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Abstract 

Background: Allogeneic hematopoietic stem cell transplants (allo-HSCTs) dramatically reduce 

HIV reservoirs in antiretroviral therapy (ART) suppressed individuals. However, the 

mechanism(s) responsible for these post-transplant viral reservoir declines are not fully 

understood but may include pre-transplant conditioning regimens, ART-mediated protection of 

donor cells, and graft-versus-host (GvH) responses. Therefore, we modeled allo-HSCT in ART-

suppressed simian-human immunodeficiency virus (SHIV)-infected Mauritian cynomolgus 

macaques (MCMs) to illuminate factors contributing to transplant-induced viral reservoir decay. 

Results:  We infected four MCMs with CCR5-tropic SHIV162P3 and started ART 6-16 weeks 

post-infection (p.i.) to establish robust viral reservoirs. We maintained the MCMs on continuous 

ART during myeloablative conditioning with total body irradiation (TBI) and while transplanting 

allogeneic MHC-matched α/β T cell-depleted bone marrow cells. Post-transplant, we 

prophylactically treated the MCMs with cyclophosphamide and tacrolimus to prevent GvH 

disease (GvHD). The transplants produced ~85% whole blood donor chimerism without causing 

high-grade GvHD. Consequently, three MCMs had undetectable SHIV DNA in their peripheral 

blood mononuclear cells post-transplant. However, SHIV-harboring cells persisted in various 

tissues. We detected viral DNA in lymph node biopsies and terminal analyses of tissues 

between 38 and 62 days post-transplant. Further, we removed ART from one MCM at 63 days 

post-transplant, resulting in viral rebound within seven days and viral loads nearing 1x108 SHIV 

RNA copies/ml of plasma after treatment interruption.  

Conclusions: Our results indicate that myeloablative conditioning and maintaining ART through 

the peri-transplant period alone are insufficient for eradicating latent viral reservoirs early after 

allo-HSCTs. Furthermore, our findings suggest that extended ART and GvH responses may be 

necessary to substantially deplete viral reservoirs after allo-HSCTs.   
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Background 

 Allogeneic hematopoietic stem cell transplants (allo-HSCTs) are essential curative 

therapies for high-risk hematologic malignancies [1–3], replacing recipient cells of hematopoietic 

origin with donor cells. In persons with HIV, allo-HSCTs also dramatically reduce viral 

reservoirs, enabling several transplant recipients to prevent or delay viral rebound after stopping 

antiretroviral therapy (ART) [4–10]. While allo-HSCTs are potent cellular immunotherapies, they 

are not scalable nor relevant to most people living with HIV without underlying hematologic 

cancers. Therefore, understanding the mechanism(s) of allo-HSCT-mediated reservoir decay 

can aid in designing safer and more efficacious treatment regimens. To this end, allo-HSCT 

components postulated to reduce viral reservoirs include pre-transplant conditioning regimens, 

protecting donor CD4+ T cells from infection with ART, graft-versus-host (GvH) responses, and 

donor HSCs lacking functional C-C chemokine receptor type 5 (CCR5) [11, 12].  

 To enter cells, HIV must sequentially bind to CD4 and a cellular coreceptor, primarily 

chemokine receptors CCR5 and CXCR4. These molecular interactions are disrupted in 

individuals homozygous for the CCR5∆32 gene variant (∆32/∆32), which prevents functional 

CCR5 from being expressed on cell surfaces, making ∆32/∆32 cells resistant to infection with 

CCR5-tropic HIV strains. The protective properties of ∆32/∆32 cells were employed in the 

hematologic cancer treatments of two men with HIV. In these men, transplanting ∆32/∆32 HSCs 

induced cancer remission and the rapid depletion of HIV reservoirs, allowing the "Berlin" and 

"London" patients to stop ART for at least four years without viral rebound [5, 6, 8, 13]. 

Undoubtedly, the absence of CCR5 on donor cells prevented virus replication and the 

reestablishment of viral reservoirs post-transplant, supporting long-term HIV remission. 

However, additional transplant-related factors must have cleared pre-existing viral reservoirs. 

 Transplants with ∆32 heterozygous or CCR5 wild-type donors in ART-suppressed 

recipients provide further insights into eliminating latent HIV [4, 7, 9, 14, 15]. Notably, three 

CCR5 wild-type HSC recipients substantially reduced their viral reservoirs post-transplant and 
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delayed HIV rebound up to 9 months after analytical treatment interruption (ATI) [4, 15]. 

Mathematical modeling suggests that only hundreds to thousands of latently infected cells 

remained in these individuals at ART withdrawal [16]. Assuredly, maintaining ART during the 

peri-transplant period was an essential component of the allo-HSCT regimens, limiting HIV's 

spread from recipient cells to vulnerable donor cells [17]. Importantly, these allo-HSCTs also 

indicate that factors outside of donor genetics contribute to depleting viral reservoirs.  

 An attractive explanation for allo-HSCT-induced reservoir decay is the pre-transplant 

conditioning regimens used to reduce malignant cell burdens, create space for HSC 

engraftment, and ablate immune cells mediating graft rejections [11, 18]. However, studies in 

humans and nonhuman primates (NHPs) indicate that pre-transplant conditioning regimens only 

transiently reduce viral reservoirs [19–24], which are refilled by the homeostatic or antigen-

driven proliferation of latently infected cells [17, 22]. Thus, cytoreductive treatments alone are 

insufficient for eradicating HIV reservoirs, even when ART is maintained.  

 A more likely mechanism for allo-HSCT-mediated viral reservoir decay is the beneficial 

effects of GvH responses [7, 15, 25]. After allo-HSCTs, major histocompatibility complex (MHC)-

matched donor T cells recognize minor alloantigens expressed by host leukocytes, eliminating 

malignant and HIV-infected cells simultaneously, thereby mediating graft-versus-tumor and 

graft-versus-viral reservoir (GvVR) effects, respectively [26, 27]. But these GvH interactions can 

also result in life-threatening graft-versus-host disease (GvHD), a condition where donor cells 

attack non-hematopoietic origin cells or tissues. Disentangling allo-HSCT's GvVR effects from 

GvHD may improve the safety and efficacy of cellular therapies targeting viral reservoirs. 

 In humans, variability in treatment regimens makes it challenging to investigate allo-

HSCTs effects on HIV reservoirs. However, allo-HSCT treatment conditions can be 

standardized in NHP models of HIV infection. To this end, cynomolgus macaques (Macaca 

fascicularis) from the island of Mauritius are well-suited to model allo-HSCTs in people with HIV. 

Mauritian cynomolgus macaques (MCM) are descended from a small founder population [28], 
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resulting in limited genetic diversity, even at polymorphic loci. As a result, MCMs have only 

seven MHC haplotypes (termed M1-M7), facilitating the assembly of MHC-matched transplant 

pairs [29–31]. Moreover, SIV and simian-human immunodeficiency viruses (SHIVs) infections in 

MCMs recapitulate HIV replication and viral reservoir dynamics [30–33], providing a platform for 

studying allo-HSCTs impact on viral reservoirs.  

 In this study, we modeled CCR5 wild-type allo-HSCTs in four SHIV-infected and ART-

suppressed MCMs using our recently established TCRα/β-depleted MHC-matched bone 

marrow (BM) transplant model, which supports donor chimerism without GvHD [34]. As 

anticipated, the myeloablative conditioning regimen substantially depleted circulating 

leukocytes. As a result, we detected approximately 85% whole blood donor chimerism, with 

three MCMs having undetectable SHIV DNA in their peripheral blood mononuclear cells 

(PBMCs) post-transplant. However, SHIV-harboring cells persisted in various tissues, indicating 

that ART-suppression, allo-HSCs, and cytoreductive conditioning alone do not eliminate virally 

infected cells early after allo-HSCTs. Our findings suggest that extended ART treatments and 

GvH responses may be needed to eradicate viral reservoirs after allo-HSCTs.   

  

Results 

SHIV infection and ART suppression 

 We inoculated four MCMs (MCMs A-D) intravenously with SHIV162P3, a chimeric virus 

with a CCR5-tropic HIV envelope [35]. As anticipated, virus replication peaked by three weeks 

post-infection (p.i.) and declined thereafter (Fig. 1). To establish robust viral reservoirs, we 

allowed the SHIV infections to progress untreated for between 6-16 weeks p.i. before starting 

the MCMs on an ART regimen consisting of tenofovir, emtricitabine, and raltegravir. The ART 

regimen suppressed plasma viremia to undetectable levels within three weeks of initiation (<100 

viral RNA (vRNA) copy/eq per ml; Fig. 1). We maintained ART for the duration of the study, 
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except where noted below, keeping plasma viremia undetectable, save for single viral blips in 

MCMs A and D. 

 

Allo-HSCT in SHIV-infected, ART-suppressed MCM 

 Our goal was to model allo-HSCTs with CCR5 wild-type cells in ART-suppressed people 

with HIV while minimizing the likelihood of severe GvHD. We collected BM aspirates from sex 

and MHC-matched MCM (Table 1) and depleted cells expressing α/β T-cell receptors (TCRs), 

removing potentially alloreactive T cells [34]. Approximately one month after starting ART, we 

delivered myeloablative doses of total body irradiation (TBI; two consecutive days of 5 Gray 

(Gy), 10 Gy total) and infused the MCMs with α/β T cell-depleted HSCs (0.6-1.0x107/Kg; Table 

1). Post-transplant, we prophylactically treated the MCMs with cyclophosphamide and 

tacrolimus to prevent GvHD (Supplementary Table S1).  

 As expected, the myeloablative conditioning regimen rapidly depleted peripheral white 

blood cells (WBCs; Fig. 2a). However, the MCMs also developed chronic thrombocytopenia 

post-transplant (Fig. 2b), which we treated with irradiated whole blood transfusions from SHIV-

negative MCMs. Nevertheless, neutrophils reappeared in the peripheral blood of the MCMs by 

21 days post-transplant, with absolute counts in MCM-D spiking above pre-transplant levels 

before rapidly declining (Fig. 2c). The remaining three MCMs had persistent neutropenia after 

their initial bursts of circulating neutrophils. Likewise, monocytes reemerged in the peripheral 

blood by 21 days post-transplant, with MCM-D again having the most robust recovery (Fig. 2d). 

The absolute monocyte counts were more variable than the neutrophil counts post-transplant, 

gradually declining in MCMs A and C, while rapidly increasing in MCMs B and D before their 

deaths. 

 Lymphocytes recovered slowly after the allo-HSCTs (Fig. 2e). In MCM-D, lymphocytes 

reappeared in the peripheral blood approximately three weeks post-transplant and returned to 

near pre-transplant levels by day 38 post-transplant. Likewise, MCM-A exhibited a slow but 
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steady increase in peripheral lymphocytes, reaching ~3,500 cells/µl by day 71 post-transplant. 

In contrast, MCMs B and C had stunted lymphocyte recoveries, with absolute lymphocyte 

counts failing to reach 1,000 cells/µl of blood by 5- and 7-weeks post-transplant, respectively. 

Similarly, CD4+ T cells failed to fully recover in the MCMs blood post-transplant (Fig. 2f). Finally, 

circulating CD8+ T cells increased in MCMs A, B, and D approximately one-month post-

transplant (Fig. 2g), fluctuating in MCM-A until its death. Meanwhile, CD8+ T cells poorly 

recovered in MCM-C, only reaching 86 CD8+ T cells/µl blood at 42 days post-transplant.  

 We measured post-transplant donor engraftment by deep sequencing single-nucleotide 

polymorphisms (SNPs) unique to the donor and recipient MCMs. Despite low absolute 

leukocyte counts, the allo-HSCT recipients exhibited greater than 85% whole blood donor 

chimerism by three weeks post-transplant, followed by modest declines to approximately 80% 

donor chimerism (Fig. 3a). Notably, MCM-A, the longest surviving transplant recipient, 

maintained 70-90% donor chimerism for two months until euthanasia. Additionally, we 

measured donor chimerism of circulating myeloid (monocytes) and lymphoid (B and T cells) 

lineages in MCMs A, C, and D at necropsy (cells from MCM-B were unavailable for analysis). 

The frequencies of donor-derived myeloid and lymphoid cells in MCMs C and D ranged 

between 65-93% of total cells (Fig. 3b), consistent with the whole blood chimerism results (Fig. 

3a). In MCM-A, 78% of the B and T cells were of donor origin (Fig. 3b), similar to the 83% of 

donor cells detected in the whole blood. However, only 45% of the monocytes were of donor 

origin. Collectively, these results indicate that donor leukocytes replaced recipient cells early 

after transplant, with notable donor lymphocyte engraftment despite using α/β TCR-depleted 

grafts. 

 

Pre- and post-ART viral reservoirs 

 We designed our GvHD prophylaxis regimen of cyclophosphamide and tacrolimus to 

minimize high-grade GvHD. As anticipated, GvHD was limited post-transplant with only MCM-A 
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exhibiting transient skin lesions (white flaking/dry skin) that resolved with minimal intervention. 

Additionally, MCMs C and D had diarrhea, which may have been a TBI side effect. Furthermore, 

the MCMs had no significant abnormalities in their liver functions or elevated total bilirubin post-

transplant, indicating an absence of hepatic GvHD. 

 We measured cell-associated vDNA in PBMCs and inguinal lymph nodes to determine 

the effect of ART, myeloablative conditioning, and allo-HSCTs on viral reservoirs in the absence 

of severe GvHD (Fig. 4). Before starting ART, we detected more SHIV-harboring cells in the 

inguinal lymph nodes (range 743-2,680 copy Eq/1x10^6 cells) than the PBMC (range 255-512 

copy Eq/1x10^6 cells), consistent with lymph nodes being a primary viral reservoir [36, 37]. 

Additionally, the lymph nodes of MCMs A and B contained more SHIV-infected cells than MCM-

D, potentially due to these MCMs starting ART later in infection (14-16 weeks versus 6 weeks). 

Lastly, the number of SHIV-infected cells declined in the blood of all the MCMs between 36-64 

days post-transplant, with MCMs A, B, and D having undetectable vDNA in their PBMCs (Fig. 

4a).  

 Nevertheless, virally infected cells persisted in other tissues. MCMs-B, -C, and -D 

remained on ART until being necropsied, enabling a more thorough examination of post-

transplant viral reservoirs. In MCM-C, we detected more vDNA in the inguinal lymph nodes at 

necropsy than in pre-transplant samples (1,151 vs. 4,807 vDNA copy Eq/million cells; Fig. 4b). 

This animal developed viral-induced colitis with ulcers post-transplant, potentially expanding 

latently infected cells or promoting localized virus replication, spreading SHIV-harboring cells 

into secondary lymphoid tissues. Nevertheless, we found vDNA outside of the secondary 

lymphoid tissues in the three MCMs, including the bone marrow, lung, and jejunum (Fig. 4c). 

Together these results demonstrate that viral reservoirs persist in various tissues early after 

allo-HSCTs without GvHD.  

 

SHIV rapidly rebounds after removing ART  
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 ATIs are used in HIV cure studies to evaluate treatment efficacy [38, 39]. Therefore, we 

modeled ATI in MCM-A, an animal with a single viral blip but otherwise suppressed plasma 

viremia while on ART. One day before stopping ART, day 62 post-transplant, we collected blood 

and axillary lymph nodes to measure cell-associated SHIV. In these samples, we found no 

vDNA in the PBMCs but detected 271 vDNA copies/million cells in the lymph nodes, a slight 

decrease from pre-transplant inguinal lymph nodes (359 vDNA copies/million cells; Fig. 4b). 

Nevertheless, SHIV rebounded rapidly after removing ART (Fig. 1). Plasma viremia was 1x107 

vRNA copy eq/ml seven days after stopping treatment, roughly equivalent to peak acute 

viremia, and spiked to nearly 1x108 vRNA copy eq/ml plasma at 10 days post-ART. These 

results show that latent reservoirs can reactivate shortly after treatment interruption and initiate 

viral rebound early after allo-HSCTs. 

 

Discussion 

 Allo-HSCT-associated HIV reservoir decay likely results from parallel processes 

protecting donor cells from infection and eliminating pre-existing latently infected cells [10, 11]. 

Here, we employed the clinically relevant SHIV/MCM model to determine the effect of 

continuous ART and allo-HSCTs on viral reservoirs in the absence of high-grade GvHD. We 

recently reported that transplanting MCMs with MHC-matched TCRα/β+-depleted HSCs and 

prophylactically treating them with cyclophosphamide and tacrolimus prevents GvHD post-

transplant [34]. Employing this regimen, only one SHIV-infected MCM had transient skin lesions 

post-transplant. These results contrast with previous NHP allo-HSCT studies where T-cell 

replete HSCs quickly induced GvHD in ART-suppressed SHIV-infected rhesus macaques [40] 

and uninfected MCMs [41].  

 Although we prevented GvHD, removing alloreactive TCRα/β+ T cells from the bone 

marrow grafts may have inhibited viral reservoir clearance. Still, our results agree with a 

previous study transplanting MHC-haploidentical HSCs into ART-suppressed SHIV-infected 
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rhesus macaques that developed GvHD post-transplant [49]. Both studies observed reduced 

SHIV DNA levels in the blood and lymph nodes post-transplant, with SHIV reservoirs persisting 

in other tissues. Further, post-transplant follow-up was short in both studies, supporting the 

need for extended times on ART post-transplant to clear pre-existing latently infected cells. 

 Supplementing allo-HSCTs with cellular therapies may improve viral reservoir clearance 

[42, 43]. Donor lymphocyte infusions (DLIs) can drive relapsing hematologic tumors into 

remission [44]. Conceivably, incorporating DLIs into allo-HSCT treatment plans could similarly 

augment GvVR responses [25]. However, since DLIs involve transferring polyclonal T cells, they 

also carry a significant risk of GvHD [45]. Therefore, targeted cellular immunotherapies 

maximizing GvVR effects while minimizing GvHD side effects are preferred. For instance, 

repurposing cancer adoptive cell therapies may boost GvVR activity [46–48]. HIV-specific 

chimeric antigen receptor (CAR) T- and NK-cell therapies are promising HIV cure strategies [49] 

despite early iterations having limited impact on HIV reservoirs [50–53]. Alternatively, focusing T 

cells on minor histocompatibility antigens (mHAgs) exclusively expressed by host leukocytes 

may promote GvVR effects without causing GvHD [54]. We recently identified a mHAg in 

APOBEC3C that is expressed preferentially by MCM immune cells [55]. Hence, this epitope 

may serve as a model antigen for testing mHAg-targeted cellular immunotherapies in NHPs and 

examining their capacity to eradicate viral reservoirs. 

 In this study, we used the pathogenic SIV-HIV chimera SHIV162P3 to model HIV 

infections. This recombinant virus contains the env gene from the clade B isolate HIV-1 SF162 

inserted into the SIVmac239 genomic backbone [56]. Importantly, SHIV162P3 exclusively uses 

CCR5 as a coreceptor, similar to most transmitted HIV-1 strains [35, 57]. This coreceptor usage 

contrasts with common SIV strains, which can use alternate chemokine receptors and G-protein 

coupled receptors for cell entry [58, 59]. However, SHIV162P3 replication is less robust than 

most SIV strains, resulting in lower chronic phase viral loads [60, 61]. Indeed, MCM-A and -B 

spontaneously suppressed viremia to approximately 103 vRNA copies/ml plasma by four months 
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post-infection. Nevertheless, SHIV162P3 established pre-transplant viral reservoirs in our 

MCMs consistent with previous SHIV/ SIV studies [36, 40, 62, 63]. 

 Our study has several limitations. First, its small size and lack of a control group 

transplanted with TCR α/β-replete HSCs make it difficult to draw firm conclusions from the 

results. Second, ART was started 3-6 weeks before transplantation. While this provided 

sufficient time to suppress SHIV replication, it does not reflect the prolonged ART typical of HIV-

infected allo-HSCT recipients [4, 5, 8, 14, 15]. Third, we could not determine whether virally 

infected cells were of the donor or recipient origin post-transplant. A study by Colonna et al. 

exploited haploidentical allo-HSCTs in rhesus macaques to sort donor and recipient cells based 

on differential MHC expression, finding that most SHIV-infected cells were from the recipients 

early after transplantation [40]. However, our MHC-matched MCMs lacked unique surface 

markers to distinguish donor and recipient cells, prohibiting similar analyses. Lastly, we 

achieved poor donor cell engraftment, hindering post-transplant analyses and potentially limiting 

SHIV reservoir depletion. Consequently, we could not quantify donor chimerism in tissues or 

measure post-transplant antiviral and GvVR immune responses. The limited lymphocyte 

recovery also hampered our ability to longitudinally measure SHIV-infected cells post-transplant. 

Therefore, less toxic pre-transplant conditioning regimens, higher HSC doses, or T-cell replete 

HSCs may be necessary for sustaining donor cell engraftment. To this end, Burwitz et al. 

established an allo-HSCT model in MHC-matched MCMs that achieves durable post-transplant 

donor chimerism with reduced-intensity conditioning but has an increased risk of GvHD [41]. 

Thus, allo-HSCTs in NHPs will likely need to balance full donor engraftment with suppressing 

GvHD to dissect the mechanisms of GvVR effects.  

 

Conclusions 

In summary, MHC-matched bone marrow transplants in ART-suppressed SHIV-infected MCMs 

reduced, but did not eliminate, viral reservoirs early after transplantation. However, depleting 
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TCRα/β T cells from the HSCs and post-transplant prophylaxis prevented high-grade GvHD. 

Our results suggest that GvVR responses and sustained ART after allo-HSCTs may be needed 

to significantly deplete viral reservoirs.  

 

Methods 

Ethics statement and animal care 

The staff at the Wisconsin National Primate Research Center (WNPRC) cared for the 

Cynomolgus macaques (Macaca fascicularis) according to the regulations and guidelines of the 

University of Wisconsin Institutional Animal Care and Use Committee, which approved this 

study (protocol g005424) following the recommendations of the Weatherall Report and the 

principles described in the National Research Council's Guide for the Care and Use of 

Laboratory Animals. The MCMs were closely monitored for signs of stress or pain. In 

consultation with the WNPRC veterinarians, the MCMs were euthanized if they developed an 

untreatable opportunistic infection, inappetence, and/or progressive decline in condition. 

 

MHC typing 

MHC genotyping was performed by Genetic Services at WNPRC as previously described [64]. 

Briefly, genomic DNA (gDNA) was isolated from whole blood or PBMCs and used as templates 

in polymerase chain reactions (PCRs) with primers flanking exon 2 of MHC class I (Mafa-A, 

Mafa-B, Mafi-I, and Mafa-E) and class II (Mafa-DRB, Mafa-DQA, Mafa-DQB, Mafa-DPA, and 

Mafa-DPB) loci. The PCR reactions were generated with a Fluidigm Access Array, which 

permitted all reactions to be multiplexed in a single experiment. After cleanup with AMPure 

beads (Beckman Coulter), the amplicons were sequenced on an Illumina MiSeq. The resulting 

sequences were mapped against a custom database of MCM class I and II sequences to assign 

one of seven MCM haplotypes (M1-M7). 
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SHIV infections and viral loads 

We inoculated the MCMs intravenously with 500 median tissue culture infectious doses (TCID50) 

of SHIV162P3 [35]. Plasma viral loads were measured via quantitative real-time polymerase 

chain reactions (qRT-PCRs) as previously described [65, 66]. Briefly, vRNA was isolated from 

plasma using the Maxwell Viral Total Nucleic Acid Purification kit (Promega) on a Maxwell 48 

RSC instrument (Promega). Next, vRNA was reverse transcribed into complementary DNA 

(cDNA), amplified using the TaqMan Fast Virus 1-Step Master Mix qRT-PCR kit (Invitrogen) on 

a LightCycler 480 or LC96 instrument (Roche), and quantified by interpolation onto a standard 

curve of 10-fold serial dilutions of an SIV gag in vitro transcript. The assay limit of detection was 

100 vRNA copies/ml. 

 

Antiretroviral treatment 

We treated the SHIV-infected MCMs with a combination of reverse transcriptase inhibitors 

tenofovir (PMPA) and emtricitabine (FTC) and integrase inhibitor raltegravir (RAL). PMPA and 

FTC were pre-formulated at concentrations of 20 mg/ml and 40 mg/ml in water containing 

sodium hydroxide (NaOH) and administered subcutaneously once daily at 1 ml/kg of body 

weight. 100 mg of RAL was mixed twice daily with food [67]. Gilead Sciences kindly provided 

PMPA and FTC, and Merck kindly provided RAL through material transfer agreements. 

 

Donor bone marrow collection and TCRα/β cell depletion 

We prepared the HSCs as previously described [34]. Briefly, we collected BM from sex and 

MHC-matched MCMs (Table 1) by aspirating up to 5 mL from four sites, 20 mL total, and 

removed red blood cells using ACK lysis buffer (Thermo Fisher Scientific). Next, we washed the 

cells twice with phosphate-buffered saline and incubated them with anti-TCRα/β 

allophycocyanin (APC) antibodies (clone R73, BioLegend) for 20 minutes, followed by 

incubating with anti-APC microbeads (Miltenyi Biotec) for an additional 20 minutes at 4°C. 
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Finally, we passed the stained cells through two LS columns (Miltenyi Biotec) stacked on top of 

one another, collecting both negative and positive cell fractions, and cryopreserving them at 30 

million/mL in serum-free expansion medium (SFEM; Stem Cell Technologies) containing 5% 

fetal bovine serum and 10% dimethylsulfoxide (DMSO) until further use. 

 

Bone marrow transplants and care 

First, we treated the MCMs with daily oral antibiotics trimethoprim (200 mg) and 

sulfamethoxazole (40 mg) to decontaminate the gut, starting seven days pre-transplant (-7) and 

continuing until day -1. Next, we started the MCMs on systemic bacterial prophylaxis by 

administering ceftriaxone (50 mg/kg) on day −2; MCM-D was switched to cefazolin (25 mg/kg 

twice daily) at day -1, and maintaining treatment until absolute neutrophil counts stabilized. On 

day −2, the MCMs received five separate 1 Gy fractions of TBI on two consecutive days (10 Gy 

total), sparing the lungs and eyes as previously described [34]. One day before transplantation, 

we thawed cryopreserved TCRα/β-depleted BM fractions at 37˚C and cultured them overnight in 

SFEM containing 100 ng/mL human stem cell factor (SCF, Peprotech), 100 ng/mL human Fms-

related tyrosine kinase 3 (FLT3) ligand (Peprotech), and 50 ng/mL human thrombopoietin (TPO, 

Peprotech). On the day of transplantation, we resuspended the BM cells in 15 mL of Plasma-

Lyte (Baxter), a nonpyrogenic isotonic solution, supplemented with 2% autologous serum and 5 

U/mL heparin, and infused the cell suspension intravenously. Next, we prophylactically treated 

the MCMs for GvHD using cyclophosphamide (50 mg/kg) on days 4 and 5 post-transplant, 

followed by twice-daily tacrolimus (0.01 mg/kg) starting at day 5, maintaining tacrolimus serum 

levels between 5−15 ng/mL. To prevent fungal infections, we treated the MCMs with once-daily 

fluconazole (5 mg/kg) starting on day 0. Lastly, we treated MCMs C and D with oral 

eltrombopag (1.5 mg/kg) and N-acetyl L-cysteine (50 mg/kg), respectively, to support platelet 

engraftment. See Supplementary Table 1 for treatment details.  

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2022. ; https://doi.org/10.1101/2021.04.16.440168doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.440168
http://creativecommons.org/licenses/by-nc/4.0/


 16 

Measuring peripheral leukocyte populations and GvHD 

Following transplantation, we collected peripheral blood from the MCMs twice per week for the 

first month, followed by bi-weekly blood draws for the next two months and monthly thereafter. 

We used an XS-1000i automated hematology analyzer (Sysmex) to measure platelets and 

leukocyte populations. In addition, GvHD was evaluated as previously described [68].  

We quantified CD4+ and CD8+ T cells by incubating 100 µl of whole blood with anti-CD8-

Brilliant Violet 421 (clone SK1; BioLegend), anti-CD4-APC (clone L200; BD-Pharmingen), and 

anti-CD3-Alexa 700 (clone SP34; BD-Pharmingen) antibodies with Live/Dead Fixable Near-IR 

vital dye (ThermoFisher Scientific) for 30 min at 4˚C. Next, we lysed the red blood cells by 

adding 1 ml of FACS Lysing Solution (BD Biosciences) and incubated the samples for 10 

minutes at room temperature. We washed the cells three times with FACS buffer (phosphate-

buffered saline supplemented with 2% fetal calf serum), fixed with 2% paraformaldehyde, and 

ran the samples on a BD-LSR-II flow cytometer using FACSDiva software (Becton Dickinson). 

Finally, we analyzed the flow cytometry data using FlowJo software (Treestar), determining the 

absolute CD4+ and CD8+ T cell counts by multiplying the frequency of CD4+ or CD8+ T cells 

(singlets, live, CD3+, CD4+ or CD8+) by the white blood counts per microliter of blood from the 

matching complete blood counts (Supplementary Figure 1). 

 

Lymphocyte isolation from tissues 

We isolated lymphocytes from the blood, lymph nodes, spleen, and bone marrow as previously 

described [69]. Briefly, we isolated PBMCs from EDTA-anticoagulated blood by density gradient 

centrifugation using Ficoll-Paque PLUS (GE Healthcare), removing contaminating red blood 

cells with ACK lysis buffer. We collected peripheral lymph nodes before ART (MCM A and B: 77 

days post-infection (dpi); MCM-C: unavailable; and MCM-D: 34 dpi), after ART but before allo-

HSCT (MCM-A: 23 days post-ART; MCM-B: 24 days post-ART; MCM-C: 18 days post-ART; 

and MCM-D: 12 days post-ART). Additionally, we collected lymph nodes from MCM-A 62 days 
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post-transplant but before ART cessation and the necropsies for MCM C and D, which occurred 

on days 46 and 39 post-transplant, respectively, while they were on ART. We were unable to 

collect lymph nodes at MCM-B's necropsy for analysis.  

 We isolated lymphocytes from the lymph nodes, spleen, and bone marrow by dicing the 

tissues with scalpels and forcing the cells through 100-µm cell strainers to remove connective 

tissues. Lymphocytes were enriched from the cell suspensions using Ficoll-Paque PLUS density 

gradient centrifugation.  

 

Measuring donor chimerism 

We identified SNPs that distinguished the donor and recipient MCMs using a panel of 12 SNPs 

(see Supplementary Table 2) and the rhAMP SNP Genotyping System (Integrated DNA 

Technologies) as described previously [34, 70], giving preference to homozygous/homozygous 

mismatches. We performed the rhAMP assays in triplicate using a LightCycler 96 Instrument 

(Roche Molecular Systems) in the endpoint analysis mode.   

 We quantified donor chimerism in whole PBMCs or immune subsets by sequencing the 

diagnostic SNPs with an Illumina MiSeq using previously described primer sets, PCR 

conditions, and analysis pipeline (see also Supplementary Table 3 and Supplementary Table 4) 

[34]. To isolate specific immune subsets, we stained PBMCs with anti-CD3 FITC (clone SP34; 

BD Pharmingen), anti-CD14 PerCP-Cy5.5 (clone M5E2; BioLegend), anti-CD20 APC (clone 

2H7; BioLegend), anti-CD45 PE (clone D058-1283; BD Pharmingen), and Live/Dead Fixable 

Near-IR vital dye (ThermoFisher Scientific) and sorted into monocyte (singlets, live, 

lymphocytes, CD45mid, CD14+ cells), T lymphocyte (singlets, live, lymphocytes, CD14-, CD45hi, 

CD3+), or B lymphocyte (singlets, live, lymphocytes, CD14-, CD45hi, CD20+) populations using a 

BD FACSJazz cell sorter. We used between 179 and 61,251 cells for gDNA extraction and 

sequencing for each sorted population. 
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Quantifying cell-associated viral DNA  

We extracted gDNA from tissues or PBMCs using the DNeasy Blood & Tissue Kit (Qiagen) per 

the manufacturer's instructions, except eluting the DNA twice with separate 75 µL of molecular 

grade water (150 µl total volume). We determined the concentration of DNA using a Nanodrop 

spectrophotometer (ThermoFisher Scientific), and we digested up to 3 µg of DNA with 3 µl of 

EcoRI-HF restriction enzyme (New England Biolabs) per 50 µl.  

 We performed two digital droplet PCR (ddPCR) reactions for each sample: one 

quantifying vDNA and the other determining total cell number. First, we quantified vDNA using 

the primers and probes for SIV gag and the cycling conditions described by Gama et al. [71]. 

Second, we normalized vDNA copies to cell numbers by quantifying the RNase P (RPP30) 

gene, as previously described [72]. We generated droplets and read the samples on a QX200 

ddPCR system (Bio-Rad). We quantified the target genes in duplicate for each sample across at 

least two independent runs.  

 

Abbreviations 

Allo-HSCTs: Allogeneic hematopoietic stem cell transplants; ART: Antiretroviral therapy; HIV: 

Human immunodeficiency virus; SHIV: Simian-human immunodeficiency virus; MCMs: 

Mauritian cynomolgus macaques; GvH: Graft-versus-host; GvHD: Graft-versus-host disease; 

GvVR: Graft-versus-viral reservoir; CCR5; C-C chemokine receptor type 5; CXCR4: C-X-C 

chemokine receptor type 4; CCR5∆32: C-C chemokine receptor type 5 with 32 base-pair 

deletion; MHC; Major histocompatibility complex; NHPs: Nonhuman primates; BM: Bone 

marrow: p.i.: Post-infection; Gy: Gray; WBCs: White blood cells; ATIs: Analytical treatment 

interruptions; DLIs: Donor lymphocyte infusions; CAR: Chimeric antigen receptor; mHAgs: Minor 

histocompatibility antigens; WNPRC: Wisconsin national primate research center; gDNA: 

Genomic deoxyribonucleic acid; PCRs: Polymerase chain reactions; Mafa: Macaca fascicularis; 

TCID50: Median tissue culture infectious doses; qRT-PCRs: Quantitative real-time polymerase 
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chain reactions; cDNA: Complementary deoxyribonucleic acid; PMPA: Tenofovir (9-[9(R)-2-

(phosphonomethoxy)propyl]adenine; FTC: Emtricitabine; RAL: Raltegravir; SFEM: Serum-free 

expansion medium; TBI: Total body irradiation; SCF: Stem cell factor; FLT3: Fms-related 

tyrosine kinase 3; TPO: Thrombopoietin; PBMCs: Peripheral blood mononuclear cells; SNPs: 

Single-nucleotide polymorphisms; vDNA; viral deoxyribonucleic acids; ddPCR: Digital droplet 

polymerase chain reaction; RPP30: RNase P subunit p30. 
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Table 1. MCM characteristics and doses of transplanted cells 

RECIPIENT DONOR TOTAL CELLS 
TRANSPLANTED CD34+ CELLS TCRα/β+ CELLS 

ID MHC 
type Sex Age 

(yrs) ID MHC 
type Sex Age 

(yrs) Total Dose/Kg Total Dose/Kg Total Dose/Kg 

MCM-A M1/M2 F 4 MCM-E M2/M2 F 9 4.4 X108 1.5 X108 2.5 X107 0.8X107 3 X105 1 X105 
MCM-B M1/M2 F 4 MCM-F M1/M2 F 3 8.5 X108 1.8 X108 5 X107 1 X107 17 X105 3.6X105 
MCM-C M1/M2 F 13 MCM-G M1/M2 F 11 7.1 X108 1.2X108 4.8 X107 0.8 X107 7X105 1.1X105 
MCM-D M1/M2 M 7 MCM-H M1/M2 M 6 8.6 x108 1.6 x108 3.4 x107 0.6 x107 8 x105 1.4 x105 
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Figure 1. Plasma viral loads after SHIV162P3 infection.  Longitudinal plasma 
viral loads for the SHIV162P3-infected MCMs, with dashed lines indicating the 
qRT-PCR limit of detection (100 vRNA copy Eq/ml plasma). The gray boxes signify 
the timing of ART, the red arrows designate allo-HSCs infusions, and † indicate 
necropsies.
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Figure 2. Effect of allo-HSCTs on cell populations and platelets. Longitudinal absolute counts 
of (a) white blood cells, (b) platelets, (c) neutrophils, (d) monocytes, (e) lymphocytes, (f) CD4+ T 
cells, and (e) CD8+ T cells after allo-HSCTs. Counts are displayed as x103/µl.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2022. ; https://doi.org/10.1101/2021.04.16.440168doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.440168
http://creativecommons.org/licenses/by-nc/4.0/


0 7 14 21 28 35 42 49 56 63 70 74
0

20

40

60

80

100

MCM-D
MCM-A
MCM-B

MCM-C

Days post-transplant

%
 D

on
or

 c
hi

m
er

is
m

monocy
tes

T ce
lls

B ce
lls

0

20

40

60

80

100

Whole blood(a) (b) Cell lineages

Figure 3. Donor chimerism after allo-HSCT. We determined donor chimerism levels 
post-transplant by sequencing SNPs differing between the donor and recipient. (a) 
Longitudinal percent donor chimerism in whole blood after allo-HSCT. (b) At necropsy, 
the percent donor chimerism among flow cytometry sorted PBMC monocytes 
(CD45midCD14+ lymphocytes), T cells (CD14-CD45hiCD3+ lymphocytes), and B cells 
(CD14-CD45hiCD20+).
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Figure 4. SHIV DNA in allo-HSC transplanted MCMs. We measured copies of vDNA in the (a) 
PBMC and (b) peripheral lymph nodes before ART initiation, after ART but before allo-HSCTs, 
and post-transplant. (c) SHIV DNA levels in the tissues of MCMs B, C, and D at necropsy. Total 
SHIV DNA was measured by digital droplet PCR using SIV gag-specific primers and normalized 
to 107 cells by measuring macaque RNaseP p30, RPP30, in companion ddPCR assays. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2022. ; https://doi.org/10.1101/2021.04.16.440168doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.440168
http://creativecommons.org/licenses/by-nc/4.0/

	Retrovirology-BioRxiv-paper-022522
	Table 1-BioRxiv
	Figure 1-BioRxiv-022522
	Figure 2-BioRxiv-022522
	Figure 3-BioRxiv-022522
	Figure 4-BioRxiv-022522

