New Results
Learning interpretable cellular responses to complex perturbations in high-throughput screens
View ORCID ProfileMohammad Lotfollahi, View ORCID ProfileAnna Klimovskaia Susmelj, Carlo De Donno, Yuge Ji, Ignacio L. Ibarra, F. Alexander Wolf, Nafissa Yakubova, Fabian J. Theis, David Lopez-Paz
doi: https://doi.org/10.1101/2021.04.14.439903
Mohammad Lotfollahi
1Helmholtz Center Munich – German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany
3School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
Anna Klimovskaia Susmelj
2Facebook AI, 6 Rue Ménars, Paris, 75002, France
5Swiss Data Science Center, Zurich, Switzerland
Carlo De Donno
1Helmholtz Center Munich – German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany
7Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Bavaria, Germany
Yuge Ji
1Helmholtz Center Munich – German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany
Ignacio L. Ibarra
1Helmholtz Center Munich – German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany
F. Alexander Wolf
1Helmholtz Center Munich – German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany
Nafissa Yakubova
2Facebook AI, 6 Rue Ménars, Paris, 75002, France
Fabian J. Theis
1Helmholtz Center Munich – German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany
3School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
4Department Mathematics, Technical University of Munich, Munich, Munich, Germany
6Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
David Lopez-Paz
2Facebook AI, 6 Rue Ménars, Paris, 75002, France

Article usage
Posted May 18, 2021.
Learning interpretable cellular responses to complex perturbations in high-throughput screens
Mohammad Lotfollahi, Anna Klimovskaia Susmelj, Carlo De Donno, Yuge Ji, Ignacio L. Ibarra, F. Alexander Wolf, Nafissa Yakubova, Fabian J. Theis, David Lopez-Paz
bioRxiv 2021.04.14.439903; doi: https://doi.org/10.1101/2021.04.14.439903
Learning interpretable cellular responses to complex perturbations in high-throughput screens
Mohammad Lotfollahi, Anna Klimovskaia Susmelj, Carlo De Donno, Yuge Ji, Ignacio L. Ibarra, F. Alexander Wolf, Nafissa Yakubova, Fabian J. Theis, David Lopez-Paz
bioRxiv 2021.04.14.439903; doi: https://doi.org/10.1101/2021.04.14.439903
Subject Area
Subject Areas
- Biochemistry (10299)
- Bioengineering (7614)
- Bioinformatics (26189)
- Biophysics (13446)
- Cancer Biology (10620)
- Cell Biology (15333)
- Clinical Trials (138)
- Developmental Biology (8452)
- Ecology (12754)
- Epidemiology (2067)
- Evolutionary Biology (16763)
- Genetics (11356)
- Genomics (15400)
- Immunology (10548)
- Microbiology (25041)
- Molecular Biology (10152)
- Neuroscience (54096)
- Paleontology (398)
- Pathology (1655)
- Pharmacology and Toxicology (2877)
- Physiology (4314)
- Plant Biology (9196)
- Synthetic Biology (2541)
- Systems Biology (6752)
- Zoology (1452)