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ABSTRACT 
The COVID-19 disease has been a global threat caused by the new coronavirus species, 

SARS-CoV-2, since early 2020 with an urgent need for therapeutic interventions. In order to 

provide insight into human proteins targeted by SARS-CoV-2, here we study a directed human 

protein-protein interaction network (dhPPIN) based on our previous work on network 

controllability of virus targets. We previously showed that human proteins targeted by viruses 

tend to be those whose removal in a dhPPIN requires more control of the network dynamics, 

which were classified as indispensable nodes. In this study we introduce a more comprehensive 

rank-based enrichment analysis of our previous dhPPIN for SARS-CoV-2 infection and show 

that SARS-CoV-2 also tends to target indispensable nodes in the dhPPIN using multiple 

proteomics datasets, supporting validity and generality of controllability analysis of viral infection 

in humans. Also, we find differential controllability among SARS-CoV-2, SARS-CoV-1, and 

MERS-CoV from a comparative proteomics study. Moreover, we show functional significance of 

indispensable nodes by analyzing heterogeneous datasets from a genome-wide CRISPR 

screening study, a time-course phosphoproteomics study, and a genome-wide association 

study. Specifically, we identify SARS-CoV-2 ORF3A as most frequently interacting with 

indispensable proteins in the dhPPIN, which are enriched in TGF-beta signaling and tend to be 

sources nodes and interact with each other. Finally, we built an integrated network model of 

ORF3A-interacting indispensable proteins with multiple functional supports to provide 

hypotheses for experimental validation as well as therapeutic opportunities. Therefore, a sub-

network of indispensable proteins targeted by SARS-CoV-2 could serve as a prioritized network 

of drug targets and a basis for further functional and mechanistic studies from a network 

controllability perspective. 
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INTRODUCTION 
The coronavirus disease 2019, COVID-19, has been an unprecedented global pandemic since 

December 2019. It is caused by viral infection of a new coronavirus species, SARS-CoV-2. 

Tremendous global efforts have been made to fight the disease and understand the virus and 

the infection through rapid communications and accelerated collaborations at all levels of 

academia, industry, and governments. A large number of research reports on all possible 

aspects of the subject have been produced and communicated every day with multiple 

dedicated resources (e.g. https://www.ncbi.nlm.nih.gov/sars-cov-2/; 

https://connect.biorxiv.org/relate/content/181; https://connect.medrxiv.org/relate/content/181). 

Thanks to these huge efforts and excellent progress, two mRNA vaccines with about 95% 

efficacy became available through Emergency Use Authorization (EUA) by the US Food and 

Drug Administration (FDA) in December 2020 (https://www.fda.gov/emergency-preparedness-

and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-

authorization#vaccines; https://covid.cdc.gov/covid-data-tracker/#vaccinations) (Haynes, 2020). 

It was achieved in less than 1 year since the first whole genome sequence of the virus was 

available in early January 2020 (https://virological.org/t/novel-2019-coronavirus-genome/319) 

(Connors et al., 2021; Fauci, 2021). A third vaccine has been also granted an EUA by the FDA 

in late February 2021, although a concern about a rare and severe type of blood clot after 

vaccination has been raised (https://www.fda.gov/news-events/press-announcements/joint-cdc-

and-fda-statement-johnson-johnson-covid-19-vaccine). As of April 18, 2021, the number of 

confirmed cases around the world is now over 140 million and the number of deaths has 

exceeded 3 million, including more than half a million in the US, according to the World Health 

Organization (https://covid19.who.int/). In addition, no therapeutic interventions such as antiviral 

drugs with high efficacy have been identified for cure of COVID-19, although several drugs and 

biological products have obtained EUAs from the FDA for limited use 

(https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-

framework/emergency-use-authorization#coviddrugs). Moreover, there has been a growing 

concern about multiple variants (Arif, 2021; Galloway et al., 2021; Moore and Offit, 2021; 

Tegally et al., 2021; Walensky et al., 2021; Wise, 2020). Therefore, our improved understanding 

of the biology of the virus or molecular mechanisms of the infection and the disease is still 

urgently needed for better responses to this deadly pandemic from a scientific standpoint. 

 

Network analysis has been a major analytical tool in systems biology and network medicine 

(Barabási and Oltvai, 2004; Barabasi et al., 2011; Goh et al., 2007; Hu et al., 2016; Loscalzo 
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and Barabasi, 2011; Pawson and Linding, 2008). It has offered a wide range of insights in large-

scale biological networks such as metabolic networks, protein-protein interaction networks, 

signaling networks, and transcriptional regulatory networks (Duarte et al., 2007; Friedman and 

Perrimon, 2007; Jeong et al., 2000; Lee et al., 2008; Luscombe et al., 2004; Milo et al., 2002; 

Stelzl et al., 2005; Vidal et al., 2011). Among many analytical frameworks, a mathematical 

framework to analyze controllability of complex networks was developed using control theory of 

dynamical systems and graph theory of network topology (Liu et al., 2011). Dynamic control or 

regulation of a complex system can drive the system from one state to another such as healthy 

or disease states of molecular networks. Such transitions can be achieved by controlling “driver 

nodes” of the network (Liu et al., 2011). We note that controllability analysis studies local 

controllability of complex networks, which are inherently non-linear, for linear time-invariant 

dynamics around homeostasis (Liu et al., 2011). Based on this theoretical framework, we 

previously classified protein nodes of a large-scale directed human protein-protein interaction 

network into 3 classes (indispensable, dispensable, and neutral) in terms of controllability 

properties (Vinayagam et al., 2016). We also analyzed distinct features of the 3 node types in 

the context of network medicine and human diseases using disease-causing mutations, virus 

targets, and drug targets. Our finding was that transitions between healthy and disease states 

were mainly mediated by indispensable nodes from the network controllability perspective 

(Vinayagam et al., 2016). 

 

In this work we aim to carry out our previous controllability analysis of the directed human 

protein-protein interaction network for SARS-CoV-2 infection. Based on our previous work, we 

hypothesize that human proteins targeted by or interacting with SARS-CoV-2 proteins tend to 

be indispensable nodes in the dhPPIN. In order to test our hypothesis, we use PPI data from 

multiple mass spectrometry-based proteomics studies. We also use SARS-CoV-1 and MERS-

CoV proteomics data for a comparative study. For biological significance of controllability 

analysis for SARS-CoV-2 infection and COVID-19, we use heterogeneous published data from 

genome-wide CRISPR screening, mass spectrometry-based time-course phosphoproteomics, 

and a genome-wide association study. In addition, we introduce a novel controllability 

enrichment landscape analysis (CELA) which aims to analyze controllability of rank-based 

genomes or proteomes in a comprehensive manner. Finally, we identify the top SARS-CoV-2 

protein that most frequently interacts with indispensable proteins to provide a prioritized sub-

network of the dhPPIN together with supports from other data sources for specific hypotheses 

and therapeutic opportunities in further studies of COVID-19.  
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DATA AND METHODS 
Controllability analysis of a directed human PPI network 

We previously performed controllability analysis of a directed human protein-protein interaction 

network (dhPPIN) and identified 3 classes of nodes: indispensable, dispensable, and neutral 

(Vinayagam et al., 2016). The node classification is based on the change of the minimum 

number of driver nodes after removal of a node in question. Controllability analysis identifies a 

minimum set of driver nodes (MDS) (Liu et al., 2011). It is sufficient to control an MDS to fully 

control dynamics of the entire network. The node elements in an MDS may change, but its size, 

ND, is uniquely determined by network topology (Liu et al., 2011). Removing indispensable, 

dispensable, or neutral nodes decreases, increases, or does not change ND, respectively. Our 

dhPPIN consists of 6,339 human proteins and 34,813 directed PPIs. The numbers of 

indispensable, dispensable, and neutral nodes are 2,347, 1,330, and 2,662, respectively 

(Vinayagam et al., 2016). We use the same dhPPIN and the node classification in this study.  

 

SARS-CoV-2 virus-human protein-protein interactions data 

We use data from the IntAct database (Orchard et al., 2014), which contains 2,020 virus-human 

PPIs between 26 SARS-CoV-2 proteins and 1,341 human proteins compiled from 5 different 

studies, as of June 17, 2020. We analyzed the merged dataset as well as 3 different datasets 

from 3 individual studies with more than 300 PPIs. The other 2 studies have 1 and 3 PPIs in the 

database. The 3 studies are (1) Gordon et al. with 332 PPIs (Gordon et al., 2020b) (2) Li et al. 

with 633 PPIs (Li et al., 2020), and (3) Stukalov et al. with 1059 PPIs (Stukalov et al., 2020). We 

also use the data of MiST (Mass spectrometry interaction STatisitcs) scores (Verschueren et al., 

2015) in Supplementary Table 1 from Gordon et al.’s publication (Gordon et al., 2020b) without 

a subjective threshold to define high-confidence PPIs. 

 

SARS-CoV-2, SARS-CoV-1, and MERS-CoV virus-human protein-protein interactions data 

We use data from a comparative proteomics study for SARS-CoV-2, SARS-CoV-1, and MERS-

CoV (Gordon et al., 2020a) for a comparative controllability analysis. In particular, we use MiST 

scores of PPIs for all 3 virus species in their Supplementary Table 2. 

 

CRISPR knock-out loss-of-function screening study in SARS-CoV-2 infection in human cells 

We use multiple sets of results from a genome-wide CRISPR study in a human alveolar basal 

epithelial carcinoma cell line, A549, with ACE2 expression (Daniloski et al., 2020). They used 

two viral doses or multiplicity of infection (MOI) conditions: low MOI of 0.01 and high MOI of 0.3 
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(i.e., the viral dose difference of 30-fold). We analyze the ranked list of all 19,049 genes for each 

MOI condition in their Supplementary Table 1. We also analyze groups of genes functioning in 

17 significantly enriched Gene Ontology (GO) biological processes in their Supplementary Table 

2. In addition, we analyze differentially expressed genes (DEGs) with a clear transcriptomic shift 

in infection upon CRISPR perturbation of each of 11 validated top-ranked target genes in their 

Supplementary Table 5. Those DEGs were selected under stringent conditions of non-adjusted 

p-value < 1e-5 or adjusted p-value < 0.2 from single-cell ECCITE-seq transcriptomics 

experiments (Daniloski et al., 2020). The 11 genes and the numbers of DEGs are as follows: 

ACE2 (658), ATP6AP1 (842), ATP6V1A (512), CCDC22 (41), CNOT4 (111), HNRNPC (811), 

NPC1 (158), PIK3C3 (166), RAB7A (54), TMEM165 (20), and ZC3H18 (247). 

 

SARS-CoV-2 infection phosphoproteomics data 

Bouhaddou et al. published time-course phosphoproteomics data in SARS-CoV-2 infection in 

Vero E6 cells and performed Gene Ontology enrichment analysis for human orthologues 

(Bouhaddou et al., 2020). They provided a list of enriched biological processes regulated by 

phosphorylation in Supplementary Table 2. They studied regulation by phosphorylation at 6 time 

points of SARS-CoV-2 infection (2, 4, 8, 12, and 24 hours) as well as 24 hours of the control 

condition compared to 0 hour of the control condition. The numbers of significantly enriched 

processes by phosphorylation are 95, 121, 98, 117, 135, 164, and 8, respectively (Bouhaddou 

et al., 2020). We use each list of all human proteins involved in those enriched biological 

processes at each time point. The numbers of proteins are 227, 465, 294, 436, 522, 650, and 57, 

respectively (Bouhaddou et al., 2020). 

 

GWAS hits in SARS-CoV-2 infection 

We use data from a genome-wide association study (GWAS) by PrecisionLife Ltd in the UK 

(Taylor et al., 2020). They used the UK Biobank data of 929 cases and 5,563 controls to identify 

68 GWAS protein-coding genes of strong associations with severe COVID-19 risk. We use the 

gene list from their Table 9, which contains a total of 71 severe COVID-19-related genes. 

 

Monte Carlo simulations 

We performed Monte Carlo simulations for the number of nodes in each node class by random 

sampling of a group of proteins or genes in question from either all proteins in the dhPPIN or all 

proteins or genes measured in each study as a background. The simulations were used to 

generate empirical null distributions to calculate p-values and z-scores (Lee et al., 2009). We 
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sample 10,000 random groups for each simulation. The sampling and simulations were done 

using R scripts.  

 

Controllability enrichment landscape analysis 

For a pre-determined or given group of proteins or genes, we use 2 methods for enrichment 

analysis: (1) a hypergeometric test for an overlap of the viral infection-associated human 

proteins or genes with proteins of different node classes in the dhPPIN and (2) Monte Carlo 

simulations for the size of each node class from observed data to calculate empirical p-values 

and z-scores as described above. For the proteomic or transcriptomic data with whole ranking 

or scoring, instead of pre-determined protein or gene groups, we introduce controllability 

enrichment landscape analysis (CELA). CELA performs a comprehensive expanding-window 

enrichment analysis for a window of top N proteins or genes by monotonically increasing the 

window size by 1. The minimum window has Nmin proteins or genes belonging to all 3 node 

classes in the dhPPIN, i.e., Nmin >= 3. The maximum window size of Nmax is the total number of 

proteins or genes measured in each study under consideration. Therefore, we perform an 

enrichment analysis for each of Nmax – Nmin + 1 windows, generating a landscape of p-values or 

z-scores for enrichment of each node class. Similar window-scanning approaches have been 

widely used in analyses of sequence motifs and gene sets (Bailey, 2008; Subramanian et al., 

2005). All enrichment analyses were done in R. 

 
Functional enrichment analysis 

Given a group of proteins or genes, we performed functional enrichment analysis using the 

webtool, Enrichr (https://maayanlab.cloud/Enrichr/) (Kuleshov et al., 2016). We focused on two 

analysis categories in this work: Pathways and Ontologies. 

 

Network visualization 

Network visualization was done using Cytoscape (Shannon et al., 2003). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2021. ; https://doi.org/10.1101/2021.04.18.440358doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.18.440358
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 7	

RESULTS 
Human proteins interacting with SARS-CoV-2 proteins tend to be indispensable nodes 

560 of the 1,341 proteins in the IntAct database are found in the dhPPIN. Among the 560 

proteins, the numbers of indispensable, dispensable, and neutral nodes are 144, 180, and 236, 

respectively. We calculated the hypergeometric p-values for the 144 indispensable, 180 

dispensable, and 236 neutral nodes in the dhPPIN among 1,341 SARS-CoV-2 interacting 

human proteins. The p-values are 0.0028, 0.9949, and 0.4873 for indispensable, dispensable, 

and neutral nodes, respectively. The z-scores from 10,000 sets of random 560 nodes 

corresponding to the sum of the sizes of all observed node classes are 2.90, -2.48, and 0.06 for 

indispensable, dispensable, and neutral nodes, respectively (Fig. 1A). We obtain similar z-

scores from 10,000 sets of random 144, 180, and 236 nodes corresponding to the sizes of the 

observed indispensable, dispensable, and neutral node classes, respectively (2.89, -2.51, and 

0.08, respectively). We also investigated each of three studies in the IntAct collection (Gordon et 

al., 2020b; Li et al., 2020; Stukalov et al., 2020). There are 332, 226, and 857 human proteins 

interacting with SARS-CoV-2 proteins identified in the 3 studies, respectively. Among them, 145, 

134, and 311 proteins are found in the dhPPIN, respectively. We find that the data by Li et al. 

show a significant enrichment in indispensable nodes, but not the other two datasets (Fig. S1A). 

 

Due to limitations of subjective thresholds to define high-confidence PPIs from AP-MS 

experiments, we carried out a more comprehensive analysis of raw MiST scores for all 

measured PPIs using continuously increasing thresholds or top PPIs, i.e., controllability 

enrichment landscape analysis (CELA) described in Methods. We focused on Gordon et al.’s 

dataset that was peer-reviewed (Gordon et al., 2020b) at the time of our analysis of the three 

datasets from the IntAct database. We first performed 10,000 Monte Carlo simulations to 

generate an empirical null distribution of the number of nodes in each node class for the group 

of human proteins from the top N virus-human PPIs at a given threshold of MiST scores. As 

shown in Figs. 1B and 1C, the indispensable nodes tend to be enriched among the high-ranking 

top N proteins, especially among the top ~230 to ~440 proteins with z-score > 1.5. Therefore, 

we conclude that the human proteins interacting with SARS-CoV-2 tend to be indispensable in 

the dhPPIN. Although Gordon et al. presented the 332 proteins as highly confident in their 

publication (Gordon et al., 2020b), our results suggest ~100 more proteins as confident too. We 

also note that the expansion of the top N proteins beyond the top 50% or ~1300 proteins (i.e., 

PPIs of low confidence and increasing overlaps with the dhPPIN) shows increasingly strong 

enrichment in indispensable nodes. This is expected because our dhPPIN as a whole was 
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found to be enriched in indispensable nodes for all virus targets studied in our previous work 

(Vinayagam et al., 2016). 

 

In addition to the proteomics data above, we also analyzed a follow-up PPI proteomics study of 

SARS-CoV-2, SARS-CoV-1, and MERS-CoV (Gordon et al., 2020a) by performing CELA as in 

Figs. 1B and 1C. We observe similar enrichment patterns for SARS-CoV-2 (Fig. 2A) and 

different patterns for SARS-CoV-1 and MERS-CoV (Figs. 2B and 2C) among the top 50% virus-

interacting human proteins. SARS-CoV-2-interacting human proteins tend to be indispensable 

among the top ~500 proteins (Fig. 2A). SARS-CoV-1-interacting human proteins are not 

enriched in indispensable nodes among the top 50% proteins, while the top ~300 proteins tend 

to be dispensable and the top 1,000 – 1,500 proteins tend to be neutral (Fig. 2B). MERS-CoV-

interacting proteins show a strong enrichment among the top ~50 proteins and the top 750 – 

1,000 proteins tend to be indispensable. As in Fig. 1C, all proteins show enrichment in 

indispensable nodes in agreement with our previous work for all virus targets (Vinayagam et al., 

2016). Therefore, our results by CELA reveal that the SARS-CoV-2-interacting high-ranking 

human proteins tend to be more indispensable than those interacting with SARS-CoV-1 and 

MERS-CoV proteins. 

 

CRISPR hits in SARS-CoV-2 infection tend to be indispensable nodes 

Given the significance of indispensable nodes observed above from the physical interactome 

data, we asked if indispensable nodes also possess functional significance in SARS-CoV-2 

infection. To answer this question, we relied on a recent genome-wide CRISPR knock-out 

screening study of SARS-CoV-2 infection in a human lung cell line (Daniloski et al., 2020). In 

particular, we focused on their 11 validated top-ranked genes with perturbation signatures for 

infection. Six of them are found in the dhPPIN and none of them are indispensable. On the other 

hand, for each of those 11 genes they identified a group of differentially expressed genes 

(DEGs) compared to cells with non-targeting guide RNAs (see their Fig. 5C). We performed 

enrichment analysis of each node class in the dhPPIN for the 11 groups of DEGs by empirical 

p-values and z-scores from Monte Carlo simulations (Fig. 3A). All genes except two show 

significant enrichment of indispensable nodes. Six of these genes, RAB7A, PIK3C3, NPC1, 

CCDC22, ATP6V1A, and ATP6AP1, were found to show a similar transcriptional signature of 

upregulation of the cholesterol synthesis pathway as well as increased cholesterol levels 

(Daniloski et al., 2020). 
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Daniloski et al.’s CRISPR screen also identified 17 significantly enriched Gene Ontology (GO) 

biological processes (FDR < 0.1) using Gene Set Enrichment Analysis (GSEA) on the list of all 

19,049 ranked genes (see their Fig. 3B and Table S2). For our enrichment analysis, we 

selected 9 out of the 17 GO biological processes where all the 3 node classes in the 

controllability analysis of our dhPPIN can be identified among leading-edge genes from the 

GSEA results for fair comparisons of the 3 classes. 5 out of 9 categories show significant 

enrichment in indispensable nodes, which are mostly related to catabolism such as autophagy 

and lysosome as shown in Fig. 3B. 
 

To perform a more comprehensive analysis, we used each of the two lists of 19,049 ranked 

genes in the low and high MOI screens in Daniloski et al.’s study. The Spearman correlation 

coefficient between the two ranked lists is about 0.22, suggesting that the viral infections from 

the two screens were functionally different. To investigate this difference from a controllability 

analysis perspective in a comprehensive manner, we performed CELA for each MOI screen 

using Monte Carlo simulations. We find that genes in the top 2000 ranking in the low MOI 

condition tends to be significantly under-represented in indispensable nodes, whereas genes in 

the top 2000 - 9000 ranking (i.e., within the top 50%) in the high MOI condition are robustly 

enriched in indispensable nodes (Figs. 3C and 3D), reflecting the functional difference between 

the two conditions. 

 

Human proteins involved in biological processes regulated by phosphorylation during SARS-

CoV-2 infection tend to be indispensable nodes 

Bouhaddou et al. carried out time-course phosphoproteomics in SARS-CoV-2 infection in Vero 

E6 cells and performed Gene Ontology enrichment analysis for human orthologues (Bouhaddou 

et al., 2020). They identified a group of enriched biological processes regulated by 

phosphorylation at 6 time points of SARS-CoV-2 infection (2, 4, 8, 12, and 24 hours) as well as 

24 hours of the control condition compared to 0 hour of the control condition. The numbers of 

significantly enriched processes and all involved proteins at the 7 time points are (95 processes, 

227 proteins), (121, 465), (98, 294), (117, 436), (135, 522), (164, 650), and (8, 57), respectively. 

Among those proteins, 139, 276, 186, 271, 310, 397, and 33 proteins are found in the dhPPIN, 

respectively. We performed controllability enrichment analysis for each group of those proteins. 

All protein groups at the 6 infection timepoints show significant enrichment in indispensable 

nodes (Fig. 4A). In contrast, the 24-hour control condition compared to the 0-hour control 

condition shows no enrichment in any of the node classes (Fig. 4A). 
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GWAS hits in SARS-CoV-2 infection tend to be indispensable nodes 

A GWAS in the context of COVID-19 identified 68 protein-coding genes of strong associations 

with high risk of severe COVID-19 using the UK Biobank data (Taylor et al., 2020). Our dhPPIN 

contains 23 of the 71 genes provided in their Table 9. Among those 23 nodes in the dhPPIN, the 

numbers of indispensable, dispensable, and neutral nodes are 8, 6, and 9, respectively. To test 

significance of the size of each node class, we perform Monte Carlo simulations for size 

distributions by sampling random 23 proteins from the dhPPIN. We sample 10,000 sets of 23 

proteins and count the numbers of indispensable, dispensable, and neutral nodes. The 

distributions from random sampling are shown in Fig. 4B. The empirical p-values are 0.0335, 

0.8504, and 0.5264 for indispensable, dispensable, and neutral nodes, respectively. The z-

scores are 1.66, -1.10, and -0.29 for indispensable, dispensable, and neutral nodes, 

respectively. Therefore, the 23 GWAS hits of severe COVID-19 risk factor are enriched in 

indispensable nodes of the dhPPIN.  

 

Integrative analysis of indispensable proteins interacting with SARS-CoV-2 proteins 

To obtain multiple supports for indispensable proteins from both physical and functional 

interaction data, we merged all indispensable proteins in seven of our analyses for SARS-CoV-2 

above (Figs. 5A and S5). The 7 analyses are those of IntAct (Fig. 1A), the two proteomics 

datasets (Figs. 1C and 2A), the DEGs and the enriched pathways from the genome-wide 

CRISPR data (Figs. 3A and 3B), the phosphorylation-regulated enriched biological processes 

from the phosphoproteomics data (Fig. 4A), and the GWAS data (Fig. 4B). A total of 546 

indispensable proteins are identified, which form 10,760 PPIs together with 4,438 other proteins 

in the dhPPIN. 12 of the 546 proteins are identified by 5 analyses and 321 by at least 2 

analyses (Fig. S5). The 12 proteins are EMD, GAPDH, HDAC2, HNRNPUL1, ITGB1, MCM3, 

PCBP1, PRKACA, PRKDC, PSMC1, SQSTM1, and TP53. They are enriched in cell cycle 

among others using the webtool, Enrichr (Kuleshov et al., 2016) 

(https://maayanlab.cloud/Enrichr/enrich?dataset=7c2a163c438839ac7c64870b35d4c013). 

Functional enrichment analysis of those 321 indispensable proteins revealed that they are 

significantly enriched in cell cycle, TGF-beta/IL-3 signaling, DNA metabolism, human 

cytomegalovirus infection, and Hepatitis C, among others 

(https://maayanlab.cloud/Enrichr/enrich?dataset=d997f50a1386e0a4bedec9be7d97facd). In 

Fig. 5A, we merged the 3 PPI data sources for simplicity and the intersections among the 5 

different data sources are shown in a Venn diagram. There are two indispensable proteins with 
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supports from all data sources except the GWAS data: TP53 (Tumor protein P53) and SQSTM1 

(Sequestosome-1). TP53 and SQSTM1 were found to interact with NSP13 and E proteins of 

SARS-CoV-2 with low confidence by the two proteomics studies (Gordon et al., 2020a; Gordon 

et al., 2020b). 

 

ORF3A most frequently interacts with indispensable proteins enriched in TGF-beta signaling 

Having identified those indispensable proteins in the dhPPIN by multiple data sources, we 

turned our attention to SARS-CoV-2 proteins which mostly likely interact with those 

indispensable proteins. To this end, we analyzed the merged data of IntAct and Gordon et al.’s 

top 500 PPIs by MiST scores for high confidence (Figs. 1 and 2A). ORF3A has the largest 

number of 55 indispensable interactors (~15% of all 365 interactors), followed by ORF7B with 

28 indispensable interactors (~6.8% of all 409 interactors) (Fig. 5B). NSP10 has the largest 

fraction of indispensable interactors (11 indispensable interactors out of all 35 interactors, i.e., 

~31%). 17 of the 55 indispensable interactors with ORF3A are also supported by other data 

sources, e.g. GAPDH, CLU, and MET by 2 other sources as indicated in Fig. 5B. 13 interactors 

are among those differentially expressed genes identified by the CRISPR study. The 

homologous ORF3A protein in SARS-CoV-1 was found to be involved in virus release, ER 

stress, and downregulation of the type 1 interferon receptor (Lu et al., 2006; Minakshi et al., 

2009). ORF7B of 43 amino acids is known to be a membrane protein, but its function is 

uncharacterized as of April 18, 2021 (UniProtKB, P0DTD8; 

https://www.uniprot.org/uniprot/P0DTD8). The homologous NSP10 protein in SARS-CoV-1 

forms an exoribonuclease complex with NSP14 for viral transcription (Bouvet et al., 2012). The 

55 indispensable proteins interacting with ORF3A are enriched in TGF-beta signaling and 

known targets by HIV 1, among others, by Enrichr 

(https://maayanlab.cloud/Enrichr/enrich?dataset=9d413f886fdbe82ac1a6140963ce1dd3). They 

form 1,569 PPIs in the dhPPIN together with 1,066 other proteins, with 956 PPIs (~60.9%) as 

source nodes and 646 PPIs (~41.2%) as target nodes. 33 PPIs (~2.1%) are among 34 of the 55 

indispensable proteins (self-PPIs) (Fig. 5C). Six TGF-beta signaling receptors (TGFBR1, 

TGFBR2, ACVR1, ACVR1B, BMPR1B, and BMPR2) are among them and TGFBR1 has the 

largest number of PPIs with 6 in-degrees and 2 out-degrees (Fig. 5C). By annotating the dhPPI 

sub-network with those additional data supports of the CRISPR targets and enriched functions, 

we built an integrated model of an ORF3A-interacting indispensable network in Fig. 5C. 

Moreover, in order to assess significance of the ratio between the numbers of PPIs as source 

and target nodes and the fraction of self-PPIs among the 55 indispensable nodes, we performed 
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Monte Carlo simulations for 10,000 groups of 55 random indispensable proteins. We obtain 

normal distributions as empirical null distributions of the two measures (Fig. 5D). The observed 

measures for ORF3A are both significant with empirical p-values ~= 0.0001 and 0.0009 and z-

scores ~= 4.4 and 3.7, respectively. Therefore, ORF3A tends to interact with indispensable 

source nodes and ORF3A-interacting indispensable nodes tend to interact with each other. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2021. ; https://doi.org/10.1101/2021.04.18.440358doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.18.440358
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 13	

DISCUSSION 
In this work we have found that SARS-CoV-2 proteins tend to target indispensable nodes in a 

dhPPIN. Indispensable nodes are those which increase the number of driver nodes in a dhPPIN 

when deleted from the network (Liu et al., 2011; Vinayagam et al., 2016). In other words, the 

absence of an indispensable node requires more driver nodes to fully control the network 

dynamics. This is to confirm our previous finding that virus targets tend to be indispensable 

nodes in the dhPPIN (Vinayagam et al., 2016). 

 

Although controllability analysis is based on an integrative framework of control theory and 

graph theory (Liu et al., 2011), our applications to biological data are mostly based on statistical 

enrichment analysis. Because biological data are typically noisy, in particular high-throughput 

omics data, selection of a threshold to define meaningful targets for subsequent studies in any 

omics dataset is a subjective and non-rigorous strategy. This practice has been around for a 

long time in high-throughput biology. For example, we previously investigated effects of different 

thresholds in a ChIP-chip dataset for robustness of the data (Lee et al., 2009). The proteomics 

and genome-wide CRISPR data in this study also have similar issues to select a threshold for 

the top targets. To reduce effects of such subjectivity and increase robustness of our results, we 

developed a comprehensive analysis approach of the controllability enrichment landscape 

analysis (CELA) using continuously varying thresholds for ranking or the increasing number of 

top targets across all measured genes or proteins. This approach resulted in more robust 

conclusions together with a better understanding of the data. For example, our results suggest 

the top 500 proteins are likely to be interacting with SARS-CoV-2, which is a new threshold for 

the proteomics data from a more robust analysis of network controllability. 

 

From our controllability analysis of comparative PPI proteomics data for SARS-CoV-2, SARS-

CoV-1, and MERS-CoV (Fig. 2), we hypothesize that the differential controllability is correlated 

with infectiousness and disease severity of the 3 coronavirus species. Interacting with more 

indispensable host proteins during SARS-CoV-2 infection may imply that SARS-CoV-2 proteins 

target indispensable host proteins whose disruption results in a higher cost for controlling the 

protein interaction network of the host cell than infection by SARS-CoV-1 or MERS-CoV. 

 

We specifically focused on DEGs for the 11 validated top-ranked genes and significantly 

enriched GO categories from a genome-wide CRISPR study for functional significance of 

indispensable nodes. Although none of the 11 genes are indispensable in the dhPPIN, we find 
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that the transcriptomic changes of DEGs for the 11 validated top-ranked genes have a 

significant statistical association with indispensable nodes, suggesting that SARS-CoV-2 

infection tends to target those host indispensable proteins of transcriptional responses so that 

host cells become more difficult to control their PPI network by requiring more driver nodes 

when attacked by the virus. A similar logic can be applied to the catabolic processes of 

autophagy and lysosomes from the significantly enriched GO biological processes by GSEA of 

the CRISPR ranked genes, where indispensable nodes are found to be enriched. One limitation 

is a lack of our understanding as to why there are such differences in enrichment of 

indispensable nodes between the high and low MOI conditions (Figs. 3C and 3D). 

 

As another functional relevance of indispensable proteins, we also investigated the protein 

phosphorylation data. As shown in Fig 4A, there is a clear difference of enrichment between the 

infection and non-infection samples for phosphorylation-regulated biological processes. 

However, post-infection differences over time are unclear. 

 

We do not expect to observe significant enrichment of indispensable nodes in all systems. For 

example, we previously observed that GWAS hits were not enriched in indispensable nodes 

(Vinayagam et al., 2016). We also observed that another GWAS study of SARS-CoV-2 infection 

in humans by Regeneron Inc. (Kosmicki et al., 2021) does not give rise to GWAS hits that are 

enriched in indispensable nodes (data not shown). Although we showed that the 23 GWAS hits 

by another study (Taylor et al., 2020) are enriched in indispensable nodes (Fig. 4B), the number 

of hits is relatively small, suggesting that statistical robustness may not be guaranteed. 

 

With those caveats and limitations in individual analyses of 7 different large-scale studies in 

mind, we identified those indispensable proteins with multiple supports of both physical and 

functional interactions with SARS-CoV-2 proteins (Figs. 5A and Fig. S5). We consider them as 

high confident with independent and complementary data supports and therefore their functions 

are more likely to be meaningful in the SARS-CoV-2 infection. Based on this meta-analysis, we 

aimed to identify a high-confident sub-network of indispensable proteins and their interacting 

SARS-CoV-2 protein for downstream applications such as drug discovery. We hypothesized 

that SARS-CoV-2 proteins that most frequently interact with indispensable proteins in the 

dhPPIN are likely to be promising targets for therapeutic opportunities. We find that ORF3A 

interacts with the largest number of indispensable proteins in the dhPPIN along with multiple 

other supports such as the CRISPR data and that those indispensable proteins are functionally 
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enriched in TGF-beta signaling (Figs. 5B and 5C). We further find that those indispensable 

proteins tend to be source nodes (i.e., regulators) rather than target nodes (i.e., regulatees) and 

interact among themselves (Fig. 5D). Therefore, our analysis offers an integrated model and a 

molecular insight that ORF3A is highly likely to make the host cells vulnerable by targeting those 

source indispensable proteins with regulatory roles in TGF-beta signaling, which require more 

controls in the dhPPIN, or higher cost in controllability, when disrupted. This in turn suggests 

that we should target ORF3A to prevent COVID-19 or recover normal function of TGF-beta 

signaling to treat COVID-19. ORF3A encodes a putative ion channel and its dimeric and 

tetrameric structures have been reported using cryo-EM (Kern et al., 2020). TGF-beta signaling 

has been implicated as a potential therapeutic target in several studies of COVID-19, both in 

vivo and in silico, along with other major inflammatory cytokines such as IL-6 and TNF-alpha 

(Carlson et al., 2020; Chen, 2020; Murthy P et al., 2021; Park et al., 2020; Sacchi et al., 2020; 

Wei et al., 2020; Yousefi et al., 2020; Zhang et al., 2020). Although no drug has been found to 

target ORF3A, 8 of those 34 indispensable ORF3A interactors in Fig. 5C are targeted by 17 

FDA-approved drugs according to the DSigDB database (Release 1, May 2015) (Yoo et al., 

2015) (Fig. S5C), which may offer therapeutic opportunities. 

 

In this study we relied on a previous dhPPIN and the node classification. As the PPI network is 

constantly evolving based on experimental technologies and biological knowledge, our specific 

results and individual findings will need to be confirmed accordingly. We have shown in this 

study that our qualitative results and findings are consistent with our previous study. Therefore, 

we expect that any updated or new dhPPIN (e.g. Basha et al., 2018; Silverbush and Sharan, 

2019) would also yield the validity of our approach, which will be investigated in a future study. 
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Figure 1. Significant enrichment of indispensable nodes among human proteins interacting with 

SARS-CoV-2 proteins in the dhPPIN. (A) Null distributions of the numbers of nodes in each 

node class in the dhPPIN by Monte Carlo simulations based on all SARS-CoV-2-human PPI 

data from the IntAct database. The observed numbers are indicated by the vertical lines. (B) 

Density distributions of z-scores for each node class from 10,000 Monte Carlo simulations for 

the top N proteins with 10 <= N <= 2749 by the CELA of the MiST scores from a proteomics 

study (Gordon et al., 2020b). (C) Line plots for z-score landscapes of the data in (B) for the 

increasing N. The different line colors in (B) and (C) are the same as in (A). See also Figure 

S1B. 
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Figure 2. Differential controllability of human proteins interacting with 3 coronavirus species by 

CELA. (A – C) Results for SARS-CoV-2, SARS-CoV-1, and MERS-CoV, respectively, using the 

data from a comparative proteomics study (Gordon et al., 2020a). The analysis is the same as 

in Fig. 1B and 1C. The line colors are the same as in Fig. 1. See also Fig. S2. 
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Figure 3. Significant enrichment of indispensable nodes from a CRISPR knock-out screening 

study of SARS-CoV-2 infection in a human lung cell line (Daniloski et al. 2020). (A) Enrichment 

z-scores of each node class for differentially expressed genes (DEGs) in gene-perturbed 

infected cells in comparison to control cells for 11 top-ranked genes. The number of common 

genes between the DEGs for each of the 11 perturbed genes and the dhPPIN is shown in 
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parentheses. See also Fig. S3A for corresponding p-values. (B) Enrichment z-scores of each 

node class for significantly enriched Gene Ontology (GO) biological processes. See also Fig. 

S3B for corresponding p-values. (C and D) Density and line plots of z-scores from CELA of the 

dhPPIN for the ranked lists of all CRISPR-screen genes in the low and high MOI conditions, 

respectively. The analysis is the same as in Fig. 1B and 1C. The line colors are the same as in 

Fig. 1. See also Figs. S3C to S3J.  
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Figure 4. Significant enrichment of indispensable nodes for time-course phosphoproteomics 

and GWAS of SARS-CoV-2 infection. (A) Enrichment z-scores of each node class in those 

enriched biological processes regulated by phosphorylation from Bouhaddou et al.’s time-

course phosphoproteomics data of SARS-CoV-2 infection. In the legend, “Ctrl” means a control 

condition of no infection and “Inf” means SARS-CoV-2 infection. “Hr” implies a time unit of 

hours. For example, “Ctrl_24Hr” means 24 hours in the control condition with no infection and 

“Inf_24Hr” means 24 hours post-infection. The number in the parentheses at each time point 

indicates the number of proteins or nodes found in the dhPPIN among all proteins involved in all 

enriched processes. (B) Enrichment tests of the 3 node classes for GWAS hits (Talyor et al., 

2020). The set of 23 GWAS hits were tested. The 3 density functions were estimated from 

10,000 Monte Carlo simulations of 23 random proteins sampled from the dhPPIN and served as 

empirical null distributions. The vertical lines represent the observed data from the GWAS study. 
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Figure 5. SARS-CoV-2 proteins interacting with indispensable nodes in the dhPPIN and a sub-

network for ORF3A. (A) A Venn diagram of indispensable proteins identified from 5 different 

data sources: PPI = merged data of the 3 PPI studies in Figs 1 and 2A, CRISPR-DEG = the 

data of differentially expressed genes from the CRISPR study in Fig. 3A, CRISPR-GSEA = the 

GSEA data from the CRISPR study in Fig. 3B, PHOSPHO = the phosphoproteomics data in Fig. 

4A, and GWAS = the GWAS data in Fig. 4B. (B) A bar plot of the number of indispensable 
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nodes in the dhPPIN interacting with each of SARS-CoV-2 proteins. The number at the end of 

each bar represents the number of supports from data sources other than the PPI data. All 55 

indispensable interactors with ORF3A are listed along with 20 other supports using the color-

coded dots next to relevant interactors: blue = PHOSPHO, green = CRISPR-DEG, and orange 

= CRISPR-GSEA. (C) A dhPPI sub-network of 34 indispensable proteins (in light purple circles) 

interacting with ORF3A and with themselves (self-PPIs; grey directed solid edges), together with 

additional data supports from (B). Six TGF-beta signaling receptors are underlined in red. The 

CRISPR targets that induced differentially expressed genes (CRISPR-DEG; green dots) are 

shown in green boxes and green dotted edges. The enriched functions and their genes from the 

CRISPR study (CRISPR-GSEA) are in orange. (D) (Top panel) An empirical null distribution of 

the ratio between the number of dhPPIs with ORF3A-interacting indispensable nodes as source 

nodes (source-PPIs) and the number of PPIs with those as target nodes (target-PPIs). (Bottom 

panel) An empirical null distribution of the fraction of dhPPIs among ORF3A-interacting 

indispensable nodes themselves (self-PPIs). The observed ratio and fraction are indicated by 

the vertical lines in red in the top and bottom panels, respectively. 
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Figure S1. (A) Enrichment analysis for each of 3 different studies in the data of Fig. 1A. (B) 

Histograms of z-scores for the 3 node classes corresponding to Fig. 1B (or the last plot copied 

here for convenience). 
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Figure S2. The same data and figures as in Fig. 2 along with individual histograms as in Fig. 

S1B. 
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Figure S3. Enrichment p-values and z-scores for each node class in relation to Fig. 3. (A) 

Enrichment p-values and z-scores of each node class for differentially expressed genes (DEGs) 

as in Fig. 3A. (B) Enrichment p-values and z-scores of each node class for significantly enriched 

Gene Ontology (GO) biological processes as in Fig. 3B. (C and D) Distributions of p-values by 

histograms and density plots for each node class for the low and high MOI conditions, 

respectively, using the same data as in Figs. 3C and 3D. (E and F) Distributions of z-scores by 

histograms and density plots for each node class for the low and high MOI conditions, 

respectively. The density plots are the same as Figs. 3C and 3D. (G and H) P-value changes for 

top N genes for the low and high MOI conditions, respectively, using the same data as in Figs. 

3C and 3D. (E and F) The same z-score plots of Figs. 3C and 3D for comparisons with (G) and 

(H). The significant regions for indispensable nodes are highlighted in the red boxes. 
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Figure S4. Enrichment p-values and z-scores corresponding to Fig. 4A. 
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Figure S5. Binary heatmap of 546 indispensable proteins of the dhPPIN identified by individual 

analyses of 7 studies, without hierarchical clustering in (A) and with hierarchical clustering in 

(B). Each row is for each indispensable protein and each column for each study. The red color 

indicates that an indispensable protein is identified in a given study. The black color is for 

otherwise. 321 indispensable proteins identified in at least 2 studies are highlighted in the green 

box in (A). The 7 studies are IntAct (PPI-IntAct), the top 500 proteins by MiST scores from each 

of the two proteomics datasets (PPI-Gordon1 and PPI-Gordo2), the phosphorylation-regulated 

enriched biological processes from the phosphoproteomics data (Phosphoproteomics), the 

enriched pathways and DEGs from the genome-wide CRISPR data (CRISPR-DEG), and the 

GWAS data (GWAS). (C) A drug-target network of FDA-approved drugs from the DSigDB 

database for the ORF3A-interacting indispensable proteins in Fig. 5C. Multiple edges between a 

drug and a target are shown for multiple experimental measurements in the database. 
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