
State and stimulus dependence reconcile motion computation and

the Drosophila connectome

Jessica R. Kohna,∗, Jacob P. Portesa,b,∗, Matthias P. Christensona,b, LF Abbotta,b, Rudy
Behniaa,1

aDepartment of Neuroscience, Columbia University
bCenter for Theoretical Neuroscience, Columbia University

Abstract

Sensory systems dynamically optimize their processing properties in order to process
a wide range of environmental and behavioral conditions. However, attempts to infer the
function of these systems via modeling often treat system components as having static pro-
cessing properties. This is particularly evident in the Drosophila motion detection circuit,
where the core algorithm for motion detection is still debated, and where inputs to motion
detecting neurons remain underdescribed. Using whole-cell patch clamp electrophysiology,
we measured the state- and stimulus-dependent filtering properties of inputs to the OFF
motion-detecting T5 cell in Drosophila. Simply summing these inputs within the framework
of a connectomic-constrained model of the circuit demonstrates that changes in the shape of
input temporal filters are sufficient to explain conflicting theories of T5 function. Therefore,
with our measurements and our model, we reconcile motion computation with the anatomy
of the circuit.

Introduction1

Flies walk, fly, pursue mates, and search for food in diverse environmental and behavioral2

conditions, using only limited visual circuitry. How does this small, hardwired ensemble of3

neurons interpret such a wealth of constantly fluctuating visual information? A rich set4

of studies has demonstrated that sensory neurons encode the physical world dynamically,5

changing their filtering properties to suit varying sensory statistics [1, 2, 3]. However, despite6

evidence that cellular inputs to Drosophila motion detectors are capable of changing their7

processing properties [4, 5, 6], the circuit is frequently modeled as relying on inputs with8

static filters [4, 7, 8, 9, 10]. In this work, we use high-temporal resolution whole-cell patch9

clamp electrophysiology and modeling to ask two sets of questions. First, to what extent10

do the processing properties of inputs to Drosophila motion detectors change with varying11

visual statistics and behavioral states? In other words, do specific stimuli or states elicit more12
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complex filtering waveforms? And second, given a dynamic input parameter space, can we13

define the fundamental computational motif underlying Drosophila direction selectivity?14

In the Drosophila visual system, T4 and T5 are the first direction selective neurons15

(Figure 1A). They feed into multiple downstream pathways that control critical behaviors16

that depend on motion detection, such as course control [11], walking speed [12], and escape17

from looming stimuli [13]. T4 responds to ON motion while T5 is specific to OFF motion,18

with individual neurons of both types preferentially responding to local motion in one of four19

directions [14, 15, 7, 8]. We focused on the OFF pathway, where T5 receives columnar input20

(i.e. corresponding to one pixel in the field of view of the animal) from medulla cells Tm1,21

Tm2 and Tm4 in one column and from slower Tm9 cells in an offset, neighboring column22

(Figure 1A) [16, 17, 4, 18]. The connections between non-direction selective medulla cells and23

direction selective T5 cells constitute the locus of OFF motion computation [16, 17, 4, 18].24

Figure 1: Motion detection in the Drosophila OFF Pathway A. The connectome of the Drosophila
OFF motion pathway is well characterized. Inset: T5s receive columnar input from Tm1, Tm2, Tm4
and Tm9. Tm1, Tm2, Tm4 (postsynaptic to lamina monopolar cell L2), and look at the same point in
space. They are spatially offset (∆x◦) from Tm9 (postsynaptic to L3). Voltage responses in T5 are direction
selective, depolarizing more strongly to motion in the preferred direction (PD) than to motion in the opposite,
null direction (ND). The mechanisms underlying the emergence of these signals in T5 are debated. B. Filter
shape can have a strong effect on the output of a motion detector. The linear combination of two spatially
offset excitatory inputs, one of which is biphasic (bottom), can effectively suppress ND responses, generating
an output that is more direction selective than the sum of two monophasic inputs (top). C. The temporal
processing properties of sensory neuron filters have been shown to be stimulus and/or state dependent,
varying in frequency, gain, and biphasic tuning.
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Current models of direction selectivity at the level of T5 rely on a direct source of colum-25

nar inhibition, which is not supported by electron microscopy data [19, 18]. Furthermore,26

recent studies disagree on the fundamental computation underlying direction selectivity in27

T5, and argue for either a linear [20] or a nonlinear mechanism [4, 8]. However, these studies28

use different visual stimuli to probe the response properties of T5. We wondered whether29

the differences in stimuli between these studies could explain their disparate conclusions. In30

particular, since the temporal filtering properties of inputs to T5 govern the specificity and31

tuning of T5 output, differences in their shapes, which could be induced by different experi-32

mental paradigms, could drastically alter T5 responses. Most models of T5 do not measure33

input responses properties, and instead use simple monophasic (low-pass) temporal filters34

as inputs. However, linearly combining two spatially separated inputs, when one is biphasic35

(band-pass), can enhance direction selective responses (Figure 1B). It is therefore plausible36

that more complex spatiotemporal receptive fields in inputs can account for T5 direction37

selective responses, even in the absence of direct inhibition. Here we test this hypothesis by38

measuring stimulus- and state-dependent responses of the four main T5 columnar inputs.39

Previous work has demonstrated changes in frequency tuning [4] and contrast gain adap-40

tation [5, 6] at the level of T5 inputs. In order to look for signatures of changes to band-pass41

or “biphasic” tuning (Figure 1C), we used whole-cell patch clamp electrophysiology to record42

Tm1, Tm2, Tm4 and Tm9 responses to visual stimuli with a range of statistical properties.43

We also asked how stimulus-dependent properties might change in the presence of the neuro-44

modulator octopamine (OA), which is known to affect Drosophila motion circuits [21, 22, 4].45

We found that the temporal properties of columnar inputs to T5 display stimulus- and state-46

dependent changes in filtering waveforms, including instances of strong biphasic responses.47

We used these stimulus- and state-dependent properties to characterize a “parameter space”48

for the filtering properties of the Drosophila motion vision circuit, through which these prop-49

erties adjust dynamically to process changing visual statistics. We then linked the stimulus-50

and state-dependent responses of these inputs to previously measured T5 responses using a51

framework based on the Drosophila optic lobe connectome. Our model, based on a summa-52

tion of the measured responses of excitatory OFF pathway medulla cell inputs, effectively53

recapitulates previously reported T5 responses when the model is adjusted to account for54

visual stimuli statistics. As such, our functionally and anatomically constrained model ex-55

plains direction selectivity in T5 without the need for direct columnar inhibition. These56

results highlight the complex nature of this simple circuit, which endows an anatomically57

restricted set of neurons with the ability to encode a large space of stimuli, and shows that58

the question of mechanisms underlying direction selectivity is intimately intertwined with59

that of stimulus and state dependence.60

Results61

Filtering properties of columnar T5 inputs in response to a white noise stimulus62

Linear-nonlinear (LN) models are widely employed to characterize spatiotemporal pro-63

cessing properties of individual cells in sensory systems [23, 24, 15, 4]. Following this ap-64

proach, we first aimed to extract the linear spatiotemporal filters and associated nonlin-65

earities that best describe the responses of Tm1, Tm2, Tm4 and Tm9 to a white noise66
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Figure 2: Tm1, Tm2, Tm4 and Tm9 exhibit spatial and temporal tuning with white noise
stimuli A. Normalized mean temporal filters for Tm1 (n=7), Tm2 (n=4), Tm4 (n=6), and Tm9 (n=6)
extracted via white noise analysis. Filters show slight biphasic profiles. Shaded area represents standard
deviation. B. Normalized mean frequency tuning of temporal filters when linearly convolved with sine waves
of increasing temporal frequency. While all four Tm neurons are band-pass, Tm9 shows slower tuning than
Tm1, Tm2 and Tm4. C. Mean spatial receptive fields extracted from spatiotemporal filters. D. Static
nonlinearities for each cell type are linear for small voltage changes, but rectified at the upper and lower
boundaries of their dynamic range.

stimulus, consisting of 5◦ horizontal bars (Figure 2 and Figure S1). From cellular responses67

to this stimulus, we extracted linear spatiotemporal receptive fields via reverse correlation68

[23, 25, 24, 4] and separated them into spatial and temporal components (Figure 2A-C). Our69

white noise results are in overall agreement with previous studies [24, 26, 17, 15, 4].70

As expected, the linear temporal filters of all columnar OFF-pathway inputs to T5 consist71

primarily of a negative lobe, indicating a sign-inversion between contrast polarity and cellular72

response (Figure 2A). The peak response times of our four filters are shorter than those73

reported by calcium imaging studies [4], and fall within a similar range to those found in74

previous studies of Tm1 and Tm2 using the higher temporal resolution techniques of either75

electrophysiology or voltage imaging [24, 27]. In the frequency domain, Tm1, Tm2, and Tm476

exhibit clear band-pass filtering properties, as previously noted [17, 4]. These band-pass77

properties correspond to the slight biphasic character of their linear temporal filters, which78

4
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have shallow second positive lobes. In contrast to results obtained with calcium imaging,79

which determined that Tm9 is low-pass [26, 17, 4], we find that Tm9 also exhibits band-pass80

filtering properties (Figure 2B), albeit weaker than the other columnar inputs. Recording81

responses to long, 10 s flashes of light confirmed that these neurons are indeed band-pass as82

their responses return to baseline during the course of the stimulation (Figure S2).83

We find that Tm1, Tm2, and Tm4 have narrow spatial receptive fields comprising approx-84

imately 10.8◦, 8.2◦, and 11.3◦ full width at half maximum (FWHM) when fit with Gaussians85

(Figure 2C, see Methods) [17, 4]. Tm9 has a slightly wider receptive field of approximately86

15.3◦ FWHM [17, 4]. We found an additional subset of Tm9 cells that respond across a87

wide region of approximately 69.7◦ FWHM (Figure S3), as previously reported [26]. Tm988

responses fall naturally into two distinct populations based on their spatial receptive fields;89

however, with regards to their temporal properties, the two types of Tm9 responses are90

not distinct from each other (Figure S3). We therefore based our characterization of Tm9’s91

spatial properties on the population with narrower receptive fields, as these more closely92

matched the EM receptive field prediction from Shinomiya et al. [18]. Across cell types, we93

did not find center-surround structure in the spatial receptive fields extracted from our white94

noise stimulus (Figure 2C).95

The static nonlinearities extracted from this dataset show that all four columnar T5 in-96

puts respond linearly for small deflections in their membrane potential, but nonlinearly at the97

upper and lower boundaries of their dynamic ranges, with greater-than-linear depolarization98

amplitudes, and less-than-linear hyperpolarization amplitudes (Figure 2D). For stimuli that99

cause small deflections, the static nonlinearity only slightly improves fits (Figure S1). The100

contribution of static nonlinearity is more prominent with stimuli that cause large deflections101

such as high contrast flashes, where the negative components of the responses have lower102

amplitudes than the positive components (Figure S2). While this partial rectification is in103

line with previous studies for Tm1 and Tm2 [24, 27], calcium imaging studies have reported104

complete rectification for Tm1, Tm2 and Tm4 and a more linear response in Tm9 [17], in105

contrast to our findings.106

These temporal and spatial filters, along with their associated static nonlinearities, offer107

a description of how Tm inputs to T5 process a white noise stimulus. But are they able to108

predict the responses of these neurons to stimuli with different visual statistics? To answer109

this question, we next recorded the responses of Tm1, Tm2, Tm4 and Tm9 to other types110

of visual stimuli that varied in time and contrast.111

Temporal processing of columnar inputs to T5 is stimulus dependent112

We first recorded the response of the four columnar inputs to T5 to short full field113

brightness decrements of varying durations from a mean of grey. This type of stimulus has114

been previously used in the Drosophila motion detection circuit to characterize the response115

properties of Tm1 and Tm2 [27], as well as circuit output at the level of T5 [8]. Our aim was116

to compare these “flash” responses to predictions made from white noise filters. We measured117

the responses of Tm1, Tm2, Tm4, and Tm9 to high contrast flashes of 20, 40, 80, and 160 ms,118

and found that these did not match the output of our LN spatiotemporal white noise filters119

convolved with same stimuli (see Methods). These discrepancies appeared in both the shape120

and amplitude of the responses (Figure 3A). More specifically, we found Tm1 and Tm4121
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flash responses to be more biphasic than the corresponding white noise filter predictions122

across the four flash durations. Tm2 flash responses are more similar to the white noise123

prediction but also display a more biphasic response for 40 ms flashes. Furthermore, we find124

that the amplitude of the negative lobe of flash responses remains constant across stimulus125

durations for Tm1, Tm2, and Tm4. Shape-wise, Tm9 responses do not change significantly.126

Additionally, the gain of all Tm cell flash responses increases with flash duration. For Tm1,127

Tm2 and Tm4, white noise filter predictions of 20 and 40 ms flashes underestimate actual128

amplitudes of responses to flash stimuli, highlighting nonlinearities in gain at these shorter129

time scales. These comparisons indicate that temporal filters extracted in response to white130

noise are poor predictors of Tm1, Tm2, Tm4, and Tm9 responses to high-contrast flashes.131

In particular, the temporal responses of Tm1 and Tm4 are more biphasic under the latter132

stimulus conditions.133

We then sought to understand which statistical parameters of the stimulus drive the134

changes in response shape. The white noise stimulus, which changes contrast every 50 ms,135

falls within the same range of timescales as the flashes. However, a key difference between the136

white noise and flash stimuli is the magnitude of the contrast change. While the white noise137

stimulus consists of a truncated Gaussian distribution around the mean luminance of the138

projector (see Methods), the flash is a full contrast decrement from the same mean baseline139

luminance. Thus, a given contrast change for the white noise stimulus is, on average, smaller140

than that of the flash stimulus. To investigate the degree to which contrast could account141

for the change in biphasic properties of medulla cells, we measured responses of Tm neurons142

to flashes of lower contrast, starting at the same mean luminance level. We found that Tm1,143

Tm2, and Tm4 responses to flashes in low-contrast regimes lost their biphasic character,144

and more closely matched the white-noise filter predictions, both in terms of amplitude and145

waveform (Figure 3B). In the case of Tm9, which is only minimally biphasic to white noise,146

the response shape did not change significantly at different contrasts (Figure 3B, right). In147

general, high contrast flash responses are more biphasic than white noise responses, while148

low contrast flash responses are more comparable to white noise responses. We therefore find149

that the extent of contrast change of a flash stimulus is one factor in evoking the biphasic150

character of columnar T5 input responses.151

We then asked if the results found using flash responses translate directly to a noise152

stimulus - i.e. does changing the contrast of a noise stimulus also affect the shape of extracted153

temporal filters? To answer this question, we recorded the responses of Tm1 to both high and154

low contrast ternary noise stimuli (Figure S4), consisting of random transitions between the155

mean luminance of the projector and fixed contrast increments/decrements of either high or156

low contrast, with the same temporal properties as the white noise. We find that Tm1 filters157

extracted from low and high contrast ternary noise have similar shapes to each other, as158

well as to the Tm1 filter extracted from white noise, presenting only as moderately biphasic.159

While we did not see a change in the shapes of filters, we did find that the amplitude of160

the temporal filter, or the gain, does increase with decreasing contrast, corresponding to an161

amplification of smaller signals that allows the cell to produce the same amplitude responses162

in different contrast regimes. Similarly, filters extracted from Tm2 and Tm4 responses to163

the high contrast ternary stimulus did not differ significantly in shape from filters extracted164

from the white noise stimulus (which was lower contrast), but had lower gains. While this165

finding is similar to that of Drews et al. [6] and differs from Matulis et al. [5], it confirms166
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Figure 3: Tm1, Tm2, Tm4 and Tm9 responses are stimulus dependent A. Mean Tm responses to
20, 40, 80 and 160 ms high contrast flashes (colored lines) are biphasic. Mean white noise filter predictions
for the same 20, 40, 80 and 160 flashes (black, dashed lines) capture depolarization dynamics, but do not
predict hyperpolarization for all flash durations, and under-predict depolarization amplitude for 20 and 40
ms flashes. Tm1 (n=4-5), Tm2 (n=5), Tm4 (n=5-6), and Tm9 (n=4-6). Tm9 white noise predictions fail
to capture both depolarization amplitude and slower dynamics of Tm9 responses. Shaded area represents
standard deviation. B. Mean Tm responses to 20 ms and 160 ms low contrast (grey) and high contrast
flashes (color, same data as in B). Low contrast flashes do not elicit biphasic responses and are closer in
shape to white noise predictions from A. Tm1 (n=4-5), Tm2 (n=4-5), Tm4 (n=1-2), and Tm9 (n=1-2).

that a noise stimulus can indeed elicit changes in processing properties (i.e. gain) when its167

contrast statistics are modulated. However, when these results are considered in combination168

with responses to low contrast flash stimuli, which operate within similar contrast regimes,169

it becomes apparent that the shape of a temporal filter is stimulus dependent in a manner170

that is not only linked to contrast (see Discussion).171

These results show that the temporal properties of columnar inputs to T5 are stimulus172

dependent and cannot be extracted using a single stimulus type or be fully described by a173

single temporal filter. Specifically, our data show that the shape of Tm1, Tm2, Tm4 and174

Tm9 responses are dependent on the statistics of the stimuli presented. In particular, specific175

stimuli can elicit strong biphasic temporal responses in Tm1, Tm2 and Tm4.176
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Figure 4: Tm1, Tm2, Tm4 and Tm9 exhibit stimulus and state dependence in presence of
neuromodulator octopamine (OA) Responses in presence of OA (lighter colors) are overlaid with data
from Figures 2-3 (darker colors) A. Temporal filters extracted from white noise stimulus show distinct
changes in shape, with a faster and narrower first lobe and the emergence of a sharp second lobe in the
case of Tm1, Tm2 and Tm4 in OA. B. In frequency space, Tm1, Tm2 and Tm4 filters in the presence
of OA show distinct shifts in tuning to higher frequencies. Tm9 tuning does not change. C. There are
no significant changes in spatial filters -/+ OA. D. There are no significant changes in static nonlinearities
between conditions. E. Tm1 (n=3-4), Tm2 (n=3), Tm4 (n=3-4), and Tm9 (n=2-3) responses to flashes (20,
40, 80, 160 ms) are faster and, in most instances, more biphasic in OA.
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Temporal processing of columnar inputs to T5 is state dependent177

Exploring stimulus-dependent changes in processing revealed that inputs to T5 change178

their filtering properties in response to different visual stimuli. Are the changes in stimuli179

able to capture the full range of response properties that these cells can generate? To answer180

this question, we next investigated state-dependent changes, which have also been found to181

dramatically affect the encoding properties of sensory neurons through the action of small182

molecule neuromodulators [28, 29, 30]. The neuromodulator octopamine (OA), released183

during locomotion, has been found to change the gain and frequency tuning of T4 and T5184

cells as well as downstream lobula plate tangential cells (LPTCs) [21, 22, 4]. These changes185

are likely inherited in part through the modulation of columnar transmedullary inputs to186

these circuits. Indeed, Arenz et al. [4] report an acceleration of the responses of inputs to T4187

and T5 with application of CDM, an OA agonist. We therefore investigated how these state-188

dependent changes in processing properties compare with the stimulus-dependent changes189

that we observed, and whether any relationship could be drawn between the two.190

We conducted recordings in the presence of the neuromodulator OA, and found that191

the application of 10 µM OA induced a strongly biphasic white noise extracted temporal192

filter in Tm1, Tm2 and Tm4, with a sharp, positive second lobe emerging (Figure 4A).193

Corresponding to the emergent biphasic character induced in each cells’ linear temporal filter,194

responses are more band-pass with OA. In addition, OA induces faster temporal filter peaks195

for Tm1, Tm2 and Tm4. This latter effect, also apparent in Arenz et al. [4], manifests in the196

frequency domain as a shift toward higher frequencies (Figure 4B). The frequency tuning197

of Tm9 does not change significantly in the presence of OA (Figure 4A-B). As previously198

noted by Arenz et al. [4], the application of OA did not exert any significant effect on199

the spatial receptive fields of any columnar T5 input (Figure 4C). Additionally, while the200

application of OA reduces the gain of these cells, it does not appear to significantly change201

their static nonlinearities (Figure 4D). This reduced dynamic range in the presence of OA202

likely prevents them from reaching response amplitudes at which nonlinear processing effects203

are seen (Figure 4D).204

We next asked how the effect of OA interacts with the stimulus-dependent changes in205

processing properties we had previously observed in columnar T5 inputs, and assessed the206

effect of OA on responses to flash stimuli. In addition to having faster kinetics, flash re-207

sponses in the presence of OA were more biphasic for all four cells as compared to saline208

conditions (Figure 4E). The corresponding white noise predictions made using the temporal209

filters extracted in OA are poor predictors of these flash responses (Figure S5A). Similar to210

saline conditions, low contrast flashes produced less biphasic responses than high contrast211

(Figure S5B); however, low and high contrast flashes in OA are both more biphasic than212

those measured in saline. This reveals a nuanced relationship between state- and stimulus-213

dependent changes to processing properties, where state and stimulus can elicit similar shifts214

both independently or in tandem with one another.215

Neuromodulation therefore has a strong effect on the shape of the temporal responses of216

columnar inputs to T5. In OA, the temporal properties of Tm1, Tm2 and Tm4 not only217

become faster, shifting their tuning towards higher temporal frequencies, but also display218

changes in the waveforms of their temporal filters, which become more biphasic.219
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Figure 5: Tm1, Tm2, Tm4 and Tm9 temporal responses lie within a parameter space A. Com-
parison of parameterized Tm1, Tm2, Tm4 and Tm9 responses to 20 ms flashes across conditions, including
high contrast and high contrast with OA (solid colored lines), low contrast and low contrast with OA (grey
lines), and both baseline and OA LN white noise filter predictions for 20 ms stimuli (dashed lines). B. The
parameterized responses from A are plotted as a function of peak time (x-axis) vs. the ratio of the area
of the peak lobe with respect to the trough lobe (y-axis). C. Frequency tuning of parameterized baseline
(left) and OA temporal filters (right). Filters in OA become more band-pass and shift their peaks to higher
frequencies (black arrow). D. Full width half max (FWHM) as a function of temporal frequency of filters in
C.

T5 columnar temporal responses move across a continuous stimulus- and state-220

dependent parameter space221

The similarities between shape changes in the temporal responses of T5 columnar inputs222

to either high contrast flashes or to responses measured in the presence of OA hinted at223

a continuum of responses rather than discrete differences (Figure 5A-D). To describe this224

stimulus- and state-dependent “parameter space” of responses for each of the inputs to225

T5, we compared all stimulus and state conditions on a similar temporal timescale, using226

parameterized responses (Figure S6, see Methods).227

We focused on responses to a 20 ms flash stimulus, either measured directly or predicted228
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from white noise filters across all Tm cells, in the absence and the presence of OA. Normalized229

and plotted together (Figure 5A), it is clear that Tm1, Tm2 and Tm4 exhibit a wide range230

of responses, while Tm9 shows somewhat fewer changes across stimuli and state. To better231

visualize how different conditions affect these responses, we plotted the ratio of the area of232

the trough by the area of the peak as a function of peak time, roughly representing the233

extent of a filter’s biphasic character as a function of speed of response (Figure 5B). The 2D234

space occupied by the Tm neurons within this plot illustrates the span of the diversity of235

responses within cell types and reveals global trends: responses move from being less to more236

biphasic between noise and flash stimuli, and shift toward being faster and more biphasic in237

the presence of OA. In the case of white noise filters, the effect of OA is particularly clear238

in the frequency domain (Figure 5C). In the case of Tm1, Tm2, and Tm4, OA shifts peak239

responses towards higher frequencies so that their frequency tuning curves are spread further240

from each other (and thus across a broader spectrum of frequencies) compared to saline241

conditions. Additionally, OA decreases the tuning curve FWHM values, thereby making the242

OA filters more band-pass (Figure 5D).243

High temporal resolution electrophysiological recordings of Tm1, Tm2, Tm4 and Tm9244

under different stimuli and neuromodulatory conditions reveal a highly flexible circuit with245

the ability to display changes in temporal filter shape. We next investigated the computa-246

tional consequences of these stimulus- and state-dependent properties.247

A sum of columnar inputs predicts T5 flash responses248

Recently, Gruntman et al. [8] obtained whole-cell patch clamp recordings of T5 responses249

to stationary high contrast flashing bars. The authors found T5 to display asymmetric250

hyperpolarizing responses. For any particular T5 cell, flashing bars on the side of the spatial251

receptive field corresponding to the leading edge of the cell’s preferred direction of motion252

elicited only a depolarizing response. Bars on the opposite side of the receptive field, however,253

caused a depolarization followed by a hyperpolarization. To explain these results, the authors254

propose a direction selective model in which the functional properties of T5 can be explained255

by a combination of direct columnar excitation and inhibition. Since no such columnar256

inhibitory input has been found by connectome studies [18], we instead hypothesized that257

the strongly biphasic nature of the temporal responses of Tm1, Tm2 and Tm4 to flashes258

could explain T5 responses without the need for a direct inhibitory input. Because Tm1,259

Tm2, and Tm4 have similar processing properties (Figure 2D-G) and look at the same point260

in space [18], we asked whether a single biphasic excitatory columnar input combined with261

Tm9 via linear regression could capture the dynamics of the T5 response, and the asymmetric262

hyperpolarization in particular.263

We used our measured responses of Tm1 and Tm9 to predict T5 responses to station-264

ary high contrast flashing bars without additional manipulation. To compare our data with265

existing T5 data, we first convolved the white-noise extracted linear temporal filter of each266

cell type with a 1D stimulus of length 20, 40, 80 and 160 ms [7, 8]. Using linear regression267

with positivity constraints, we fit these predicted responses to T5 flash responses collected268

by Gruntman et al.[8]. As expected from their shape, we found that the white noise fil-269

ter predictions were able to capture the depolarizing responses, but failed to capture the270

asymmetric hyperpolarization (Figure 6A, top).271
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Figure 6: The sum of columnar inputs predicts T5 flash responses A. Top: White noise extracted
filters are convolved with 160 ms stimulus and then fit with linear regression to T5 electrophysiological
recordings from Gruntman et al. [6] for the 160 ms, 9◦ condition, at various positions in the receptive field
of T5 (data dashed line, fit solid grey line). T5 average traces shown for bar position from “Leading” edge
(−5,−3,−1) and “Trailing” edge (+1,+3,+5). Middle: Average Tm1 and Tm9 responses to 160 ms flashes
are fit via linear regression to each T5 recording from Gruntman et al. [6] for the 160 ms, 9◦ condition (data
dashed line, fit solid dark green line) Bottom: Same as Middle using Tm1 and Tm9 160 ms flashes in the
presence of OA (data dashed line, fit solid line) Linear regression using flash responses and flash responses
recorded in OA provides a good fit to T5 data. This is especially evident in the trailing edge (bar positions
+3 and +5). B. Aggregate r2 values (square of sample correlation coefficient, see Methods) across bar
positions for linear regression fits of Tm1+Tm9 to Gruntman et al. [8] recordings of T5 (conditions: 40 and
160 ms presentations of 2.25◦, 4.5◦, and 9◦ bars). Error bars depict standard deviation C. Distribution of
r2 values across bar positions for fits to individual T5 responses to 160 ms, 9◦ bars. D. Example traces of
fits to two single cells from C (T5 data, black dashed line; fits using saline flashes, dark green; fits using OA
flashes, light green). E. Using the highly biphasic Tm1/Tm9 flashes recorded in OA improves the r2 of fits
on the trailing edge of the T5 receptive field, where asymmetric hyperpolarization is most evident.
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We next asked if our flash responses, which were obtained from an experimental paradigm272

more similar to the single-position bar flashes of Gruntman et al., could predict the full273

response properties of T5 more accurately than our white noise filters. Using linear regression274

with positivity constraints, we found that a weighted sum of Tm1 and Tm9 responses derived275

from flash stimuli do better at reproducing measured T5 responses to single-position bar276

flashes (Figure 6A, middle), but still fall short of capturing both the extent and the kinetics277

of T5’s asymmetric hyperpolarization at the trailing edge of the T5 receptive field. Since278

Tm1 flash responses obtained in OA conditions have faster kinetics and larger second lobes,279

we also ran the linear regression using flash responses of Tm1 and Tm9 obtained in the280

presence of OA, despite the apparent mismatch in recording conditions. In this case, the281

linear regression provides a near perfect fit with T5 data (Figure 6A, bottom).282

It was puzzling that the flash responses recorded in OA provided such a good fit in the283

linear regression, as Gruntman et al. [8] acquired these data in regular saline and not in OA-284

supplemented saline. It is, however, conceivable that endogenous state modulation occurred285

during T5 recordings. This was hinted at by the apparent variability in the amplitude and286

kinetics of the asymmetric hyperpolarization in T5 responses across different cells [8]. To287

investigate this, we performed linear regression on individual T5 cells, instead of the average288

of all recordings, using flash responses recorded in either saline or saline with OA. For a289

subset of T5 cells, which displayed a slower and less salient hyperpolarization, the saline290

linear regression provided a good fit (Figure 6C and D top). For a different set of T5 cells,291

the OA linear regression provided a better fit (Figure 6D bottom). This indicates that the292

diversity of responses in the T5 data largely accounts for the distribution of our r2 values293

(Figure 6C). In these cases, performing the linear regression using the OA flash responses294

often increased the r2 value substantially (Figure 6E). Although we performed this analysis295

using Tm1 and Tm9 to predict 9◦ 160 ms T5 flashes, these results stand across flash durations296

and widths (Figure S7A) as well as using other combinations of Tm inputs (Figure S7B).297

In all conditions, the coefficients output by this linear regression show distinct separation298

between Tm1 and Tm9 (Figure S7C), similar to that seen in the electron-microscopy (EM)299

data. In addition, the weighted spatiotemporal receptive fields constructed by linearly com-300

bining Tm1 and Tm9 fits are tilted in space-time, indicating direction selectivity. The tilt301

in space-time is more prominent when these are constructed from flash responses, both in302

saline and OA, demonstrating the increased effectiveness of flash responses at capturing T5303

direction selectivity. In agreement with this, the same linear regression fits predict the pro-304

file of T5 responses to moving bars from Gruntman et al. [8], as well as direction selectivity305

(Figure S7D, see Methods).306

These results demonstrate that including a biphasic input to T5 can account for its307

spatially asymmetric hyperpolarization. This shows that stimulus- and state-dependent308

properties of inputs strongly affect output at the T5 level. Thus, for a model to accurately309

describe the direction selective responses of T5 to moving stimuli, it must consider both310

stimulus- and state-dependent processing properties of its inputs.311
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A connectome-based model captures OFF pathway direction selectivity in the312

context of different stimuli and states313

Motivated by the linear regression, we built a model of T5 direction selectivity that is314

faithful to the anatomy of the circuit and takes into account our experimental measurements315

of Tm response properties. We imposed the following overarching constraints: (1) T5 receives316

inputs from Tm9 in one ommatidial column, and Tm1, Tm2, and Tm4 from an adjacent317

column, (2) all four T5 inputs are excitatory (cholinergic), and (3) the response properties of318

the transmedullar inputs vary with stimulus or state, as we demonstrated. We captured the319

first constraint by separating the center of the receptive field of Tm9 by 5◦ from the rest of320

the Tm cells (Figure 7A). The second constraint was satisfied by requiring all cells to provide321

positive input to T5. Additionally, we used the relative synaptic counts of Tm1, Tm2, Tm4322

and Tm9 from the connectome as synaptic weights to constrain the relative contribution323

of each cell type to T5 responses [18]. As for the third constraint, when constructing the324

four inputs to T5, we matched their response properties with the stimulus presented to our325

model, such as moving sine waves [20, 8] or high contrast moving bars [8].326

We first modeled T5 responses to sine waves. To describe the response of each T5 input327

to this stimulus, we used the temporal and spatial filters of Tm1, Tm2, Tm4, and Tm9328

extracted from white noise analysis, as well as their associated static nonlinearities (see329

Methods). These filters accurately predicted measured responses of Tm cells to sine waves330

(Figure S8), making them appropriate descriptors of cellular responses in this particular331

stimulus regime. Output from this model in response to sine waves matched T5 data from332

previous studies, in that it predicted maximum preferred direction (PD) tuning just below 1333

Hz (Figure 7B) [21, 4]. The direction selectivity index (DSI) for the output of the model also334

fell within the range of experimentally calculated DSIs from two recent studies: Wienecke335

et al. [20], using voltage-imaging, and Gruntman et al. [8], using electrophysiology (Figure336

7C). We then asked how the enhanced biphasic character and shifted frequency tuning of337

filters extracted in the presence of OA affected model output. In this case, our model338

predicted a broadening and a shift in T5 PD frequency tuning toward faster frequencies339

(Figure 7B) that matched previous measurements of T5 [4] and LPTC [22] tuning in the340

presence of OA or the OA agonist chlordimeform (CDM). Furthermore, using OA-derived341

filters increased DSI (Figure 7C). These results using white noise filters show that combining342

Tm1, Tm2, Tm4 and Tm9 responses linearly with EM connectome weights is sufficient to343

achieve the direction selective response of T5 cells to sine waves across studies.344

We next modeled T5 response to moving high contrast bars. The results of our linear345

regression analysis showed that strongly biphasic Tm responses best predicted T5 flashing346

bar responses. As expected, the characteristic white noise filters for Tm1, Tm2, Tm4 and347

Tm9 did not capture the DSI of T5 responses to moving bars (Figure 7D left, E). We therefore348

constructed a corollary model of T5 based on parameterized flash responses for Tm1, Tm2,349

Tm4 and Tm9 (see Methods). The increased biphasic nature of the flash responses allowed350

the model to achieve direction selectivity for moving bar stimuli in the range of T5 recorded351

electrophysiology data [8] (Figure 7 D middle, E). In this case, the negative lobe from strongly352

biphasic Tm inputs cancels out depolarizations in lieu of direct inhibition. Correspondingly,353

flash responses obtained in the presence of OA, which are more biphasic than those obtained354

in saline alone, increased the model’s DSI when used as inputs (Figure 7 E right and F).355
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Figure 7: Low-Parameter, Connectome Based Model is Sufficient to Capture OFF Pathway
Direction Selectivity in the context of different stimuli and states A. Schematic of model framework
constructed with Tm9 spatially offset from Tm1, Tm2 and Tm4 by ∆x = 5◦. B. Preferred direction
(PD) and null direction (ND) frequency tuning of model to sine waves using parameterized spatiotemporal
filters extracted in saline alone vs. those extracted in the presence of OA. C. Direction selectivity index
(DSImag = (|PD| − |ND|)/(|PD| + |ND|), see Methods) for model using saline-derived filters with n=20
samples of published EM weights from [16] across various frequencies (dark green green) compared to output
using OA-derived filters (dark green). Experimental voltage-imaging (ASAP2f) T5 DSI data shown from
Wienecke et al. [20] (circles), and T5 electrophysiology data from Gruntman et al. [8] (diamonds). D.
Example PD and ND model output traces for an 80 ms and a 160 ms moving bar stimulus, with inputs
based on white noise predictions (left, black), flash responses recorded in saline (middle, dark green) and
OA (right, light green). E. Using flash response-based inputs, model DSI falls within the range of T5
electrophysiology data reported by Gruntman et al. [8] for moving bars. Direction selectivity index (DSImax =
(max(PD)−max(ND))/(max(PD)+max(ND), see Methods) increases when using OA-based flash responses
due to their biphasic nature.

These results demonstrate that the increased biphasic character of Tm cells, which occurs356

both as the result of changes to stimulus or the presence of a neuromodulator, can produce357

direction selectivity on par with that seen in T5 electrophysiology recordings.358

Previous studies were unable to reconcile direction selectivity in T5 with the constraint359

of solely excitatory columnar inputs due to underdescribed processing properties of Tm cell360

inputs to T5, leading them to invoke an illusive source of direct inhibition. Our state- and361

stimulus-dependent measurements and modeling therefore reconcile anatomy and function362
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in a canonical Drosophila motion circuit.363

Discussion364

In this study, we demonstrated that the response properties of neurons in the Drosophila365

OFF motion pathway are shaped by both visual stimulus statistics and a behaviorally rel-366

evant neuromodulator, and that such flexibility clarifies the computation of direction selec-367

tivity. We found that Tm white noise-extracted filters can be poor predictors of Tm cell368

responses to stimuli with different visual statistics. Specifically, these filters fail to capture369

changes in the shape of the responses to high contrast flashes. We also demonstrated that370

similar changes to the filtering properties of T5’s columnar inputs arise due to the action of371

the neuromodulator octopamine. Incorporating these state- and stimulus-dependent proper-372

ties into an anatomically constrained model of the motion circuit based on input summation373

yields a good prediction of T5 responses across stimulus regimes. Our results demonstrate374

that neurons in the Drosophila visual system operate within a stimulus- and state-dependent375

space of temporal filtering parameters, and are underdescribed by the filters commonly used376

in Drosophila motion circuit models.377

Stimulus- and state-dependent changes in filtering properties highlight circuit378

flexibility379

Flexible processing of stimuli is a ubiquitous feature of sensory systems across species [1, 2,380

3]. In blowflies, the temporal properties of lamina monopolar cells (LMCs), the main inputs381

to the transmedullary cells that we focused on in this study, display stimulus-dependent382

changes in shape. Both van Hateren [31] and Srinivasan et al. [32] have shown that LMC383

responses are more biphasic with increasing signal to noise ratio (SNR) of the stimulus.384

These studies provide a rationale for differences across conditions. A monophasic, or low-385

pass, filter acts as an integrator, extracting slow temporal components of a visual scene. This386

is useful when visual information is noisy (low SNR), because increases in the redundancy of387

information translate into increases in reliability. A biphasic, or band-pass, filter, however,388

is advantageous in high SNR conditions because it acts as a differentiator and efficiently389

conveys changes in the stimulus, thereby decreasing correlations and reducing redundancy390

[33].391

When comparing responses across stimuli in different SNR regimes, our recordings of392

Tm1, Tm2 and Tm4 are compatible with these hypotheses. The temporal filters of these393

three neurons have less biphasic shapes in response to temporally unstructured stimuli that394

have the characteristics of noise, both white and ternary, which we consider to correspond395

to a low SNR regime. Responses to low contrast flashes, which can also be considered low396

SNR, are also close to monophasic and are well predicted by white noise filters. On the other397

hand, high contrast (high SNR) flashes produce strong biphasic responses. The properties398

of Tm1, Tm2 and Tm4 are therefore similar to and likely inherited from their LMC input399

(primarily L2, Figure 1A).400

Interestingly, we find that the addition of OA produces a more biphasic character in401

the white noise-extracted temporal filtering properties of Tm1, Tm2, and Tm4, similar402

to the waveform changes seen in response to high contrast flashes. Following the logic403
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discussed above, this change in filter shape would optimize information processing in high404

SNR regimes. More biphasic, differentiator-like responses may be beneficial for the rapidly405

changing visual scene when a fly is walking or flying. This raises the possibility that OA, by406

shifting processing properties towards those induced by high SNR stimuli, acts to prime T5407

inputs to detect salient stimuli in the natural statistics of a moving or flying fly. Furthermore,408

columnar inputs to T5 express receptors for many neuromodulators other than OA [34],409

suggesting that state-dependent modulation of motion detection likely plays an even more410

heterogeneous role, with multiple neuromodulators acting in concert at any given time.411

In addition to changes in filter shapes, we observed OA-dependent shifts in the kinetics412

of the temporal filters of Tm1, Tm2 and Tm4 towards faster speeds. Locomotion, through413

the release of OA, has previously been shown to broaden and shift the tuning of Drosophila414

motion detector outputs toward higher frequencies [21, 22]. This mechanism is thought to415

tune motion pathways to the increased frequencies of motion that flies experience as a result416

of self-motion during locomotion. This effect is thought to be, at least in part, through the417

modulation of T4/T5 inputs [4]. Our findings corroborate the hypothesis that octopaminer-418

gic modulation of frequency tuning in this circuit is inherited in part from upstream elements.419

In addition, our high temporal resolution data shows that Tm1, Tm2 and Tm4 have similar420

temporal response dynamics in saline, but acquire different kinetics in the presence of OA.421

This broadens the range of temporal frequencies collectively encoded by these three neurons422

(Figure 5A), an effect that we see in the output of our model. Thus, while Tm1, Tm2 and423

Tm4 might appear to have redundant roles, the differential effect of OA on these three T5424

inputs highlights a functional relevance in the context of changing behavioral states. Finally,425

in contrast to Tm1, Tm2, and Tm4, we find the temporal filtering properties of Tm9 to be426

less affected by either stimulus statistics or by the presence of OA.427

We focused here on changes in temporal dynamics; however, it is likely that additional428

processing properties of Tm neurons, such as in their spatial receptive fields, are sensitive429

to both stimulus and state. Integrating changes in these processing properties could hypo-430

thetically fine-tune the motion-selective outputs across conditions. In addition, we find two431

distinct classes of Tm9 cells with different sizes of receptive field, as has been previously re-432

ported [26]. Although larger spatial receptive fields may not contribute directly to direction433

selectivity, further characterization of this heterogeneity may provide insight into diverse T5434

responses.435

Accounting for stimulus dependence clarifies circuit mechanisms436

Although direction selectivity has been investigated since the 1950s, the mechanisms437

underlying motion detection in the invertebrate visual lobe and their cellular implementation438

are still being debated [35, 36]. For the OFF pathway that we have explored, one debate439

concerns the linearity of the summation of inputs to directionally selective T5 neurons.440

Wienecke et al. [20] argue that the response of T5 axonal terminals to stationary and moving441

sine waves suggests linear summation, whereas Gruntman et al. [8], who studied responses to442

flashed and moving bars, argue for nonlinear summation. Neither of the studies had access443

to the waveform of the actual inputs to T5 - the results we have presented. On the basis444

of this additional knowledge, our modeling work supports linear summation. In addition,445

although T5 responses show apparent suppression in some regions of the visual field, we find446
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that this does not require an inhibitory input. Instead, the biphasic character of the Tm1,447

Tm2, and Tm4 responses can reproduce the data without direct inhibition. Furthermore,448

we found that the model could account for direction selectivity when not only the identity449

but also the strengths of its connections were determined directly from the connectome data450

[18].451

It should be stressed that we are not proposing that inhibition plays no role in the452

directionally selective OFF pathway. For example, the wide-field inhibitory cell CT1 [37,453

18] may provide wide-field gain normalization [38, 6]. Such normalization could enhance454

direction selectivity, but we argue that it is not necessary for producing it.455

Stimulus and state dependence in sensory processing of natural scenes456

It is well established that white noise filter characterizations of cells in the mammalian457

retina and V1 are poor predictors of responses to natural scenes [39]. We expect that Tm458

white noise filters will similarly fail to capture Tm responses to natural scenes. However, it459

is likely that responses to natural scenes will occupy the “parameter space” defined by the460

diverse responses probed here and elsewhere [27, 35, 4, 6, 5]. Many approaches have been461

proposed for characterizing cell responses to natural stimuli in an interpretable manner [40,462

39, 41]. Correctly incorporating the link between scene statistics, the location in parameter463

space, and the appropriate Tm filtering properties will be essential in accounting for direction464

selectivity in a natural setting.465
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Methods591

Electrophysiology Preparation592

In order to target specific medulla cell populations, we used the Gal4-UAS binary ex-593

pression system in a w+ background to drive expression of a cytosolic variant of GFP in594

each individual fly line. Gal4 lines were as follows: R71G04-Gal4 (Tm1), otd-Gal4 (Tm2),595

R35H01 (Tm4), and R24C08-Gal4 (Tm9). Live flies were immobilized in a position that596

allowed them to see visual stimuli while providing physical access to one optic lobe, and597

electrophysiological recordings were performed as in Behnia et al. [24].598

Stimulus Presentation599

We built visual stimuli using our own custom extension of the Allen Brain Institute’s600

retinotopic-mapping package [42]. Each stimulus was warped and projected onto a flat601

screen aligned with the left eye. To correctly warp the stimulus, we assumed the eye was a602

sphere and measured the size of the screen, distance of the eye to the screen, the angle of603

the eye center relative to the plane that the screen lay in, and the position of the eye within604

the screen. Using this information, we were able to map pixels to their corresponding visual605

degrees. We added an indicator that was synced to the presentation of each stimulus and606

detected via a photodiode in order to sync our stimulus to our electrophysiological recordings.607

For stimulus presentation, we used the PsychoPy package [43]. Stimuli were displayed using608

a Texas Instrument Lightcrafter PRO4500 in monochrome mode (green) running at 180Hz.609

The mean luminance of the projector was 1.39 W/m2, while the max luminance was 4.37610

W/m2.611

• White noise stimulus: (Figure 2, Figure 4) our white noise stimulus consisted of 5o
612

horizontal bars flickering at 60 Hz with luminance values randomly drawn from a trun-613

cated Gaussian distribution. The stimulus was therefore changing across one spatial614

dimension and one time dimension, allowing for the extraction of two-dimensional615

spatiotemporal filters via white noise reverse correlation.616

• Full field flashes: (Figure 3, Figure 4 Figure S5) OFF flashes of 20 ms, 40 ms, 80617

ms and 160 ms with 10 second intervals were repeated for four sweeps per recording.618

High contrast OFF flashes consisted of light decrements from the mean luminance of619

the projector to its minimum output, corresponding to a Weber contrast of -1 (Figure620

3A, Figure 4E), while low contrast OFF flashes consisted of light decrements from the621

mean luminance of the projector corresponding to a Weber contrast of -0.1.622

• Ternary noise: (Figure S4) The ternary noise stimulus consisted of 5◦ horizontal bars623

flickering at 60Hz with luminance values randomly sampled from Weber contrast steps624

of -1, 0, or 1 (high contrast condition) from the mean luminance of the projector, or625

-0.1, 0, or 0.1 (low contrast condition) from the mean luminance of the projector.626

• Drifting gratings: (Figure S8) Drifting grating stimulus consisted of 0.5 Hz, high con-627

trast drifting square waves of spatial wavelengths ranging from 2.5◦, 10◦, 12.5◦, 25◦,628

40◦, 50◦, 80◦, 100◦, 125◦, and 200◦.629
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Reverse correlation for extraction of white noise filters630

We extracted spatiotemporal white noise filters and static nonlinearities via the reverse631

correlation method as described in Behnia et al. [24] and elsewhere [23, 40, 4, 5]. All “white-632

noise filter” predictions in this study are linear-nonlinear (LN) predictions, as cell response633

predictions combine white noise (linear) filters with static nonlinearities.634

To extract white noise filters for each cell, we selected continuous responses to white635

noise over a window of time ranging from 30-120 seconds depending on recording stability.636

Traces were downsampled to 100 Hz, and filters were extracted for a duration of 5 seconds.637

Spatiotemporal filter properties were not significantly affected by different downsampling638

factors, or by increasing or decreasing filter duration.639

All spatiotemporal filters were space-time separable: thus, after a 2D spatiotemporal640

filter was extracted via reverse correlation, we extracted a characteristic 1D temporal filter641

by selecting the temporal trace at the spatial location with the highest amplitude. These 1D642

temporal filters were averaged across individual recordings to get a characteristic temporal643

filter for each cell type (Figure 2A, 4A). In order to characterize each temporal filter in644

frequency space, we convolved each 1D temporal filter with 1D sine waves of varying temporal645

frequencies from 0.1 to 10 Hz. The maximum steady-state amplitude of the convolved646

response at each frequency constituted a frequency tuning curve. These tuning curves were647

normalized and averaged across individual recordings to get a characteristic frequency tuning648

curve for each cell type (Figure 2B, 4B).649

We extracted a characteristic 1D spatial receptive field by selecting the spatial profile at650

the time point with the highest amplitude. These 1D spatial receptive fields were averaged651

across individual recordings to get a characteristic spatial filter for each cell type (Figure652

2C, 4C). As the white noise stimulus consisted of 5◦ horizontal bars, these spatial receptive653

fields have a resolution of 5◦.654

In order to obtain static nonlinearities, 2D white noise filters were convolved in time and655

summed in space to obtain (1D) linear predictions in time that could be compared with the656

(1D) recorded responses. The predicted and actual responses were binned by amplitude and657

averaged within each bin across recordings (Figure 2D, 4D). Bin size did not significantly658

affect static nonlinearity shape.659

In order to compare flash responses to predictions based on extracted white noise filters,660

each spatiotemporal white noise filter was convolved in time with a 2D flash stimulus of the661

appropriate duration and summed across space. The resulting 1D linear prediction in time662

was then transformed via the static nonlinearity, resulting in a LN prediction. These LN663

predictions were then averaged (Figure 3A, S5A). The same approach was used to compare664

drifting grating data with white noise filter predictions (Figure S8).665

Parameter Fitting666

We parameterized both extracted white noise filters and flash responses in order to com-667

pare Tm cell changes across conditions.668

Parameterization of White Noise Filters669

Spatial receptive fields in all scenarios were fit to a Gaussian function g(x) = e−(x−µ)2/2σ2
.670

The mean temporal filters for Tm1, Tm2, Tm4 and Tm9 were similarly fit with a biphasic671
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function in time t:672

f(t) =
1

τ 22
t · e−t/τ1 − c · 1

τ 21
t · e−t/τ2 (1)

The two lobes of the biphasic function are determined by constants τ1 and τ2. For673

parameterizing temporal filters from our white noise analysis, we set c = 1. This constrained674

the convolution of the above function with a constant stimulus to integrate to zero, thus675

fitting the band-pass character of recorded cells (see Figure S2A,B). These parameterizations676

did not adversely affect the tuning properties of the filters for each cell type (Figure S6). For677

parameterized flash responses, c was unconstrained. All functions were parameterized using678

scipy.optimize.curve fit.679

We derived frequency tuning curves for parameterized white noise filters by convolving680

them with 1D sine waves of varying temporal frequencies varying from 0.1 to 10 Hz. The681

tuning curve consisted of the maximum amplitude of the steady state response at each682

frequency (Figure 5C). These frequency tuning curves were identical to tuning curves derived683

analytically via transfer functions (not shown). The full width half max (FWHM) and peak684

frequency was calculated numerically (Figure 5D). To compare flashes with white noise filters685

in the same parameter regime, we generated white noise filter LN predictions of 20 ms flashes686

(Figure 5A,B) and plotted them alongside parameterized 20 ms flash responses.687

Linear Regression688

In order to determine if our electrophysiological recordings of Tm1, Tm2, Tm4 and Tm9689

could match electrophysiological recordings of T5, we applied linear regression of Tm1 and690

Tm9 flash responses to recorded T5 responses from Gruntman et al. [8]. The authors of691

this paper recorded individual T5 cell responses to static vertical bar flashes of width 2.25◦,692

4.5◦ and 9◦ at different spatial locations, and for a duration of 40 ms and 160 ms, for693

a total of six conditions. T5 Traces from Gruntman et al. [8] were accessed via https:694

//figshare.com/collections/Simple_integration_paper_data_and_code/3955843.695

We required coefficients to be strictly positive so as to maintain the sign of the input, and696

also did not fit an intercept under the assumption that all T5 recordings were preprocessed697

such that they had a baseline of zero. Regression was done using the scikitlearn LASSO698

module, which allows positive weight constraints, with α = 0.0001 (α = 0 equivalent to a699

simple linear regression). We first applied linear regression to the average T5 responses for700

each bar location and condition (Figure 6A-C, S7). We then applied linear regression to701

individual T5 traces for each T5 cell, for each bar location and condition (Figure 6D-F).702

As input to the linear regression, we used: (1) Tm1 and Tm9 white noise LN predictions703

for 40 ms and 160 ms flashes, as well as (2) measured Tm1 and Tm9 response to 40 ms and704

160 ms flashes, and (3) measured Tm1 and Tm9 response to 40 ms and 160 ms flashes in705

the presence of OA (Figure 6A,B). None of these inputs were parameterized.706

Since our linear regression did not use an intercept term, we used the square of the sample707

Pearson correlation coefficient r2 as our measure of goodness of fit, instead of the coefficient708

of determination R2 [44]. r2 values were averaged across spatial locations for each condition709

and linear regression fit (Figure 6B).710

25

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 17, 2021. ; https://doi.org/10.1101/2021.04.17.440267doi: bioRxiv preprint 

https://figshare.com/collections/Simple_integration_paper_data_and_code/3955843
https://figshare.com/collections/Simple_integration_paper_data_and_code/3955843
https://figshare.com/collections/Simple_integration_paper_data_and_code/3955843
https://doi.org/10.1101/2021.04.17.440267


Gruntman et al. [8] also recorded T5 responses to moving bars consisting of 20, 40,711

80 and 160 ms consecutive flashes, across 2.25◦, 4.5◦ and 9◦ widths. In order to predict712

the T5 response to moving bars, we summed the weighted Tm1 and Tm9 flash responses713

with appropriate time delays for the preferred direction and (opposite) null direction. The714

regression coefficients fit to the static T5 data were used for each matching condition (e.g.715

the coefficients from the 160 ms, 9◦ static condition were used to predict the response to716

the 160 ms, 9◦ moving bar condition, etc.). Both the PD and ND summed traces were then717

scaled by a single “gain factor” obtained by a separate linear regression on the combined PD718

and ND traces (Figure S7D).719

Model Construction720

We built our framework for T5 based on established EM connectivity and an assumption721

of positivity for all Tm1, Tm2, Tm4 and Tm9 inputs onto T5. Specifically, Tm1, Tm2 and722

Tm4 were centered and Tm9 was offset by ∆x = 5◦ [45, 4]. The output of each of these cells723

was assigned a positive (cholinergic) connection weight proportional to EM synapse counts724

before being summed (Figure 7A, see below).725

In order to construct a white noise model of T5 based on LN predictions for each cell type726

Tm1, Tm2, Tm4 and Tm9, 2D spatiotemporal receptive fields for each cell were constructed727

by taking the outer product of the parameterized gaussian spatial receptive field g(x) and728

the temporal filter f(t):729

D(x, t) = g(x)⊗ f(t) (2)

A given 2D stimulus in space-time S(x, t) is convolved with each spatiotemporal receptive730

field in time (but not in space), and then summed over space to give a 1D time course for731

each cell Tm1, Tm2, Tm4, Tm9. In discrete time this is:732

y[t] =
∑
x

∑
τ

D[x, τ ]S[x, t− τ ] (3)

Finally, the mean of the static nonlinearities extracted via white noise analysis for each733

cell were parameterized by a softplus function:734

h(y) = c log(1 + e(ay+b)
k

) + d (4)

where a determines the sharpness of the “bend,” b translates the softplus curve along735

the x-axis, the multiplicative factor c controls the angle/slope, d determines offset along the736

y-axis, and the exponent k increases the curvature. The LN output of each cell was then737

normalized based on the numerical frequency tuning curve (so that the maximum possible738

gain across all frequencies was 1). Finally, Tm1, Tm2, Tm4 and Tm9 were scaled in a739

relative manner determined by the ratio of synapse counts from EM connectome data (see740

below) [18].741

In order to construct a flash model of T5 based on the flash responses of Tm1, Tm2, Tm4742

and Tm9, we parameterized responses to 20, 40, 80 and 160 ms flashes and constructed spa-743

tiotemporal receptive fields by taking the outer product with parameterized spatial receptive744

fields derived from white noise spatial filters with a spatial resolution of 2.25◦. In order to745
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simulate responses to moving bars, we summed temporal responses at each location with746

appropriate temporal delays for the PD and ND directions. We did not explicitly model bar747

width (as we had Tm responses to full field flashes but not to different bar widths), hence748

the predictions for each model in Figure 7E are the same across the x-axis. Like the white749

noise model, relative scaling between Tm1, Tm2, Tm4 and Tm9 was determined by the ratio750

of synapse counts from connectome data (see below) [18]. Spatial receptive fields were those751

extracted from white noise. We did not include static nonlinearities, as our recorded flash752

responses already represent the nonlinear processing properties of each cell.753

Direction Selectivity Index754

In order to match measurements of direction selectivity between our model output and755

those used in the T5 datasets, we use two metrics that we call DSImax and DSImag.756

Wienecke et al. 2018 [20], inspired by [46], use the “peak-to-trough” response to calculate757

DSImag:758

DSImag =
|PD| − |ND|
|PD|+ |ND|

(5)

where |PD| represents the response magnitude to motion in the preferred direction, and759

response magnitude was calculated as 95th percentile minus 5th percentile. This works well760

to characterize steady-state responses to sine waves, and this metric is used in Figure 7C761

for both the Wienecke et al. [20] T5 sine wave data and the Gruntman et al. [8] T5 sine762

wave data. However, this measure is less amenable to transient flash responses. DSImag763

ASAP2f values (Figure 7C) were provided by Wienecke et al. [20]. DSImag values for T5764

electrophysiology sine wave data from [8] were calculated using average peak and average765

trough values for both PD and ND traces.766

Gruntman et al. [7, 8] use the following metric to describe their flash responses:767

DSImax =
max(PD)−max(ND)

max(PD)
(6)

where each response max is defined as the 0.995 quantile within the stimulus presentation768

window. However, this does not take into account the ND amplitude in the denomenator,769

and is possibly susceptible to spuriously large DSI values due to noise [46]. We therefore use770

the following DSImax for flash responses:771

DSImax =
max(PD)−max(ND)

max(PD) + max(ND)
(7)

Connectome Data772

T5 synapse-level connectomic data was accessed from the comprehensive electron-microscopy773

(EM) reconstruction of inputs to T4 and T5 cells in the Drosophila optic lobe by Shi-774

nomiya et al. [18]. Detailed data from twenty reconstructed T5 cells is available, with775

synapse counts for each presynaptic cell Tm1, Tm2, Tm4, and Tm9 from various columns776

(https://flyem.dvid.io/fib19-grayscale). For a given T5 cell, we summed the synapse777
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counts for each input (e.g. the synapse counts of Tm9 from column “K” and Tm9 column778

“C” were summed) and calculated the relative ratio of each of the four cell types. As re-779

ported in the study, Tm9 cells were consistently clustered on the leading edge of a given T5780

cell, while Tm1, Tm2 and Tm4 cell synapses were clustered in the center of T5 dendrites.781

We therefore made the reasonable assumption that all synapse counts for each cell from var-782

ious columns should be treated as a single offset (Tm9) or centered unit (Tm1,Tm2,Tm4).783

Twenty model instances were generated with these relative weight ratios, and the average PD784

tuning, ND tuning and DSI tuning were calculated (Figure 7B-C). The same approach was785

applied to flash models (Figure 7D-E). While a wide range of relative weight combinations786

confer direction selectivity on T5, we found that EM-based synaptic counts provide good fits787

across multiple models, suggesting that they are a reasonable estimation of synaptic weights788

in this system.789
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Figure S1: White Noise Analysis A. Example white noise spatiotemporal linear filters extracted for
single Tm1, Tm2, Tm4 and Tm9 neurons. B. Comparison of raw data (colored line), white noise filter linear
prediction (grey line) and the white noise filter linear-nonlinear (LN) prediction (dashed red line) for the
same neurons as in A. C. R2 values are comparable between linear and linear-nonlinear (LN) predictions for
all cells.
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Figure S2: Long OFF and ON responses exhibit band-pass properties and are partially rectified
A. A low-pass filter (top) produces a response that fails to return to baseline until the stimulus ends, while
a band-pass filter produces a response that returns to baseline during the course of a long stimulus. A linear
band-pass filter produces symmetric responses to OFF and ON stimuli (middle), while a partially rectified
band-pass filter produces asymmetric response to OFF and ON stimuli (bottom) B. Tm1 (n=4 saline, n=4
OA), Tm2 (n=6, n=4), Tm4 (n=4, n=2) and Tm9 (n=11, n=10) responses to 10 s OFF flashes and 10 s ON
flashes in saline and in OA. All four neurons return to baseline during the flashes and therefore exhibit band-
pass properties. They all show partial rectification in their ON responses. Tm9s presented more variability
in their responses, with some cells showing depolarizing ON responses, resulting in depolarizing ON average.
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Figure S3: Tm9 cells fall into two clusters with narrow and wide spatial receptive fields A.
Example spatiotemporal receptive fields for narrow (n=6) and wide (n=8) Tm9 cells B. Narrow and wide
spatial receptive fields (FWHM=15.4◦, FWHM=60.3◦ when fit with a Gaussian) C. Temporal filters do not
significantly differ D. Static nonlinearities do not significantly differ.
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Figure S4: Tm1, Tm2 and Tm4 exhibit gain contrast adaptation A. Histogram of response values
across conditions. Different conditions elicit responses in the same general dynamic range, although low
contrast responses overall have slightly lower amplitude B. Average temporal filters extracted from truncated
white noise (µ = 0, σ = 1, truncated at ±1), high contrast ternary noise (values randomly selected from
+1, −1 and 0) for Tm1 (n=4), Tm2 (n=2) and Tm4 (n=2), white noise (same data as in Fig. 2A), and low
contrast ternary noise (values randomly selected from +0.1, −0.1 and 0) for Tm1 (n=4). Filter amplitude
differences indicate gain adaptation so that response of cell is within similar dynamic range regardless of
contrast. While this is especially evident in the case of the low contrast ternary noise-extracted Tm1 filter
(top, grey trace), the same effect can be seen between high contrast ternary noise and the Gaussian white
noise (lower contrast)-extracted filters for Tm1 (inset), Tm2, and Tm4. C. When scaled, filters do not show
strong differences in shape
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Figure S5: Tm1, Tm2, Tm4 and Tm9 flash responses in OA A. Flash responses of T5 columnar inputs
to 20, 40, 80, and 160 ms flashes in the presence of OA, with OA white noise filter predictions superimposed
(black dashed line). Same data as in Figure 4E B. Tm1, Tm2, and Tm9 responses to flashes of high vs. low
contrast (n=4, n=3, n=2, respectively) in the presence of OA. OA white noise filter predictions superimposed
(black dashed line).
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Figure S6: Paramaterization of white noise filters A. Parameterization of white noise temporal (left),
spatial filters (middle), and static nonlinearities (right). Same traces as in Figure 2, with parameterization
superimposed (red dashed line) B. Same for OA, with traces from Figure 4.
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Figure S7: Extended linear regression analysis A. Four examples of linear regressions from individual
stimulus conditions varying in the length of stimulation (40 ms and 160 ms), as well as stimulus size (9◦,
4.5

◦
, and 2.25◦). T5 data from Gruntman et al. [8]. B. In Figure 6, we chose to apply linear regression with

Tm1 and Tm9. Combinations of Tm1, Tm2, and Tm4 with Tm9 perform approximately equally well (saline
fits shown in circles, OA fits shown with crosses). C. Tm1 and Tm9 weighted by linear regression coefficients
at each spatial location in the 160 ms, 9◦ condition, for the three fits enumerated in Figure 6 (using white
noise filter predictions, flash responses, and flash OA responses, see Methods). The weighted Tm1 and Tm9
components are summed to generate a representative spatiotemporal receptive field (right of each panel).
D. Gruntman et al. [8] recorded T5 responses to moving bars across multiple stimulus conditions (20, 40,
80, and 160 ms duration and 2.25◦, 4.5

◦
, and 9◦ bar width). Linear regression coefficients fit to static

flashes across conditions (160 ms, 4.5◦ and 9◦) predict T5 moving bar temporal responses (see Methods).
In particular, the Tm1 and Tm9 flash data in the baseline saline condition and OA condition match the T5
electrophysiology traces, as well as DSI (center column, right column). Note that both PD and ND traces
are scaled by a single “gain” factor (see Methods).

Figure S8: Drifting grating responses are well predicted by white noise filters A. Drifting gratings
with 0.5 Hz temporal frequency and with varying spatial frequencies were shown B. Raw drifting grating
response for example Tm1 cell C. Averaged periodic responses for each spatial frequency (colored traces for
a single example Tm1 cell). A linear-nonlinear prediction based on the corresponding spatiotemporal white
noise filter captures the temporal aspects of the response (dashed black line). D. R2 responses for each
stimulus condition across Tm1 cells (n=5). The match between predicted and actual responses indicates
that using a white noise filter linear-nonlinear framework to model T5 responses to drifting gratings is
reasonable. E. R2 responses for Tm1 (n=5), Tm2 (n=1), Tm4 (n=2) and Tm9 (n=2) averaged across
stimulus conditions.
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