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Abstract 

Although bottom-up attention can improve visual performance with and without 

awareness, whether they are governed by a common neural computation remains 

unclear. Using a modified Posner paradigm with backward masking, we found that 

both the attention-triggered cueing effect with and without awareness displayed a 

monotonic gradient profile (Gaussian-like). The scope of this profile, however, was 

significantly wider with than without awareness. Subsequently, for each subject, the 

stimulus size was manipulated as their respective mean scopes with and without 

awareness while stimulus contrast was varied in a spatial cueing task. By measuring 

the gain pattern of contrast-response functions, we observed changes in the cueing 

effect consonant with changes in contrast gain for bottom-up attention with awareness 

and response gain for bottom-up attention without awareness. Our findings indicate an 

awareness-dependent normalization framework of visual bottom-up attention, placing 

a necessary constraint, namely, awareness, on our understanding of the neural 

computations underlying visual attention. 

 

Keywords: visual bottom-up attention; normalization model; awareness; attention 

field; gradient profile 
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Introduction 

Covert attention, the selective processing of visual information at a given location in 

the absence of eye movements, can be attracted automatically by an exogenous cue, 

known as visual bottom-up attention (Corbetta and Shulman, 2002; Hegdé and 

Felleman, 2003; Kastner and Ungerleider, 2000; Koch and Ullman, 1985; Nakayama 

and Mackeben, 1989; Yantis and Jonides, 1984). Numerous studies have 

demonstrated that this bottom-up attention-triggered attraction can improve visual 

performance with (Beck and Kastner, 2005; Carrasco, 2011; Corbetta and Shulman, 

2002; Kastner et al., 1997; Posner, 2016; Posner et al., 1980; Serences and Yantis, 

2007) and without awareness in various paradigms, such as visual backward masking 

(Chen et al., 2016; Huang et al., 2020; Naccache et al., 2002; Zhang et al., 2012), 

crowding (Faivre and Kouider, 2011; Montaser-Kouhsari and Rajimehr, 2005), and 

continuous flash suppression (Bahrami et al., 2007; Hsieh et al., 2011; Jiang et al., 

2006), as well as sub-threshold presentation (Bauer et al., 2009; Lin et al., 2009; 

Mulckhuyse and Theeuwes, 2010; Zhang and Fang, 2012) and the patient with 

blindsight (Kentridge et al., 1999a, 1999b, 2004). However, it’s unclear whether there 

is a common neural computation governing bottom-up attention-triggered 

improvement in visual performance with and without awareness. 

There has been a long-standing debate about the neural computations underlying 

visual bottom-up attention. Experiments examining how it modulates visual 

performance and neuronal activity in visual cortex have found disparate attentional 

effects on stimulus-evoked neural responses, such as the contrast-response function 
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(CRF) that has often been used in the literature (Martínez-Trujillo and Treue, 2002; 

Reynolds et al., 2000). Some have reported that attentional selection primarily 

enhances neural responses to high-contrast stimuli (response gain, Di Russo et al., 

2001; Kim et al., 2007; Lee and Maunsell, 2009; Ling and Carrasco, 2006; McAdams 

and Maunsell, 1999; Morrone et al., 2002), whereas others have reported that 

attentional selection primarily enhances neural responses to medium-contrast stimuli 

(contrast gain, Li et al., 2008; Martínez-Trujillo and Treue, 2002; Reynolds and 

Chelazzi, 2004; Reynolds et al., 2000). Still others have reported that attentional 

selection either enhances the entire contrast range or produces a combination of both 

response-gain and contrast-gain changes (Buracas and Boynton, 2007; Huang and 

Dobkins, 2005; Murray, 2008; Pestilli et al., 2011; Williford and Maunsell, 2006). 

Crucially, these ostensibly conflicting results of the gain changes induced by 

visual attention can be explained by the normalization model of attention (Boynton, 

2009; Carandini and Heeger, 2012; Herrmann et al., 2010; Lee and Maunsell, 2009, 

2010; Reynolds and Heeger, 2009; Reynolds et al., 1999), which proposes that 

attention-triggered improvements on perception hinge on two critical factors: the 

stimulus size and the attention field size. Changes in the relative size of these two 

factors can tip the balance between neuronal excitatory and inhibitory processes, 

thereby resulting in response-gain changes, contrast-gain changes, or various 

combinations of the two (Reynolds and Heeger, 2009). Specifically, this model 

predicts that attention increases contrast gain when the stimulus is small and the 

attention field is large and increases response gain when the stimulus is large and the 
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attention field is small. Remarkably, previous psychophysical (Herrmann et al., 2010; 

Schallmo et al., 2020; Schwedhelm et al., 2016; Zhang et al., 2016), 

electroencephalography (Itthipuripat et al., 2014, 2019), and voxel-based functional 

magnetic resonance imaging (Hara et al., 2014) studies have reported that the patterns 

of behavioral performance, steady-state visual evoked potentials, and voxel-averaged 

neurometric functions, respectively, are all consistent with the predictions of 

normalization model of attention. However, little is known regarding whether visual 

bottom-up attention with and without awareness is governed by this common neural 

computation: normalization and how awareness could modulate the gain changes 

induced by attentional selection. 

Here, using a modified Posner paradigm with backward masking, we first 

manipulated the distance between the cue and probe (Figure 1) to measure the 

attention filed of visual bottom-up attention with and without awareness (Distribution 

Experiments). We found that the Posner cueing effect with and without awareness 

were both a monotonic gradient profile with a center maximum falling off gradually 

in the surround (Gaussian-like, Figure 2). Thus, for each subject, we fit their gradient 

profiles with a Gaussian function and used the FWHM (full width at half maximum) 

bandwidth of the Gaussian to quantify their scopes. The scopes of gradient profiles, 

however, were significantly wider with than without awareness, which offers a unique 

opportunity to change the size of the attentional scope relative to the stimulus size. 

Thus, for each subject, the stimulus size was manipulated as their respective mean 

scopes of visual bottom-up attention with and without awareness while stimulus 
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contrast was varied in a spatial cueing task (Normalization Experiments). We 

measured the gain pattern of CRFs on the spatial cueing effect derived by visible or 

invisible cues and empirically revealed an interaction between awareness and visual 

bottom-up attention: gain modulation depended on awareness, with a change in the 

spatial cueing effect consonant with a change in contrast gain for visible cues and 

response gain for invisible cues. Additionally, using the classical normalization model 

of attention (Reynolds and Heeger, 2009), we successfully simulated the scopes of 

visual bottom-up attention with and without awareness. Our results thus support 

important predictions of the normalization model of visual bottom-up attention and 

further reveal its dependence on awareness. 
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Results  

Distribution Experiments 

The Distribution Experiment consisted of 3 experiments. In each visual field, the 

probe position was constant and the exogenous cue position varied in Experiment 1 

(VCCP, Figure 1A), whereas Experiment 2 was a converse situation (CCVP, Figure 

1D). In both Experiments 1 and 2, there were five possible distances between the 

exogenous cue and probe, ranging from D0 (cue and probe at the same location) 

through D4 (cue and probe four items away from each other). Subjects participated in 

Experiments 1 and 2 on two different days, and the order of the two experiments was 

counterbalanced across subjects. Experiment 3 checked the effectiveness of the 

awareness manipulation in both Experiments 1 and 2, and was always before them. 

Results showed that, our awareness manipulation was effective for both visible and 

invisible conditions (Figure S1). In both Experiments 1 (Figure 1C) and 2 (Figure 1F), 

each trial began with the fixation. A cue frame with (the cue condition) or without (the 

non-cue condition) exogenous cue was presented for 50-ms, followed by a 100-ms 

mask (low- and high-contrast masks rendered the exogenous cue visible or invisible to 

subjects, respectively) and another 50-ms fixation interval. Then a probe line, 

orientating at 45° or 135° away from the vertical, was presented for 50-ms. Subjects 

were asked to press one of two buttons as rapidly and correctly as possible to indicate 

the orientation of the probe (45° or 135°). There was no significant difference in the 

false alarm rate, miss rate, or removal rate (i.e., correct reaction times shorter than 200 
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ms and beyond three standard deviations from the mean reaction time in each 

condition were removed) across conditions (all P > 0.05, Figure S2). The cueing 

effect for each distance (D0 to D4) was quantified as the difference between the 

reaction time of the probe task performance in the non-cue condition and that in the 

cue condition.  

Figure 2A shows the cueing effect of each condition for both Experiments 1 and 

2; most of these cueing effects were significantly above zero, indicating that the 

bottom-up attention of the subject was attracted to the exogenous cue location, 

allowing them to perform more proficiently in the cue condition than the non-cue 

condition of the probe task. In both Experiments 1 and 2, a repeated measures 

ANOVA with awareness (visible and invisible) and distances (D0 to D4) as 

within-subjects factors showed that, the interaction between these two factors 

(Experiment 1: F4, 60 = 9.921, p < 0.001, η
2 

p = 0.398; Experiment 2: F4, 60 = 3.36, p = 

0.015, η
2 

p = 0.183), the main effect of awareness (Experiment 1: F1, 15 = 29.27, p < 

0.001, η
2 

p = 0.661; Experiment 2: F1, 15 = 72.26, p < 0.001, η
2 

p = 0.828), and the main 

effect of distances (Experiment 1: F4, 60 = 80.08, p < 0.001, η
2 

p = 0.842; Experiment 2: 

F4, 60 = 86.30, p < 0.001, η
2 

p = 0.852) were all significant. Subsequent post hoc paired t 

tests revealed that the cueing effect decreased gradually with the distance in both 

Experiments 1 (the visible condition, D0 versus D1: t15 = 6.56, p < 0.001, η
2 

p = 3.388, 

D1 versus D2: t15 = 3.68, p = 0.023, η
2 

p = 1.900, D2 versus D3: t15 = 4.36, p = 0.006, η
2 

p

= 2.251, D3 versus D4: t15 = 3.18, p = 0.063, η
2 

p = 1.642; the invisible condition, D0 

versus D1: t15 = 6.44, p < 0.001, η
2 

p = 3.326, D1 versus D2: t15 = 4.13, p = 0.009, η
2 

p = 
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2.133, D2 versus D3: t15 = 1.60, p = 1.000, η
2 

p = 0.826, D3 versus D4: t15 = 0.60, p = 

1.000, η
2 

p = 0.310) and 2 (the visible condition, D0 versus D1: t15 = 6.72, p < 0.001, η
2 

p

= 3.470, D1 versus D2: t15 = 5.70, p < 0.001, η
2 

p = 2.943, D2 versus D3: t15 = 1.28, p = 

1, η
2 

p = 0.661, D3 versus D4: t15 = 2.08, p = 0.554, η
2 

p = 1.074; the invisible condition, 

D0 versus D1: t15 = 9.12, p < 0.001, η
2 

p = 4.710, D1 versus D2: t15 = 2.27, p = 0.001, η
2 

p

= 1.172, D2 versus D3: t15 = 0.50, p = 1.000, η
2 

p = 0.258, D3 versus D4: t15 = 0.40, p = 

1.000, η
2 

p = 2.207). These results indicated that bottom-up attention-triggered cueing 

effects with and without awareness were both a monotonic gradient profile with a 

center maximum falling off gradually in the surround.  

Subsequently, to further assess the shape of bottom-up attentional modulation, 

we fitted a monotonic model and two non-monotonic models to the average cueing 

effect across distances (D0 to D4) in both visible and invisible conditions. The 

monotonic model was implemented as the Gaussian function, and the two 

non-monotonic models were implemented as the Mexican Hat (i.e., a negative second 

derivative of a Gaussian function) and Polynomial functions (Fang and Liu, 2019; 

Fang et al., 2019; Finke et al., 2008). To compare these three models to our data, we 

first computed the Akaike information criterion (AIC, Akaike, 1973) and Bayesian 

information criterion (BIC, Schwarz, 1978) with the assumption of a normal error 

distribution. Then, we calculated the likelihood ratio (LR) and Bayes factor (BF) of 

the monotonic model (Gaussian) over non-monotonic models (Mexican Hat and 

Polynomial) based on AIC (Burnham and Anderson, 2002) and BIC (Wagenmakers, 

2007) approximation, respectively. Results showed that, in both Experiments 1 and 2, 
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the LR/BF (Table 1, top) strongly favored the Gaussian model over both the Mexican 

Hat and Polynomial models (Figure 2A). Notably, we also conducted similar model 

comparisons for each subject’ data and found that the Gaussian model was favored 

over both the Mexican Hat and Polynomial models in 11 and 10 for Experiment 1, in 

9 and 9 for Experiment 2, out of 16 subjects, during the visible and invisible 

conditions, respectively (Figure S4). In addition, we pooled the data from 

Experiments 1 and 2 together and further provided the same qualitative conclusion. 

The LR/BF (Table 1, top) strongly favored the Gaussian model over both the Mexican 

Hat and Polynomial models (Figure 2A, bottom). The model comparison based on 

fitting individual data also demonstrated that the Gaussian model was favored over 

both the Mexican Hat and Polynomial models in 12 and 10 out of 16 subjects during 

the visible and invisible conditions, respectively (Figure S4). These results further 

constituted strong evidence for the monotonic gradient profile of visual bottom-up 

attention with and without awareness.  

Table 1. LR/BF of model comparisons 

 Experiment 1 (n = 16) Experiment 2 (n = 16) Experiments 1&2 (n = 16) 

 
visible invisible visible invisible visible invisible 

M P M P M P M P M P M P 

G 3.82 20.00 46.65 9.88*10
3
 30.07 5.06*10

2
 5.03*10

5
 9.53*10

6
 10.30 1.01*10

2
 2.51*10

4
 6.33*10

5
 

 

 

Experiment 1 (n = 14) Experiment 2 (n = 14) Experiments 1&2 (n = 14) 

visible invisible visible invisible visible invisible 

M P M P M P M P M P M P 

G 14.32 1.89*10
2
 1.12*10

3
 3.86*10

3
 4.26 27.87 3.03*10

3
 1.85*10

4
 22.35 4.44*10

2
 2.49*10

3
 1.19*10

4
 

LR, likelihood ratio; BF, Bayes factor; G, Gaussian model; M, Mexican Hat model; P, Polynomial model 

Our results indicated that the spatial focus of visual bottom-up attention with and 

without awareness were best explained by the monotonic (Gaussian) rather than the 
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non-monotonic models (Mexican Hat and Polynomial). To quantitatively examine the 

scope of bottom-up attentional modulation, we fitted the cueing effects from D0 to D4 

with a Gaussian function and used the FWHM bandwidth of the Gaussian to quantify 

their scopes. Results showed that the fitted FWHM bandwidth was significantly larger 

in the visible than the invisible condition for both Experiments 1 (t15 = 3.015, p = 

0.009, η
2 

p = 1.557, Figure 2B, top) and 2 (t15 = 4.863, p < 0.001, η
2 

p = 2.511, Figure 2B, 

middle), as well as for the pooled data from two experiments (t15 = 4.745, p < 0.001, η

2 

p = 2.450, Figure 2B, bottom), indicating a wider scope of bottom-up attention with 

than without awareness. Notably, this awareness-dependent scope of bottom-up 

attention here could be explained by the difference in cueing effect between the 

visible and inviable conditions. To examine this issue, we calculated the correlation 

coefficients between our fitted FWHM bandwidths and cueing effects across 

individual subjects. If a wider scope of visual bottom-up attention with than without 

awareness is derived by a greater cueing effect in the visible than the invisible 

condition, then we would observe a significant correlation between these two 

measures across individual subjects. However, for Experiments 1 and 2, as well as for 

the pooled data from the two, compared to the invisible condition, the increased 

FWHM bandwidth was not significantly correlated with the increased peak cueing 

effect (i.e., the cueing effect of D0, Experiment 1: r = -0.294, p = 0.269, η
2 

p = 0.086; 

Experiment 2: r = 0.428, p = 0.098, η
2 

p = 0.183; Experiments 1 & 2: r = 0.0484, p = 

0.859, η
2 

p = 0.002) or the mean of cueing effects across distances (Experiment 1: r = 

-0.156, p = 0.564, η
2 

p = 0.024; Experiment 2: r = 0.343, p = 0.194, η
2 

p = 0.118; 
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Experiments 1 & 2: r = 0.0619, p = 0.820, η
2 

p = 0.004) in the visible condition (Figure 

2C), which against the cueing effect explanation.  

More importantly, to directly exclude this explanation, we examined the scope of 

bottom-up attention during visible and invisible conditions with no significant 

difference in the cueing effect between the two conditions. We manipulated the cueing 

effect of visible condition by decreasing the luminance of its cue (which was still 

visible to subjects, Figure S1). Fourteen of our 16 subjects repeated Distribution 

Experiments using these low luminance cues and the same repeated measures 

ANOVA indicated that our manipulation was effective by showing that, in both 

Experiments 1 and 2, the main effect of awareness (Experiment 1: F1, 13 = 3.283, p = 

0.093, η
2 

p = 0.202; Experiment 2: F1, 13 = 1.472, p = 0.247, η
2 

p = 0.102) was not 

significant (Figure 2D). Our model comparisons also provided the same qualitative 

conclusion that the Gaussian model was strongly favored over both the Mexican Hat 

and Polynomial models with the LR/BF (Table 1, bottom), based on both the group 

(Figure 2D) and individual (Figure S4) data. More importantly, we confirmed that the 

fitted FWHM bandwidth was significantly larger in the visible than the invisible 

condition for both Experiments 1 (t13 = 3.732, p = 0.003, η
2 

p = 2.070, Figure 2E, top) 

and 2 (t13 = 2.561, p = 0.024, η
2 

p = 1.421, Figure 2E, middle), as well as for the pooled 

data from the two (t13 = 3.752, p = 0.002, η
2 

p = 2.081, Figure 2E, bottom). Additionally, 

these increased FWHM bandwidths in the visible condition relative to the invisible 

condition weren’t significantly predicted by the increased peak cueing effect 

(Experiment 1: r = 0.227, p = 0.434, η
2 

p = 0.052; Experiment 2: r = 0.094, p = 0.749, η
2 

p
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= 0.009; Experiments 1 & 2: r = 0.151, p = 0.607, η
2 

p = 0.023) or the mean of cueing 

effects across distances (Experiment 1: r = 0.334, p = 0.243, η
2 

p = 0.112; Experiment 2: 

r = 0.140, p = 0.634, η
2 

p = 0.020; Experiments 1 & 2: r = 0.235, p = 0.419, η
2 

p = 0.055) 

(Figure 2F). Thus, our findings indicate a gradient profile of visual bottom-up 

attention with and without awareness, and show a wider scope of visual bottom-up 

attention with than without awareness.  

Normalization Experiments 

Our Distribution Experiments demonstrated an awareness-dependent scope of visual 

bottom-up attention, which offers a unique opportunity to change the size of the 

attention field relative to the stimulus, differentially modulating the gain of bottom-up 

attentional selection. Thus, for each subject, the diameter of grating (Figure 3A) was 

manipulated as their respective mean FWHM bandwidth of the Gaussian with and 

without awareness, i.e., the diameter of grating = (FWHMV + FWHMI) / 2, where 

FWHMV and FWHMI are the fitted FWHM bandwidth of the Gaussian model for the 

visible and invisible conditions in Distribution Experiments, respectively. Under this 

configuration, the attentional field was larger and smaller than the stimulus size for 

the visible and invisible cues, yielding a pattern that qualitatively resembled contrast 

gain or response gain, respectively (Figure 3B). To examine these predictions, we 

used a modified version of the Posner paradigm to measure the cueing effect induced 

by the visible or invisible cue, as shown in Figure 3C. In both two conditions, an 

exogenous cue, a low-luminance ring, randomly appeared at the center of 9 positions 

in left or right hemifield with equal probability, followed by a 100-ms mask (low- and 
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high-contrast for visible and invisible conditions, respectively) and another 50-ms 

fixation interval. Then, a pair of gratings was presented for 33 ms in the left and right 

hemifields and subjects were asked to press one of two buttons to indicate the 

orientation of one of two gratings; each was presented at five different contrasts (0.02, 

0.08, 0.15, 0.40, and 0.70, the contrasts of both gratings were identical on any given 

trial and covaried across trials in random order). A response cue at gratings offset 

indicated the target grating, yielding congruent cue (the exogenous cue matched the 

response cue, half the trials) and incongruent cue (mismatched, half the trials) 

conditions (Figure 3C). Comparing performance accuracy (d') for congruent and 

incongruent trials revealed the spatial cueing effect for each target contrast.  

The mean d' plotted as psychometric functions of stimulus contrast and 

awareness (visible and invisible) are shown in Figure 4A: the visible condition 

yielded a pattern that qualitatively resembled contrast gain, and the invisible condition 

yielded a pattern that qualitatively resembled response gain (see also Figure S5A). 

The measured psychometric function for awareness (visible and invisible) and trial 

conditions (congruent and incongruent) was fit with the standard Naka–Rushton 

equation (Naka and Rushton, 1966). The two parameters c50 (the contrast yielding 

half-maximum performance) and d 'max (asymptotic performance at high-contrast 

levels) determined contrast gain and response gain, respectively. The exponent n 

(slope) was fixed at 2 in the current analysis (Carandini and Heeger, 2012; Herrmann 

et al., 2010; Reynolds and Heeger, 2009; Zhang et al., 2016). The d' max for awareness 

(visible and invisible) and trial conditions (congruent and incongruent) are shown in 
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Figure 4 and were submitted to a repeated-measures ANOVA with awareness and trial 

condition as within-subjects factors. The main effect of awareness (F1, 12 = 8.915, p = 

0.011, η
2 

p = 0.426), the main effect of the trial condition (F1, 12 = 70.366, p < 0.001, η
2 

p = 

0.854) and the interaction between these two factors (F1, 12 = 71.311, p < 0.001, η
2 

p = 

0.856) were all significant. Post hoc paired t tests showed that d' max of congruent 

trials was higher than that of incongruent trials for the invisible condition (t12 = 

12.166, p < 0.001, η
2 

p = 7.024, Figure 4C, left), but not for the visible condition (t12 = 

1.784, p = 1.000, η
2 

p = 1.030, Figure 4B, left); d' max for the invisible condition was 

higher than that for the visible condition in the congruent trials (t12 = 5.163, p < 0.001, 

η
2 

p = 2.981), but not in the incongruent trials (t12 = 1.098, p = 0.294, η
2 

p = 0.634). 

Similarly, for the c50, the main effect of awareness (F1, 12 = 5.468, p = 0.037, η
2 

p = 

0.313), the main effect of trial condition (F1, 12 = 45.342, p < 0.001, η
2 

p = 0.791) and the 

interaction between these two factors (F1, 12 = 52.415, p < 0.001, η
2 

p = 0.814) were all 

significant. Post hoc paired t tests showed that c50 of congruent trials was lower than 

that of incongruent trials for the visible condition (t12 = -9.303, p < 0.001, η
2 

p = -5.371, 

Figure 4D, left), but not for the invisible condition (t12 = -0.577, p = 0.575, η
2 

p = -0.333, 

Figure 4E, left); c50 for the visible condition was lower than that for the invisible 

condition in the congruent trials (t12 = -5.074, p < 0.001, η
2 

p = -2.929), but not in the 

incongruent trials (t12 = 0.023, p = 0.982, η
2 

p = 0.013). These results thus suggest that 

gain modulation of bottom-up attentional selection depends on awareness.  

To evaluate further the role of awareness in the gain modulation of visual 

bottom-up attention, we calculated the correlation coefficients between the relative 
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size of the attention field to the stimulus [i.e., (FWHMV - FWHMI) / 2, where 

FWHMV and FWHMI are the fitted FWHM bandwidth of the Gaussian model for the 

visible and invisible conditions, respectively] and psychophysical measures (d' max and 

c50) across individual subjects. The relative size of the attention field to the stimulus 

in the visible condition significantly correlated with the c50 difference between 

congruent and incongruent trials (r = -0.602, p = 0.029, η
2 

p = 0.362, Figure 4D, right), 

but not with the d' max difference between congruent and incongruent trials (r = -0.110, 

p = 0.721, η
2 

p = 0.012, Figure 4B, right). Conversely, the relative size of the attention 

field to the stimulus in the invisible condition significantly correlated with the d' max 

difference between congruent and incongruent trials (r = 0.591, p = 0.033, η
2 

p = 0.349, 

Figure 4C, right), but not with the c50 difference between congruent and incongruent 

trials (r = -0.011, p = 0.973, η
2 

p = 0.0001, Figure 4E, right). These results thus 

demonstrate a close relationship between awareness and gain modulation of visual 

bottom-up attentional selection (response gain and contrast gain changes in 

psychophysical performance). 

In addition, to further confirm this awareness-dependent normalization 

framework of visual bottom-up attention, we simulated our empirical data with the 

normalization model of attention (Figure 5A and Figure S5B) using custom Matlab 

scripts based on the code of Reynolds and Heeger (2009) with 4 free parameters: the 

gain of attention [A(x,θ)], separately optimized for visible and invisible conditions, the 

normalization constant σ, and a scaling parameter to linearly scale simulated values to 

performance (d'). Given the simulated attention fields [  ,A x  ] are in arbitrary units; 
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only the relative values are meaningful (Reynolds and Heeger, 2009), in both the 

visible and invisible conditions, we thus calculated the correlation coefficients 

between the simulated and experimental attention fields (i.e., the FWHM) across 

individual subjects. In both two conditions, the simulated attention fields (marginally) 

significantly correlated with the experimental attention fields (the visible conditions: r 

= 0.792, p = 0.001, η
2 

p = 0.627; the invisible conditions: r = 0.505, p = 0.079, η
2 

p = 

0.255, Figure 5B), further conforming that manipulating subjects’ awareness could 

modulate the field of visual bottom-up attention, which, in turn, affected its 

normalization processes. 
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Discussion 

We examined the underlying neural computations of visual bottom-up attention with 

and without awareness and found the following results. First, we found support for 

previous neurophysiological (Connor et al., 1996, 1997; Schall and Hanes, 1993), 

psychophysical (Downing 1988; Handy et al., 1996; Henderson and Macquistan, 

1993; LaBerge, 1983; Mangun and Hillyard, 1988; Posner, 2016; Robertson et al., 

2013; Shulman et al. 1985), eye movement (Tkacz-Domb and Yeshurun, 2018), 

electroencephalographic (Couperus and Lydic, 2019; Eimer, 1997; Mangun and 

Hillyard, 1988), and functional magnetic resonance imaging (Brefczynski-Lewis et al., 

2009) studies, indicating that the bottom-up attention-triggered improvements in 

visual performance with and without awareness were both a monotonic gradient 

profile with a center maximum falling off gradually in the surround (Gaussian-like). 

Second, however, the scope of this gradient profile was significantly wider with than 

without awareness, which offers a unique opportunity to change the size of the 

bottom-up attentional scope relative to the stimulus size. Thus, for each subject, the 

stimulus size was manipulated as their respective mean scopes of bottom-up attention 

with and without awareness while stimulus contrast was varied. By measuring the 

gain pattern of CRFs on the spatial cueing effect derived from visible or invisible 

exogenous cues, we observed a change in the spatial cueing effect consistent with a 

change in contrast gain for visible cues and in response gain for invisible cues. Finally, 

using the classical normalization model of attention (Reynolds and Heeger, 2009), we 

successfully simulated the scopes of visual bottom-up attention with and without 
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awareness, indicating an awareness-dependent normalization framework of visual 

bottom-up attention. In addition, our results cannot be explained by the eye movement 

since subjects’ eye movements were small and their eye position distributions were 

statistically indistinguishable for visible and invisible conditions (Figure S3). 

Gradient profile of visual bottom-up attention with and without 

awareness 

Compared to a monotonic gradient profile evident in previous and our studies, a 

number of neurophysiological (Moran and Desimone, 1985; Schall and Hanes, 1993; 

Schall et al., 2004), psychophysical (Bahcall and Kowler, 1999; Mounts, 2000; 

Müller et al., 2005), and brain imaging (Boehler et al., 2009, 2011; Hopf et al., 2006, 

2010; Müller and Kleinschmidt, 2004) studies, as well as a computational model 

(Tsotsos et al., 1995, 2008) have reported a center–surround (i.e., the Mexican Hat) 

profile where a zone of sensory attenuation surrounds a center region of facilitation. 

We suggested that this striking discrepancy in the literature findings might be due to 

two different factors. One is the experimental task or paradigm. Specifically, for 

example, in Hopf et al. (2006) where inhibition was seen surrounding the locus of 

spatial attention, subjects were asked to search for a target (i.e., the exogenous cue in 

our study), which appeared randomly to change the spatial focus of attention and thus 

was task-relevant. While they measured the event-related magnetic field response 

elicited by a task-irrelevant probe that appeared or was absent with equal probability. 

In our study, by contrast, we used a modified Posner paradigm to measure the probe’s 

attentional effect induced by the exogenous cue. Subjects were asked to discriminate 
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the orientation (45° or 135°) of the probe (Figure 1), thus the exogenous cue was 

task-irrelevant while the probe was task-relevant. Obviously, the probe was the 

distractor (task-irrelevant) and the target (task-relevant) in Hopf et al.’s and our 

studies, respectively. Directing attention to the target could conflate perceptual and 

post-perceptual mechanisms of attention, thus eliminating or strongly attenuating the 

suppression effect. 

The other that may influence the spatial profile of visual bottom-up attention is 

whether the exogenous cue was presented with (e.g., Hopf et al., 2006) or without 

(e.g., the current study) the distractors. As is known to all, the biased competition 

model of attention (Desimone and Duncan, 1995) proposes that attention operates 

when multiple stimuli compete for access to neural representation, and this 

competition occurs when multiple stimuli fall within a neuron’s receptive field. In this 

case, distractors within a receptive field are suppressed while attended stimuli are 

enhanced. Additionally, Tsotsos and colleagues (1995, 2008) proposed the selective 

tuning model, which directly suggested that the inhibitory zone surrounding the 

attended item results from top-down propagation of a winner-take-all mechanism that 

attenuates irrelevant upstream connections iteratively from one hierarchical level 

down to the next. Thus, without the distractor, these irrelevant upstream connections 

across the visual cortical processing hierarchy could be eliminated or strongly 

attenuated, which, in turn, affects the inhibitory zone surrounding the attended target, 

in other words, resulting in the gradient rather than center-surround profile of 

attentional modulation. 
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A wider scope of visual bottom-up attention with than without 

awareness 

Our study provided convening evidence for a wider scope of visual bottom-up 

attention with than without awareness. Although this result cannot be explained by the 

difference in the cueing effect between visible and invisible conditions (Figure 2D), it 

could be argued that this result can be derived by that the visible relative to invisible 

condition has involved some degree of endogenous attention as well. Particularly, for 

Experiment 1 (VCCP, Figure 1A), compared to the invisible condition, subjects 

during the visible condition knew on each trial that the exogenous cue appeared 

randomly across the possible 9 positions and could have therefore directed 

endogenous attention to all, which might increase the attentional set (Couperus and 

Lydic, 2019; Gibson and Kelsey, 1998), thus yielding a wider scope of attentional 

modulation. Critically, it is important to note that in our study, the task required 

subjects to discriminate the orientation (45° or 135°) of the probe; the exogenous cue 

was never task-relevant. Thus, subjects did not need to direct endogenous attention to 

these task-irrelevant cues. More importantly, this endogenous attention (i.e., the 

attentional set) explanation couldn’t account for the same qualitative conclusion in 

our Experiment 2 (CCVP, Figure 1D) since the same exogenous cue was always 

presented at the center of 9 locations during both the visible and invisible conditions. 

In other words, there was the same attentional set between two conditions. If the 

wider scope of visual bottom-up attention with than without awareness is derived by 

this potential endogenous attention (i.e., the attentional set driven by the observer’s 
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knowledge of the cue location), then we should have observed a similar scope of the 

two. However, our data show that this is not the case. 

Our findings can be viewed as identifying an awareness-dependent scope of 

visual bottom-up attention. Note that this conclusion is based on a report-based 

paradigm in which subjects overtly push a button to report their percept. Several 

studies have argued that such report-based paradigms could be modulated by factors 

that are not directly related to the scope of attentional modulation, such as 

higher-level strategies, response history, experience, learning, response biases, and 

personality (Yeshurun, 2019). In addition, using a no-report paradigm, such as 

recording subjects’ pupillary light responses, Tkacz-Domb and Yeshurun (2018) 

revealed that the scope of attentional modulation was twofold larger than that 

estimated using the traditional report-based paradigm. It is important to note that 

subjects in our study performed exactly the same task between visible and invisible 

conditions (Figure 1C and 1F), thus the awareness-dependent scope of visual 

bottom-up attention evident here cannot be explained by this discrepancy between the 

report-based and no-report paradigms. However, the underlying neural basis of 

awareness-dependent scope of visual bottom-up attention could depend on whether 

subjects overtly report their percept.  

On the one hand, several theories of conscious awareness, including the neuronal 

global workspace (Dehaene and Changeux, 2011; Mashour et al., 2020), information 

integration (Koch et al., 2016; Tononi et al., 2016), and higher-order (Lau and 

Rosenthal, 2011) theories propose that the neural activity in frontoparietal cortex is 
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essential for conscious awareness. Similar to our study, evidence from those theories 

typically used the report-based paradigm in which subjects overtly report their percept, 

and showed that a broad frontoparietal network of areas could be activated during 

various tasks that contrast perceived stimuli with invisible stimuli
 
(Dehaene and 

Changeux, 2011; Mashour et al., 2020). Thus, although speculative, it is plausible that 

the wider scope of bottom-up attention with than without awareness evident in our 

study may result from the increased activity in frontoparietal cortical areas. On the 

other hand, several studies have argued that such report-based paradigms do not 

dissociate the brain regions required for pure conscious experience from those 

involved in conscious access and reportability
 
(Koch et al., 2016; Tsuchiya et al., 

2015). Those studies, by contrast, found that posterior rather than frontoparietal 

cortical areas were activated when using a no-report paradigm, such as recording eye 

movements and pupil dilation
 
(Aru et al., 2012; Frässle et al., 2014). In other words, 

the awareness-dependent scope of visual bottom-up attention is more likely to be 

mediated by posterior cortical areas when using no-report paradigm in which there is 

not any overt report. Consequently, further work is needed using both report-based 

and no-report paradigms to examine the difference in scope of visual bottom-up 

attention with and without awareness, as well as their distinct neural mechanisms. 

Awareness-dependent normalization framework of visual bottom-up 

attention 

The most parsimonious account of our results is that visual bottom-up attention 

interacts with the normalization processes depending on awareness. Importantly, this 
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result cannot be explained by a number of factors, such as the strength of cueing 

effect, post-stimulus cue, or an involvement of endogenous attention. First, both the 

visible and invisible cues were the same with those in Distribution Experiments and 

no significant difference in cueing effect was found between the two (Figure 2D). 

Second, although previous studies have suggested that the post-stimulus cue (for 

example, the response cue in our study) can influence not only subjects’ 

non-perceptual decision (Eckstein et al., 2013) but also the perception of stimuli 

presented before it (Pestilli et al., 2011; Sergent et al., 2013), the response cue in our 

study was totally randomized and uninformative about the target grating; we thus 

believe that our psychophysical results cannot be explained by the response cue. 

Finally, subjects knew before each trial that the discrimination task was to be 

performed on one of two gratings and could have therefore directed endogenous 

attention to both, and thus it is not known exactly how exogenous attention and this 

endogenous attention combine (Herrmann et al., 2010). However, subjects in our 

study performed exactly the same task between visible and invisible conditions, this 

potential combination thus couldn’t account for the observed awareness-dependent 

normalization processes of visual bottom-up attention.  

Our data can be interpreted by a hypothesis that behavioral performance is 

limited by the neuronal activity with an additive, independent, and identically 

distributed noise, and the decision-making process with a maximum-likelihood 

decision rule (Jazayeri and Movshon, 2006; Pestilli et al., 2009). Performance 

accuracy d', used in both previous (Herrmann et al., 2010; Zhang et al., 2016) and our 
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studies here, is proportional to the signal-to-noise ratio of the underlying neuronal 

responses. Thus, it can parallel reflect any change in neuronal CRFs in our study. 

Indeed, we found that a change in the cueing effect consonant with a change in 

contrast gain of CRF for bottom-up attention with awareness and a change in response 

gain of CRF for bottom-up attention without awareness (Figure 4A). These 

awareness-dependent gain modulations of visual bottom-up attentional selection 

support and extend the normalization model of attention (Boynton, 2009; Carandini 

and Heeger, 2012; Herrmann et al., 2010; Lee and Maunsell, 2009, 2010; Reynolds 

and Heeger, 2009; Reynolds et al., 1999). This model proposes that, in the absence of 

attention (e.g., in the incongruent cue condition), two factors determine the firing rate 

of a visually responsive neuron. One is the stimulus drive (excitatory component) 

determined by the contrast of the stimulus placed in the receptive field of a neuron. 

The other is the suppressive drive (inhibitory component) determined by the summed 

activity of other neighboring neurons, which serves to normalize the overall spike rate 

of the given neuron via mutual inhibition (Heeger, 1992; Reynolds and Heeger, 2009). 

Attention (e.g., in the congruent cue condition) modulates the pattern of neural 

activity by altering the balance between these excitatory and inhibitory components, 

depending on the relative sizes of the attention field to the stimulus size, and thereby 

exhibiting response gain changes, contrast gain changes, and various combinations of 

the two. In our study, given the scope of visual bottom-up attention was significantly 

wider with than without awareness (Figure 2), for each subject, the size of the target 

stimuli in the spatial cueing task was manipulated as their respective mean scopes of 
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visual bottom-up attention with and without awareness (Figure 3A). Thus relative to 

the stimulus size, the broadened attention field by visible exogenous cues led to 

contrast gain changes because attentional gain was applied equally to the stimulus and 

suppressive drives. Conversely, the narrowed attention field by invisible exogenous 

cues led to response gain changes because attentional gain enhanced the entire 

stimulus drive, but only enhanced the center of the suppressive drive. Indeed, using 

the classical normalization model of attention, we successfully simulated these 

broadened and narrowed attention fields of visible and invisible cues, respectively 

(Figure 5), further supporting an awareness-dependent normalization framework of 

visual bottom-up attention. 

Notably, evidence from neurophysiological and brain imaging studies indicate 

controversies concerning the brain regions involved in visual bottom-up attention, 

such as subcortical structures (Fecteau and Munoz, 2006; Shipp, 2004), visual (Mazer 

and Gallant, 2003; Zhang et al., 2012) and frontoparietal (Bisley and Goldberg, 2010; 

Corbetta and Shulman, 2002; Moore and Zirnsak, 2017; Squire et al., 2013) cortical 

areas. An important factor of this controversy is the awareness, which determines 

whether the realized neural substrate reflects the pure bottom-up attention or not 

(Chen et al., 2016; Huang et al., 2020; Zhang et al., 2012). Intriguingly, our results 

are consistent with this idea by showing an awareness-dependent normalization 

framework of visual bottom-up attention. Although normalization as a neural 

computation likely occurs throughout the whole brain (Carandini and Heeger, 2012; 

Schmitz and Duncan, 2018), the observed neural correlates of its interaction with 
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visual bottom-up attention could also depend on awareness, and further studies will 

shed light on this issue using neurophysiological or brain imaging techniques. 

Conclusions 

In sum, we conclude that manipulating subjects’ awareness can modulate the scope of 

visual bottom-up attentional modulation, which, in turn, affects its normalization 

processes. Our study provides, to the best of our knowledge, the first experimental 

evidence supporting an awareness-dependent normalization framework of visual 

bottom-up attention, thereby furthering our understanding of the neural computations 

underlying visual attention, the relationship between attention and awareness, and 

how they interactively shape our experience of the world. 
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Methods and Materials 

Subjects 

A total of 16 human subjects (8 male, 19–26 years old) were involved in the study. 

All of them participated in Distribution Experiments, fourteen of them repeated the 

Distribution Experiments with decreased luminance of visible cues, and the following 

Normalization Experiments. They were naïve to the purpose of the study. They were 

right-handed, reported normal or corrected-to-normal vision, and had no known 

neurological or visual disorders. They gave written, informed consent, and our 

procedures and protocols were approved by the human subjects review committee of 

School of Psychology at South China Normal University. 

Apparatus 

Visual stimuli were displayed on an IIYAMA color graphic monitor (model: 

HM204DT; refresh rate: 60 Hz; resolution: 1,280 × 1,024; size: 22 inches) at a 

viewing distance of 57 cm. Subjects’ head position was stabilized using a chin rest. A 

white fixation cross was always present at the center of the monitor. 

Distribution Experiments 

Stimuli 

As illustrated in Figure 1, each texture stimulus contained 18 positions (the possible 

locations of the exogenous cue and probe) settled at an iso-eccentric distance from 

fixation (8.27° of visual angle); a half of them were located in the left visual field and 
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the other half was located in the right visual field. The center-to-center distance 

between two neighboring positions was 1.35°. The exogenous cue was a 

low-luminance ring (8.9 cd/m
2
; inner dimeter: 0.909°; outer dimeter: 0.961°) while 

the probe was a rectangle of 0.104° × 0.831° in visual angle and was orientated at 45° 

or 135° away from the vertical. Low- and high-contrast masks, which had the same 

grid as the texture stimulus, rendered the exogenous cue visible or invisible 

(confirmed by a two-alternative forced choice, 2AFC) to subjects, respectively. Each 

mask ring contained two pairs of orthogonal circular arcs, one pair was white (19.3 

and 79.8 cd/m
2 
for Low- and high-contrast masks, respectively) and the other pair was 

black (11.3 and 0.01 cd/m
2 

for Low- and high-contrast masks, respectively). The ring 

in the mask had the same size as the exogenous cue in the texture stimulus (Figure 1B 

and 1E). 

Procedure 

The Distribution Experiment consisted of 3 experiments. In each visual field, the 

probe position was constant and the exogenous cue position varied in Experiment 1 

(i.e., the varied cue with constant probe, VCCP, Figure 1A), whereas Experiment 2 

was a converse situation (i.e., the constant cue with varied probe, CCVP, Figure 1D). 

In both Experiments 1 and 2, there were five possible distances between the 

exogenous cue and probe, ranging from D0 (cue and probe at the same location) 

through D4 (cue and probe four items away from each other). Subjects participated in 

Experiments 1 and 2 on two different days, and the order of the two experiments was 

counterbalanced across subjects. Experiment 3 checked the effectiveness of the 
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awareness manipulation in both Experiments 1 and 2, and was always before them. In 

both Experiments 1 and 2, each trial began with the fixation. A cue frame with (the 

cue condition) or without (the non-cue condition) exogenous cue was presented for 

50-ms, followed by a 100-ms mask (low- and high-contrast in visible and invisible 

conditions, respectively, confirmed by Experiment 3, Figure S1) and another 50-ms 

fixation interval. Then a probe line, orientating at 45° or 135° away from the vertical, 

was presented for 50-ms. Subjects were asked to press one of two buttons as rapidly 

and correctly as possible to indicate the orientation of the probe (45° or 135°). The 

cueing effect for each distance (D0 to D4) was quantified as the difference between 

the reaction time of the probe task performance in the non-cue condition and that in 

the cue condition.  

Differently, Experiment 1 consisted of 16 blocks of 96 trials, 48 for the left 

visual field and 48 for the right visual field. In each block and each visual field, an 

exogenous cue was equiprobably and randomly presented at one of the 9 positions in 

40 trials (the cue condition) and was absent in the remaining 8 trials (the non-cue 

condition). The probe was always presented at the center of 9 positions (i.e., the 

VCCP, Figure 1A). Experiment 2 consisted of 16 blocks of 80 trials, 40 for the left 

visual field and 40 for the right visual field. In each block and each visual field, an 

exogenous cue always appeared (the cue condition) or was absent (the non-cue 

condition) in the center of 9 positions with equal probability; the probe appeared 

equiprobably and randomly across the possible 9 positions (i.e., the CCVP, Figure 

1D).  
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The stimuli and procedure in the 2AFC experiment (i.e., Experiment 3) were the 

same as those in Experiments 1 and 2, except that no probe was presented (Figure S1). 

Experiment 3 checked the effectiveness of the awareness manipulation in 

Experiments 1 and 2, and was always before them. In Experiment 3, all subjects 

underwent a 2AFC task to determine whether the masked cue was visible or invisible 

in a criterion-free way. After the presentation of a masked cue frame, subjects were 

asked to indicate which side (upper left or upper right) from the fixation they thought 

the cue appeared. Their performances were significantly higher or not statistically 

different from chance for all possible distances (D0 to D4), providing an objective 

confirmation that the cue was indeed visible or invisible to subjects, respectively. 

Model fitting and comparison 

For each subject and each condition (visible and invisible), we fitted a monotonic 

model and two non-monotonic models to the averaged cueing effect. The monotonic 

model was implemented as the Gaussian function, and the two non-monotonic models 

were implemented as the Mexican Hat (i.e., a negative second derivative of a 

Gaussian function) and Polynomial functions (Fang and Liu, 2019; Fang et al., 2019; 

Finke et al., 2008): 

Gaussian function:

2
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                              (1) 

Mexican Hat function:
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Polynomial function: 4 2y ax bx c                                       (3) 

where y is the cueing effect, x is the distance between the cue and probe (i.e., D0 to 
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D4); w, A, and y0 are the three parameters controlling the shape of the Gaussian 

function; m, H, and y1 are three parameters controlling the shape of the Mexican Hat 

function; a, b, and c are the three free parameters controlling the shape of the 

Polynomial function (note that we used a fourth-order polynomial without the 

odd-power terms for the cueing effect since the symmetric shape). To compare these 

three models to our data, we first computed the Akaike information criterion (AIC, 

Akaike, 1973) and Bayesian information criterion (BIC, Schwarz, 1978), with the 

assumption of a normal error distribution: 

 2 1
ln 2

1

K KRSS
AIC N K

N N K

 
   

  
                              (4) 

 ln ln
RSS

BIC N K N
N

 
  

 
                                     (5) 

where N is the number of observations, K is the number of free parameters, and RSS is 

residual sum of squares (Raftery, 1999). Then, we further calculated the Likelihood 

ratio (LR) and Bayes factor (BF) of the monotonic model (Gaussian) over 

non-monotonic models (Mexican Hat and Polynomial) based on AIC (Burnham and 

Anderson, 2002) and BIC (Wagenmakers, 2007) approximation, respectively: 

2

N MAIC AIC

LR e

 
 
                                                 (6) 

2

N MBIC BIC

BF e

 
 
                                                 (7) 

where AICM and BICM are for the monotonic (Gaussian) model, AICN and BICN are 

for non-monotonic (Mexican Hat and Polynomial) models. The results indicated that, 

during each condition (visible and invisible), the monotonic (Gaussian) model was 

strongly favored over the non-monotonic models (Mexican Hat and Polynomial) 
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(Figure 2). Thus, to quantitatively examine the scope of attentional modulation, we fit 

the averaged cueing effects from D0 to D4 with a Gaussian function and used the 

FWHM (full width at half maximum) bandwidth of the Gaussian to quantify their 

scopes: 

 ln 4FWHM w                                             (8) 

where w is the fitted width of the Gaussian function. 

Normalization Experiments 

Stimuli 

As illustrated in Figure 3C, the exogenous cue of Normalization Experiments was the 

same as those in the Distribution Experiment 2, i.e., the exogenous cue always 

appeared in the center of 9 positions in left or right hemifield at 8.27° eccentricity. 

The probe was a pair of gratings (spatial frequency: 1.7 cycles/°; phase: random) that 

were presented at the exogenous cue’s locations in the left and right hemifields. The 

gratings were presented at five possible contrasts: 0.02, 0.08, 0.15, 0.40, and 0.70. For 

each subject, the diameter of grating was manipulated as their respective mean 

FWHM bandwidth for the Gaussian of bottom-up attention with and without 

awareness in Distribution Experiments (Figure 3A): 

2

V IFWHM FWHM
D


                                          (9) 

where D is the diameter of grating, FWHMV and FWHMI are the fitted FWHM 

bandwidth of the Gaussian model in the visible and invisible conditions during 

Distribution Experiments (Experiments 1 & 2), respectively. 
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Procedure 

The Normalization Experiment consisted of 2 experiments. Each trial began with 

central fixation. The exogenous cue, a low-luminance ring, randomly appeared at the 

center of 9 positions in left or right hemifield with equal probability, followed by a 

100-ms mask (low- and high-contrast for visible and invisible conditions, respectively) 

and another 50-ms fixation interval. Then, a pair of gratings (with identical contrasts) 

was presented for 33 ms in the left and right hemifields, one of which was the target. 

Subjects were asked to press one of two buttons to indicate the orientation of the 

target grating (leftward or rightward tilted) and received auditory feedback if their 

response was incorrect. The target grating was indicated by a peripheral 100 ms 

response cue (0.4˚ black circular arc) above one of the grating locations, but not at the 

grating location to avoid masking. A congruent cue was defined as a match between 

the exogenous cue location and response cue location (half the trials); an incongruent 

cue was defined as a mismatch (half the trials) (Figure 3C). Subjects were explicitly 

told that the exogenous cue was randomized and uninformative about the target 

location. The Normalization Experiment consisted of two sessions (visible and 

invisible), with the two sessions occurring on different days; the order of the two 

sessions was counterbalanced across subjects. Each session consisted of 64 blocks; 

each block had 80 trials, from randomly interleaving 16 trials from each of the five 

contrasts. Contrast varied from trial to trial in randomly shuffled order, and stimuli 

were presented briefly (i.e., 33 ms) to avoid any possible dependence of attentional 

state on stimulus contrast. The attentional effect for each grating contrast was 
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quantified as the difference between the performance accuracy (d') in the congruent 

and incongruent cue conditions. 

Psychophysical data analysis 

To quantitatively examine the pattern of gain (either contrast or response gain) 

separately for bottom-up attention with and without awareness, for each subject, 

performance—i.e., d' = z (hit rate) - z (false alarm rate)—was assessed across 

experimental blocks for each contrast and each trial condition (congruent and 

incongruent). A rightward response to a rightward stimulus tilt was (arbitrarily) 

considered to be a hit, and a rightward response to a leftward stimulus was considered 

to be a false alarm. For each subject, the mean d' CRFs obtained for congruent and 

incongruent trials were fit with the standard Naka–Rushton equation (Naka and 

Rushton, 1966):  

  max

50

' '
n

n n

c
d c d

c c



                                           (10) 

where d' is performance as a function of contrast (c), d' max determines the asymptotic 

performance at high contrasts, c50 is the contrast corresponding to half the asymptotic 

performance, and n is an exponent that determines the slope of the CRFs. The two 

parameters d' max and c50 determined response gain and contrast gain, respectively. We 

estimated these two parameters for each condition while n (slope) was fixed at 2 

according to previous studies (Carandini and Heeger, 2012; Herrmann et al., 2010; 

Reynolds and Heeger, 2009; Zhang et al., 2016). 
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Model simulations 

The normalization model of attention (Reynolds and Heeger, 2009) computes the 

response of an arbitrary single neuron to a given set of stimuli as: 

 
   

 

       
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, ;
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
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




    

                            (11) 

where R(x,θ;c) is the response of a neuron with its receptive field centered at x and its 

orientation tuning centered at θ, receiving stimulus input with contrast c, A(x,θ) is the 

attention field, E(x,θ;c) is the stimulus drive of the population of neurons evoked by 

contrast c,  is the normalization constant, S(x,θ;c) is the effect of the normalizing 

pool and represents the excitatory drive convolved by the suppressive surround, s(x,θ) 

is the suppressive field, and * is convolution. Applying the attention field in the model 

can yield either a change in response gain, a change in contrast gain, or a combination 

of the two, depending on the stimulus size and the extent of the attention field relative 

to the sizes of the stimulation and suppressive fields. Relative to the stimulus size, the 

broadened attention field led to contrast gain changes since attentional gain ( ) was 

applied equally to the stimulus ( c ,  is the constant gain of the neuron receiving 

it’s preferred input with contrast c) and suppressive drives (S). The responses of a 

model neuron can be approximated as: 

 
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                            (12) 

Conversely, the narrowed attention field led to response gain changes since attentional 
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gain ( ) enhanced the entire stimulus drive ( c ), but its impact on the denominator S 

+ σ is much minimal. In this case:  

 
c

R c
S







                                                (13) 

Our results supported these predictions of the normalization model of attention by 

showing that manipulating subjects’ awareness could modulate the field of visual 

bottom-up attention, which, in turn, affected its normalization processes (see Figure 

4). To further confirm this awareness-dependent normalization framework of visual 

bottom-up attention, we simulated our empirical data using custom Matlab scripts 

based on the code of Reynolds and Heeger (2009) with 4 free parameters: the gain of 

attention [A(x,θ)], separately optimized for visible and invisible cue conditions, the 

normalization constant σ, and a scaling parameter to linearly scale simulated values to 

d'. Given the simulated attention fields [  ,A x  ] are in arbitrary units; only the 

relative values are meaningful (Reynolds and Heeger, 2009), in both the visible and 

invisible conditions, we thus calculated the correlation coefficients between the 

simulated attention field and experimental attention fields (i.e., the FWHM) across 

individual subjects (see Figure 5). 
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Figure Legends 

 

Figure 1. Stimuli and Psychophysical Protocol of Distribution Experiments. Each 

texture stimulus contained 18 positions, indicating by the dashed white circles (not 

displayed during the experiments), settled at an iso-eccentric distance from fixation 

(the black dot); a half of them were located in the left visual field and the other half 

was located in the right visual field. During Experiment 1 (A), in each visual field (in 

this case, the right visual field), the probe, a tilted line (left), always appeared at the 

center of 9 positions while the exogenous cue, a low-luminance ring (right), appeared 

equiprobably and randomly at one of the 9 possible positions in the cue condition 
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(83.33% of trials and 16.67% of trails for each distance) and was absent in the 

non-cue condition (16.67% of trials). The probe position was constant and the cue 

position varied, thus there were five possible distances between them, ranging from 

D0 (cue and probe at the same location) through D4 (cue and probe four items away 

from each other). During Experiment 2 (D), in each visual field (in this case, the right 

visual field), the exogenous cue appeared (the cue condition, 50% of trials) or was 

absent (the non-cue condition, 50% of trials) in the center of 9 positions. The probe 

appeared equiprobably and randomly at one of the 9 possible positions. The cue 

position was constant and the probe position varied, there were also five possible 

distances between them (20% of trials for each distance), ranging from D0 through 

D4. Low- (top) and high- (bottom) contrast masks used for the visible and invisible 

conditions, respectively, in Experiments 1 (B) and 2 (E). Psychophysical protocol of 

Experiments 1 (C) and 2 (F). A cue frame with (the cue condition) or without (the 

non-cue condition) exogenous cue was presented for 50-ms, followed by a 100-ms 

mask (low- and high-contrast for visible and invisible conditions, respectively) and 

another 50-ms fixation interval. Then a probe line, orientating at 45° or 135° away 

from the vertical, was presented for 50-ms. Subjects were asked to press one of two 

buttons as rapidly and correctly as possible to indicate the orientation of the probe 

(45° or 135°). 
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Figure 2. Results of Distribution Experiments. (A) and (D) The cueing effect of each 

distance (D0 to D4) in visible (left) and invisible (right) conditions for Experiment 1 

(top), Experiment 2 (middle), and Experiments 1 & 2 (bottom), and the best fitting 

monotonic Gaussian function and two non-monotonic functions (Mexican Hat and 

Polynomial) to these cueing effects across distances. Each cueing effect was 

quantified as the difference between the reaction time of the probe task performance 

in the non-cue condition and that in the cue condition. Error bars denote 1 SEM 

calculated across subjects. G: Gaussian model; M: Mexican Hat model; P: Polynomial 

model; R
2
: R-squared; AIC: Akaike Information Criterion; BIC: Bayesian Information 

Criterion. (B) and (E) The fitted FWHM bandwidth of monotonic Gaussian model in 

visible and invisible conditions for Experiment 1 (top), Experiment 2 (middle), and 

Experiments 1 & 2 (bottom). FWHMV and FWHMI: the fitted FWHM bandwidth of 

the Gaussian model in the visible and invisible conditions, respectively. Open 

symbols indicate individual subjects and a filled symbol indicate mean across subjects. 

Error bars denote 1 SEM calculated across subjects. (C) and (F) Correlations between 

the increased FWHM bandwidth and peak cueing effect (i.e., the cueing effect of D0, 

gray), and between the increased FWHM bandwidth and mean cueing effect (black) 

across distances, in the visible condition relative to the invisible condition, across 

individual subjects, in Experiment 1 (top), Experiment 2 (middle), and Experiments 1 

& 2 (bottom). 
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Figure 3. The Normalization Model of Attention Modulated by Awareness and 

Psychophysical Protocol in Normalization Experiments. (A) An example of grating 

probes manipulated from Distribution Experiments. For each subject, the diameter of 

grating = (FWHMV + FWHMI) / 2, where FWHMV and FWHMI are their fitted FWHM 
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bandwidth of the Gaussian model with and without awareness during Distribution 

Experiments (Experiments 1 & 2), respectively. (B) Relative to the stimulus size, the 

attention field was broadened by visible exogenous cues (left). Under this 

configuration, the normalization model predicts a contrast-gain shift, with the largest 

effects occurring at mid-contrasts and little to no effect at low and high contrasts. 

Relative to the stimulus size, the attention field was narrowed by invisible cues (right). 

Under this configuration, the normalization model predicts a response-gain shift, with 

the largest effects occurring at high contrasts and little to no effect at low and 

mid-contrasts. The dashed circles indicate simulated attention field size. (C) 

Psychophysical protocol. The exogenous cue randomly appeared at the center of 9 

positions in left or right hemifield with equal probability, followed by a 100-ms mask 

(low- and high-contrast for visible and invisible conditions, respectively) and another 

50-ms fixation interval. Then, a pair of gratings (with identical contrasts) was 

presented for 33 ms in the left and right hemifields, one of which was the target. 

Subjects were asked to press one of two buttons to indicate the orientation of the 

target grating (leftward or rightward tilted) and received auditory feedback if their 

response was incorrect. The target grating was indicated by a peripheral 100 ms 

response cue above one of the grating locations, but not at the grating location to 

avoid masking. A congruent cue was defined as a match between the exogenous cue 

location and response cue location (half the trials); an incongruent cue was defined as 

a mismatch (half the trials). 
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Figure 4. Effects of Visible and Invisible Cues on Performance (d') as a Function of 

Contrast. (A) Mean d' plotted as psychometric functions of stimulus contrast and 

awareness (visible, left; invisible, right) for congruent and incongruent trials. Error 

bars denote 1 SEM calculated across subjects. d'max for congruent and incongruent 

trials in the visible (B) and invisible (C) conditions, and correlations between the 
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relative size of attention field to the stimulus [i.e., (FWHMV - FWHMI) / 2, where 

FWHMV and FWHMI are the fitted FWHM bandwidth of the Gaussian model for the 

visible and invisible conditions, respectively] and the d'max differences between 

congruent and incongruent trials across individual subjects. Open symbols indicate 

individual subjects and a filled symbol indicate mean across subjects. Error bars 

denote 1 SEM calculated across subjects. d'max: asymptotic performance at high 

contrast levels. c50 for congruent and incongruent trials in the visible (D) and invisible 

(E) conditions, and correlations between the relative size of attention field to the 

stimulus and the c50 differences between congruent and incongruent trials across 

individual subjects. Open symbols indicate individual subjects and a filled symbol 

indicate mean across subjects. Error bars denote 1 SEM calculated across subjects. c50: 

the contrast yielding half maximum performance. 
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Figure 5. Model Predictions of Contrast Response Functions for the Normalization 

Model of Attention. (A) Data points with plus/minus one standard error are the mean 

performance (d') across subjects for awareness (visible and invisible), cue validity 

(congruent and incongruent), and stimulus contrasts. The fitted performances (d') 

using the standard Naka–Rushton equation and the original normalization model of 
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attention with 4 free parameters are indicated by the black and colored lines, 

respectively. (B) Correlations between the simulated attention field [  ,A x  ] of the 

original normalization model of attention with 4 free parameters and the experimental 

attention field in the visible (left) and invisible (right) conditions, across individual 

subjects. Note that the simulated attention fields [  ,A x  ] are in arbitrary units; only 

the relative values are meaningful.  
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Supplementary data 

Figure S1. Protocol and Results of the Two-alternative Forced-choice Test 

Figure S2. False alarm, Miss, and Removal Rates in Distribution Experiments 

Figure S3. Eye Movement Data in Distribution and Normalization Experiments 

Figure S4. Normalized R
2
 of Individual Subjects in Distribution Experiments 

Figure S5. Contrast Response Functions of Individual Subjects in Normalization 

Experiments 
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Figure S1. Protocol and Results of the Two-alternative Forced-choice Test. (A) The 

stimuli and procedure in the two-alternative forced-choice (2AFC) experiment (i.e., 

Experiment 3) were the similar to those in Experiments 1 (top) and 2 (bottom), except 

that no probe was presented. Experiment 3 checked the effectiveness of the awareness 

manipulation in Experiments 1 and 2, and was always before them. In Experiment 3, 

all subjects underwent a 2AFC task to determine whether the masked cue was visible 

or invisible in a criterion-free way. After the presentation of a masked cue frame, 

subjects were asked to indicate which side (left or right) from the fixation they 

thought the exogenous cue appeared. Their performances were significantly higher or 

not statistically different from chance, providing an objective confirmation that the 

exogenous cue was indeed visible or invisible to subjects, respectively. (B) For the 

invisible condition (top), subjects reported that they were unaware of the exogenous 

cue and could not detect which visual filed contained it. Their performances were not 
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statistically different from chance [mean percent correct ± standard error of the mean, 

Experiment 1 (i.e., varied cue), D0: 47.656 ± 1.651%, D1: 48.242 ± 1.996%, D2: 

49.609 ± 1.303%, D3: 45.508 ± 2.096%, D4: 49.609 ± 1.533%, all t15 < 0.968, p > 

0.348, η
2 

p < 0.500; Experiment 2 (i.e., constant cue): 49.503 ± 0.411%, t15 = 0.436, p = 

0.669, η
2 

p = 0.225]; for the visible condition, by contrast, their performance was 

significantly higher than chance (Experiment 1, D0: 98.828 ± 0.630%, D1: 98.438 ± 

0.699%, D2: 97.266 ± 1.137%, D3: 96.875 ± 1.276%, D4: 96.094 ± 1.496%, all t15 > 

30.812, p < 0.001, η
2 

p > 15.911; Experiment 2: 99.503 ± 0.411%, t15 = 52.557, p < 

0.001, η
2 

p = 27.140). Furthermore, for the Experiment 1, subjects’ performances were 

submitted to a repeated-measures ANOVA with awareness (visible and invisible) and 

distance (D0 to D4) as within-subjects factors. The main effect of distance (F4, 60 = 

0.215, p = 0.929, η
2 

p = 0.014) and the interaction between the two factors (F4, 60 = 

0.942, p = 0.446, η
2 

p = 0.059) were not significant, but the main effect of awareness 

was significant (F1, 15 = 1873.86, p < 0.001, η
2 

p = 0.992). These results indicate that our 

awareness manipulation was effective for both the visible and invisible conditions, 

and there was no significant difference in subject performance among five distances. 

Error bars denote 1 SEM calculated across subjects and open dots denote the data 

from each subject. (C) To manipulate the cueing effect between visible and invisible 

conditions, we decreased the luminance of the cue in visible condition. Fourteen of 

our 16 subjects repeated the same 2AFC test and the results showed that subjects’ 

performances were not statistically different from chance in the invisible condition 

[Experiment 1 (i.e., varied cue), D0: 48.661 ± 1.121%, D1: 50.893 ± 1.652%, D2: 
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47.991 ± 1.927%, D3: 49.330 ± 2.050%, D4: 48.214 ± 1.725%, all t13 < 1.194, p > 

0.254, η
2 

p < 0.662; Experiment 2 (i.e., constant cue): 50.536 ± 0.536%, t13 = 1.000, p = 

0.336, η
2 

p = 0.555], but were significantly higher than chance in the visible condition 

(Experiment 1, D0: 85.268 ± 3.315%, D1: 83.929 ± 3.747%, D2: 77.232 ± 2.749%, 

D3: 79.911 ± 3.774%, D4: 78.571 ± 2.336%, all t13 > 7.926, p < 0.001, η
2 

p > 4.397; 

Experiment 2: 73.036 ± 1.086%, t13 = 21.207, p < 0.001, η
2 

p = 11.764). Similarly, for 

the Experiment 1, subjects’ performances were also submitted to a repeated-measures 

ANOVA with awareness (visible and invisible) and distance (D0 to D4) as 

within-subjects factors. The main effect of distance (F4, 52 = 1.892, p = 0.126, η
2 

p = 

0.127) and the interaction between the two factors (F4, 52 = 0.923, p = 0.458, η
2 

p = 

0.066) were not significant, but the main effect of awareness was significant (F1, 13 = 

171.254, p < 0.001, η
2 

p = 0.929). These results further conform that our awareness 

manipulation was effective for both the visible and invisible conditions, and there was 

no significant difference in subject performance among five distances. Error bars 

denote 1 SEM calculated across subjects and open dots denote the data from each 

subject. 
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Figure S2. False alarm, Miss, and Removal Rates in Distribution Experiments. False 

alarm rates of the cue and non-cue conditions for each distance (D0 to D4) during 

visible (left) and invisible (right) conditions in Experiments 1 (A) and 2 (B). Note that, 

in our study, subjects were asked to press one of two buttons as rapidly and correctly 

as possible to indicate the orientation of the line probe (45° or 135°). Thus, for each 

condition, a rightward response to a 45° line was (arbitrarily) considered to be a hit, a 

rightward response to a 135° line was considered to be a false alarm, and a leftward 

response to a 45° line was considered to be a miss. Error bars denote 1 SEM 

calculated across subjects and open dots denote the data from each subject. Miss rates 

of the cue and non-cue conditions for each distance (D0 to D4) during visible (left) 

and invisible (right) conditions in Experiments 1 (C) and 2 (D). Error bars denote 1 

SEM calculated across subjects and open dots denote the data from each subject. 

Removal rates (i.e., correct reaction times shorter than 200 ms and beyond three 

standard deviations from the mean reaction time in each condition were removed) of 

the cue and non-cue conditions for each distance (D0 to D4) during visible (left) and 

invisible (right) conditions in Experiments 1 (E) and 2 (F). Error bars denote 1 SEM 

calculated across subjects and open dots denote the data from each subject. There was 

no significant difference in false alarm rate, miss rate, or removal rate across 

conditions (all P > 0.05). 
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Figure S3. Eye Movement Data in Distribution and Normalization Experiments. 

Horizontal and vertical eye positions after removing blinks and artifacts of the visible 

(left) and invisible (right) conditions in Distribution (A) and Normalization (B) 

Experiments. Subjects` eye movements were small (< 3°) and not systematically 

different between the visible and invisible conditions (all p > 0.05). 
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Figure S4. Normalized R
2
 of Individual Subjects in Distribution Experiments. In 

Experiment 1 (A and D), Experiment 2 (B and E), and Experiments 1 & 2 (C and F), 

to directly compare the fitted R
2
 among Gaussian, Mexican Hat, and Polynomial 

models, we normalized the R
2
 of each subject to 2 2 2 1G M PR R R   , where 2

GR , 2

MR , 

and 2

PR  was the fitted R
2 

using the Gaussian, Mexican Hat, and Polynomial functions, 

respectively. During each condition (left: visible; right: invisible) and each experiment, 

most of the dots are located in the red zone, demonstrating that the Gaussian model 

was favored over both the Mexican Hat and Polynomial models. 
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Figure S5. Contrast Response Functions of Individual Subjects in Normalization 

Experiments. Data points are experimental (A) and predicted (B) performances (d') of 

individual subjects for awareness (visible and invisible), cue validity (congruent and 

incongruent), and stimulus contrasts. The individual contrast response function was 

fitted using the standard Naka–Rushton equation (A) and the original normalization 

model of attention with 4 free parameters (B), respectively. 
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