








Behavioral clusters revealed by end-to-end decoding from microendoscopic imaging A PREPRINT

Supplementary Figure 6: Model selection with hyperparameter searching. (a) Schematic
diagram of different model architectures. We did transfer learning with a ResNet model (top) and a
Mobilenet model (middle) pre-trained on Imagenet. We also designed a feedforward neural network,
where max pooling was applied on input images before feeding flattened features to the dense
layers. Hyperparamter searching was applied to all models and the best combination was selected
based on validation performance. Details see Materials and Methods. (b) Model comparison on
validation set. We compared all models with their best hyperparameter sets, and found the ConvNet
model had the least average L1 loss. (c) Subsets of hyperaparameter searching on validation set.
For a ConvNet model with 8 convolution with 8 convolutional layers and 5 dense layers, we found
training model with learning rate at 1e-4 without batch normalization had least average L1 loss.
These hyperparameters were used for models in all the experiments.

29

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.15.440055doi: bioRxiv preprint 



Behavioral clusters revealed by end-to-end decoding from microendoscopic imaging A PREPRINT

Supplementary Figure 7: Examples of decoded traces in STOP periods and the training set.
(a) Example 10-sec trajectories of true (gray) and decoded (black) positions when the animal was
mostly stationary. Decoded traces formed a sequence as if the animal was simulating running. (b)
Decoded variables across time during STOP periods in an example test set. Gray line denotes true
traces. Green dots denote predicted traces. (c) Decoded variables across time in an example training
set. Dots denote predicted traces, colored in actual running speeds.

30

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.15.440055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440055


Behavioral clusters revealed by end-to-end decoding from microendoscopic imaging A PREPRINT

Supplementary Figure 8: Encoding of behavioral topology during STOP periods in mani-
folds across model layers. (a) Ensemble representations from the last convolutional layer and
the dense layer of a trained model on a typical dataset in the T-maze (top), H-maze (middle),
and �-maze (bottom) (same models as in Figure 7a). (b) Comparison between neural manifolds
extracted from RUN and STOP periods (i.e., animals were either stationary or running at speeds
below 5 cm/s), in the T-maze (left), H-maze (middle), and �-maze (right). Across all datasets,
manifold similarity was significantly higher when the animals were running (Wilcoxon signed-rank
test: stats = 1, p < 0.05).

31

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.15.440055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440055


Behavioral clusters revealed by end-to-end decoding from microendoscopic imaging A PREPRINT

Supplementary Figure 9: Consistency of behavioral distributions between training and test
sets. (a) Similarity of average occupancy (x-y Density) and average speed (AvgSpeed) between
the training and test sets. Top: 2D correlations of occupancy and speed maps in different mazes.
Bottom: All 2D correlations (x-y Density, AvgSpeed) across test-folds. (b) Evaluation of train/test
split using structural similarity index measures (SSIM) on joint distributions of output labels. Top:
SSIM for each paired variables (x, y), (x, v) and (y, v) in different maze experiments. Bottom:
SSIM ((x, y), (x, v) and (y, v)) across test-folds in different maze experiments.

32

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.15.440055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440055


Behavioral clusters revealed by end-to-end decoding from microendoscopic imaging A PREPRINT

Supplementary Figure 10: Possible factors contributing to decoded errors. (a) Error visual-
izations in the space from an example T-maze exploration dataset. Heatmaps represent decoded
errors (a.u.) before converting back to the original scales (cm and cm/s). Left: Spatial maps of
where decoded errors occurred. Right: Spatial maps of where errors pointed to (i.e., where wrong
predictions were). (b) Left: Average occupancy (x-y Density) maps of the training set top and
the test set bottom from the example dataset in a. Right: Average speed (AvgSpeed) maps of the
training set top and the test set bottom from the example dataset in a. 2D correlations (r) between
these maps to the error maps were computed to evaluate potential contributing factors for decoded
errors. Here, where error pointed to was mostly correlated with the AvgSpeed map of the training
set (r = 0.61, right, top), and where error occurred was mostly correlated with the AvgSpeed map
of the test set (r = 0.81, right, bottom). (c) Across all datasets, where error pointed to was more
correlated with the AvgSpeed map of the training set (r = 0.56 ± 0.02, green; Wilcoxon signed-rank
test: stats = 134, p < 0.05) relative to other factors, but overall the correlations were mild. On the
other hand, where error occurred was mostly correlated with the AvgSpeed map of the test set (r =
0.78 ± 0.01, blue; Wilcoxon signed-rank test: stats = 1, p < 1e− 5)

33

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.15.440055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440055


Behavioral clusters revealed by end-to-end decoding from microendoscopic imaging A PREPRINT

5 Materials and Methods

5.1 Data collection

A total of 8 male mice of C57/B6 background were used in the experiments. All procedures were
approved by the MIT Committee on Animal Care and followed the guidelines established by the
National Institutes of Health for the care and use of laboratory animals.

Virus-mediated gene delivery

Animals were first anesthetized with 5% Isoflurane in oxygen. Throughout the procedure, the
animals were anesthetized at a stereotaxic surgical frame (Kopf) with continuous 1.5% to 2%
Isoflurane in oxygen. A burr hole is made at -1.5mm medial-lateral and 2.1mm rostral-caudal to the
Bregma landmark. Using a motorized injector at a speed of 0.05 µL/min, 0.5µL of pGP-AAV1-
syn-jGCaMP7f-WPRE (titer: 1.9 x 1012 gc/ml) was injected at 1.5mm under the skull surface in
the burr hole. Afterwards, the scalp was sutured and analgesic was administered (Buprenex, 0.05
mg/kg) prior to the animals’ recovery.

Implant protocol

After virus injection, GRIN lens implant and baseplate implant were performed separately. During
implant, the animals were anesthetized following the same protocol.

GRIN lens The skull surface was roughened with etchant gel (C&B Metabond). A craniotomy 2
mm to 2.2 mm in diameter was made on the skull, with the burr hole from virus injection procedure
in the center. Cortical tissue was aspirated out, exposing the rostral-caudal running striation pattern
right above CA1. A GRIN lens (1.8 mm diameter, 0.25 pitch, 670 nm, Edmund) was perpendicularly
placed on top of CA1 and fixed to the skull with adhesive (Loctite 454). Afterwards, the exposed
skull and the surrounding of the GRIN lens were covered with transparent dental cement (C&B
Metabond), followed by black orthodontic acrylic resin to block out ambient light. The top of the
GRIN lens was covered with silicone adhesive (Kwik-Sil).

Baseplate With a baseplate attached to a microendoscope (UCLA miniscope), the optimal field
of view (FOV) was searched through imaging and manually adjusting the angle of the baseplate
attachment. After the optimal field of view was reached, the baseplate was first fixed in place with
adhesive (Loctite 454), and then affixed to the skull with dental cement (M&B metabond).

Imaging setup

One-photon calcium imaging was performed through a head-mounted miniscope. The imaging
power was between 1 mW and 10 mW approximately, adjusted for each animal. The excitation
LED is filtered by a 470/40 band-pass filter. The emitted photons were collected by a CMOS sensor,
filtered by a 525/50 band-pass filter, sampled at 30 Hz. The imaging FOV was 480 by 752 pixels,
and the optimal plane was reached during the baseplate implant.

5.2 Behavioral Tasks

Once the animals were fully recovered from previous procedures (approximately 3 days after the
baseplate implant), in vivo recordings were performed on awake animals.

34

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.15.440055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440055


Behavioral clusters revealed by end-to-end decoding from microendoscopic imaging A PREPRINT

Miniscope acclimation in the home cage The animals were attached to the imaging cables,
allowing them to acclimate to the miniscope and tethering for a few sessions in the home cage, with
each session lasting for 30 minutes. This procedure repeated for about 3 days, until the animals
were comfortable with the imaging setup and exhibit normal behavior.

Maze exploration experiments After miniscope acclimation sessions, the animals underwent
maze exploration experiments in which maze enclosures are made of corrugated plastic sheets
(Home Depot). The shapes of these mazes can be categorized as T-shape, H-shape, or �-shape.
Each maze has a size of about 1 m by 1 m. For each maze, the animals underwent multiple sessions,
with each session lasting for about 30 minutes. In our study, we excluded the first few sessions
when the maze configuration was still novel to the animals, and only used data in later sessions
when the animals were already familiar with the environment.

5.3 Dataset preparation

Behavioral data

To track the animals’ behavior, we used a webcam sampled at 60 Hz and synchronized with imaging
using a package (https://github.com/jonnew/Bonsai.Miniscope) for Bonsai (Lopes et al., 2015). Red
tape on the head-mounted miniscope was tracked as a proxy for the animal’s locations, reported as
position coordinates (x, y).

Temporal down-sampling and smoothing Raw x, y coordinates were downsampled to 10 Hz,
and smoothed with a Savitzky-Golay finite impulse response smoothing filter of quadratic order.
The speed v was further estimated from these smoothed x, y coordinates.

Coordinate orthogonalization Linear dependencies between different dimensions of the output
labels were minimized by orthogonalizing the smoothed x, y coordinates. For the T-maze, x, y
coordinates were centered at the intersection of two perpendicular arms. For the H-maze and the
�-maze, x, y coordinates were centered in the middle of the maze. After centering, a rigid rotation
matrix (R) was estimated through singular value decomposition (SVD) and applied to orthogonalize
the x, y coordinates.

Label scaling All behavioral labels (x, y, v) were scaled to the range [-1, 1].

Calcium Imaging

Movement artifact removal To correct non-uniform movement artifacts caused by brain motion,
NoRMCorre, a fast non-rigid registration method (Pnevmatikakis and Giovannucci, 2017) was
applied. This algorithm operates by splitting the FOV into overlapping spatial patches, which are
further registered at a subpixel resolution for rigid translation against a template. Afterwards, a
smoothed motion field for each frame was created by up-sampling the estimated alignments.

Spatial down-sampling and cropping Images were down-sampled in each dimension by a factor
of 2, leading to 240 by 376 pixels. The FOV was cropped to 224 by 224 pixels, by removing
surrounding regions that did not contain calcium signals.

35

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.15.440055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440055


Behavioral clusters revealed by end-to-end decoding from microendoscopic imaging A PREPRINT

Source decomposition and denoising This step was only applied to generate data for the baseline
decoder (i.e., it was skipped for our end-to-end decoder). To separate different sources such as
single neurons and out-of-focus fluorescence from neuropil, the CNMFe algorithm (Zhou et al.,
2018) was applied. Hyperparameters such as the estimated diameter of a neuron were optimized
for each animal’s dataset. The average fluorescence traces C from regions of interest (ROIs) were
extracted and denoised through spike deconvolution. ROIs with weak (peak C lower than 100%
dF/F) or sporadic activity (less than 3 calcium transients) were eliminated. The remaining ROIs
were assumed to be putative neurons. Temporal activities C were used as input for the baseline
decoder.

Temporal down-sampling Calcium images were down-sampled to 10 Hz.

Pixel scaling Raw image pixel amplitudes (0-255) were scaled to the range [-1, 1].

Experiment on residual information

Raw This set consisted original images (Y ) after movement artifact removal, FOV cropping, and
pixel scaling.

Clean A video matrix was obtained after the CNMFe algorithm by multiplying the spatial footprint
matrixA with the temporal dynamics matrix C. Image frames from this video matrix only contained
putative neurons, and thus were called Clean images.

Residual Residual images were obtained by subtracting the Clean images from the Raw images,
i.e. Y − AC. Theoretically, behavioral-relevant information in these images came from the
background residuals, as any spike-triggered temporal fluctuations in the putative neurons were
extracted to the temporal dynamics matrix C. Ideally, Residual images lack information from
putative neurons. However, the CNMFe algorithm updates parameters through alternating iterations
such that spike-triggered temporal fluctuations might not be fully captured in the Clean images.
To further rule out spike-triggered information left in the Residual images, locations at putative
neurons were occluded, through either Hollow ROI or Hollow A methods.

Hollow ROI The Hollow ROI images were obtained after occluding the putative cells after setting
a local adaptive threshold. The threshold was computed for each pixel according to the image
characteristics within a moving circular window. The local threshold was computed using the
Niblack method:

ThrNiblack = µ+ kσ − c

where k = 0.2, c = 0, µ is the mean pixel value within the window, and σ is the standard deviation of
the pixel values within the window.

Hollow A The Hollow A images were obtained after occluding the entire spatial footprint matrix
A from the Residual images. This further removed any local signals associated with each cell.

Scramble images Each pixel in each image was randomly re-positioned per row. The pixel
distributions remained identical, but the spatial patterns were destroyed.

36

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.15.440055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440055


Behavioral clusters revealed by end-to-end decoding from microendoscopic imaging A PREPRINT

Random images Image frames were synthesized by sampling each pixel from a uniform distri-
bution that had the same minimum and maximum as the original image frames. The synthesized
images were random noise. Decoders trained on random images were used as the chance level.

5.4 Decoder Modeling

Dataset evaluation

Train/val/test dataset split Dataset was separated into the ‘RUN’ and the ‘STOP’ periods based
on running speed with a separation threshold at 5 cm/s. For most of our model training and
evaluation, the ‘STOP’ period was excluded from analysis unless otherwise indicated. Each
animal’s dataset was segmented into 5 consecutive blocks. Following a 80-20 split rule, one of
these blocks was selected to be the test set whereas the rest were used as the training set. During the
model development phase, the training set was segmented into 5 consecutive blocks, with one of
them randomly selected to be the validation set.

Similarity metrics for joint distribution To quantify similarity between joint distribution for
paired variables ((x, y), (x, v), (y, v)) between the training set and the test set, structural similarity
index measure (SSIM) (Wang et al., 2004) was performed with scikit-image library. The joint
distribution of the training set was viewed as an image (Imtrain), and so was the joint distribution of
the test set (Imtest). Each image was convolved with a normalized Gaussian kernel of width σ = 1.5,
resulting in multiple patches. SSIM was calculated based on various patches from two images.

SSIM(Imtrain, Imtest) =
(2µtrainµtest + c1) · (2σtrain, test + c2)

(µ2
train + µ2

test + c1) · (µ2
train + µ2

test + c2)

where c1 and c2 are constant, µ and σ are statistical attributes of all these patches. If SSIM = 1,
two images of joint distributions have the same textures. A lower SSIM suggests more differences
between two sets.

Similarity metrics for average occupancy map and average speed map The occupancy map,
i.e., x-y Density map, is a 2D hexagonal binning plot quantifying normalized occupancy on the
maze. Average speed map, i.e., AvgSpeed map, is a 2D hexagonal binning plot quantifying average
speed on the maze. 25 bins were used in x-direction and y-direction. To quantify similarity of
the occupancy map and the average speed map between the training set and the test set, the 2D
correlation coefficient (r) was used. If r = 1, it suggests that the training set and the test set have the
same maps. A lower r indicates larger differences between two sets.

Baseline Decoder

For the baseline decoder, we used a feedforward neural network with a regression head, and
identified ROIs as putative neurons from the microendoscopic images, and built a decoder based on
temporal activities from these ROIs. Average fluorescence traces from N identified ROIs formed a
N-dimensional input, and the decoder output the animal’s positions and running speed. Given that
decoding performance depended on input representations, we prepared different representations as
the following.

Smoothed traces of ROIs after background removal (FFNN(ROI)) We firfst obtained an
average intensity projection from the image stacks, and then blurred the projection image using

37

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.15.440055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440055


Behavioral clusters revealed by end-to-end decoding from microendoscopic imaging A PREPRINT

a moving 2D Gaussian filter with size of about 25% of the FOV, using ImageJ (Schindelin et al.,
2012). The blurred projection was considered as the global background and is subtracted from
all the raw images. Subsequently, an anisotropic diffusion operation (Perona and Malik, 1990)
was applied to further denoise the images, followed by a morphological opening operation using
a circular structure element with size similar to a neuron in the FOV. Afterwards, we obtained a
maximum intensity projection from the denoised images whose backgrounds are removed, and
annotated ROIs using the ImageJ Cell Magic Wand tool. The average fluorescence trace from each
ROI is smoothed with a Savitzky-Golay smoothing filter.

Globally normalized denoised traces from CNMFe (FFNN(normG)) Another input represen-
tation was created by denoised temporal traces through applying the CNMFe algorithm (Zhou et al.,
2018). The average fluorescence trace C from each ROI was normalized by the global maximum
across all the traces. With this procedure, the correlations between the neurons were informative
and thus relative magnitudes between them were preserved.

End-to-end decoder with image inputs

Regression task The end-to-end decoder took each image frame as an input and predicted
the animal’s behavioral attributes (positions and/or speed) at the corresponding time point. The
decoding problem could be formulated as a multi-class classification task by binning the behavioral
variables, but we chose to formulate the problem as a regression task for the following reasons. First,
the animals were freely exploring the maze, so the maze occupancy and running speed distribution
were highly imbalanced. However, the data size was not large enough for undersampling data to
create a uniform distribution, yet oversampling minority classes using techniques like SMOTE
(Chawla et al., 2002) introduced extra bias. In addition, the common loss function in a classification
task could not keep the ordinal relationship between positions and speeds, i.e., prediction error
between neighboring positions and error between distant positions were same using cross entropy.

The output dimensions (or number of attributes) depended on the decoding strategy (simul-
taneous or separate).

Simultaneous decoding For simultaneous decoding strategy, convolutions and feed forward
layers were shared to extract features for position and speed encoding, and different weights were
used only in the final layer to predict position and speed. In this case, there are 3 output labels
(x, y, v) in the regression head.

Separate decoding For separate decoding strategy, there were two sets of convolutions and feed
forward layers separately trained to predict position and speed. In this case, one decoder has 1
output label (v), and the other has 2 output labels (x, y).

Vanilla convolutional neural network (ConvNet) The model took a grayscale (single channel)
image as input and used convolutional layers connected to a regression head to decode continuous
behaviour. A kernel size of 3 was used for all the 2D convolutions. The number of filters was
doubled for each subsequent layer and saturated at 512. For downsampling, we used a stride of 2
to replace pooling layers for a better computational efficiency. After convolutions, features were
flattened and fed into a series of dense layers. The number of units was halved for each subsequent
dense layer. To encourage network sparsity and accelerate learning without a risk of introducing

38

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.15.440055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440055


Behavioral clusters revealed by end-to-end decoding from microendoscopic imaging A PREPRINT

dying units, Leaky-Relu was used as the activation function except for the final layer. The final
layer was applied with a Tanh activation function to ensure the output values match the range of
target labels.

The number of convolutional layers, the number of fully connected layers, and the number of units
in the first fully connected layer are hyperparameters. Evaluated on the validation set, the selected
model used in this study had 8 convolutional layers and 5 fully connected layers (with number
of units = [256, 64, 32, 16, 3] respectively). In our task, adding batch normalization made the
prediction performance worse, so we did not use batch normalization in our decoder.

Residual neural network with 50 layers (ResNet-50) The ResNet model (He et al., 2016) was
originally designed to take a RGB image input for object recognition tasks, so the grayscale images
were converted into RGB images, with the per-pixel mean subtracted. We kept the feature extraction
architecture that was composed of convolutional blocks and identity blocks, and replaced the
classification architecture with the dense layers whose activation functions were Leaky-Relu (the
first few layers) and Tanh (the last layer).

For transfer learning, the parameters in feature extraction architecture were pre-trained by ImageNet
and frozen during the model training, whereas the parameters in the dense layers are updated
throughout training. Afterwards, the last few layers of the feature extraction architecture were
unfrozen and jointly trained with the new dense layers. For learning from scratch, all the parameters
in the model were initialized with Xavier initialization (Glorot and Bengio, 2010).

Efficient convolutional network for mobile applications (MobileNet) MobileNet (Howard
et al., 2017) was developed to achieve a lightweight architecture by replacing a convolutional layer
with a depthwise convolutional layer, followed by a pointwise convolutional layer that combined
these filtered values to create new features. It used a stride of 2 to reduce the spatial dimensions
instead of pooling layers. Same preprocessing steps used in the ResNet model were applied to this
decoder. Similarly, both the transfer learning and learning from scratch procedures were performed
in this study.

Feedforward neural network (FFNN) We built a feedforward neural network to learn features
directly through dense connections. The model first applied a 2D max-pooling on each grayscale
image for spatial downsampling, and then flattened these features for a series of dense layers. The
number of units, activation functions, and procedure for hyperparameter searching were the same as
in the vanilla ConvNet.

End-to-end decoder with video inputs

We also created an end-to-end decoder that took a short video with a window size of N to predict
behavior at the corresponding time centroids. Two architectures were developed, depending on
whether convolutional weights were shared across time.

Convolutions independent of time The input dimension expanded from a single channel to
multiple channels, each corresponding to an image frame. The decoder architecture kept the original
vanilla convolutional neural network with 2D kernels. Features from different frames were weighted
and integrated after the first layer. There was no constraint on convolutional kernels.

39

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.15.440055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440055


Behavioral clusters revealed by end-to-end decoding from microendoscopic imaging A PREPRINT

Convolutions shared across time The input dimension expanded with a temporal dimension
for N frames. Each frame went through a block of convolutional layers whose weights were
shared across time, generating a frame-specific feature. These frame-specific features were linearly
weighted by an attention layer, and then integrated into a final feature Fpost before feeding into the
dense layers of the model.

Fpost =
∆t∑

k=−∆t

FT+k ·Wk where
∆t∑

k=−∆t

Wk = 1, N = 2∆t+ 1 (1)

Training procedure

Mini-batch gradient descent was used for training the model. For each mini-batch, a subset of
input images and output labels were randomly sampled from the training set. Each input image had
corresponding normalized output labels (x, y, v). The batch size (i.e., number of samples per step)
was 64 and the order of samples were further shuffled for each epoch. Hyperparameter searching
was achieved by grid search for learning rate, number of the convolutional layers, number of the
dense layers, number of units, and dropout. Adam optimization was used to accelerate learning.
Kernel weights and biases are initialized by Xavier initialization (Glorot and Bengio, 2010), and
updated by backpropagating the L1 loss, i.e., absolute differences between estimated and target
values.

L(y, ŷ) =
1

m

m∑
i=1

(
1

d

d∑
j=1

∣∣yi,j − ŷi,j
∣∣) (2)

where yi is the ground truth, ŷi is the predicted value for sample i, m is the batch size, and d is the
dimension of the model output (d = 3 for simultaneous decoding and d = 1 for separate decoding).

The training was stopped when the number of iteration steps reached 50,000 or when the validation
performance remained unchanged or increased over 5 epochs. The model variables and training
hyperparameters were saved in a checkpoint every 500 iteration steps. The training was performed
on GeForce RTX 2080 Ti using Tensorflow, and parallel computation was utilized for grid search.

Evaluation metrics

After a model was trained, its performance was evaluated on the test set. Given that the model
output normalized variables, the predicted values were transformed back to the original scales in
[cm] and [cm/s]. Afterwards, we calculated the Euclidean distance between each ground truth and
its predicted position, and used the median among these errors as a performance metric for position
decoding. For speed decoding, we calculated the absolute difference between each ground truth
and its predicted value, and used the median error as a performance metric. For an experiment or
a specific model evaluated on several datasets, the distribution of the median decoding error was
described as mean ± s.e.

Chance level calculation The chance level was defined as decoding performance using Random
images (see previous section Experiment on residual information).

5.5 Manifold analysis

To visualize the ensemble representation at each network layer in our decoder, ensembles at different
time points were projected to a low-dimensional subspace.

40

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.15.440055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440055


Behavioral clusters revealed by end-to-end decoding from microendoscopic imaging A PREPRINT

Isomap Isomap is a nonlinear dimensionality reduction algorithm for seeking embeddings that
maintains geodesic distances between all data points. We used scikit-learn (Pedregosa et al., 2011) to
implement this algorithm and extracted the low-dimensional embeddings of each layer. The optimal
number of nearest neighbors (Kopt) was selected by finding the elbow at which the reconstruction
error (ER) curve ceased to decrease significantly with more nearest neighbors.

ER =
∥∥∥K(Dx) −K(Dy)

N

∥∥∥
F

(3)

where N is the number of samples, Dx and Dy follow the same definitions above, and K is the
Isomap kernel.

Manifold similarity metrics

To measure geometric similarity between the manifold and the behavioral topology formed by
position, we calculated the Pearson correlation between pairwise distances in the 2D manifold
coordinates and behavioral coordinates (Low et al., 2018), which was used as a metric to evaluate
learning across different network layers.

5.6 Network saliency map

To better interpret how the encoder network makes the predictions, we used a saliency map to
indicate the pixels whose changes have the most impact on the prediction. Instead of directly
propagating the output gradient to the input (Simonyan et al., 2013), we modified the gradient-
weighted class activation mapping (Grad-CAM) method (Selvaraju et al., 2017) to create a smoother
saliency map.

Grad-CAM is originally designed to backpropagate the gradients of target class score yc to the
last convolutional layer whose feature maps preserve spatial information, and generate a localized
saliency map Lc for class c, by a weighted combination of activation maps Ak followed by ReLU
operation, as in Eq (4).

Lc = ReLU

(∑
k

αc
kA

k

)
where αc

k =
1

Z

∑
i

∑
j

∂yc

∂Ak
i,j

(4)

We modified Grad-CAM because our study used a continuous regression task. We visualized
salience over input that either increased or decreased the output by computing the absolute gradients.
We also adapted this algorithm to visualize saliency maps of different filters in the network model,
by computing gradients from the filter at a specific layer with respect to the closest convolutional
layer whose feature maps had large enough spatial resolution.

5.7 Statistical analysis

Statistical analyses were performed using SciPy (Virtanen et al., 2020). All values were reported as
mean ± s.e. unless otherwise indicated. Wilcoxon signed-rank tests were used when paired samples
were not normally distributed. For cases matching the normality requirement, Student’s t-test was
used. Bonferroni correction was used for multiple comparisons. Pearson correlation was used to
obtain correlations.

41

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.15.440055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440055

