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Abstract

New microbial communities often arise through the mixing of two or more separately
assembled parent communities, a phenomenon that has been termed “community
coalescence”. Understanding which features of complex parent communities determine
the outcomes of any given coalescence event is an important challenge. While recent
work has begun to elucidate the role of competition in coalescence, the effect of specific
underlying structures of interactions remains unclear, and that of cooperation, a key
interaction type commonly seen in microbial communities, is still largely unknown.
Here, using a general consumer-resource model we study the combined effects of
competitive and cooperative interactions on the outcomes of coalescence events. We
simulate coalescence between pairs of communities lying on the spectrum from
competition for shared carbon resources, to cooperation through cross-feeding on leaked
metabolic by-products (facilitation). Specifically, we develop novel metrics to quantify
community-wide competition and cooperation levels, and show that these can predict
which community dominates in pairwise coalescence events. We find that when both
types of interactions are present in the parent communities, the less competitive one,
which maximizes resource partitioning, contributes a higher proportion of species to the
new community after coalescence, regardless of its cooperativeness. However,
counter-intuitively, when competition in both parent communities is significantly weaker
than facilitation, the more cooperative one is at a disadvantage during coalescence
because multi-species invasions are able to disrupt established cross-feeding links.
Encounters between microbial communities are becoming increasingly frequent across
the globe, and there is great interest in how the coalescence of microbial communities
affects environmental and human health. Our study provides new insights into the
mechanisms behind microbial community coalescence, and a framework to predict
outcomes based on the interaction structures of parent communities.

Author summary

In nature, new microbial communities often arise from the fusion of whole, previously
separated communities (community coalescence). Despite the crucial role that the
interactions among microbial communities can play in ecosystems, our ability to predict
the outcomes of coalescence events remains limited. Here, using a general mathematical
model, we study whether and how the structure of species interactions confers an
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advantage upon a microbial community when it encounters another. We find that when
both competition and cooperation are present, less competitive communities, which
partition resources well, dominate in coalescence events. However, when competition is
negligible, cooperation turns out to be detrimental to coalescence success, because
highly cooperative communities are more susceptible to multi-species invasions. There
are many potential environmental and health implications of microbial community
coalescence, which will benefit from the theoretical insights that we offer here about the
fundamental mechanisms underlying this phenomenon.

Introduction 1

Microbial communities are widespread throughout our planet [1], from the the human 2

gut to the deep ocean, and play a critical role in natural processes ranging from animal 3

development and host health [2, 3] to biogeochemical cycles [4]. These communities are 4

very complex, typically harbouring hundreds of species [5], making them hard to 5

characterize. Recently, DNA sequencing has allowed a high-resolution mapping of these 6

communities, opening a niche for theoreticians and experimentalists to collaboratively 7

decipher their complexity and assembly [6–14]. 8

Unlike in the macroscopic world, entire, distinct microbial communities are often 9

displaced over space and come into contact with each other due to physical (e.g., 10

dispersal by wind or water) and biological (e.g., animal-animal interactions or leaves 11

falling to the ground) factors [15–18]. The process by which two or more communities 12

that were previously separated join and reassemble into a new community has been 13

termed community coalescence [19]. Although microbial community coalescence is likely 14

to be common, the effects of the interactions structure of parent communities on the 15

outcome of such events remains poorly understood [20]. 16

Early mathematical models of community-community invasion in animals and plants 17

revealed that when two communities merge after barrier removal, asymmetrical 18

dominance of one community over the other one is likely to occur [21,22]. As an 19

explanation for this observation, it was argued that, because communities have been 20

assembled through a history of competitive exclusion, they are likely to compete with 21

each other as coordinated entities, rather than as a random collection of species. This 22

result has been established more rigorously in recent theoretical work, where 23

consumer-resource models have been used to show that in microbial community 24

coalescence events, the winning community will be that which is capable of 25

simultaneously depleting all resources more efficiently [23]. Overall, these findings 26

suggest that communities arising from competitive species sorting exhibit sufficient 27

“cohesion” to prevent successful invasions by members of other communities. 28

However, empirical support for the role of competition alone in coalescence is 29

circumstantial, and the role of cooperation, which is commonly observed in microbial 30

communities, remains largely unknown. For example, during coalescence in 31

methanogenic communities, cohesive units of taxa from the community with the most 32

efficient resource are co-selected [24], and in aerobic bacterial communities, the invasion 33

success of a given taxon is determined by its community members [25]. Nonetheless, 34

neither of these studies was able to establish the role of competition vs. cooperation in 35

shaping cohesiveness, and coalescence success. Yet, these microbial communities exhibit 36

cooperation through a dense cross-feeding network, where leaked metabolic by-products 37

of one species act as resources for others [26–28]. Indeed, several studies have suggested 38

that a combination of competitive and cooperative interactions may determine the 39

outcome of coalescence in microbial communities [29–31]. 40

Here, we focus on the gap in our understanding of the relative importance of 41

competition and cooperation in community coalescence. We use a consumer resource 42
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model that includes cross-feeding to assemble complex microbial communities spanning 43

a broad range in the competition-cooperation spectrum. Using novel metrics, we then 44

quantify community-level competition and cooperation in the assembled communities, 45

as well as their “cohesiveness”. Using the latter metric, we then determine the relative 46

importance of the two types of interactions on success in pairwise coalescence events. 47

Methods 48

Mathematical model 49

We use a mathematical model based on Marsland et al. [6] (see Supporting text section
1) for the microbial consumer-resource dynamics (Fig 1):

dnα
dt

= gαnα

(1− l)
∑
j

cαjRj − zα

 ,

dRj
dt

= κj −
∑
α

nαcαjRj + l
∑
αk

nαDkjcαkRk.

(1)

Here, nα (α = 1, . . . , s) and Rj (j = 1, . . . ,m) are the biomass abundance of the αth 50

microbial (e.g., bacterial) species and the concentration of the jth resource (e.g., carbon 51

source). The growth of species α is determined by the resources it harvests minus the 52

cost of maintenance (two terms in the brackets). Resource uptake depends on the 53

resource concentration in the environment Rj , and whether or not the species α uses 54

resource j (cαj = 1 or cαj = 0, respectively). The leakage term l determines the 55

proportion of this uptake that is released back into the environment as metabolic 56

by-products, with the remainder (1− l) being allocated to growth. The maintenance 57

cost term, zα, is dependent on the number of resources that the αth species consumes, 58

and is given by the expression: 59

zα = χ0(1 + ε)
∑
j

cαj , (2)

where χ0 is the average cost of being able to consume a given resource, the summation 60

represents the total number of resources that species α is able to process, and ε is a 61

random fluctuation sampled from a truncated (so that zα > 0) normal distribution. 62

Eq 2 ensures that neither generalists nor specialists are systematically favoured during 63

the community assembly by imposing a greater cost on species that consume a wider 64

range of resources (see Supporting text section 2). The uptake that remains after 65

subtracting this maintenance is transformed into biomass with a proportionality 66

constant of gα, the value of which does not affect the results presented here. 67

The change in the concentration of resources in the environmental pool are 68

determined by three terms. The first term represents the external supply κj , which 69

gives the rate at which the jth resource enters the system. The second term is the 70

uptake of the jth resource from the environment, summed across all s consumers in the 71

system and the third term represents resources entering the environmental pool via 72

leakage of metabolic by-products. By-product leakage is determined by the metabolic 73

matrix D (or the “stoichiometric” matrix; [6]), with the jkth element representing the 74

leaked proportion of resource j that is transformed into resource k. Due to conservation 75

of energy, D is, by definition, a row stochastic matrix, meaning that its rows sum to 1. 76

The above model entails the following assumptions: (i) all resources contain the 77

same amount of energy (taken to be 1 for simplicity), (ii) a type I functional response, 78

(iii) binary consumer preferences, (iv) a shared core metabolism encoded in D, (v) a 79
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common leakage fractions for all species and resources, and (vi) a complex environment 80

where all resources are externally supplied in equal amounts. We address the 81

implications of these assumptions in the Discussion section. 82

Competition and facilitation metrics 83

Previous work suggests that during coalescence events, sets of species from the same 84

community act as cohesive units and are selected together (ecological 85

co-selection) [21–25]. Our goal is to quantify community-level cohesion (Θ), by 86

considering the interactions between all species in the community, classifying 87

cooperative interactions as cohesion inducing, and competitive ones as cohesion 88

precluding [35], so that 89

Θ = F − C, (3)

where F and C are measures of community-wide facilitation and competition 90

respectively, which we now define. 91

In the system described by Eqs 1, facilitation occurs when a species leaks metabolic 92

by-products that are used by another species. We compute community-level cooperation 93

by calculating the strengths of facilitation between individual species pairs and then 94

averaging them across the community: 95

F = 〈Fαβ〉α6=β . (4)

Here, F is a unitless quantity where the facilitation between the species, α→ β is given 96

by: 97

Fαβ = l
∑
jk

κ̃jcαjDjkcβk, (5)

where l is the strength of cooperative links, and the term cαjDjkcβk represents the 98

necessary condition to establish a cooperative link (see Supporting text section 3 for 99

further details). 100

Competition for resources exists because of the overlap in resource preferences (the 101

cαj ’s) between species. The realized strength of competition between species depends on 102

the resource environment they experience, which is made up of two sources; the 103

externally supplied resources, and the metabolic by-products generated by the 104

community. Similar to facilitation, we develop a new metric of pairwise competition 105

strength that accounts for both these sources. We then measure community-level 106

competition by taking the average of the strengths of competition between all species 107

pairs (see Supporting text section 3 for details), that is 108

C = 〈(Ca)αβ + (Cb)αβ〉α6=β . (6)

Here again, community-level competition C is a unitless quantity partitioned into two 109

components: (Ca)αβ measures the level of competition between species pair (α, β) for 110

externally supplied resources, and (Cb)αβ the level of competition for resources that 111

have been leaked by species across the community. 112

We define the competition for externally supplied (abiotically-generated) resources
(Ca)αβ to be

(Ca)αβ = (1− l)
∑
k

κ̃kcαkcβk.

That is, intrinsic competition between the species pair is quantified by their common 113

resource preferences through the scalar product of their preference vectors. Interaction 114

strength is determined by the fraction of externally supplied resources that is effectively 115

consumed, 1− l, and the factor κ̃k accounts for possible differences in external supply 116

rate between resources. 117
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Fig 1. Overview of the coalescence modelling methodology. Step 1. The matrix of resource preferences (C) and
the metabolic matrix (D) are sampled for each community under both the unstructured, and structured scenarios. Black
polygons are different resource types. Step 2. Dynamics of the system are allowed to play out (Eqs 1) until steady state is
reached. The solid bidirectional arrow represents a competitive link between two species, and the unidirecitonal dashed
arrows capture facilitation from one species to another. Step 3. Pairs of the assembled parent communities are randomly
picked, mixed, and the resulting community re-run to steady state. Step 4. The contribution of each parent community to
the final mix is analyzed (S1,2, Eq 9) as a function of their cohesion before they coalesced (∆Θ, Eq 3).

The second term in Eq 6 corresponds to competition for resources leaked as
metabolic by-products (biotically-generated resources), and is written as

(Cb)αβ = l
∑
jk

κ̃jDjk (cαj + cβj) cαkcβk.

Here, l is the strength of competition on leaked resources (the rationale behind this can 118

be found in Supporting text section 3 and Fig S1), and the product 119

Djk(cαj + cβj)cαkcβk represents the necessary conditions to have effective competition 120

for the kth leaked resource (see Supporting text section 3 for details). 121

Simulations 122

Fig 1 presents an overview of our methodology used to simulate community coalescence, 123

which we describe here. The matrix implementation used in the actual simulations is 124

described in the Supporting text section 8. 125

Step 1: Parameterization 126

We first generate parent communities with interactions across the spectrum of 127

competition to cooperation. To this end, for each parent community, resource 128

preferences and secretion parameters (the cαj ’s and Djk’s, respectively) of s = m = 60 129

consumer species and resource types are sampled from random distributions, but with 130

two types of constraints that modulate the competition and facilitation levels 131

(cohesiveness) achieved at steady state, or introduce structure in the system. 132

Modulating competition and facilitation levels. We use an iterative procedure to 133

impose a specific level of competition by increasing or decreasing niche similarity 134

between consumers (see Supporting text section 4). In this procedure, resource 135

preferences of single species are assigned iteratively by re-evaluating the probability that 136

species α samples resource j, given by 137

pαj = (1− kc)
1

m
+ kcd̃α−1j , (7)
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Fig 2. Examples of differently structured preference (C) and metabolic (D) matrices. These have
been generated with different combinations of the competition and facilitation parameters kc, Kc, kf , and Kf in
systems of 60 resource types and 60 consumer species. In the metabolic matrices (D–F), lighter colours indicate
higher values (resource fractions secreted). A & D: Purely random matrices, where all the four parameters are 0.
B & E: As kc and kf are increased the regime moves towards greater preferential feeding, where more demanded
resources are more likely to be consumed (increase of kc), but also secreted at higher fractions (increase of kf ). C
& F: Instead, if Kc and Kf are increased, the regime moves towards more structured resource use, where species
in one guild are more likely to consume resources from their preferred resource class (increase in Kc), and leak
higher fractions of resources that do not belong to their preferred resource class (increase in Kf ).

where m is the number of resource types, d̃α−1j is the normalized cumulative demand of 138

resource j at iteration α− 1, and kc is the competitiveness factor (see Supporting text 139

section 4 for details). In each step of the iteration, the sampling probability of each 140

resource by a given consumer is changed according to the demand on it such that 141

highly-demanded resources are more likely to be sampled in the next step (“preferential 142

feeding”). Note that kc modulates how much consumers prefer highly-demanded 143

resources, such that when kc = 0, the sampling is uniformly random (Fig 2A); as 144

kc → 1, the feeding becomes increasingly preferential (Fig 2B). 145

The facilitation level of the community depends on the topology of metabolic matrix 146

D (Fig 2D), which is specified such that the resources that are highly demanded are 147

also secreted in large fractions (Fig 2E, and see Supporting text section 4 for details). 148

Introducing guild structure. Recent empirical studies suggests that microbial species 149

tend to form guilds with similar metabolic capabilities, thus introducing some degree of 150

functional redundancy in the communities they form [32,33]. Theoretical studies 151

support these observations [7,14,34]. We therefore add further structure to the matrices 152
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C and D, by partitioning resources into classes, and constraining consumers to feed on 153

a preferred class, but leak to any other, forming consumer guilds. Adding this structure 154

yields two interaction layers (imagine superimposing Figs 2B&C with Figs 2E&F): 155

inter-guild facilitation and competition between consumers preferring distinct resource 156

classes, and intra-guild facilitation and competition, which stems from the 157

previously-imposed preferential feeding. 158

Resource preferences in this scenario are assigned similarly to the unstructured 159

preferential feeding above, except that the probability that species αA (which feeds 160

preferentially on resource class A) samples resource j, is now weighted up or down 161

depending on whether j belongs in guild A, or not, respectively (Fig 2C, derivation in 162

Supporting text section 5), as: 163

pAαj =


1

A (1 +Kc(Nc − 1))
( 1

m
(1− kc) + d̃α−1jkc

)
if j ∈ A

1

m
(1−Kc) otherwise.

(8)

Here A is a normalization constant ensuring that the probabilities sum to 1. The 164

magnitude of this effect is given by the constant Kc, which controls the amount of 165

consumer guild structure in C. 166

The metabolic matrix D (Fig 2F) is constructed such that the fraction of leaked 167

by-product k is lower if it belongs to the same class as the consumed resource j 168

(elements within block-diagonals of D), and higher otherwise (off-block diagonal 169

elements of D). The prominence of this structure in the matrix is given by the 170

inter-guild facilitation factor Kf (see Supporting text section 5 for details). 171

Step 2: Assembly of parent communities 172

After parameterization, we numerically simulate the dynamics of each parent 173

community (with s = m = 60), according to Eq 1 until steady state is reached. We 174

assemble parent communities using the preferential feeding parameterization of the 175

consumer preference and metabolic matrices either with or without the guild-structure 176

described above (henceforth referred to as the structured or unstructured scenarios, 177

respectively). Within each of the two sets, we perform 100 random assemblies at each 178

combination of competition and facilitation values (i.e. kc = kf ∈ [0, 0.5, 0.9]), setting 179

Kc = Kf = 0 or Kc = Kf = 0.9 for the unstructured and structured cases respectively. 180

Traversing the parameter space in this way ensures that all regimes shown in Fig 2, and 181

their possible superpositions are visited 100 times. In order to assess the effect of 182

leakage (which will modulate interactions strength between species as shown by 183

Eqs 6 & 4) we repeat these simulations in three leakage regimes setting l = [0.1, 0.5, 0.9]. 184

Further details of the assembly simulations are in Supporting text section 6. 185

Step 3: Coalescence 186

To simulate coalescence we randomly sample pairs of assembled communities (2 ·104 187

pairs for each leakage level), set all resources to their initial concentrations, and 188

numerically integrate the new combined system to steady state. By selecting random 189

communities we sample across a range of interaction types within communities (i.e. 190

from competition to cooperation) and differences in cohesiveness values between the two 191

communities (see Supporting text section 6 for further details). 192

Step 4: Post-coalescence analysis 193

We analyse the contribution of the communities in the original pair to the species’ 194

presence or absence profile in the coalesced community, and how this contribution 195
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depends on the cohesiveness of the parent communities (Θ1 and Θ2, measured before 196

coalescence using Eq 3). We measure the similarity of the coalesced community to each 197

of the two parents (indexed by 1 and 2), which gives a measure of parent community 198

dominance: 199

S1,2 = ~pf ·
(
~p1
r1
− ~p2
r2

)
, (9)

where ~pf , ~p1, and ~p2 are (s1 + s2)–dimensional vectors of species presence-absence in 200

the post-coalescent, and parent communities 1, and 2, respectively, with r1 and r2 the 201

species richness values of the parent communities 1 and 2, respectively (calculated as 202

ri =
∑

~pi). If S1,2 = 1, the coalesced community is identical to parent community 1, 203

and if S1,2 = −1, it is identical to parent community 2. This measure is independent of 204

the number of consumer species, allowing us to mix communities with different levels of 205

species richness, avoiding bias in similarity towards the richer one. 206

Results 207

Minimizing competition ensures coalescence success 208

We first simulate coalescence between pairs of communities in the unstructured scenario 209

(i.e. without guild-structure; Fig 3A). We find that communities with higher cohesion 210

values tend to perform better in coalescence as seen by the positive relationship between 211

parent community dominance (S1,2) and the difference in cohesion between the parent 212

communities (Θ1 −Θ2; Fig 3C). That is, communities that emerge following coalescence 213

tend to have greater similarity with their more cohesive parent. This relationship holds 214

across all three leakage regimes. At low leakage, facilitation is negligible (blue line in 215

Fig 3B), and competition is mainly for abiotically-generated resources (dashed line in 216

Fig 3B). Thus, in this regime, being more cohesive is equivalent to being less 217

competitive and communities that minimize competition succeed in coalescence events. 218

This trend holds at higher values of leakage, even where facilitation is larger than 219

competition (now mainly for leaked resources) on average. This suggests that with only 220

preferential feeding, (minimizing) competition drives the outcome of community 221

coalescence, overriding the effects of facilitation (see Fig S5 for further details). 222

Previous work has linked success in coalescence to effective resource usage [23]. To 223

test this in our system, we plot, for all the assembled communities, the total resource 224

abundance per consumer at steady state, for three values of leakage, as a function of the 225

community’ intrinsic cohesion (Fig 3D), which is given by 226

Θ̂ =
F − Cb

l
− Ca

1− l . (10)

This measure accounts for just the cohesion structure, leaving out the strength of the 227

links (allowing comparison between different values of leakage). The negative 228

correlation we observe (which holds too for the guild-structured scenario, Fig S4) 229

implies that as expected, more cohesive communities deplete resources more efficiently. 230

As the value of leakage decreases, more diverse and less competitive communities 231

(brighter colors and circular shapes, corresponding to decreasing kc values, in Fig 3D) 232

cluster together more compactly at lower depletion levels. This is because more 233

competitive communities tend to be less diverse (see Fig S1), and below a certain 234

richness threshold, are not able to saturate the available resource niches. Cooperative 235

links in communities with low leakage are too weak to balance this. On the contrary, in 236

high leakage communities, the stronger cooperative links are able to counter the effects 237

of competition by making all resources more evenly available across the community. 238
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Fig 3. Community coalescence with preferential feeding. A: Example of the secretion matrix of
(CD)αk’s, the total leakage of resource k by species α. B: Community-level competition C (dark red) and
facilitation F (blue) averaged across simulations for each leakage value. Competition for abiotically-generated
resources (Ca) decreases, and that for biotically-generated resources (Cb) increases with leakage, with total
competition remaining consistently high throughout. Facilitation, on the other hand, increases linearly with
leakage. C: The post-coalescence community is more similar to its more cohesive parent. Shown is the binned
mean (20 bins) over communities with similar parent cohesion difference Θ1 −Θ2 (solid line) ± 1 standard
deviation (shaded) for the three leakage values. D: Total resource abundance per consumer at steady state is
negatively correlated with intrinsic cohesion, for all leakage values, confirming that more cohesive communities,
which also tend to be more species-rich, and less competitive, deplete resources more efficiently. Different values
of kc are in different shapes.

Cooperation undermines coalescence success 239

Next we simulate community coalescence by imposing consumer guild structure. This 240

effectively results in the biotically-generated resource competition (Cb in Eq 6) 241

becoming very low, bringing out a new regime at high l values where C << F (Fig 4B). 242

When coalescence is simulated between such pairs of communities, we find that in the 243

low leakage regime, where significant competition is present, the same result (yellow and 244

red lines in Fig 4C) as in the case with only preferential feeding (Fig 3B) is recovered. 245

In the highest leakage regime the correlation between parent community dominance and 246

cohesion reverses (black line, Fig 4C). Competition is negligible in this regime (Fig 4B), 247

so being more cohesive is equivalent to having higher levels of facilitation. Thus, the 248

negative correlation indicates that more facilitative communities perform poorly in 249

coalescence events, that is, cooperative communities are easily invaded by a 250

randomly-picked community (see Fig S5). One empirically-supported explanation for 251

this observation is that multi-species invasions can easily disrupt cooperative 252

links [36–38]. To test this, we measured the average facilitation in the mixed and losing 253

communities, as well as in the group of species that went extinct during the coalescence 254

event, across all simulations at each leakage value (Fig 4D). The results confirm our 255

intuition: both, the species in the losing parent community, and the species that go 256

extinct from that community, tend to be engaged in stronger cooperative links relative 257

to those in the post-coalescence community (yellow and red bars are higher than the 258

black bars). As expected, this pattern is strongest for very high values of leakage 259
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Fig 4. Community coalescence with consumer guilds present. A: Example of a secretion matrix with
consumer guild structure in addition to preferential feeding. B: Community-level competition (C) and facilitation
(F) averaged across simulations for different levels of leakage. For low values of leakage, competition for
abiotically-generated resources (Ca) dominates, and for high values of leakage facilitation (F) is the important
term. Competition for biotically-generated resources (Cb) is consistently low due to the consumer guild structure
imposed on matrices C and D. C: Parent community dominance is positively correlated with ∆Θ for low values
of leakage, when C > F ; but negatively correlated with ∆Θ for high values of leakage, when C < F . D: The
difference in average intrinsic facilitation between extinct species, losing parent community, and post-coalescence
community, increases with leakage, indicating that in more cooperative communities, facilitation links are
disproportionately disrupted by invading species.

(l = 0.9), where the strongest cooperative links are present. Note that the y-axis in 260

Fig 4D is leakage-independent, and therefore it is only measuring the facilitation 261

topology, that is, the number of cooperative links independent of the flux through them, 262

l (recall Eq 5). 263

Discussion 264

New microbial communities often emerge through community coalescence [19]. Previous 265

studies have focused on the cohesiveness exhibited by coalescing communities [21–25,39]. 266

In Tikhonov’s study, the cohesion displayed by coalescing communities in the absence of 267

cooperative interactions was explained in terms of effective resource depletion [23]. This 268

allowed the winning community to engineer an environment more favorable for itself 269

than for the losing community, which was partially or completely displaced. This result 270

has been experimentally verified in methanogenic communities [24], which are 271

characterized by a dense metabolic cross-feeding network. However the question remains 272

as to how a model built exclusively around competition can explain the complex reality 273

of coalescence in the presence of extensive cross-feeding. Our findings offer new, general 274

insights by explicitly considering the effect of the structure of interactions underlying 275

resource competition and cooperation. In particular, we find that the balance between 276

competition and cooperation can substantially change the outcome of coalescence 277

events, as has been suggested recently [30]. Overall, these findings extend the results of 278

previous theoretical studies to accommodate metabolic interdependence (cross-feeding); 279
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an essential feature of real microbial communities [35,38], and also provide theoretical, 280

mechanistic insights into empirical studies that have demonstrated the importance of 281

cross-feeding interactions on coalescence [24]. 282

Reassuringly, the emerging pattern we find at l ≈ 0 (yellow line in Fig 3B), parallels 283

that emerging in [23]. However, we do not define cohesiveness in terms of resource 284

depletion efficacy, but rather as a function of the underlying interaction structure, 285

confirming that resource use efficiency is indeed a consequence of structural 286

minimization of competition (Fig 3D). The consistency of the trend in Fig 3B across the 287

whole leakage range suggests that minimizing competition is the main factor driving the 288

outcome of community coalescence even in the presence of strong cooperation. When 289

l > 0, high competition levels prevailed, but were taking place in an altered environment, 290

one engineered by a community that both consumed and secreted resources. Ultimately, 291

competition for leaked resources exists because the species are secreting resources 292

necessary for their own growth. While this might seem disadvantageous and thus 293

unrealistic at first, leaking essential resources is an common phenomenon in microbial 294

systems [40,41], and may be advantageous as a “flux control” mechanism employed by 295

individual cells to promote growth in crowded environments [42,43]. 296

After adding consumer guild structure to parent communities consistent with 297

empirical observations, we saw a new regime emerge for high values of leakage where the 298

community-level cooperation was high, and competition was negligible. In this case the 299

consistent positive correlation between cohesion and coalescence success found 300

previously was reversed (Fig 4D), driven by the fact that multi-species invasions can 301

easily disrupt cross-feeding links in more cooperative communities. This result is in line 302

with empirical results showing that cooperative links are susceptible to be intercepted 303

by species invasions [36–38]. Nonetheless, recent in-silico results of single species 304

invasions on microbial communities have found that cooperative communities are more 305

resistant to invasions than their competitive counterparts [44]. The apparent 306

contradiction between this finding and our own suggests that invasions in the context of 307

complex communities cannot be understood from the study of single species. 308

Investigating the dynamics of these multi-species invasions of cooperative communities 309

in greater detail is a potentially important area for future work. 310

Throughout this work, we assumed that all resources were supplied, and at a fixed 311

rate. Removing environmental fluctuations in the form of resource variation allowed us 312

to focus on coalescence in terms of variation in species interaction structure alone. 313

While this assumption may be sensible in some cases [45], it is an oversimplification in 314

others [31]. Extending this theoretical framework to study the effects of resource supply 315

variation, e.g., by allowing substrate diversification from a single supplied resource [6, 7], 316

is a promising direction for future research. In such cases, we expect that only the 317

cooperative links necessary to diversify the supplied carbon source will persist upon 318

coalescence events, but above that threshold, the results presented here would be 319

recovered. The resource dynamics where further simplified in this work by assuming a 320

type-I functional response. This is not expected to change our results substantially, 321

since our simulations are performed at steady state, where all three types of functional 322

responses behave the same. Given the heavy simulation based approach taken here, 323

assuming a core metabolism and leakage common to the whole community, made the 324

dynamics computationally tractable, while ensuring that the system was not far away 325

from the conditions of real communities [6, 34]. 326

The pairs of coalescing communities in this work were drawn with no richness 327

restrictions, that is, communities with different species richness were allowed to 328

compete. Consequently, the results reported here are independent of the species richness 329

of the mixed communities. Interestingly, several previous studies have pointed to 330

microbial community diversity as an important factor driving resource use efficiency 331
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and, therefore, determining community resistance against biotic and abiotic 332

perturbations [46–48]. These observations do not necessarily contradict the results 333

reported here. Instead, our findings suggest that community interactions may be a more 334

fundamental mechanism explaining the response of communities to environmental and 335

biotic perturbations, and that biodiversity is rather a consequence of the underlying 336

community interaction network. It is not surprising that empirical studies usually focus 337

on biodiversity’s influence on community stability (the “diversity-stability” relationship) 338

rather than of community interactions, since the latter is much harder to measure than 339

the former. Understanding biodiversity as an emergent property of the interaction 340

network topology in a microbial community is a promising line of future research [49]. 341

Encounters between microbial communities are becoming increasingly frequent [50], 342

and mixing of whole microbial communities is gaining popularity for 343

bio-engineering [51], soil restoration [52], faecal microbiota transplantation [53,54], and 344

the use of probiotics [55]. We present a framework which relates the nature of species 345

interaction in microbial communities to the outcome of community coalescence events. 346

Although more work is required to bridge the gap between theory and empirical 347

observations, this study constitutes a key step in that direction. 348
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