCA) 987 

plot showing variance in mRNA expression (post data normalization) in un-infected or S. 988 

pneumoniae challenged samples, presented as separate plots for each mouse strain (B) or all 989 

infected samples on the same plot (C).  990 
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 999 

Figure 3. Analysis of differentially expressed genes in PMNs from young WT mice in response 1000 

to S. pneumoniae infection. (A) Volcano plot representing differential gene expression (DEG) 1001 

(FDR <0.05) in PMNs isolated from the bone marrow of young WT mice in response to ex vivo 1002 

challenge with S. pneumoniae TIGR4 compared to mock-challenged control. Genes marked in 1003 

green represent significantly down-regulated DEGs (log2FC ≤ -1.0, FDR < 0.05) and genes 1004 

marked in red represent significantly up-regulated DEGs (log2FC ≥ 1.0, FDR < 0.05). (B and C) 1005 

Gene Ontology (GO) enrichment analysis using DAVID indicating the top 10 significant (p ≤ 0.05) 1006 

Biological Process (BP), Molecular Function (MF), Cellular Component (CC) and KEGG 1007 

Pathway terms for significantly down-regulated DEGs (B) and significantly up-regulated DEGs 1008 

(C). 1009 
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 1011 

Figure 4. Analysis of differentially expressed genes in PMNs from old WT mice in response 1012 

to S. pneumoniae infection. (A) Volcano plot representing differential gene expression (DEG) 1013 

(FDR <0.05) in PMNs isolated from the bone marrow of old WT mice in response to ex vivo 1014 

infection with S. pneumoniae TIGR4 compared to mock-infected control. Genes marked in green 1015 

represent significantly down-regulated DEGs (log2FC ≤ -1.0, FDR < 0.05) and genes marked in 1016 

red represent significantly up-regulated DEGs (log2FC ≥ 1.0, FDR < 0.05). (B and C) Gene 1017 

Ontology (GO) enrichment analysis using DAVID indicating the top 10 significant (p ≤ 0.05) 1018 

Biological Process (BP), Molecular Function (MF), Cellular Component (CC) and KEGG 1019 

Pathway terms for significantly down-regulated DEGs (B) and significantly up-regulated DEGs 1020 

(C). 1021 
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 1023 

Figure 5. Analysis of differentially expressed genes in PMNs from young CD73KO mice in 1024 

response to S. pneumoniae infection. (A) Volcano plot representing differential gene expression 1025 

(DEG) (FDR <0.05) in PMNs isolated from the bone marrow of CD73KO mice in response to ex 1026 

vivo challenge with S. pneumoniae TIGR4 compared to mock-infected control. Genes marked in 1027 

green represent significantly down-regulated DEGs (log2FC ≤ -1.0, FDR < 0.05) and genes 1028 

marked in red represent significantly up-regulated DEGs (log2FC ≥ 1.0, FDR < 0.05). (B and C) 1029 

Gene Ontology (GO) enrichment analysis using DAVID indicating the top 10 significant (p ≤ 0.05) 1030 

Biological Process (BP), Molecular Function (MF), Cellular Component (CC) and KEGG 1031 

Pathway terms for significantly down-regulated DEGs (B) and significantly up-regulated DEGs 1032 

(C). 1033 
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 1035 

Figure 6. Venn diagrams showing distribution of significantly up-regulated or down-1036 

regulated genes across host groups in response to S. pneumoniae infection.  Distribution of 1037 

significantly up-regulated (log2FC ≥ 1.0, FDR < 0.05) (A) and significantly down-regulated 1038 

(log2FC ≤ -1.0, FDR < 0.05) (B) DEGs in PMNs from young WT vs old WT vs CD73KO mice 1039 

upon pneumococcal challenge.  1040 
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 1046 

 1047 

Figure 7. CD73KO PMN specific lncRNA-target network and biological process. In the 1048 

network, red diamonds represent significantly up-regulated lncRNAs in CD73KO PMNs in 1049 

response to S. pneumoniae infection, while green diamonds are the down-regulated lncRNAs. Blue 1050 

ovals indicate predicted gene targets for the lncRNAs while the green ovals are the genes identified 1051 

in actual RNA sequencing analysis. The big blue rectangles represent the predicted significantly 1052 

impacted biological processes and pathways. 1053 
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 1060 

 1061 

Figure 8. Young WT PMN specific lncRNA-target network and biological process. In the 1062 

network, green diamonds represent the down-regulated lncRNAs in young WT PMNs in response 1063 

to S. pneumoniae infection. Blue ovals are predicted gene targets for the lncRNAs. The big 1064 

rectangle represents the predicted significantly impacted biological pathway. 1065 
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 1076 

 1077 

Figure 9. Validation of MAPK signaling pathway differentially expressed genes by real-time 1078 

PCR. Lists of KEGG pathways and the corresponding genes retrieved from DAVID software 1079 

using significantly up-regulated DEGs (log2FC ≥ 1.0, FDR < 0.05) in PMNs isolated from the 1080 

bone marrow of old WT (A) or CD73KO (B) mice in response to infection with S. 1081 

pneumoniae TIGR4 compared to mock-infected control are shown. Expression of select up-1082 

regulated DEGs corresponding to MAPK signaling pathway identified during RNA sequencing 1083 

(white bars) was validated by RT-PCR (black bars) for old WT (C) and CD73KO PMNs (D). The 1084 

data shown are the log2 value of the average of fold change values of target mRNA expression in 1085 

infected samples relative to mock-infected controls. Relative fold change in target mRNA 1086 

expression was calculated using three separate biological samples. Data were analyzed by the 1087 
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comparative threshold cycle (2 -ΔΔCT) method, normalizing the CT values obtained for target 1088 

gene expression to those for GAPDH of the same sample.  1089 
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 1111 

Figure 10. Phosphorylated c-Jun pools are higher in PMNs from old and CD73KO mice 1112 

following S. pneumoniae infection. PMNs isolated from the bone marrow of the indicated strains 1113 

of mice were incubated for 30 minutes at 37°C with S. pneumoniae TIGR4 pre-opsonized with 1114 

matching sera at a MOI of 4 or mock-treated (uninfected) with 3% matching mouse sera only. 1115 

Flow cytometry was used to determine the effect of bacterial infection on phospho-c-Jun (Ser73) 1116 

levels. (A) The panel shows the gating strategy followed during analysis of flow cytometry in 1117 

young WT mice. We gated on PMNs (Ly6G+ cells) and measured the expression (mean fluorescent 1118 

intensity or MFI) of phospho-c-Jun (Ser73) and total-c-Jun. (B) PMNs from young WT mice were 1119 

either mock-challenged, treated with Anisomycin (JNK/AP-1 pathway activator) or infected with 1120 

S. pneumoniae in the absence or presence of JNK-IN-8 (JNK/AP-1 pathway inhibitor). The ratio 1121 
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of phosphorylated c-Jun with respect to the total cellular levels of c-Jun is presented. (C) PMNs 1122 

from young WT, old WT and CD73KO mice were infected with S. pneumoniae and the ratio of 1123 

phosphorylated c-Jun with respect to the total cellular levels of c-Jun was compared. 1124 

Representative data (B and C) from one of five separate experiments where each condition was 1125 

tested in triplicate (n=3 technical replicates) per experiment are shown. Asterisks indicate 1126 

significant differences as calculated by Student’s t-test.  1127 
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 1145 

Figure 11. Blocking JNK/AP-1 pathway boosts the antimicrobial function of PMNs isolated 1146 

from CD73KO and old WT mice. PMNs isolated from the bone marrow of young WT (A), 1147 

CD73KO (B) and old WT (C) mice were treated with the indicated JNK-stimulator Anisomycin 1148 

(20µM), JNK-inhibitor JNK-IN-8 (20µM), AP-1 inhibitor SR11302 (20µM) or HBSS+ (VC) for 1149 

30 minutes at 37°C. Treated PMNs were then challenged with S. pneumoniae TIGR4 strain pre-1150 

opsonized with homologous sera for 45 minutes at 37°C. Reactions were plated on blood agar 1151 

plates and the percentage of bacteria killed compared to a no PMN control under the same 1152 

condition was calculated. The fold-change in bacterial killing with respect to controls was then 1153 

calculated by dividing the value of the treatment group by the vehicle control for each strain. Data 1154 

shown are pooled from three separate experiments (n=3 biological replicates) where each 1155 

condition was tested in triplicate (n=3 technical replicates) per experiment. Asterisks indicate 1156 

significantly different from 1 by one-sample t-test. 1157 
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Table I. Differentially expressed genes in mock-challenged PMNs from old WT mice compared 

to young WT mice. 

Old_WT_SpNeg_vs_Young_WT_Sp

Neg (As Base) 
Log2FoldChange P-Value Padj (FDR) 

Ighv2-9 5.324005446 4.76E-05 0.044462976 

Igkv4-91 5.232587656 5.49E-05 0.049161656 

Igkv4-79 5.05316031 4.04E-05 0.042456147 

Igkv8-19 4.536847197 3.60E-09 1.11E-05 

Ighv14-3 4.456074702 4.35E-05 0.042456147 

Igkv12-89 3.968347624 2.66E-08 6.36E-05 

Igkv14-126 3.631253191 7.12E-13 3.83E-09 

Ighv11-2 3.557189056 2.33E-26 5.02E-22 

Calca 3.212945532 4.51E-14 3.23E-10 

Igkv6-15 3.135262255 2.49E-07 0.000485531 

Igkv8-27 3.022666053 4.31E-05 0.042456147 

Ighv5-6 2.975616563 8.41E-06 0.012907276 

Gata3 2.949808135 7.68E-10 2.75E-06 
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1 

 

 

 

 

 
1 List of differentially expressed (DE) genes (log2FC ≥ 1.0 or log2FC ≤ -1.0, FDR < 0.05) in 
mock-challenged PMNs from old WT mice compared to mock-infected PMNs from young WT 
mice. 

Ighv1-53 2.750705075 4.67E-10 2.01E-06 

Igha 2.691611019 6.17E-15 6.63E-11 

Igkv6-32 2.666982201 2.17E-05 0.027412136 

Ighv5-17 2.381609479 1.09E-07 0.000233962 

Mt2 2.296737618 2.84E-06 0.005077141 

Ly6a 2.155448841 1.31E-05 0.01870331 

C130026I21Rik 1.641618531 1.54E-05 0.020715214 

Ces1d 1.384138134 3.24E-06 0.005347714 

Rn18s-rs5 1.077561976 2.60E-05 0.031055339 

Col5a1 1.060211245 2.48E-08 6.36E-05 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439887doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439887


Table II. Differentially expressed genes in mock-challenged PMNs from CD73KO mice 

compared to young WT mice. 

1 

 
1 List of differentially expressed (DE) genes (log2FC ≥ 1.0 or log2FC ≤ -1.0, FDR < 0.05) in mock-

challenged CD73KO PMNs compared to mock-infected WT PMNs from young mice. 

CD73KO_SpNeg_vs_Young_WT_Sp

Neg (As Base) 
Log2FoldChange P-Value Padj (FDR) 

Gm11868 5.382471685 4.98E-30 3.69E-26 

Ighv9-4 5.305558233 1.53E-06 2.84E-03 

Gm13456 2.127675061 1.06E-32 1.57E-28 

Gm6548 1.275332385 2.14E-07 4.52E-04 

Fam63b -1.142265331 5.00E-21 2.47E-17 

Aqp9 -1.14542389 8.13E-06 1.20E-02 

Cyb5r4 -1.393240659 9.15E-17 2.71E-13 

Nt5e -2.880728481 2.53E-18 9.39E-15 
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Table III. Down-regulated KEGG pathways in PMNs isolated from young WT or CD73KO mice 
in response to S. pneumoniae infection. 

Downregulated KEGG pathways: Young WT 
PMNs upon S. pneumoniae challenge 

Downregulated KEGG pathways: CD73KO 
PMNs upon S. pneumoniae challenge 

Pathway terms Number of 
genes  Gene names P-value Number of 

genes  Gene names P-value 

Auto-immune 
thyroid disorder 3 CTLA4, 

GZMB, IL10 1.70E-02 3 GZMB, CD40, 
IL10 

 
3.1E-02 

Cytokine-
cytokine 
receptor 

interaction 

4 
CCR7, 

CXCL16, 
TNFRSF8, 

IL10  

 
3.0E-02  

6 

CCR7, CCL2, 
CXCR5, 
CXCL16, 

CD40, IL10 
2.20E-03 

 

Malaria  
 

 
4 

ICAM1, 
CCL2, CD40, 

IL10 

 
8.20E-04 

 

Chemokine 
signaling 
pathway 

 

 

 

5 

ITK, CCR7, 
CCL2, 

CXCR5, 
CXCL16 

 
6.7E-03 

 

Allograft 
rejection  

 

 
3 GZMB, CD40, 

IL10 

 
2.0E-02 

 
Cell adhesion 

molecules 
(CAMs) 

 
 

 
4 PVR, ICAM1, 

CD40, SDC4 

 
2.5E-02 

1 

 
1 Significantly (p ≤ 0.05) down-regulated KEGG pathways with genes involved and p-values 
based upon DAVID analysis of significantly down-regulated DEGs (log2FC ≥ 1.0, FDR < 0.05) 
in PMNs isolated from young WT or CD73KO mice in response to S. pneumoniae TIGR4 
infection compared to mock-challenged controls. 
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