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Abstract

Several patterns of atrophy have been identified and strongly related to Alzheimer’s disease (AD) pathology and its progression.
Morphological changes in brain shape have been identified up to ten years before clinical diagnoses of AD, making its early de-
tection more relevant. We propose novel geometric deep learning frameworks for the analysis of brain shape in the context of
neurodegeneration caused by AD. Our deep neural networks learn low-dimensional shape descriptors of multiple neuroanatomical
structures, instead of handcrafted features for each structure. A discriminative network using spiral convolution on 3D meshes is
constructed for the in-vivo binary classification of AD from healthy controls (HCs) using a fast and efficient “spiral” convolution
operator on 3D triangular mesh surfaces of human brain subcortical structures extracted from T1-weighted magnetic resonance
imaging (MRI). Our network architecture consists of modular learning blocks using residual connections to improve overall classi-
fier performance.

In this work: (1) a discriminative network is used to analyze the efficacy of disease classification using input data from multiple
brain structures and compared to using a single hemisphere or a single structure. It also outperforms prior work using spectral graph
convolution on the same the same tasks, as well as alternative methods that operate on intermediate point cloud representations of
3D shapes. (2) Additionally, visual interpretations for regions on the surface of brain structures that are associated to true positive
AD predictions are generated and fall in accordance with the current reports on the structural localization of pathological changes
associated to AD. (3) A conditional generative network is also implemented to analyze the effects of phenotypic priors given to
the model (i.e. AD diagnosis) in generating subcortical structures. The generated surface meshes by our model indicate learned
morphological differences in the presence of AD that agrees with the current literature on patterns of atrophy associated to the
disease. In particular, our inference results demonstrate an overall reduction in subcortical mesh volume and surface area in the
presence of AD, especially in the hippocampus. The low-dimensional shape descriptors obtained by our generative model are also
evaluated in our discriminative baseline comparisons versus our discriminative network and the alternative shape-based approaches.
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1. Introduction

Advances in magnetic resonance imaging (MRI) have en-
abled a plethora of non-invasive shape analysis tools and

∗Corresponding authors:

• Emanuel Azcona - emanuelazcona@u.northwestern.edu

• Aggelos K. Katsaggelos - a-katsaggelos@northwestern.edu

∗∗Data used in preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such,
the investigators within the ADNI contributed to the design and implementa-
tion of ADNI and/or provided data but did not participate in analysis or writ-
ing of this report. A complete listing of ADNI investigators can be found
at: http://adni.loni.usc.edu/wp-content/uploads/how to apply/ADNI Acknowl-
edgement List.pdf

techniques for modeling the human anatomy in high detail,
specifically neuroanatomical shape modeling (Ng et al., 2014).
Methodological insights in human brain shape analyses have
demonstrated powerful utility for their visualization capabili-
ties and valued characterizations of neuropathology and neu-
rodevelopment. Shape-based descriptors have proven to be
effective for a variety of tasks such as: segmentation, ob-
serving and identifying shape asymmetries, and surface anal-
yses using triangular meshes, each demonstrated by Brignell
et al. (2010). Morphological patterns of change in brain struc-
tures have often been predictive of different neurodevelopmen-
tal and neurodegenerative diseases, such as: schizophrenia,
epilepsy (Kim et al., 2013), Lewy bodies, and Alzheimer’s dis-
ease (AD) (Shakeri et al., 2016). Neuroanatomical changes
in structural MRI have been identified up to ten years before
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clinical diagnoses in AD (Tondelli et al., 2012). Wachinger
et al. (2015) employ BrainPrint to yield extensive characteriza-
tions of brain anatomy using structure-specific shape descrip-
tors with samples from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) dataset (Petersen et al., 2010) to iden-
tify unique individuals (3000 subjects) with a 99.8% accu-
racy. Gutiérrez-Becker et al. (2021) demonstrate a strong per-
formance (0.80/0.79/0.78 performance/recall/F1-score respec-
tively) using BrainPrint to classify scans belonging to subjects
with AD apart from healthy controls (HCs), which they outper-
form in a baseline comparison with their own shape descriptors
(0.83/0.84/0.82 precision/recall/F1-score respectively) learned
on point cloud representations of neuroanatomical shapes.

Working with geometric shape descriptors offers a more ro-
bust representation of brain morphology, rather than direct im-
age intensities. The inferences drawn from utilizing shape de-
scriptors are able to remain robust w.r.t intensity changes that
may be caused by differing scanner hardware/protocols. A re-
cent development in deep learning (DL), PointNet (Qi et al.,
2017a), introduces artificial neural network (NN) architectures
designed for operating on 3D point clouds for tasks such as
object identification. Gutiérrez-Becker et al. (2021) utilize the
point cloud operations from PointNet (Qi et al., 2017a) to con-
struct deep NNs that are trained for AD vs. HC classification on
unordered 3D point cloud representations of subcortical brain
structures. Their framework is also evaluated on the mild cogni-
tive impairment (MCI) vs. HC classification task, which yields
a significant drop in classifier performance due to the high vari-
ability within the MCI class, since the detection of MCI is more
symptomatic and it is sub-divided into different stages (typi-
cally early MCI and late MCI).

Generalizations of successful convolutional neural network
(CNN) models to non-Euclidean data types, such as point
clouds and triangulated meshes, fall under the wide umbrella of
geometric deep learning (Bronstein et al., 2017). Similar to 3D
voxels (Wu et al., 2016), point clouds (Achlioptas et al., 2018)
are intermediate representations of 3D shapes, unlike direct sur-
face representations such as meshes. Despite their high success,
voxel-based DL approaches typically suffer from high compu-
tational complexity, and point cloud approaches suffer from
an absence of smoothness of the data representation (Bourit-
sas et al., 2019). Polygon meshes are direct and effective sur-
face representations of object shape, when compared to voxels.
Geometric learning on meshes has only recently been explored
(Kolotouros et al., 2019; Litany et al., 2018; Ranjan et al., 2018;
Wang et al., 2018; Wickramasinghe et al., 2020) for shape com-
pletion, non-linear facial morphable model generation and clas-
sification, 3D surface segmentation, and reconstruction from
2D/3D images. A novel representation learning and genera-
tive DL framework using spiral convolution on fixed topology
meshes, was established with Neural3DMM by Bouritsas et al.
(2019) and later improved upon with SpiralNet++ by Gong
et al. (2019).

Given the relevance and valued characterizations of brain
shape in neuropathology and neurodevelopment, as well as the
added value of successful DL methods for shape-driven tasks on
3D point clouds (Qi et al., 2017a,b), we improve upon the work

by Gutiérrez-Becker et al. (2021), which operates on unordered
point clouds of 3D brain structures. We extend their discrim-
inative networks by working with spiral convolution operators
on triangular meshes instead. Similar to Gutiérrez-Becker et al.
(2021), we use a conditional generative network framework to
introduce non-imaging data, particularly AD diagnosis, to an-
alyze the learned morphological patterns of generated meshes
w.r.t. diagnostic priors.

Our framework is based upon the spiral convolution opera-
tors defined in SpiralNet++ (Gong et al., 2019) and the resid-
ual NN framework for image recognition established by He
et al. (2016). We quantitatively evaluate the performance of our
model in AD/MCI binary classification with an ablation study
using different subcortical structure inputs (all structures, per-
hemisphere, and per-structure) to analyze the efficacy of incor-
porating input data from multiple brain regions. Furthermore,
we perform a baseline comparison with our spiral framework’s
performance with our prior work (Azcona et al., 2020) using
spectral graph convolution (Defferrard et al., 2016), and the
point cloud approach by Gutiérrez-Becker et al. (2021) on the
same AD/MCI classification tasks. Using a conditional varia-
tional autoencoder (CVAE) (Sohn et al., 2015) framework, our
generative model is used to extract low-dimensional brain shape
descriptors that are then used for the same AD/MCI classifica-
tion tasks. We also experiment with the learned effects of con-
ditioning our generative model on AD diagnosis during training
and mesh generation (synthesis).

An interpretation of classifier reasoning is often a desired
quality of DL frameworks that is often neglected but highly
needed, especially in medical image analyses for widespread
acceptance or trust. This paper is an extension of our prelim-
inary work (Azcona et al., 2020) where spectral graph convo-
lutional networks (GCNs) (Kipf and Welling, 2017) were used
for binary AD classification and we adapted Grad-CAM (Sel-
varaju et al., 2017) on triangular meshes to provide visually in-
terpretable heatmaps that localize areas on meshes which drive
true positive (TP) AD predictions. Given Grad-CAM’s modu-
larity to work with any CNN model, we apply a mesh adapta-
tion of Grad-CAM (Azcona et al., 2020) on the discriminative
network in this study.

In summary our contributions are as follows:

1. A joint framework for improved in-vivo disease classi-
fication using multiple subcortical structures in a sin-
gle scan. A holistic view of brain subcortical anatomy
is provided to demonstrate stronger discriminative perfor-
mance with multiple brain structures. For AD in particu-
lar (Frisoni et al., 2010; Klöppel et al., 2008), correspon-
dences across multiple structures are often more robust
than studying one organ in isolation, especially in neu-
roimaging where segmenting multiple subcortical regions
is possible from a single MRI volume. AD has also been
identified start in localized brain regions (good for early
detection) and progressively spreads to multiple brain re-
gions (good for robust detection).

2. Discriminative spiral networks for improved AD clas-
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sification on meshes versus prior spectral method. We
demonstrate an improvement in accuracy, precision, re-
call, and F1-score upon our prior work (Azcona et al.,
2020) by using spiral convolution on brain surface meshes
for AD classification. Our discriminative spiral network
also outperforms alternative shape-based descriptor ap-
proaches which operate on intermediate shape represen-
tations such as point clouds.

3. Mesh Grad-CAM adaptation to provide visual reason-
ing in localized regions of interest (ROIs) on mesh man-
ifolds that drive TP predictions in AD classification.
Our prior adaptation of Grad-CAM (Azcona et al., 2020)
was successful in localizing ROIs on meshes for TP pre-
dictions from our GCNs. Although a different convolu-
tion operator is used in this proposed framework, learned
feature maps are still attainable from convolutional layers
for generating class activation maps (CAMs) onto input
mesh surfaces. These CAMs are a visual interpretation of
regions on the along the surface of subcortical structures
whose shape is indicative of TP AD predictions by our
spiral networks. Our obtained CAMs draw direct corre-
spondences with brain shape deformations tightly corre-
lated with AD pathology.

4. Conditional generative spiral networks for low-
dimensional representation learning on brain mesh
manifolds with diagnostic priors. Our generative CVAE
models are able to learn low-dimensional discriminative
representations of mesh inputs, which are then evaluated
against our proposed discriminative network and prior
baseline methods. The morphological effects of condition-
ing on AD are also analyzed and supported by multiple re-
ports on the neuroanatomical changes in AD progression.

2. Related Work

2.1. BrainPrint
The shape descriptors in BrainPrint are used in multiple tasks

including: (1) subject identification, (2) age and sex classifi-
cation, (3) lateral asymmetry in brain shape, (4) and potential
genetic influences on brain morphology (such as twin analysis)
(Wachinger et al., 2015). Using FreeSurfer (Dale et al., 1999;
Dale and Sereno, 1993; Fischl et al., 1999a,b, 2002), subcorti-
cal labels are used to segment subcortical nuclei (i.e. caudate
and hippocampi) from whole brain MRI. Then those subject-
specific segmentations are used to create individual triangular
meshes of each anatomical structure’s surface. A shape de-
scriptor, referred to as shapeDNA (Reuter et al., 2006), com-
puted from the intrinsic geometry of an object by calculating
the Laplace-Beltrami spectrum (Niethammer et al., 2007), is
used to compactly represent each structure’s mesh, per scan.
Finding shape descriptors that quantify and characterize brain
shape are often needed for classification or regression tasks that
are dependent on brain shape.

2.2. PointNet on 3D neuroanatomical surfaces
DL networks for the shape analysis of neuroanatomical struc-

tures using point clouds are introduced by Gutiérrez-Becker

et al. (2021) as an improvement on BrainPrint regarding AD
pathology. These types of DL approaches naturally scale and
benefit in the analysis of large datasets, with potential to learn
characteristic variations in large populations. Point clouds are a
lightweight representation of 3D surfaces that avoid topological
constraints of shapes and are trivial to obtain given a segmented
surface. Although computationally robust, their method still
operates on and outputs intermediate representations of brain
shape.

Methods that generate intermediate representations of 3D
surfaces (i.e. pixels), are left insensitive to the topological
constraints of 3D objects. The output quality of postprocess-
ing steps taken to generate 3D surfaces, like triangular meshes,
therefore become dependent on the output quality of the inter-
mediate representations (Marton et al., 2009). In this work, we
improve upon the framework established by Gutiérrez-Becker
et al. (2021) by working with spiral convolution operators that
operate directly on 3D morphable triangular mesh surfaces
(Bouritsas et al., 2019) that are registered to a common tem-
plate topology. We also improve upon their framework by way
of residual connections (He et al., 2016) within our classifier,
and demonstrate an improvement in classification performance
using residual connections within each alternative approach in
our baseline classifier comparison.

Additionally, Gutiérrez-Becker et al. (2021) demonstrate a
powerful framework for fixed-size point cloud reconstruction
and generation using a PointNet CVAE architecture. Although
point cloud methods can be compact and robust, they can still
lack an underlying smooth structure whose approximation is
dependent on the quality of the cloud, whereas surface meshes
are still more realistic, less sensitive to noise, and are capable of
preserving high-quality 3D geometry generation. In this work,
we construct CVAEs using fixed-size surface meshes that are
registered to a common template during preprocessing.

2.3. Spectral Graph Convolution (ChebyNets)
Morphable meshes (Bouritsas et al., 2019), specifically tri-

angular meshes (TaubinÝ, 2000), are direct surface represen-
tations of 3D volumes that can be used for 3D visualization,
describing 3D texture, and contextualizing shape. By construc-
tion, triangular meshes are undirected graphs, with analogous
edges, and their intersections are interpreted as vertices. Sev-
eral studies (Bessadok and Rekik, 2018; Fornito et al., 2015;
Göktaş et al., 2020; Gurbuz and Rekik, 2020; Nebli and Rekik,
2020; Yang et al., 2020) have demonstrated that graphs derived
from different types of brain-related connectivity, functional or
structural, are more robust in accuracy and computation time,
versus traditional neuroimaging methods.

Modeling convolution on 3D meshes can be more mem-
ory efficient and allow for the processing of higher resolution
3D structures compared to volumetric approaches using 3D
CNNs. Our prior work (Azcona et al., 2020) demonstrates an
improvement in AD classification with spectral GCNs known
as ChebyNets (Defferrard et al., 2016), using a dataset of 3D
surface meshes extracted from a subset of T1-weighted MRIs
in the subject population used by Punjabi et al. (2019), a volu-
metric approach. ChebyNets are also implemented by Ranjan
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et al. (2018) for a generative framework using convolutional
mesh autoencoders (CoMA), for generating 3D human faces.

Spectral filtering on graphs (Defferrard et al., 2016; Kipf and
Welling, 2017) can come with a number of caveats. Spectral
filters are inherently isotropic since they particularly rely on
the Laplacian operator, which performs weighted averages of
neighboring vertices:

(∆ f )i =
∑

j:(i, j)∈E

wi j( f (i) − f ( j)), (1)

given a shared feature, f , on vertices i and j, and the scalar
edge weight, wi j, corresponding to edge ei j ∈ E, connecting i
and j. Gong et al. (2019) point out that the isotropic nature of
spectral filters for undirected graphs is a side effect of needing
to design a permutation-invariant operator with a small number
of parameters, under the absence of a canonical ordering.

f ∗ g = p(∆) f =

r∑
`=0

θ`∆
` f . (2)

While a “necessary evil” for certain graph learning appli-
cations (Bouritsas et al., 2019), spectral graph filters are still
basis-dependent and can be rather weak on meshes since they
are locally rotational-invariant. On the other hand, spiral convo-
lutional filters take advantage of the fact that meshes are locally
Euclidean and a canonical ordering of neighbors for each ver-
tex can be established, such as a spiral sequence starting at an
arbitrary vertex. By design, spiral filters are anisotropic and
have proven to generalize functions on 3D meshes better than
spectral methods (Bouritsas et al., 2019; Gong et al., 2019). In
our analysis, an ablation study demonstrates an improvement
upon AD classification performance with spiral filters, in com-
parison to the spectral filters defined by Defferrard et al. (2016);
originally used in our preliminary work (Azcona et al., 2020).

2.4. Generative networks on brain graphs

Several studies have recently investigated using geometric
deep learning (Bronstein et al., 2017) for synthesizing brain-
related graphs (Bessadok et al., 2019, 2021; Sserwadda and
Rekik, 2021; Zhang et al., 2020) using generative adversarial
network (GAN) (Goodfellow et al., 2014) inspired frameworks.
Other types of generative networks, namely autoencoder-based
architectures, have also demonstrated success for neuroimag-
ing applications, such as the work of Choi et al. (2018), where
generative models are developed using chronological age and
apoE4 genetic traits as conditional features for synthesizing
PET scan in relation to AD. In their study variational autoen-
coders (VAEs) (Kingma and Welling, 2014) are used to demon-
strate a significant effect on apoE4 genetic information in pre-
dicting age-related metabolic changes in synthesized PET scans
that are then compared to ground-truth follow-up scans.

Autoencoders are neural networks trained to minimize the re-
construct error between their inputs and outputs, separated by
encoder and decoder halves. Traditionally, autoencoders have
been used for unsupervised dimensionality reduction or feature

learning, since their objective functions for training are typi-
cally designed to minimize the reconstructions of its inputs (i.e.
mean absolute error).

Variational autoencoders (VAEs) (Kingma and Welling,
2014), similarly aim to reconstruct inputs, while also attempt-
ing to constrain the latent space of the encoder output to an
assumed underlying probabilistic distribution (such as a mul-
tivariate Gaussian). Using this assumption, the total objec-
tive function used to train VAEs minimize a reconstruction loss
term and a latent space regularization term, typically the Kull-
back–Leibler (KL) divergence (Joyce, 2011), as a measure of
the disparity between the embedding and assumed prior distri-
bution N(0, I). Once trained, VAEs are valuable in their utility
as a generative framework, where new samples can be synthe-
sized by sampling from the assumed prior distribution. CoMA
(Ranjan et al., 2018) is built upon a VAE framework for meshes,
using spectral GCNs. Their results demonstrate remarkable
performance in synthesizing a diversity of facial expressions
on 3D morphable meshes, all registered to a common template
topology.

As a generative framework, one drawback to VAEs is the
lack of control in targeted data generation. This can be prob-
lematic for tasks dependent on generating specific types of
samples. Conditional variational autoencoders (CVAEs) (Sohn
et al., 2015) offer more control by combining variational infer-
ence from VAEs with additional conditional priors, w.r.t. each
sample, using a simple concatenation step prior to decoding.
Based on CoMA and the success of point cloud generation
for neuroanatomical shapes (Gutiérrez-Becker et al., 2021), a
CVAE framework composed of spiral convolutional learning
blocks is used in this study to generate 3D mesh surfaces of
neuroanatomical structures by conditioning on AD diagnosis.

3. Methods

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD).

3.1. Mesh notation
The input domain of our data is represented using triangular

mesh manifolds, M = (V,E,F ), for the corresponding finite
set of vertices, edges, and faces for each mesh. In graph signal
processing (Wu et al., 2020b), meshes are treated as undirected
graphs, where a feature vector of F features at vertex i is defined
by a row vector xi ∈ RF , for N vertices. To encapsulate all of
the shared features on the vertices of a single mesh, we use the
vertex feature matrix, X ∈ RN×F .

The shared features on the vertices of the input meshes to
our models are the corresponding x, y, z coordinates (3 features
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total) of each vertex in the corresponding subject’s native 3D
space. The meshes used in our study are all registered to a
common mesh template of the subcortical structures utilized in
our prior work (Azcona et al., 2020; Besson et al., 2020; Wu
et al., 2020a). The meshes in this study use a shared topol-
ogy (same number of vertices/edges). However, the positions
of vertices vary across samples therefore representing a span of
different 3D morphology for each sample using the same tem-
plate of connectivity. An analogous set-up with Euclidean data
could be a 3D array of voxels, where the features at each voxel
is the corresponding location of the voxel in the subject’s native
space.

3.2. Mesh extraction
Beginning with the obtained T1-weighted MRIs, FreeSurfer

v6.0 (Fischl, 2012) is used to denoise each scan, then followed
by B1 field homogeneity corrections and intensity/spatial nor-
malization. Seven subcortical structures per hemisphere were
segmented (amygdala, nucleus accumbens, caudate, hippocam-
pus, pallidum, putamen, thalamus) and modeled into surfaces
using SPHARM-PDM.

Next, surfaces were inflated, parameterized to a sphere, and
registered to a common spherical surface template using a rigid-
body registration to preserve the subcortical (Besson et al.,
2014, 2020) anatomy. Then, surface templates were converted
to triangular meshes following a triangulation scheme. A scalar
edge weight, wi j, was assigned to each edge, ei j, connecting
vertices i and j, using their geodesic distance, ψi j, along the
surface s.t.

wi j = w ji =
1

σ
√

2π
exp

−1
2

(
ψi j

σ

)2
 ., (3)

for σ = 2 selected ad-hoc.
As done in our prior work (Azcona et al., 2020), surface

templates were parcellated using a hierarchical bipartite parti-
tioning of their corresponding mesh. Beginning with the initial
mesh representations of densely triangulated surfaces, we used
spectral clustering to define two partitions. These two partitions
were then each separated, yielding four child partitions, and re-
peated so forth. This process was repeated until the average
distance across neighboring partitions was 2.5mm. Given one
partition, we define the central vertex of a partition as the ver-
tex whose centrality was the highest. The distance across two
partitions was defined as the geodesic distance (in mm) across
the central vertices of each partition. Two partitions are con-
sidered neighbors if at least one vertex in each partition were
connected.

Finally, partitions were numbered so that partitions 2p and
2p + 1 at level L, had the same parent partition p at level L − 1.
Therefore, for each level a mesh was obtained s.t. the vertices
of the mesh were the central vertices of the partitions and the
edges across neighboring vertices were weighted following Eq.
3. This serves as an improvement upon the work of Defferrard
et al. (2016) to ensure that no singleton is ever produced by
mesh coarsening operations for the subcortical structures. At
the finest level, a single mesh sample had a total of N0 = 14, 848

Table 1: Number of vertices per subcortical structure per hemisphere.

Structure # Vertices, N
amygdala 512
caudate 1,024

hippocampus 2,048
nucleus accumbens 256

pallidum 512
putamen 1,024
thalamus 2,048

vertices to represent all the subcortical structures (see Table 1
for vertex counts per structure per hemisphere).

3.3. Spiral sequences on triangular meshes

Next, we provide an illustrated clarification of spiral se-
quences on 3D morphable brain meshes (Figure 1), which are
at the core of the learning framework introduced by Gong et al.
(2019). Given an arbitrary triangular mesh and an arbitrarily-
selected vertex we call the center vertex, a spiral sequence can
be naturally enumerated by following a spiral pattern around
the center vertex. First, a spiral orientation is fixed (clock-
wise or counter-clockwise) and a random starting direction is
selected from the center vertex. Following the convention of
Gong et al. (2019), orientations for all spiral generations were
fixed to counter-clockwise and an arbitrary starting direction
w.r.t. each vertex was used.

Specifically, a k-ring and a k-disk around a center vertex v is

(a) Spiral++ on AD mesh (b) DilatedSpiral++ on HC mesh

Figure 1: Examples of spiral sequences established on left hippocampi triangu-
lar meshes from randomly selected scans of a subject with Alzheimer’s disease
(left) and a healthy control (right). Note that in using dilation, the receptive field
of the kernel supports exponential expansion without increasing the support-
size/length of the spiral kernel (Gong et al., 2019). In each example, a spiral
sequence of 6 selected vertices are generated including the center vertex.

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2021. ; https://doi.org/10.1101/2021.04.15.440008doi: bioRxiv preprint 

https://www.nitrc.org/projects/spharm-pdm
https://doi.org/10.1101/2021.04.15.440008
http://creativecommons.org/licenses/by-nc-nd/4.0/


defined as:

0-ring(v) = {v},

k-disk(v) =
⋃

i=0,...,k

i-ring(v),

(k + 1)-ring(v) = N
(
k-ring(v)

)
\k-disk(v),

whereN(V) is the set of all vertices adjacent to any vertex in set
V . A spiral sequence of length ` at vertex v is defined as S (v, `);
a canonically ordered set of ` vertices from a concatenation of
k-rings. Only part of the last ring is concatenated in this defi-
nition, in order to ensure a fixed-length serialization. Formally,
the spiral sequence is defined as:

S (v, `) ⊂
{
0-ring(v), 1-ring(v), . . . , k-ring(v)

}
(4)

The spiral sequences defined in SpiralNet++ (Gong et al.,
2019) show remarkable advantages to a high-level feature rep-
resentation for each vertex in a consistent and robust way when
spirals are frozen during training. By this we mean that spiral
sequences are generated only once for each vertex on the tem-
plate mesh, instead of randomly generated sequences for every
vertex per epoch, as was done by Lim et al. (2018). Since the
3D mesh samples used in this study are all registered to a com-
mon template topology, the same spiral sequences can be used
for every sample. By design, this automatically generates the
topology of the convolutional filter on each vertex of the tem-
plate mesh, analogous to the assumed rectangular topology of
convolutional filters with standard 2D Euclidean CNNs.

3.4. Spiral convolution

Convolutional neural networks (CNNs) applied on 2D/3D
images defined on standard Euclidean grids (Deng et al., 2009;
LeCun et al., 1989) are designed using 2D/3D rectangular con-
volutional kernels that slide across the images and map Fin in-
put feature maps to Fout output feature maps. An extension
of this application on data types in irregular domains such as
graphs, is typically expressed using neighborhood aggregation
(Corso et al., 2020; Xie et al., 2020) or message passing (Gilmer
et al., 2017) schemes.

Using the convention defined in Section 3.1, with x(k−1)
i ∈

RFin denoting the feature vector of Fin features at vertex i and
ei, j ∈ REin denoting the (optional) Ein features on edge ei, j con-
necting vertex i to vertex j at layer (k − 1), message passing
neural networks are typically defined s.t.

x(k)
i = γ(k)

(
x(k−1)

i ,� j∈N(i)φ
(k)

(
x(k−1)

i , x(k−1)
j , e(k−1)

i, j

))
, (5)

where � represents a differentiable permutation-invariant op-
eration (i.e. sum, mean or max), and γ(k) and φ(k) denote dif-
ferentiable kernel functions such as Multi-Layer Perceptrons
(MLPs) (Fey and Lenssen, 2019). CNNs defined for data types
that exist in standard Euclidean grids have a clear one-to-one
mapping. However for data types in irregular domains such as
graphs, correspondences are defined using neighborhood con-
nectivity for each vertex and weight matrices dependent on the
kernel functions, γ and φ at each layer.

Using the spiral sequence serialization discussed in Section
3.3, we can define convolution on meshes in an equivalent
canonical manner to Euclidean CNNs that is anisotropic by de-
sign. Following the convention of Gong et al. (2019), the spiral
convolution operator is defined as

x(k)
i = γ(k)

(
||

j∈S (i,`)
x(k−1)

j

)
, (6)

where γ denotes MLPs and || is the concatenation operation ap-
plied on the shared features of the vertices of spiral sequence
S (i, `) centered at vertex i.

The dilated extension (Yu and Koltun, 2016) of spiral con-
volution using the dilated spiral sequence (depicted in Figure
1) can also be applied to meshes by uniformly sub-sampling
during spiral generation, with the preprocessing parameter d
denoting a uniform sampling of every d − 1 vertices along the
spiral sequence until ` vertices are selected.

3.5. Mesh sampling (down/up-sampling)
Traditional Euclidean CNNs, typically use a hierarchical

multiscale learning structure, typically employed for learning
global and local context, using a combination of convolutional
and pooling/up-sampling layers. To mimic this behavior, we
use mesh sampling/coarsening operators (Ranjan et al., 2018)
that define analogous down-sampling and up-sampling of mesh
vertices within a neural network.

As mentioned in Section 3.1, vertex feature matrices for
meshes with N vertices and F shared features, are denoted
X ∈ RN×F . The 3D mesh samples in this work use F = 3 input
dimensionality, however convolutions applied on mesh features
within the neural network can result in features with different
dimensionality. Therefore, in this section we use F to general-
ize our definition.

The in-network down-sampling of a mesh, with N vertices,
is performed using the down-sampling matrix, D ∈ {0, 1}M×N ,
and up-sampling with U ∈ RN×M , for N > M. The down-
sampling matrix, a sparse matrix, is obtained by contracting
vertex pairs iteratively that maintain surface error approxima-
tions using quadric matrices (Garland and Heckbert, 1997).
The vertices of the down-sampled mesh are essentially a sub-
set of the original mesh’s vertices, Vd ⊂ V. Each element of
D(p, q) ∈ {0, 1} denotes whether the q-th vertex is kept dur-
ing down-sampling, with D(p, q) = 1, otherwise discarded with
D(p, q) = 0, ∀p.

To remain loss-less, the up-sampling operator is built during
the generation of the down-sampling operator. Vertices retained
during down-sampling are kept for up-sampling s.t. U(q, p) = 1
iff D(p, q) = 1. Vertices q ∈ V that are discarded during down-
sampling, for D(p, q) = 0, ∀p, are mapped into the down-
sampled triangular mesh surface by using barycentric coordi-
nates. This is specifically done by projecting q into the clos-
est triangle (of vertices i, j, and k) of the down-sampled mesh
surface, denoted by p̃, and determining the barycentric coordi-
nates, p̃ = wii+w j j+wkk, where i, j, k ∈ V and wi+w j+wk = 1.
Using these weights, we update U s.t.

U(q, i) = wi, U(q, j) = w j, U(q, k) = wk,
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otherwise, U(q, l) = 0.
The features on the vertices retained from a down-sampling

operation for the new mesh are obtained via sparse matrix mul-
tiplication in

Y = DX ∈ RM×F , (7)

for X ∈ RN×F . In a synonymous way, the vertices on the output
mesh of an up-sampling operation are obtained as an inverse
operation to down-sampling via the sparse matrix multiplica-
tion

X = UY ∈ RN×F . (8)

3.6. Spiral brain mesh networks

3.6.1. Residual learning blocks (ResBlocks)
Motivated by the success of residual deep learning frame-

works (He et al., 2016) for image recognition, the NN models
used in this work are based on a residual learning architecture
composed of “residual learning blocks” (ResBlocks) depicted
in Figure 2. These function by adding the output from a previ-
ous block to the output of the current block. This methodology
was demonstrated to allow for the training of deeper NN archi-
tectures, with the intuition that adding more layers allows for
progressively learning more complex features within the archi-
tecture (He et al., 2016; Szegedy et al., 2016).

A spiral convolutional layer maps Fin 7→ Fout features for
every vertex in the input mesh using MLPs applied on the spi-
ral sequence, S (i, `) of each vertex, i. Analogous to traditional
convolution with padding to preserve the size of input feature
maps, spiral convolution on meshes also preserves dimension-
ality since S (i, `) is defined for every input vertex. Therefore,
the number of vertices, N, is still preserved in the output vertex
feature matrix, Xout ∈ RN×Fout .

A frequent problem in DL with training deep NNs is the in-
ternal covariate shift in the distribution of inputs to layers (Ioffe
and Szegedy, 2015) within a model. Batch normalization (BN)

Figure 2: Residual learning block (ResBlock) module used in this SpiralNet++

inspired architecture. Batch normalization (depicted in orange) is applied after
spiral convolution (depicted in yellow). The top (red) branch of the ResBlock
uses spiral convolution followed by batch normalization as an identity linear
mapping tool to map the Fin features of the input vertices to the Fout features
acquired by the main branch. Otherwise, the input of the ResBlock is added
to the main branch output (green). An element-wise ELU(·) function is used
within the hidden layers and as the final activation of the ResBlock.

G
AP

Figure 3: Convolutional mesh encoder module made up of a sequential stack
of alternating spiral convolution and down-sampling layers (5 each). The i-
th ResBlock maps Fi features onto the vertices of the respective input. Each
down-sampling layer coarsens the input vertex count down by a factor of 2.
After the final down-sampling layer, global-average pooling (GAP) is applied
over the vertex dimension to reduce the output embedding down to RF5 .

is used after each spiral convolution operation within our Res-
Blocks as a way to prevent our networks from “forever chasing
a moving target,” by standardizing the inputs to layers within
the network. This follows the convention used of other suc-
cessful DL architectures related to computer vision (He et al.,
2016; Szegedy et al., 2016).

An important hyperparameter for training deep networks is
the choice of activation function for the hidden layers and out-
put layer. He et al. (2016), used the rectified linear unit (ReLU),
defined as

ReLU(x) = x+ = max(0, x),

for their residual learning framework. DL architectures using
ReLU, are prone to suffering from the common “dying ReLU”
problem where hidden layer outputs heavily saturate to zero (Lu
et al., 2020), leading to zero-valued gradients, making learning
more difficult. We circumvent this by using the exponential lin-
ear unit (ELU) activation function (Clevert et al., 2015) defined
as

ELU(x) =

x, if x > 0
α (ex − 1) , if x ≤ 0

, (9)

for α = 1 in this work.

3.6.2. Convolutional mesh encoder
Using ResBlocks introduced in Section 3.6.1 and mesh

down-sampling, described in Section 3.5, we introduce the
convolutional encoder module used by our discriminative and
generative spiral networks, illustrated by Figure 3. As il-
lustrated, input feature matrices are embedded to RF5 latent
vectors using the encoder defined as the sequential stack:
{ResBlock(`1, d1, F1) → MS(↓ 2) → ResBlock(`2, d2, F2) →
MS(↓ 2)→ . . . → ResBlock(`5, d5, F5)→MS(↓ 2)→ GAPN},
where

• `r, dr, Fr are the spiral lengths, dilation, and number of
filters for all convolutional layers w.r.t. the r-th ResBlock,

• MS(↓ 2) is shorthand for “mesh-sampling down by a
factor of 2” (down-sampling), and GAPN is the global-
average pooling operation (Selvaraju et al., 2017).
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On meshes, GAPN is essentially just an averaging operation
over the node dimension, as depicted in Figure 3.

Note that since the input mesh is down-sampled 5 times
within the module, each time by a factor of 2, the number of
vertices after the final down-sampling operation is N

25 = N
32 .

This module is used as the first step for both our discrimina-
tive and generative networks, described in Sections 3.6.4 and
3.6.5 respectively.

3.6.3. Convolutional mesh decoder
The convolutional mesh decoder module, depicted in Fig-

ure 4, applies a synonymous backwards transformation of the
encoder module described in Section 3.6.2. Following Fig-
ure 4 and starting with an arbitrary vector z ∈ Rk, first a
fully-connected (FC) layer maps z 7→ R

NF5
32 . This output is

then reshaped to get a feature matrix in R N
32×F5 , representing

the F5 features on the N
32 vertices at the coarsest level of our

meshes. The rest of the decoder module is defined as the se-
quential stack: {MS(↑ 2)→ResBlock(`5, d5, F5)→MS(↑ 2)→
ResBlock(`4, d4, F4)→ . . . →MS(↑ 2)→ ResBlock(`1, d1, F1)
→ SpiralConv(`1, d1, 3)}. Here `r, dr, and Fr are the same corre-
sponding values used in the encoder module. An additional spi-
ral convolutional layer (SpiralConv) with 3 filters is used at the
end (with no activation) to obtain the reconstruction, X̂ ∈ RN×3,
with 3 features per vertex (corresponding x, y, z coordinates).
This module is only utilized within the generative network de-
scribed in Section 3.6.5, where the task is to output 3D meshes.

3.6.4. Discriminative network
Following the point cloud discriminative network convention

established by Gutiérrez-Becker et al. (2021), we construct our
discriminative networks using the encoder module (Figure 3) in
series with a MLP that uses BN and a ELU activation functions
after each FC layer, as depicted by Figure 5. The goal of this
network is to learn mesh features given an input feature ma-
trix, X ∈ RN×3, and a spiral convolutional operator that exploits
the locally-Euclidean topology of 3D mesh manifolds. These
learned mesh features are then global-average pooled and used
within a MLP for predicting the target variable, y.

In this work, we use the discriminative network for binary
classification, therefore we apply a sigmoid function, σ(y) =

1
1+e−y , on the predicted targets to get the probability of a pos-
itive label given the corresponding 3D mesh manifold. Tradi-
tionally, for binary classification tasks such as disease predic-
tion, the positive binary label, (1), pertaining to the pathology,
is typically the positive class in opposition to the healthy con-
trol label, (0). Our discriminative network can be trained in an
end-to-end supervised manner by optimizing a standard binary
cross-entropy (BCE) loss

LBCE = −
1
B

B∑
i=1

(
yi log (ŷi) + (1 − yi) log (1 − ŷi)

)
, (10)

where yi and ŷi are the ground-truth labels and predicted prob-
abilities (output of sigmoid) respectively, for a given sample, i,
in a batch of B samples.

3.6.5. Generative network (CVAE)
Based on the CoMA architecture by Ranjan et al. (2018), our

CVAE model uses a convolutional decoder on mesh samples
that share a topology at different hierarchical levels of coarsen-
ing, described in Section 3.6.3. Following Figure 6 , first a con-
volutional encoder, E, (Section 3.6.2) is used to compress input
samples, X ∈ RN×3, down to a latent vector, e = E(X) ∈ RF5 .
Next, e is mapped to a “mean vector,” µ ∈ Rk and a “standard
deviation vector,” σ ∈ Rk, using two parallel fully-connected
(FC) layers. These vector outputs are then used for variational
inference during training with the “reparameterization trick” for
VAEs (Kingma and Welling, 2014). Taking e = E(X) ∈ RF5 ,
where ei ∈ e, we vary each component of the latent vector as
zi = µi + εσi ∈ Rk, where ε ∼ N(0, 1), therefore assuming a
multivariate Gaussian distribution, Q (z|X), that can be sampled
from.

Next we concatenate a random sample, z, with the associated
conditional vector c, to generate the mesh reconstruction, X̂ =

D([z, c]). As done by Ranjan et al. (2018) for CoMA, our spiral
CVAE is trained by minimizing the loss

Lgen =
∥∥∥X − X̂

∥∥∥
1 + wKLKL (N (0, I) ‖Q (z|X)) , (11)

with wKL = 0.001, selected ad-hoc, acting as a weight on the
KL divergence loss. The first term (reconstruction) minimizes
the MAE between the reconstruction and ground truth sample,
and the second term (KL divergence) acts as regularizer on the
latent space by adding the constraint of a unit Gaussian prior
with zero-mean on the latent space distribution, Q(z|X).

Once trained, synthesizing new samples is simple. Since the
KL divergence constrains the latent space to a unit Gaussian,
we generate new samples with our decoder by sampling a Rk

vector from the unit Gaussian prior and concatenating it with
a conditional prior vector, c ∈ Rm, as a “specification mecha-
nism” on the type of sample we want to synthesize.

3.7. Grad-CAM mesh adaptation
In our preliminary work (Azcona et al., 2020), we adapt a

visualization tool known as Grad-CAM (Selvaraju et al., 2017)
to provide an interpretable localized heatmap, that weighs the
“importance” of areas in an image that are indicative of certain
predictions after a model is trained. In our prior work, class ac-
tivation maps (CAMs) were extracted from our discriminative
model to highlight areas, directly onto surfaces, that led to true
positive (TP) predictions in AD binary classification. Wu et al.
(2020a) also use this mesh adaptation of Grad-CAM to high-
light the areas of the cortex and subcortical structures that were
most indicative for predicting fluid intelligence in children and
adults.

Following the convention of Selvaraju et al. (2017), first the
gradients of the class scores (logits prior to softmax or sigmoid)
w.r.t. to the feature maps at the last convolutional layer (prior to
GAP) are extracted. Using these gradients, GAP is applied on
each feature map, per-class, to extract the “neuron importance
weights,” α

( f )
c ∈ Rc× f , whose formulation was readapted for

meshes s.t.
α

( f )
c =

1
N

∑
i

∂yc

∂A( f )
i

, (12)
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Figure 4: The mesh decoder module first uses a FC layer and reshaping to map the input vector, z ∈ Rk to a feature matrix for meshes at the coarsest level in R
N
32 ×F5 .

Alternating up-sampling and ResBlock layers (5 each) are used after. An additional spiral convolutional layer with 3 filters and no activation function is used to
project the penultimate N × F1 feature matrix back to N × 3 for the respective 3D mesh reconstruction.

G
AP

Figure 5: End-to-end discriminative spiral network given a 3D mesh input with feature matrix X ∈ RN×3. Batch normalization is used after each MLP layer,
followed by an ELU(·) activation. Given the output of the convolutional encoder, e ∈ RF5 , the MLP predicts the target, y, from the embedding for a particular
sample. For binary classification, we apply a sigmoid function after the final layer to output a probability for each sample.

G
AP

Figure 6: End-to-end generative model based on spiral convolutional CVAE architecture. During inference, a mesh sample, X ∈ RN×3, is first encoded to e ∈ RF5 ,
using the encoder, E. This encoding is then used to sample, z ∈ Rk , from the prior distribution, Q (z|X), assumed to be a multivariate Gaussian. Next z is
concatenated with the conditional vector, c ∈ Rm, and a reconstruction is generated using the decoder D ([z, c]) = X̂ ∈ RN×3. During generation, we sample from
N (0, 1) for each varied component of z, concatenate the sample with a given conditional c, and start at the decoder to generate a new sample, D ([z, c]).

where yc corresponds to the class score of class c, and A( f )
i refers

to the value at vertex i in feature map A( f ) ∈ RN . The set of neu-
ron importance weights, α( f )

c , is then projected back onto each
feature map, A( f ), to compute the CAMs, Mc for each class, c,

s.t.

Mc = ReLU

∑
f

α
( f )
c A( f )

 ∈ RN . (13)
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ReLU is applied to the linear combination of maps because we
are only interested in the features that have a positive influence
on the class of interest (Selvaraju et al., 2017).

As a consequence of multiple down-sampling operations
within our discriminative network’s architecture, extracted
CAMs w.r.t. the number of vertices at the final convolutional
layer are smoother and less focused to specific surface loca-
tions depending on the number of layers. Therefore, they are
up-sampled back to the same number of vertices as the input,
using a trivial interpolation, for a direct “overlay” onto the orig-
inal input mesh.

4. Experiments

We evaluate our discriminative and generative spiral net-
works for several supervised and unsupervised tasks respec-
tively. First, we introduce the 3D structural neuroimaging
dataset and describe our convention for assigning the appro-
priate in-vivo diagnosis labels for each mesh sample (Section
4.1.1). Next we detail the preprocessing parameters used within
our experiments for generating the spiral sequences at each
level of mesh coarsening (Section 4.1.2).

In Section 4.2, we conduct an experiment with our discrimi-
native model to analyze the efficacy of incorporating input data
from multiple subcortical structures for binary AD/MCI classi-
fication. Our results demonstrate a clear advantage to the joint
modeling of multiple subcortical structures, as opposed to us-
ing a single hemisphere or single structure. In Section 4.2.2, we
provide a baseline comparison to alternative shape-based oper-
ators, in place of spiral convolution, for the same binary classifi-
cation tasks. In Section 4.2.3, CAMs are generated for samples
that are correctly classified as AD by our spiral discriminative
network. These CAMs fall in accordance with previous reports
of morphological changes observed in the brain correlated with
AD. Our CAMs support our classification results by producing
visual transparency into our discriminative network’s reasoning
for true positive AD classification.

Lastly, in Section 4.3, we evaluate the effect of conditioning
on AD diagnosis for our generative models w.r.t. each subcor-
tical structure. Our generative network’s results demonstrate
that our model captures morphological differences in the pres-
ence of AD for some of the subcortical structures, particularly
the hippocampi and amygdala nuclei, which are in accordance
with previous autopsy reports that highlight patterns of atrophy
associated to AD.

4.1. Dataset and pre-processing
4.1.1. ADNI dataset

In this study, we use 8,665 T1-weighted 3D MRI volumes
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset, corresponding to 1,266 unique subjects. For each scan,
we associate the healthy control (HC), mild cognitive impair-
ment (MCI), or Alzheimer’s disease (AD) labels given up to 2
months after the corresponding scan in ADNI. This is done as
a precaution to ensure that each diagnosis had clinical justifica-
tion. Our dataset consists of 2,758/3,959/1,948 samples for the
HC/MCI/AD labels respectively.

Each discriminative model in this work is designed to clas-
sify pathological (AD/MCI) scans apart from HCs. To ensure
that scans from the same subject do not appear in different sets,
all data splits (train/test/validation) in this study, shuffle sam-
ples by subject identifiers instead of scan identifiers. We ran-
domly split our data into training/testing sets (85%, 15%) across
subjects, and use a 5-fold cross-validation across the subjects
within the training set in our analyses.

Meshes are extracted from each T1-weighted MRI sam-
ple using the mesh extraction preprocessing method described
in Section 3.2. Each subcortical region is represented using
an independent surface mesh with the corresponding number
of vertices described in Table 1, per hemisphere. Using the
trimesh (Dawson-Haggerty et al., 2019) library in the Python
(Van Rossum and Drake Jr, 1995) programming language, a
mesh object for one hemisphere of a subcortical region is rep-
resented using a vertex feature matrix, X ∈ RN×3, described in
Section 3.1, and a corresponding set of faces, F , which is a set
of 3-element tuples where each tuple indexing the vertices that
make up the corresponding triangular face on the mesh.

The vertex feature matrix of a mesh sample containing a
single bilateral subcortical region (i.e. LH/RH hippocampi) is
constructed using a row-wise concatenation (vertical stacking)
of the vertex feature matrix for each hemisphere of the corre-
sponding subcortical region. The sets of faces for each hemi-
sphere of the same subcortical region are merged to create one
set faces for the bilateral subcortical region sample type. For
mesh samples representing a single hemisphere or all subcorti-
cal regions, the corresponding vertex feature matrix and set of
faces is obtained using the same vertical stacking and merging
process. Each mesh sample type can be interpreted as an undi-
rected graph with described by vertex feature matrix, X, and the
corresponding set of faces, F . Therefore, 14, 848 vertices are
used to represent a single mesh sample for all subcortical re-
gions, 7, 424 vertices for a single hemisphere, and 2N vertices
per subcortical region, for each corresponding N in Table 1.

4.1.2. Spiral sequence and mesh-sampling generation

Following the encoder module described in Section 3.6.2 and
depicted in Figure 3, the topology of spiral sequences at each
level of mesh coarsening is only preprocessed once. In-order,
the spiral lengths, `r, used for the spiral filters within the r-th
ResBlock of the encoder are {`r}

5
r=1 = {12, 12, 12, 12, 9}, with

the corresponding dilation parameters, {dr}
5
r=1 = {2, 2, 2, 1, 1}.

These parameters are used in reverse-order for the ResBlocks
within the the convolutional decoder, depicted in Figure 4.

Following the steps in Section 3.5, down/up-sampling ma-
trices were generated once to represent surfaces in this study
at multiple hierarchical levels while still preserving context at
each level. Again following the structure of the encoder (Figure
3), we specifically up/down-sample meshes within the architec-
ture by a factor of 2 for each mesh sampling operation. At each
level of coarsening, spiral sequences are generated once using
the template mesh.
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4.2. Discriminative model predictions

Discriminative models and hyperparameter tuning were eval-
uated using the 5-fold cross-validation on the training set, as
explained in Section 4.1.1, for two separate experiments. In our
first experiment, we conduct an experiment with our discrimi-
native model to analyze the efficacy of incorporating input data
from multiple subcortical structures for binary AD/MCI classi-
fication, in comparison to input data from a single hemisphere
or single structure. In our second experiment, we analyze the
performance of alternative shape-based classifiers in compari-
son to our proposed method. We report the results on the test
set for each classification task. The number of filters, per con-
volutional layer, at the r-th ResBlock, within the encoder is
{Fr}

5
r=1 = {32, 64, 64, 128, 128}. A binary cross-entropy (BCE)

objective function was used to train all discriminative mod-
els using the AdamW (Loshchilov and Hutter, 2017) optimizer
with a learning rate of 2 × 10−4, learning rate decay of 0.99 for
every step, and a batch size of 16 samples per batch over 200
epochs. In addition to the BCE loss, the weights of the network
were also L2-regularized with a weight decay of 1 × 10−5.

4.2.1. Subcortical structural ablation study
First, we perform binary classification tasks on different

combinations of subcortical structures to classify scans using
the diagnostic labels provided by ADNI. The first task is to clas-
sify HC scans apart from those belonging to subjects with AD,
meanwhile the second task looks at HC vs. MCI classification.
For each task, we use the same discriminative spiral network
(architecture and number of parameters) from Section 3.6.4,
and train each model on the same task, each with a varied com-
bination of input structures. Classifiers are trained and com-
pared with: (a) single-structure (both hemispheres), (b) single-
hemisphere, and (c) all-structure mesh inputs for each sample.

Table 2a summarizes the results of the experiments on
Alzheimer’s Disease (AD) Classification across variations of
subcortical structure inputs. The discriminative model’s per-
formance gradually improves with the inclusion of more sub-
cortical regions. In particular, an improvement in classifier
performance is observed when an entire hemisphere (an input
with multiple subcortical regions), is used versus using both
hemispheres of a single subcortical region. The discriminative
model performs best when all subcortical regions (the largest
input option) are used as input. The discriminative model
trained on the left hemisphere (LH) slightly outperforms the
model trained on the (RH) in both Area Under the Curve (AUC)
statistics, which may also be indicative of the way AD pathol-
ogy is typically diagnosed. The left hemisphere of the human
brain is tightly associated to language function (i.e. grammar,
vocabulary, and literal meaning) (Corballis, 2014), which is of-
ten used as a metric for the clinical diagnosis of AD.

AD follows a different trajectory than normal aging (Nelson
et al., 2011). Language and memory problems like forgetful-
ness can be correlated with normal aging, however the types of
memory problems that occur with AD dementia are more se-
vere and typically begin to interfere with “everyday” activities,

which is not a part of normal aging. One example: forgetting
where you put your glasses, can be indicative of disorganiza-
tion, forgetfulness, or normal aging. However, forgetting what
those glasses are used for (their utility) is not a part of nor-
mal aging. Like many anomaly detection problems in medical
imaging, where it is important to anticipate pathological events
that occur less times than the healthy control, precision-recall
statistics (see Tables 2a and 2b) are often stronger for measur-
ing classification performance when there is a class imbalance
and the class of interest belongs to the smaller population.

There exists strong evidence for certain patterns of atrophy
for different neuroanatomical structures at different stages of
AD progression (Dickerson et al., 2001). Early involvement of
the entorhinal cortex, hippocampus, and amygdala in AD pro-
gression have been reported consistently in the literature (Braak
and Braak, 1991; Dubois et al., 2007; Klein-Koerkamp et al.,
2014; Ledig et al., 2018). Our results in Table 2a suggest a
stronger performance in AD classification given the shape of
the amygdala or hippocampus alone compared to the other sub-
cortical structures. Most importantly, these results also demon-
strate that a holistic approach incorporating multiple subcortical
regions improves AD classification.

Table 2b demonstrates the results of Mild Cognitive Impair-
ment Classification. An expected drop in performance occurs
for MCI classification, compared to AD. This behavior is ex-
pected due to the MCI group’s variability, given its detection
being more symptomatic and it is also sub-divided into several
stages. Detecting MCI is important because people with MCI
are more likely to develop AD than those without. Unlike the
fluidity of the MCI pathological spectrum, AD progression is
endemic and symptoms worsen with time. However, methods
related to neuroplasticity exist to potentially slow/mitigate its
progression, making the early detection of AD desirable.

4.2.2. Spiral discriminator baseline comparison
Given the improvement in AD classification using input

data from multiple subcortical regions for our discriminative
model, we compare our model’s performance with other base-
line shape-based classifiers on the same dataset. We evaluate
four different methods to perform the same discriminative tasks
as Section 4.2.1: (1) the discriminative network in this work, (2)
the same discriminative module with spectral graph convolution
in-place of spiral convolution, (3) the end-to-end discrimina-
tive network by Gutiérrez-Becker et al. (2021), and (4) a MLP
trained on the latent space features of the generative network in
this work.

Spectral networks set-up. For the spectral convolutional
(ChebyNet) (Defferrard et al., 2016) network comparison, we
demonstrate an improvement in performance with BN and a
residual learning architecture by training and evaluating multi-
ple learning architectures. We construct (1) a ChebyNet using
the same architecture as the discriminative network in Figure
5, but with ChebyNet layers, BN, and ELU activations in place
of the Spiral ResBlocks, and another network using “ChebyNet
ResBlocks,” where spiral convolution operations within a Res-
Block are replaced with ChebyNet layers. For a fair compari-
son, we use the same network depth as the spiral discriminator,
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Table 2: Binary classification results using same discriminative model. Precision, recall, and F1-score are reported w.r.t. a classification threshold of 0.5. For a global
measure over different thresholds we also report the Area Under the Receiver Operating Characteristic Curve (ROC-AUC) and the Area Under the Precision-Recall
Curve (PR-AUC) for each case.

(a) Healthy control (HC) vs. Alzheimer’s disease (AD)

Structure Threshold = 0.5 AUC
Precision Recall F1 ROC-AUC PR-AUC

all structures 0.877 0.834 0.855 0.906 0.895
left hemisphere 0.827 0.700 0.758 0.893 0.874

right hemisphere 0.737 0.798 0.766 0.887 0.863
amygdala 0.788 0.850 0.818 0.900 0.891
caudate 0.524 0.655 0.582 0.699 0.592

hippocampus 0.682 0.722 0.702 0.812 0.708
nucleus accumbens 0.610 0.674 0.640 0.774 0.690

pallidum 0.543 0.644 0.589 0.700 0.556
putamen 0.642 0.637 0.639 0.780 0.705
thalamus 0.611 0.723 0.662 0.780 0.703

(b) Healthy control (HC) vs. Mild cognitive impairment (MCI)

Structure Threshold = 0.5 AUC
Precision Recall F1 ROC-AUC PR-AUC

all structures 0.613 0.712 0.659 0.612 0.693
left hemisphere 0.629 0.616 0.622 0.589 0.649

right hemisphere 0.645 0.631 0.637 0.622 0.691
amygdala 0.643 0.561 0.599 0.607 0.689
caudate 0.628 0.565 0.595 0.578 0.635

hippocampus 0.597 0.705 0.647 0.549 0.622
nucleus accumbens 0.573 0.625 0.598 0.503 0.597

pallidum 0.597 0.698 0.643 0.533 0.617
putamen 0.602 0.551 0.575 0.529 0.618
thalamus 0.646 0.677 0.661 0.617 0.593

the same number of output features per convolutional layer, and
a Chebyshev polynomial of degree K = 6 for each spectral con-
volutional layer (Defferrard et al., 2016). The second MLP-half
of each ChebyNet model follows the same MLP architecture
used within our spiral discriminative model (Figure 5).

Point cloud networks set-up. To utilize the same dataset on
this method, we drop the edges of our 3D meshes and treat the
surface vertices as point clouds representing the surface/shape
of the subcortical structures. The shared MLPs within the archi-
tecture of the discriminative model constructed by Gutiérrez-
Becker et al. (2021) to operate on point clouds, are identi-
cally implemented using 1D convolutional layers with a ker-
nel size of 1 (Qi et al., 2017a,b). For consistency in adopt-
ing the PointNet-inspired model for a fair comparison, we use
the PointNet layers described by Gutiérrez-Becker et al. (2021),
and construct the same discriminative network in Figure 5, with
point cloud operations in place of spiral operations. We con-
struct a PointNet discriminator with (1) 1D convolutional lay-
ers + no activation following Gutiérrez-Becker et al. (2021), in
place of the ResBlocks, (2) the same PointNet model in addi-
tion to BN + ELU activations after each convolutional layer,
and (3) a final variant with “PointNet ResBlocks” following the
same style as the Spiral ResBlocks and “ChebyNet ResBlocks”
in the spectral set-up. The second MLP-half of each PointNet

model follows the same MLP architecture used within our spi-
ral discriminative model (Figure 5).

Generative model latent space set-up. A genera-
tive model (Section 3.6.5) was constructed with {Fr}

5
r=1 =

{128, 128, 128, 128, 256} for the corresponding output feature
maps of the model’s encoder and decoder Spiral ResBlocks. We
found it best to compress mesh samples down to a latent space
using R16 components for each subcortical structure, therefore
resulting in z ∈ R112 for all subcortical structures. A binary
one-hot encoding vector is used for the condition vector c ∈ R2,
w.r.t. the diagnosis label for each sample.

The generative network was trained by optimizing the loss
function in Equation 11 and using L2-regularization, weighted
by 1 × 10−5, on the network’s parameters. The AdamW
(Loshchilov and Hutter, 2017) optimizer is used with a learn-
ing rate of 2 × 10−4, learning rate decay of 0.99 for every step,
and a batch size of 8 samples per batch over 500 epochs of
training. Once trained, a MLP following the same architecture
as the second MLP in the discriminative network (Figure 5), is
trained on the latent space shape descriptors (i.e. z) of the corre-
sponding samples, using the same data splits as the other base-
line comparisons. This MLP is also trained using the AdamW
(Loshchilov and Hutter, 2017) optimizer, with the same training
parameters as the rest of the discriminative baseline models.
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Table 3: Baseline comparison of binary classifiers for HC versus AD/MCI classification.

(a) Healthy control (HC) vs. Alzheimer’s disease (AD)

Model Threshold = 0.5 AUC
Precision Recall F1 ROC-AUC PR-AUC

SpiralResNet (Ours) 0.877 0.834 0.855 0.906 0.895
Generative (Ours) 0.703 0.771 0.735 0.851 0.769

ChebyNet 0.487 0.644 0.555 0.664 0.580
ChebyResNet 0.740 0.757 0.748 0.869 0.837

PointNet 0.791 0.798 0.795 0.803 0.786
PointNet+BN+ELU 0.802 0.776 0.789 0.798 0.774

PointResNet 0.842 0.814 0.828 0.836 0.822

(b) Healthy control (HC) vs. Mild cognitive impairment (MCI)

Model Threshold = 0.5 AUC
Precision Recall F1 ROC-AUC PR-AUC

SpiralResNet (Ours) 0.613 0.712 0.659 0.541 0.693
Generative (Ours) 0.595 0.776 0.673 0.524 0.629

ChebyNet 0.602 0.820 0.694 0.542 0.612
ChebyResNet 0.591 0.827 0.689 0.521 0.610

PointNet 0.590 0.789 0.676 0.528 0.615
PointNet+BN+ELU 0.595 0.826 0.692 0.557 0.639

PointResNet 0.601 0.702 0.648 0.542 0.616

AD model comparison. For the AD binary classification
task, the model comparison results in Table 3a demonstrates
that our spiral discriminative model used in the previous abla-
tion study (Section 4.2.1) outperforms all the baseline models
in precision, recall, and F1 score for a 0.5 binary classifica-
tion threshold. Our model also outperforms the baseline mod-
els in both Area Under the Curve (AUC) statistics, particularly
the Precision-Recall Curve (PR-AUC) indicating an overall im-
provement in precision, recall, and F1 score across multiple
classifier thresholds in [0, 1].

The spectral classifier without residual connections
(ChebyNet in Table 3a) performs the worst overall. However,
with the addition of the residual learning framework by using
“ChebyNet ResBlocks,” we see an improvement in perfor-
mance across all metrics for the ChebyResNet model; in fact,
it ranks second-highest in both AUC scores behind our spiral
model. In our prior work (Azcona et al., 2020), ChebyResNets
were used for the same AD binary classification task on the
same subcortical structures used in this study, in addition to the
corresponding white and pial cortical surface meshes for each
sample. In that work, ChebyResNet outperformed the baseline
classifiers, demonstrating an improvement in performance by
directly learning on surface meshes with spectral graph convo-
lution. In this work, ChebyResNet outperforms the PointNet
variants, indicating again an improvement in performance over
non-surface mesh approaches.

The bare PointNet model, without activation functions or a
residual framework, performed better across all metrics (shown
in Table 3a), in comparison to the bare ChebyNet classifier.
The PointNet models progressively improves overall with the
addition of BN + ELU activations, and with the residual learn-

ing framework. The PointResNet model does outperform the
ChebyResNet model in precision, recall, and F1-score given a
0.5 binary classification threshold, however not in AUC statis-
tics taken over several thresholds in [0, 1].

MCI model comparison. Like our structure ablation exper-
iment, we see a drop in performance for all discriminative mod-
els in binary MCI classification. The same network set-up used
for AD classification was used in this evaluation, treating MCI
as the positive label. Our SpiralResNet classifier achieves the
highest PR-AUC in MCI classification when compared to the
baseline methods. The overall drop in performance for MCI
classification for all models in this experiment is the same be-
havior analyzed in the previous experiment.

4.2.3. Class activation maps for AD classification
Using the pre-trained SpiralResNet classifier trained on all

the subcortical structures, we generate class activation maps
(CAMs), using our Grad-CAM adaptation on meshes, for each
AD sample in the test set that is correctly classified by our
model (TP predictions), given a 0.5 classifier threshold. CAMs
for the TP samples are then averaged and projected onto the
vertices of the subcortical template (Besson et al., 2014, 2020).
Mesh faces are colored using an interpolation based off the
CAM values at the vertices of each corresponding triangle (each
face has 3 corresponding vertices). The color-map scale used
to visualize the TP CAM in Figures 7a and 7b highlights areas
along the surface by their magnitude of influence, ordered from
least to greatest, in binary AD classification with our trained
discriminative model.

Aligning with our discriminative model’s results in the struc-
ture ablation study, we observe a strong involvement of hip-
pocampus and amygdala shape in AD vs. HC classification. In
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(a) Lateral view of CAM on RH and LH subcortical structures respectively.

(b) Medial view of CAM on LH and RH subcortical structures respectively.

Figure 7: Average of class activation maps (CAM) for true positive predictions by the SpiralResNet discriminative network proposed in this work. A CAM is
generated for each TP prediction and their average is projected onto the subcortical structure template mesh by Besson et al. (2014). Provided are lateral (a) and
medial (b) views of the CAM projected on the template, which follows the color-scale map which at the center of the two subfigures.

AD, it has been demonstrated that cortical atrophy occurs ear-
lier and progresses faster in the LH than in the RH (Long et al.,
2013; Thompson et al., 2007). Wachinger et al. demonstrated
a significant leftward asymmetry in cortical thinning (mainly
in the temporal lobe and superior frontal regions) with an in-
crease in hippocampal asymmetry, which remains consistent
with previous findings demonstrating an asymmetric distribu-
tion of amyloid-β (Frings et al., 2015), a protein in the brain
that is thought to be toxic and naturally occurs at abnormal lev-
els in the brains of subjects living with AD.

Both caudate structures are also highlighted as indicative of
TP classifications, again with a similar leftward asymmetry. In
particular, there is an emphasis on the tail of the left caudate nu-
cleus. This observation falls in line with the findings of (Barber
et al., 2002) where both the left and right caudate nucleus were
smaller in volume for patients with dementia compared to age-
matched healthy controls (HC); in fact, their findings show that
the left caudate volume difference was significant in AD sub-

jects (p < 0.01). In a recent study looking at shape differences
in the ventricles of the brain w.r.t. AD, Ferrarini et al. (2006)
show that the areas adjacent to the anterior corpus callosum, the
splenium of the corpus callosum, the amygdala, the thalamus,
the tails of the caudate nuclei, and the head of the left caudate
nucleus are all significantly affected by AD and also highlighted
within our generated CAMs.

Volume reductions in the putamen, hippocampus, and tha-
lamus volume were observed by de Jong et al. (2008), adher-
ing to the potential left putamen involvement depicted in Fig-
ure 7b. On the left hippocampus structure particularly, we see
widespread involvement of the structure with most of the pre-
dictive activity occurring at the tail of the left hippocampus and
roughly around the CA1 subfield, also reported by Gutiérrez-
Becker et al. (2021).

On average, we observe an asymmetry towards the CAMs
of the LH structures as more indicative of AD than the RH,
even with a trained on both hemispheres at once. Our ablation
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study also demonstrates an improvement in classifier AUC per-
formance (Table 2a) with using the LH versus the RH in AD
classification. Several studies point towards a left lateralization
of brain atrophy in AD (Long et al., 2013; Thompson et al.,
2007), however Derflinger et al. (2011) argue that brain atrophy
in AD is asymmetric rather than lateralized and that data sug-
gesting leftward lateralization may be a result of selection bias.
This may be due to the fact that clinical scores used to diag-
nose AD are primarily language-based, resulting in a potential
bias towards a selection of patients already with left-lateralized
atrophy (Keilp et al., 1996).

4.3. Diagnostic conditioning on generative model

Differences in output generation w.r.t. to AD diagnosis was
done with the point cloud generative models by Gutiérrez-
Becker et al. (2021). Shape variations their model associates
to the presence of AD are measured with point-to-point met-
rics like L1 distance. Choi et al. (2018), also experiment with
modifying their CVAE’s condition vectors to generate synthetic
PET images and forecast future age-related metabolic changes.
Predicted regional metabolic changes were correlated with the
real changes in their follow-up data. In this work, we observe
changes in mesh surface area, A, and volume, V , w.r.t. to the
HC and AD labels, given the same latent vectors for the set of
HC samples. The shape descriptors learned by our generative
model that are used in our discriminative model evaluation (Ta-
ble 3a) demonstrate potential in encoding complex shape vari-
ations using a low-dimensional embedding.

For our final evaluation, we use the same CVAE architecture
used by our generative model in Section 4.2.2 to construct a
generative model w.r.t. each subcortical structure, using z ∈ R16

as the dimension of the latent space for each model. For each
CVAE model we use a binary one-hot encoding w.r.t. to the AD
versus HC labels in our dataset as the condition vector, c ∈ R2,
to analyze the effect of conditioning on AD diagnosis per struc-
ture. Each CVAE model is trained following the same training
parameters and AdamW optimizer used for training the gen-
erative network in our baseline classifier comparison (Section
4.2.2).

First we train each generative network on the entire dataset of
HC and AD samples. Next, we extract latent space embedding
(i.e. z ∈ R16 for each subcortical structure) of each HC sample
in the dataset. With the latent space shape descriptor of each
structure for each HC sample, we analyze the effect of changing
the HC label to AD before the decoding step of each generative
network to see how diagnosis affects the generated output.

Based on the literature regarding changes in the hippocam-
pus shape as a result of AD, Figure 8 qualitatively depicts some
of the hippocampus results in four randomly selected (origi-
nally HC) samples. Qualitatively, we observe a “thinning” in
hippocampus volume for either hemisphere, particularly shown
in the examples of the second (LH) and third (RH) columns in
Figure 8. The histograms spread throughout Figures 9-12 quan-
titatively depict the observed corresponding volumes, V , and
surface areas, A, with using the HC samples and changing the
diagnosis during decoding. The volume of a watertight mesh is

Figure 8: Dorsal views of the left and right hippocampus surfaces generated
using proposed generative CVAE model on ADNI dataset. For a given latent
space vector, z, a 3D mesh is generated by conditioning on the HC (top row) or
AD (bottom row) label that is passed along to the decoder along with z. Each
column corresponds to a different HC sample.

determined using a surface integral, and the surface area is de-
termined as the sum of the areas of all the triangles on a mesh
surface.

Given that the diagnosis labels are categorical and we are an-
alyzing the effect of conditioning the generative shape model
using these labels, we use the non-parametric Kruskal-Wallis
H-test (McKight and Najab, 2010) to measure the statistical
significance of differences in the output of the model w.r.t. each
label. For each histogram, we report the corresponding H-value
and p-value. For the left putamen, left pallidum, and right
pallidum, differences in the volumes of generated outputs are
not statistically significant (p > 0.05). For the left caudate,
left nucleus accumbens, left/right pallidum, right putamen, and
left/right thalamus, there is no statistical significance (p > 0.05)
in the differences in surface area.

For each of the remaining subcortical structures, a reduction
in volume and surface area is the most common observation, es-
pecially in both hippocampi (p � 0.001). We hypothesized our
generative model would learn to reduce the hippocampus and
amygdala structures, areas that are highly correlated with lan-
guage, memory, frontal executive function scores. Our results
for the remaining structures are in accordance with the expected
shrinking of each structure in the presence of AD, coinciding
with previous autopsy reports in AD progression (Braak and
Braak, 1991; Mann, 1991).

4.4. Summary of experiments
Our results for in-vivo AD vs. HC classification with spi-

ral networks on brain surface meshes demonstrate the power-
ful discriminative advantage in learning surface representations
of subcortical brain structures. Spiral CNNs are demonstrated
to outperform recent methods which operate on point cloud
representations or use spectral graph convolution on the same
template-registered meshes in this study. To the best of our
knowledge, the spiral network method proposed in this study
is the only state-of-the-art (SOTA) approach that exploits the
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Figure 9: Observed changes in output volume and surface area for amygdala (first two rows) and caudate (bottom two rows).
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Figure 10: Observed changes in output volume and surface area for hippocampus (first two rows) and nucelus accumbens (bottom two rows).
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Figure 11: Observed changes in output volume and surface area for pallidum (first two rows) and putamen (bottom two rows).
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Figure 12: Observed changes in output volume and surface area for thalamus.

locally-Euclidean properties of vertices distributed across a sur-
face to design learnable anistropic filters that improve AD clas-
sification w.r.t. subcortical structure shape. Our results demon-
strate a clear advantage to incorporating multiple subcortical
regions, as opposed to input data from a single subcortical re-
gion or hemisphere.

The CAMs obtained using our discriminative model draw di-
rect correspondences with the literature regarding localized ar-
eas of deformation related to AD pathology. Paired with our
discriminative model, our framework combines localized con-
textual visualization together with classification results. More
often, a modular visualization method that provides context to
a discriminative model’s predictions without making architec-
tural changes to the model, is highly desirable for establishing
appropriate trust in predictive models.

Furthermore, the results of our generative model demonstrate
the potential for using diagnosis in the condition vector, as a
means to add more specificity to the type of output that is gen-
erated. Our generative framework illustrates a potential appli-
cation for generating synthetic training data that would be bene-
ficial for improving deep learning frameworks that benefit from
increased dataset sizes. Significant volume and surface area
changes w.r.t. to AD diagnosis were identified, particularly in
the amygdala, caudate, nucleus accumbens, right putamen, tha-
lamus, and most importantly the hippocampus, an area of the
brain highly correlated with AD. Our prior work using spec-
tral filters (Azcona et al., 2020) utilizes the same subcortical
structures, in addition to the cortex, to perform the same AD
classification task. However, during our analysis, we observed

frequent GPU memory issues with training a CVAE model us-
ing the cortical surface. A major degradation in the output qual-
ity of reconstructed/generated cortical surfaces with our gener-
ative framework was also observed. As Gutiérrez-Becker et al.
(2021) point out, modeling a structure with a more complex ge-
ometry, e.g., the cortex, requires a larger number of points that
may lead to GPU memory constraints. Additionally, the gyri-
fication of the cortical surface is much more complex and may
require additional methods that generalize better to 3D mesh
structures with complex sulci and gyri.

5. Conclusions and Future Work

To the best of our knowledge, no existing works have in-
vestigated brain shape in regards to AD pathology using dis-
criminative and generative networks that learn and operate di-
rectly on surface meshes by way of geometric deep learning.
Our framework is constructed by a variety of modular com-
putational blocks that are used by both our discriminative and
generative models. Notably, our convolutional encoder learns
effective shape descriptors that can be used for AD classifica-
tion by our discriminative model. Our first analysis demon-
strates an improvement in AD classification performance using
the same model with varying input types: (a) single subcorti-
cal region, (b) subcortical regions within a single hemisphere,
and (c) bilateral subcortical regions. Our results demonstrate
a clear advantage to the joint modeling of multiple subcortical
structures for in-vivo AD classification.

19

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2021. ; https://doi.org/10.1101/2021.04.15.440008doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440008
http://creativecommons.org/licenses/by-nc-nd/4.0/


Our discriminative model also outperforms alternative shape
descriptor methods in our baseline comparison. Additionally,
our adaptation of Grad-CAM to 3D meshes provides context as
to which subcortical brain regions are driving our AD classifi-
cation results. Our class activation maps (CAMs) are in accor-
dance with the literature on morphological changes observed in
the brains of subjects with AD. Our CAMs make our classifica-
tion results more transparent by producing visual explanations.
Improving clinical confidence and reliability in automated dis-
criminative methods, can be approached by contextualizing a
model’s reasoning about its beliefs and actions for clinicians to
trust and use.

Additionally, our generative model’s decoder module is able
to reconstruct 3D mesh inputs from their low-dimensional
shape descriptors obtained by the encoder. More importantly,
in using a variational approach, we’re able to learn a proba-
bilistic latent space that can be sampled from to generate syn-
thetic samples for each subcortical structure w.r.t. phenotype
information, in particular: AD diagnosis. The endemic nature
of medical imaging data, particularly within neuroimaging, at-
tributes to scarcity of open-access neuroimaging databases. Our
generative model is able to generate realistic-looking synthetic
examples, which may be used to train other deep learning ap-
proaches that often require large datasets and annotated data is
limited.

Our proposed discriminative network can be further tailored
to fuse other phenotypic data for AD classification; including
but not limited to: chronological age, sex assignment at birth,
genotype data, etc. Phenotype features can also be used as ad-
ditional conditional priors in our generative framework, adding
additional constraints for synthesizing personalized samples.
Natural extensions of this work could include (1) expanding the
classification task to sub-typing different stages of mild cogni-
tive impairment (early versus late), (2) using spiral convolution
within a recurrent neural network framework for longitudinal
predictions related to AD, and (3) experimenting with gener-
ating template-registered 3D meshes from MRI volume inputs
using a spiral convolutional decoder framework to automate the
mesh extraction preprocessing steps.
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Minkova, L., Heimbach, B., Klöppel, S., Meyer, P.T., 2015. Asymmetries
of amyloid-β burden and neuronal dysfunction are positively correlated in
alzheimer’s disease. Brain 138, 3089–3099.

Frisoni, G.B., Fox, N.C., Jack, C.R., Scheltens, P., Thompson, P.M., 2010.
The clinical use of structural mri in alzheimer disease. Nature Reviews
Neurology 6, 67–77.

Garland, M., Heckbert, P.S., 1997. Surface simplification using quadric error
metrics, in: Proceedings of the 24th annual conference on Computer graph-
ics and interactive techniques, pp. 209–216.

Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E., 2017. Neural
message passing for quantum chemistry, in: International Conference on
Machine Learning, PMLR. pp. 1263–1272.
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