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A key goal in synthetic biology is the construction of molecular circuits that robustly adapt to perturbations.
Although many natural systems display perfect adaptation, whereby stationary molecular concentrations
are insensitive to perturbations, its de novo engineering has proven elusive. The discovery of the antithetic
control motif was a significant step toward a universal mechanism for engineering perfect adaptation. Anti-
thetic control provides perfect adaptation in a wide range of systems, but it can lead to oscillatory dynamics
due to loss of stability, and moreover, it can lose perfect adaptation in fast growing cultures. Here, we in-
troduce an extended antithetic control motif that resolves these limitations. We show that molecular buffer-
ing, a widely conserved mechanism for homeostatic control in nature, stabilises oscillations and allows for
near-perfect adaptation during rapid growth. We study multiple buffering topologies and compare their
performance in terms of their stability and adaptation properties. We illustrate the benefits of our proposed
strategy in exemplar models for biofuel production and growth rate control in bacterial cultures. Our results

provide an improved circuit for robust control of biomolecular systems.

I. INTRODUCTION

Synthetic biology promises to revolutionise many
sectors such as healthcare, chemical manufacture and
materials engineering’. A number of such appli-
cations require precise control of biomolecular pro-
cesses in face of environmental perturbations and
process variability??>. An important requirement in
such control systems is perfect adaptation, a property
whereby chemical concentrations remain insensitive to
perturbations?®?3. The molecular mechanisms that can
produce perfect adaptation has been extensively stud-
ied in natural systems®142023, In these systems, per-
fect adaptation can be produced by a range of feedfor-
ward and feedback mechanisms*?. Such natural sys-
tems have been shaped by evolutionary processes, but it
remains unclear if they are sufficiently robust and tune-
able for de novo engineering of perfect adaptation in syn-
thetic circuits.

One approach to engineer perfect adaptation relies
on the use of feedback control. As illustrated in Fig-
ure 1A, this strategy requires circuits that sense the out-
put and act upon the inputs of a biomolecular process.
The groundbreaking work by Briat and colleagues'*
identified antithetic feedback as a promising candidate
for engineering perfect adaptation in living systems.
Antithetic control involves a feedback mechanism with
two molecular components that sequester and annihi-
late each other (see Figure 1B). It enables a system out-
put to robustly follow an input signal and remain in-
sensitive to various types of perturbations, akin to what
integral feedback achieves in classic control engineering

strategies?.

The original antithetic control motif, however, has
two weaknesses that can limit its applicability: it is of-

ten not effective when cells are growing rapidly, and
the feedback mechanism can cause unwanted oscilla-
tions under a range of conditions?’. Specifically, dilu-
tion effects caused by cell growth cause “leaky integra-
tion” - so called because integration is a form of mem-
ory and dilution causes that memory to leak over time?’.
This prevents perfect adaptation from occurring dur-
ing rapid growth. Although in some motif configura-
tions, the loss of perfect adaptation can be partly miti-
gated with a stronger feedback?’, in general the use of
strong feedback results in the loss of stability and unde-
sirable oscillations?’. Such oscillations can be stabilised
in specific motifs!®, and in more general cases the com-
bination of antithetic control with classic Proportional-
Integral-Derivative (PID) control has been shown to im-
prove temporal regulation5'9. Yet to date, there is no
general strategy to avoid oscillations and prevent the
loss of adaptation during rapid growth.

Here we propose an extended antithetic control sys-
tem that resolves the above limitations. We show that
the addition of molecular buffers improves stability and
suppresses undesirable oscillations, and moreover it can
allow for near-perfect adaptation in fast growth regimes.
Molecular buffering is a widespread regulatory mecha-
nism in nature (e.g. ATP, calcium & pH buffers!”21:32)
that has received modest attention in the literature as
compared to other regulatory mechanisms. Recent work
found that the combination of buffering and feedback is
often critical for robust regulation'®'”. Buffering has the
ability to attenuate fast disturbances and stabilise feed-
back control!” (see Figure 1C), and can also be essen-
tial for the control of multiple coupled outputs'®. Here,
we first show that a number of buffering topologies can
stabilise the original antithetic control system and pre-
serve perfect adaptation. We then show that buffering
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can allow increased feedback strength or ‘gain” without
producing oscillations, which in turn reduces the steady
state error even in fast growth conditions. To illustrate
the utility of this new antithetic control strategy, we ex-
amine two case studies that involve the control of bio-
fuel production and growth rate in microbes.

Il. BACKGROUND
A. Perfect adaptation and antithetic control

Antithetic control employs a feedback mechanism
with two molecular components that sequester and an-
nihilate each other (see Figure 1B). In its most basic for-
mulation, an antithetic system contains a two-species
molecular process to be controlled, and a two-species
antithetic controller. The two species of the controlled
process (x1 and x,) can represent a variety of molecular
systems, including e.g. mRNA and protein as in Figure
1A. The goal of the antithetic control system is to desen-
sitise the steady state concentration of x, with respect
to external perturbations. Such perturbations include,
for example, insults of molecular species coming from
upstream or downstream processes, changes in cellular
growth conditions, or alterations to binding affinities be-
tween species.

In the absence of stochastic effects, the feedback sys-
tem can be modelled by the ODEs:

X1 = 6121 — Ypx1,

Xo = kx1 — 7px2,

21 = W — 12122 — YcZ1,

Zy = Oy — Hz122 — Y22,

)

where z; and z; are the concentrations of species in the
antithetic controller, and 601, k, and 6, are positive pa-
rameters representing first-order kinetic rate constants.
The parameter p describes a zero-order influx of con-
troller species z;, while 7 is a second-order kinetic rate
constant. We further assume that molecular species are
diluted by cellular growth, degraded by other molecular
components, or consumed by downstream cellular pro-
cesses, all of which we model as a first-order clearance
with rate constant 7,. The controller species z; and zp,
on the other hand, are assumed to be diluted by cellular
growth with a rate constant 7.

In the absence of dilution effects (9, = 0), from the
model in (1) we can write:

21—y = p — O2xy,
which after integration becomes
e
Zl(t)—Zz(t) = 62/ ( — X2(tl)> at'.
0 \62

The above equation means that, if the system has a sta-
ble equilibrium, the steady state concentration of x; is

2
A —~ P
— protein c perturbation
f_—’ perfect adaptation
c T DN~
feedback T % £ l o
no aaaptation
controller Aa~ mRNA ag p
8
L» = time
3 gene
B
1
2 2l hard
'7('/ 62 0.8 stable
0.6
unstable

o
o

91’@ @

O antithetic controller
O controlled system

/> Q
@-=~®
R —

>~

=
degradation constant 7p

o
i

o

o

02 04 06 08 1
feedback strength

k><91><92

(] @ ey
buttoring (B
— ®—s

feedback
4‘ T

FIG. 1. Perfect adaptation and feedback control. (A) Schematic
of a feedback system designed to achieve perfect adaptation
in protein expression. Based on readouts of protein concentra-
tion, the controller modifies the activity of a transcription fac-
tor (TF). If the controller achieves perfect adaptation, steady
state protein concentrations are robust to perturbations. (B)
Left: the antithetic feedback controller, first proposed Briat
et al in*, can achieve perfect adaptation. In the presence of
dilution (7. # 0), the antithetic controller does not achieve
perfect adaptation. Right: conditions for stability in the case
of a two-species system. The stability boundary is the condi-
tion in (2); the example was computed with fixed parameters
k =6, = v = 1. (O In the example, molecular buffer-
ing provides a general mechanism to stabilize feedback con-
trol systems!”. The buffer reversibly sequesters molecules of
species x into an inactive form w.

x2 = u/ 62, and hence independent of all model param-
eters except u and 6,. Therefore the antithetic control
system displays perfect adaptation because the steady
state of x, is robust to perturbations in parameters k, 6;,
6, and 7.

A caveat of antithetic feedback is that it can have a
destabilising effect. When the controller species are not
diluted (7. = 0), it can be shown that a parametric con-

dition for stability is*’:

k610
3 f%

Ty > 2

As shown by the stability diagram in Figure 1B, strong
antithetic feedback can cause the system to lose perfect
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adaptation and display oscillatory dynamics. Moreover,
in the presence of dilution of the controller species (7, >
0), the antithetic controller is unable to produce per-
fect adaptation?”. The adaptation error can be reduced
with stronger feedback, for example by increasing the
rate constants 61, k, or 6,. Yet as mentioned above,
stronger feedback can cause unwanted oscillations®’.
These caveats are particularly relevant in bioproduction

applications that require fast culture growth!%3%.

B. Molecular buffering

Buffering is the use of molecular reservoirs to main-
tain the concentration of chemical species'’. It is a
widespread regulatory mechanism found across all do-
mains of life, with common examples including pH,
ATP and calcium buffering?'*2. Molecular buffering can
have a number of regulatory roles!”!8, including acting
as a stabilising mechanism for other molecular feedback
systemsl7.

To provide a background on buffering models, we
consider the simple case of a chemical species (x) that
is subject to feedback regulation, as shown in Figure 1C.
A general model for such process is:

t= p(x) = X Fgu(w) —8x(x),
S~ ~— —
production removal buffering
with feedback 3)
W = gx(x) = gw(w) = Yow,
~—_——— N~
buffering removal

where w is a molecular buffer for the regulated species
x, and p(x) is a feedback-regulated production rate of x.
The parameters vy and <y, are first-order clearance rate
constants of x and w, respectively. The terms g, and
gx describe the reversible binding of species x and the
buffer w. The steady state (&, @) occurs when produc-
tion matches degradation (i.e. p(%) = yxX + Y,®@) and
conversion from x to w matches the reverse conversion
plus removal (i.e. g4 (@) = gx(X) + Y0 ®).

It can be shown that after linearisation and assum-
ing that the buffering reactions rapidly reach quasi-
equilibrium, the model (3) can be simplified to (see SI1):

1+ B)Ax = — hAx — B A
feedback removal

where Ax = x — X is the deviation of x from the steady
state ¥, h = —dp/dx is the linearised feedback gain and
B is the buffer equilibrium ratio:

Aw
B=—, 5
A @)
where Aw = w — @ is the deviation of w from the

steady state @. The parameter B is buffer-specific and
compares the change in the concentration of a regulated

species, x, to the change in the concentration of a buffer-
ing species, w, when the buffering reactions are at quasi-
equilibrium!718.

From (4) we observe that buffering slows down the
rate of change of the output x by a factor of (1+ B). This
slowed rate allows for attenuation of fast disturbances
and stabilisation of unwanted oscillations!” (see SI1). In
the next section, we study the ability of buffering to sta-
bilise oscillations in antithetic control systems.

I1l. BUFFERING CAN STABILISE ANTITHETIC
INTEGRAL FEEDBACK

In this section we study a modified version of the an-
tithetic feedback controller that includes buffering of its
molecular components. We consider a number of archi-
tectures (Figure 2A) and identify those that suppress os-
cillations caused by the instability illustrated in Figure
1B.

To study the impact of buffering on the antithetic
controller, we consider a mathematical model in which
species z1, zp, and xp are buffered by molecules wy,
wy, and wy, respectively. For simplicity we use linear
buffering reaction rates on the basis that the most im-
portant nonlinearity is the mutual annihilation of con-
troller species z; and 2,2, Asin Eq. (4), we assume that
the buffers rapidly reach quasi-equilibrium to obtain the
following extended model (see SI2):

X1 = b1z1 — vpx1
(1+ By)xp = kxy — (’Yp + Byyx)x2
(1+B1)1 = p— nz122
(14 Bp)ip = 6rxp — 42122

(6)

where By, By and B, are the equilibrium ratios for each
buffer, and 7y, represents the degradation rate of buffer
wy. The extended model in (6) reduces to the original
antithetic system in (1) if By =0, By = 0 and B, = 0.

In the extended antithetic controller, the parameters
(Bx, By, By, 7x) are additional tuning knobs that can be
used to shape the closed-loop dynamics. In Figure 2A
we show the three considered buffering architectures.
As a result, for rapid buffering we can compute the
buffer concentrations as wy, = Bpyzp, w1 = Bjz; and
Wy = Byxp.

We first show that buffered antithetic feedback pre-
serves perfect adaptation. From (6) we write

(14 B1)z1 — (14 B2)22 = p — b2,
which after integrating becomes:

(1+ Bp)z1(t)—(1+ B2)z2(t)

— 0, /Ot (:2 _ xz(t’)) dt'.
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FIG. 2. Buffering stabilizes antithetic feedback . (A) Schematics of three buffered antithetic systems, without dilution (. = 0);
each topology includes buffering a specific molecular species. (B) Stability diagram for buffered topologies 1 and 3. The stability
boundary corresponds to the condition in (7); topology 2 has no effect on stability. The time courses show simulations of the
output species (x) for different topologies. Parameters are p = 1,0, = 1, 9p = 1,7 = 100 and k = 1. With z; and z; buffering,
parameters are §; = 3, B = 0 or B, = 10 and B, = 0 or By = 10. With x;, buffering, parameters are §; = 1.5, 7x = 1 and By =0

or B, = 20.

The above integral ensures that if the system is stable
then the steady state of x is x; = p/6,, hence inde-
pendent of all parameters except y and 6,. The steady
state of x; is thus robust to perturbations in the origi-
nal parameters k, 61, 07, and 7, as well as the additional
parameters introduced by the buffering mechanism By,
B1, By, and 7,. This means that the buffered antithetic
feedback displays perfect adaptation as in the original
formulation in Eq. (1).

As shown by the stability condition in (2), the origi-
nal antithetic control system becomes oscillatory when
the feedback gain is too strong or the degradation of x;
and x, is too slow?’. To analyse the stabilising role of
buffering, we first consider the system in the absence
of degradation of the w, buffer (i. e. vy = 0). Assuming
rapid buffering and strong integral binding (large 77), we
found that the system is stable when (see SI2):

5 6016k 1+B,

> .
Tv = T+ By) 2+ By

@)

From the condition (7) we observe that increasing By re-
duces the lower bound for 7, and improves stability;
this suggests that buffering of z; provides a route to
suppress oscillations. The stability condition also shows
that buffering of z, has no impact on stability, whereas
buffering of x; can destabilise the system and produce
oscillations. As shown in the stability diagram in Fig-

ure 2B, this finding means that molecular buffering in
topologies 1 and 3 can counteract each other.

We next sought to identify variations of topology 3
that can ameliorate its destabilising effect. We found
that degradation of the x, buffer (wy) can indeed sta-
bilise the closed-loop and eliminate the unwanted oscil-
lations; this new topology is shown in Figure 3A. Under
the same assumptions as condition (7) (rapid buffering
and strong binding rate constant ), the stability condi-
tions are (see SI3):

5 6162k 1+ By ®
2+ (1+%) B, 1+ 7, Bx

Condition (8) reduces to the one in (7) if 7, = 0 and
there is no buffering of z; and z,,i.e. By = B, = 0.

As shown by the stability diagram in Figure 3B, topol-
ogy 3 with degradation provides an effective solution to
stabilise the closed-loop. The condition in (8) suggests
that the ratio /7y has a key role in stability. Buffers
with shorter half-lives (larger ) tend to almost com-
pletely remove the instability, even for low buffer equi-
librium ratios By. As we show in SI3, under the con-
dition 7x/7p > 1/3, increases in By tend to stabilise
the closed-loop. This includes the important case where
both x; and its buffer are degraded at the same rate,
i.e. yx = 7p. For large values of By, the stabilisation
effect is even stronger and becomes independent of the
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FIG. 3. Stabilizing effect of topology 3 with degradation. (A) We revisit topology 3 with degradation of the buffer with degra-
dation rate constant . (B) Stability diagram for increasing values of the degradation rate constant v, = {0.5,1,2}; the stability
boundary corresponds to the condition in (8). Time courses are simulations of the output species (x;) for two representative cases.
Parameter valuesare y = 1,601 =2,6, =1, vp=1,1=100 and k = 1. For the case of buffering By = 20 and 7, = 1.

half-life of w,. We found a similar stabilisation effect in
systems with xq buffering that include degradation of
the buffer (see SI4).

IV. ACHIEVING NEAR PERFECT ADAPTATION IN
FAST GROWTH

In this section we investigate the effect of buffering on
antithetic control with dilution. It is well-known that di-
lution by cell growth can disrupt perfect adaptation in
the original antithetic control system!, and thus here we
explore the impact of dilution in the proposed topolo-
gies with molecular buffering. To study the effect of di-
lution, we modify (6) to include dilution terms for the
control species z; and zp, as well as the buffer for z;:

X1 = 0121 — Ypx1

(14 By)xo = kxy — (7;} + Byx)x2

(14 B1)z1 = —nz1z2 — (1 + B1)z
Zp = Opx2 — 12122 — Y22

)

where v, represents the dilution rate constant of the con-
trol species z1, zo and buffer species at z;. As in the pre-
vious model in (6), the model (9) can be obtained under
the assumption of rapid equilibrium of the buffering re-
action. Moreover, we further assume that dilution of x;
and x, and the buffer at x; can be lumped into their first-
order degradation rates.

A. Topology 3

For the case of dilution with a single buffer at x,, we
set B; = 01in (9). The resulting steady state is (see SI5)

() ()

where

Q, = &

=7 1)
7o (1+B:2)

and o = 616k/ 7;27. The second term in (10) is always

smaller than unity. Therefore the steady state of the out-

put is x; < u/6, and the system loses perfect adapta-

tion. Moreover, the deviation of the steady state of x

from the reference point y1 /6, is (see SI5):

X2y — X2 1
= 12
Xon 14 Q) (12)

where xp,, = /0, is the reference input. Increases to By,
Ye O Yy in (12) thus amplify the steady state error, while
increases to the feedback strength k x 61 x 6, brings the
system closer to perfect adaptation. We further obtained
parametric conditions for stability (see SI5):

Q, < <1+%) (1+ A) <W+A1>
Yr c

1+Bx7;

1+ B,

(13)
A=

Taken together, the relations in (12)—(13) define an up-
per bound for the best possible steady state error. Specif-
ically, in (12) we see that stronger feedback gain can in-
crease )y and so reduce the steady state error. Buffer-
ing of x, tends to stabilise the oscillations and, at the
same time, allows the steady state error to be reduced
by stronger feedback gain, without the risk of instability
observed in the original formulation. This phenomenon
is illustrated in Figure 4A, which shows the stability
condition (13). Notably, we observe that increasing By
improves stability only in regions for low and high val-
ues of 7y, and not intermediate values. Figure 4B shows
simulations of the stabilising effect of molecular buffer-
ing for the case of vy = 10, which enables a decrease of
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FIG. 4. Adaptation in topology 3 with dilution. (A) Stability condition in (13) for dilution rate constant 7. = 1, v, = 1. (B)
Simulation with varying feedback gain 6; = 2,15,400 (from top) and topology 3 buffering (By = 0,2.5). In all simulations the
model parameters are k = 1,6, = 1, and Yp =1, 7 =T1and vy = 10.

steady state error by means of stronger feedback gain.
We also found that topology 3 improves stability even
without buffer degradation (7, = 0), unlike the case
when there is no dilution in (7) and Figure 2.

B. Topology 1

We found that buffering at z; can similarly reduce
steady state error via increases to the feedback gain.
However, unlike Topology 3, this compensatory effect
only occurs for systems that utilise slow buffers. To ex-
amine this result in detail, we set By = 0 in (9) and com-
pute the resulting steady state (see SI7):

x _<ﬂ)x 1
27\ 6 1+0;"

&
Ye(1+ By)

(14)

where

O = (15)

and &« = 616,k/ 7]20. As in the previous case, the steady
state satisfies xp < p/6; and thus the system loses per-
fect adaptation (see Figure 5). Moreover, in this case the
steady state error is (see SI7):

X2y — X2 1
= 16
1+ (16)

Xon

where xp, = /0, is the reference input. Increasing By

or v, in (16) increases the steady state error, while in-

creasing the feedback strength k6160, brings the system

closer to perfect adaptation. Assuming rapid buffering,

the conditions for stability is (see SI7):

T <1 + %)2.
Tp

01 <2
Ye

17)

From condition (17) we observe that rapid z; buffer-
ing results in no net change to the steady state error; this
effect can be observed in simulations in Figure 5A. In-
creases to By enable higher gain feedback without desta-
bilising the system, but they also worsens the steady
state error in (16) and the two effects cancel each other.

As we show in SI8, slow buffering of z; also enables
an increase in the feedback gain without producing os-
cillations, which is similarly at the expense of an in-
creased adaptation error. But in this case the net effect
of buffering and increased feedback gain is positive and
there is an overall reduction of the adaptation error, as
shown in the simulations in Figure 5B.

V. CASE STUDIES
A. Model for biofuel production

To illustrate the potential of the proposed control
topologies, here we employ an existing model for bio-
fuel production that incorporates antithetic control® (see
also'?), shown in Figure 6A. The synthetic system pro-
duces biofuel from sugars through a metabolic pathway.
The biofuel product can be toxic to the cell and so ef-
flux pump proteins are expressed to remove the toxic
metabolic product. However, at large concentrations
the efflux protein pump can also be toxic. A feedback
mechanism can help robustly regulate these two com-
peting toxic products. The antithetic feedback mecha-
nism senses the biofuel concentration to control the ex-
pression of efflux pump protein. An increase in the
pump protein then reduces the biofuel concentration,
completing the loop. Stability is known to be a major
issue for the system, as it susceptible to oscillation for
large 7, which is the typical design case®.

The extended model of the biofuel circuit with anti-
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FIG. 5. Adaptation in topology 1 with dilution. (A) Rapid
buffering increases the adaptation error while rapid buffering
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the adaptation error. In simulations the model parameters are
61 =156, =179 =1,n =100, v, = 0.05, By = 0,5, and
k =1 changes to k = 0.7 at t = 100.

thetic feedback and the addition of a protein buffer is:

, &nnp
n=ayn(l—n)—5,bn— m
bi = &pn — (Shpbi
p =kzz — Bpp — Irpp + rpw
be = Vé,pbin

w = Irpzy — rpyw

where 1 is the normalized cell density, which is assumed
to follow logistic growth with additional death rates
due to toxicity of intracellular biofuel concentration b;
and efflux protein pump p. The variables z; and zp
are the controller species, while the production of the
protein pump p is assumed to be proportional to con-
troller species z,. The variable w is the buffering species
which buffers z; through a reversible reaction via chem-
ical species I that inhibits z; sequestering when bound
to z1. The variable b, is the extracellular concentration
of biofuel.

Buffering of z; can be seen to stabilise the process in
the simulations of the model (see Figure 6A). These sim-
ulations show that the oscillations, which occur when 7
is large, quickly settle to the steady state when buffering
is introduced. This stabilising effect resembles impact
of buffering in Topology 1 in Section III. It also shows
the stabilising effect for models that are destabilised by
strengthening the antithetic binding mechanism via in-

creased 7. This example thus illustrates that the stabilis-
ing effect of buffering also occurs in more complex sys-
tems than those considered in the previous section.

B. Model for growth control

For the synthetic growth control case study, we use an
existing model of the synthetic growth control circuit,
which includes the new addition of buffering?” (see Fig-
ure 6). The variable N represents the population size
and is assumed to follow logistic growth, with an ad-
ditional death rate due to toxicity that is proportional
to the concentration of CcdB per cell. Ccdb is a protein
that is toxic to the cell. mRN A is messenger RNA while
asRNA is a short antisense RNA that has a complemen-
tary sequence to the mRNA, which enables sequestra-
tion between the two. mRNA and asRNA form the an-
tithetic integral controller. The transcription of mRNA
is induced by a quorum-sensing ligand. The term G,
represents the gain between N and mRNA induction
resulting from the quorum-sensing molecule AHL. W
represents a buffer of Ccdb, which consists of an inac-
tivated form of Ccdb that can reversibly bind to an in-
hibitor molecule I. The adapted model of the genetic
circuit with the new addition of a protein buffer is

%[Cch} —k,[MRNA] — (7, + beT)[CedB] + by [W]

%[mRNA} =krGsN — (n[asRNA] — yg) [mRNA]

%[asRNA] =y —n[asRNA|[mRNA] — yr[asRN A]

d N

L IW] =beI[CedB] — b W] — 7o W]

where [-] represents intracellular concentrations for each
species and the last line indicating the rate of change of
W is new to the model.

The buffering of CcdB as shown above is equivalent
to x; buffering in the model (6) and Figure 2, as N is the
output and equivalent to x;. Buffering at x; provides a
similar benefit as buffering at x, and so can also enable
near-perfect adaptation, where we omitted these results
in the previous section for brevity (see SI6).

Buffering of CcdB in conjuction with increased feed-
back gain can be shown to reduce steady state error in
the simulations in Figure 6. Increased feedback gain
is implemented in these simulations by increasing the
translation rate of CcdB.

VI. DISCUSSION

Perfect adaptation has been subject of intense study
in the synthetic biology community. Although perfectly
adapting systems are ubiquituous in nature, their im-
plementation has proven particularly elusive. The anti-
thetic control motif, first discovered by Briat et al* and
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FIG. 6. Case studies of molecular buffering coupled with antithetic control. (A) Biofuel production system adapted from® to
include buffering of species z;. Simulations show the stabilising effect of buffering. Model parameters for simulations are &, =
0.66, 6, = 0.5,7p =0.14,a, = 0.1,6, = 05,8, =0.66, V=1,1 =51 =01762,0 =1k =05,7r, = 0,7y = 0,75 = 0,1 = 1. (B)

Synthetic growth control circuit?’

adapted to include buffering of CcdB. Simulations show the ability of buffering to decrease the

steady state error via stronger feedback without oscillations. Model parameters for simulations without buffering are k, = 20,
Yp=3,r=1,1=4x103kg =101, G=10"° 4 =20, = 0.1, u =10, b, = 0, by = 0, Nyy = 10%, 7, = 0. The buffered

circuit has parameters b, = 300, byy = 100, v = 30, k;, = 3000.

implemented by Aoki et al', provides a new molecu-
lar mechanism to build perfect adaptation into a wide
range of synthetic gene circuits. A number of works
have sought to find alternative circuits that provide
adaptation properties similar to antithetic control. For
example, several authors have shown that ultrasensi-
tive feedback can display some of the features of perfect
adaptation?>?8, and the idea was recently extended in
great detail for synthetic gene circuits®®. Other works
have sought to devise molecular implementations of
Proportional-Integral-Derivative control®, as this is a
widely adopted strategy for perfect adaptation in engi-
neered control systems.

Here we have addressed caveats of the original anti-
thetic control system with an extended architecture that
has improved stability properties. The proposed circuit
combines an antithetic motif with a molecular buffering
mechanism. Molecular buffering is widely conserved
in natural systems, and common examples include the
ATP buffering by creatine phosphate, pH buffering and

calcium buffering. In all these examples, a molecu-
lar buffer sequesters a target molecule into an inactive
form, resulting in a system with improved ability to mit-
igate fast perturbations. In the case of antithetic con-
trol, the addition of buffering results in the stabilisa-
tion of unwanted oscillations and, moreover, provides
near-perfect adaptation even in rapid growth conditions
where the performance of antithetic control is known to
be particularly poor.

After detailed examination of mathematical models
for various circuit architectures (Fig. 2), we found two
candidate systems with improved stability properties,
either by buffering species of the antithetic motif it-
self, or by buffering and degrading a target species to
be controlled. The first circuit, called topology 1 in
Fig. 2, provides stability over a large range of parame-
ters values than classic antithetic control and can gener-
ally stabilise the oscillations produced by antithetic con-
trol. Moreover, topology 1 requires buffering of a molec-
ular species of the antithetic motif itself, and therefore it
provides a promising strategy to stabilise variables that
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are not easily buffered directly, such as population size
or metabolite species as illustrated by the example in Fig
6A.

The second circuit, termed topology 3 in Fig. 2, re-
quires buffering the molecular output of the process to
be controlled. We found that, although in principle this
topology can have a destabilising effect, when coupled
with buffer degradation it provides an effective way to
mitigate oscillations in fast growth regimes (Fig. 3). In-
terestingly, there is a similar effect when applied to inter-
mediate species instead of the output species in the con-
trolled process, such as x; in the original circuit shown
in Fig. 2 or CcdB in the growth control case study in
Fig. 6. Buffering an intermediate species also provides
an alternative location when the output is not easily
buffered. A drawback of topology 3 is that degradation
of the buffer may require the implementation of addi-
tional molecular mechanisms. If the degradation mech-
anism requires expression of heterologous proteins, this
can increase the genetic burden on the host cell and im-
pair its physiology®2°.

The effect of buffering on perfect adaptation is strik-
ingly similar to a strategy employed in industrial pro-
cess control, where buffer tanks are employed to reg-
ulate and smooth out the impact of disturbances!®. In
our case, the specific implementation of the molecular
buffers is a subject of future study, as this will largely
depend on the type of biomolecular process to be con-
trolled. For example, buffers for gene expression may
require gene products to be sequestered, which can
be achieved through several mechanisms such as re-
versible protein-protein binding?*, phosphorylation? ,
small molecule inhibitors!!, or DNA decoy sites*. In
metabolism and signalling systems, ubiquitous exam-
ples are the interconversion between a target species and
a buffer (e. g. reversible catalysis between ATP and cre-
atine phosphate!”3?) or sequestering by dedicated pro-
teins (e. g. Ca?* or H* ions!7?132).

Our main goal in this paper was to show that molecu-
lar sequestration can improve perfect adaptation in the
antithetic control motif. Since buffering is known to sta-
bilise a much wider range of molecular networks'®, it
also has the potential to improve other circuits imple-
menting perfect adaptation, e. g. those that rely on ul-
trasensitive behaviour®. Another promising line of in-
quiry is investigating production feedback mechanisms
with similar kinetic effects to degradation'®, which may
enable topology 3 type buffers to stabilise the systems
without an increase in burden. Further, the effect of
nonlinear buffering reactions also requires investigation
as these can produce an effective increase of the buffer
equilibrium ratio without increasing the concentration
of the buffer itself'®. For simplicity, we have focused ex-
clusively on deterministic dynamics, but the analysis of
stochastic effects emerging from the interplay between
molecular buffering and antithetic control are particu-
larly attractive, as it is known that buffering does not

9

amplify stochastic fluctuations'” yet some phenomena
are known to emerge only in the presence of molecular
noise®3133,

As synthetic gene circuits grow in size and complex-
ity, there is a growing need for mechanisms that can en-
hance their robustness in a range of operational condi-
tions. In the longer term, this will require the availability
of a catalogue of gene circuits that can produce perfect
adaptation in response to perturbations. In this work we
have presented one such architecture, and thus laid the-
oretical groundwork for the discovery of new biomolec-
ular systems with improved functionality.

METHODS

All mathematical models are based on systems of or-
dinary differential equations. The stability conditions
in Egs. (7), (8), (13) and (17) were obtained using fre-
quency domain transformations (Laplace and Fourier)
of the linearised models, along with detailed examina-
tion of the magnitude and phase equations of the re-
sulting characteristic polynomials for the closed-loop
systems?’. Simulations were carried out using standard
ODE solvers in MATLAB. All calculations and model
descriptions can be found in the Supplementary Mate-
rial.
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SI1. BUFFERING

In this section, we provide a background on buffering, including methods for analysing models with buffering. We
start with the simple model in (3) of a single regulated species that is being buffered, such that

x= p(x) — 7x +gw(w)—gx(x)
~—~—~ N~ ~—_————
production removal buffering
with feedback (S1)

@ = gx(x) — guw(®) = Yot
—_—— ~—~—
buffering removal

where x is the output species being regulated, w is the buffering species, p is the production rate of x, 7y is the
removal kinetic rate of x, g, is the forward buffering reaction rate and gy is the reverse buffering reaction rate.
Incorporation of feedback is represented by the x dependence of production. The nominal steady state (4 = 0)
occurs when production matches degradation (p(X) = x¥ + @) and the buffer is at steady state

(§w(®) = gx(%) + 10®).

To analyse (51), we reduce the two state model to one state by assuming that the buffering reactions rapidly reach
equilibrium. To carry this out, we first linearise (S1), which results in

Ax = —hAX — YvyAx + byAw — by Ax
N—— —_——  ————
feedback  removal buffering

A = —by Aw + byAx — yypAw
N—, - N——

~
buffering removal
where h = _% is the linearised feedback gain, and b, = %gg and b, = %x are the linearised kinetic rates for the

forward and reverse buffering reaction.

If we assume that the buffer rapidly reaches equilibrium then w is at quasi-steady state and so
AW = —byAw + (bx + vw)Ax = 0. This steady state results in

Aw b

Ax by + 70

We set the slow variable as Axt = Aw + Ax where Axt = —(h + yx)Ax — v Aw. Using the definition of B above,
we have Axt = (1+ B)Ax. Thus Ax7 = (1 + B)Ax and so

(1+B)A% = —hAx — (7p + Byw)Ax

which is a reduced one state model, where the second state can be determined from Aw = BAx.

In technology, integral feedback is often paired with proportional and derivative feedback (PID control)?. In
biology, rapid buffering without degradation is equivalent to negative derivative feedback and rapid buffering with
degradation is equivalent to PD feedback with degradation. These equivalences can be observed in!”

Ax = —BAX — ywBAx —  hAx 7'ypr
proportional + proportional
derivative feedback

eedback
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2
where the buffer equilibrium ratio B corresponds to the derivative feedback ‘gain’.
To study the effect of buffering on stability, we can also modify the model in (S1) to include a delay of the
production feedback term
x=px(t—1)) = 7xx +gu(w) —gx(x)
—_——— N~ —_———
production removal buffering
with feedback (52)
W = gx(x) — gw(w) = Yow
—_— —~—
buffering removal
where p(x(t — 7)) represents the production feedback with a delay of time 7. The reduced model is
(14 B)Ax = —hAxz — (vp + Byw)Ax
where Axr = Ax(t — 7).
It can be observed in Figure S1 that buffering can stabilise the oscillations that result from feedback delay.
1.5F ]
—Buffering
—No Buffering
8
g
o 1 1
S
®
8
=
S
= 0.5} 1
Q
O
0 I I I I
0 2 4 .. 10
time
FIG. S1. The parameters are By = 0 and 5, T = 1 (delay), vp = 1, 7% = 0Oand h = 2.7.
SI12. BUFFERING CAN STABILISE ANTITHETIC INTEGRAL FEEDBACK: ALL SPECIES
In this section, we analyse the stabilising effect of buffering (without degradation) on antithetic integral feedback.
We base our studies on a simple model involving the antithetic integral feedback (without buffering)?’. Consider
X1 = bhz1 — Ypx1
Xy = kxp — ypx
2 1= TpX2 (S3)

21 = U —Nz122
29 = Orxp — 12122

where x; is the output concentration being controlled, x; is another concentration in the process being controlled,
and z; and zp represent the molecular species involved in the perfect adaptation mechanism.

We next introduce buffering to (S3). We show how the model reduction method described in SI1 can be used to
simplify the model for one case. We then use the same method for all buffers.

As a first case, we introduce buffering at the controlled variable x; and simplify the model by assuming that the
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buffering reactions rapidly reach equilibrium. With buffering at x,, we have

X1 = 0121 — Ypx1

Xo = kxq — ypx — Ypx2 — byxX + byw

21 =p—nznz (54)
2y = Orxy — 12122

Wy = byxy — bywy

where wy is the buffering species at x; and by, by, are the kinetic rate constants for the buffering reactions.

Although the buffering equilibrium ratio is defined in terms of the linearised model and deviations from steady
state, we can use the same notation here for the nonlinear model as the buffering reactions are linear. If the
buffering reaction is at equilibrium then

bxe - ba]wx.
If we assume that the buffer rapidly reaches equilibrium then w is at quasi-steady state and so

b
wy = Byxy By = b—x
w

We note that although the buffer equilibrium ratio is defined in (5) in terms deviations from steady state, we can use
the buffer equilibrium ratios in the nonlinear model as the reaction rates are linear.

We set x7 = wy + x as the slow variable and so x7 = (1 + By)xp. Thus %1 = (1 4 By )%, and so
(1 + Bx))Q =kx; — YpX2-
If we include buffering on z1, zp, x and apply a similar model reduction by assuming rapid buffering, then we have

X1 = 0121 — Ypx1
(14 By)Xo = kx1 — ypx2
(14 B1)z1 = p—nz122
(14 B2)Za = bhx2 — 12122

(S5)

where By, B; are the buffer equilibrium ratios of the buffers at z; and z;, respectively.

A. Steady State

We first determine the steady states of the system, which is useful both for determining perfect adaptation and as a
prerequisite for stability analysis. Using

(1+B1)z1 — (1+Ba)za = p — b2 =0
we can see that the steady state for the output is

JZZZG%.

The correspondence of this steady state with perfect adaptation is discussed further in Section II A and III. The
species x1, z1 and zp have the corresponding steady states

2
MW . ME 616k
X1 = szr Z1 = 9192](, 2y = 17,)/% .
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B. Stability

We next determine the effect of buffering on the stability of the model. We follow the methodology used by Olsman
and colleagues?” to study the stability of antithetic integral feedback with the addition of buffering. Linearising the
system (S5) about the steady states, we have

Axl = 91AZ] — ')’prl
(1 + BX)AXZ = kAx1 — ’YPAXQ

(1 + Bl)AZl = *“AZl — 5A22 (86)
(1 + BZ)AZ2 = 92AX2 — D(AZ] — gAZZ
where Az = z1 — 21, Azp = 2y — Zp, Ax1 = x1 — X1, Axy = xp — X are the deviations from steady state and

W Bk
o -

Taking the Laplace transform of (56), we have

(s+7p) X1 = 0124
((14 By)s+ ’yp)Xz =kX;

(14 By)s+a)Z; = —gzz (87)

((1 + By)s + 'i) Zy =0 Xy —aZy

where Z1 = L{Az1}, Zy = L{Az}, X1 = L{Ax1}, Xo = L{Ax,} are the Laplace transforms of the time-domain
concentration deviations. Substituting, we have

(s + 'Yp)((l + By)s + 'Yp)XZ = thkZ,
B (S8)

((1 L By)s+ ’3) (14 Bs+0)21 = B (0,3, uz).

Simplifying, we have

(1+ By)(1 + By) (sz—l— <{X(1532) n 1f31> s) 7 = —gezxz.

Substituting from (S8), we have

(1 + B1)(1 + Bz)S((l + Bx)S + 'yp)(s + "}’p) (S + Dé(l _'[7_ Bz) + 1 —fBl) + 59192k:| X, =0.

The characteristic equation used to analyse stability is thus

B 2 By _
s((1+ Bx)s +9p) (s +7p) (s+ <+ By + 1+B1) + (1+B1>(§+Bz) =0. (89)

1. Characterisation of roots

Following the methodology used by Olsman and colleagues®, we first characterise the roots of (S9). If we
substitute s = 1,0 then

B w _ B
o(+0) (1 + {1+ By)o) (” 7a(1+By) |7, +Bl>> e ) (510)
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Taking the limit of strong binding for the sequestration process in antithetic integral feedback
(/3 > max {ocz (1+55) ayp(1+ By) }) then

(1+B1)’

o(1+0) (14 (14 By)o) (1+07”“(1+B2)> = «
P

ﬁ 1+B1).

It can be observed that there is a large, real root at 0 ~ — B ik We next examine the region |o| < 5 (ﬁ

/)/pvé(l+Bz p& 1+Bz) 4
where we have

o

0(140)(1+ (14 By)o) = " A<B)

The magnitude and phase constraints are

_~
vp(1+ B1)
argo +arg(l+o0) +arg (1+ (1 + Byx)o) = (1 + 2k)m.

lo||1+0o||1+ (14 By)o| =

If we assume that ¢ is real and positive, then the LHS of the phase constraint is
argo +arg(l+o)+arg(1+ (14 Byx)o) =0

which contradicts. Thus unstable roots are not purely real.
If we assume that o is real and —1/(1 + By) < ¢ < 0 then the LHS of the phase constraint is

argo +arg(l+o)+arg(l1+ (1+Byx)o)=m

and so it is possible to have stable real roots. If we set f = |o||1 + ¢||1 + (1 + By)c| from the magnitude constraint,
then there is a local maxim of f at

—(2+ By) + /1 + By + B2

Omax = 3(1 T Bx)

Thus there are two stable real roots between —1/(1+ By) < 0 < 0if

114

f(Unlax) > m

as f(Omax) is larger than the RHS of the magnitude constraint. There is a bifurcation at the boundary
f(omax) = m resulting in a pair of complex conjugate roots if

LA
Yp(1+By)’

f(Omax) <
For -1 < o < —1/(1+ By) then
argo +arg(l+o0) +arg(1+ (1+ By)o) =27
which violates the phase constraints. For o < —1 then

argo +arg(l+ o) +arg(1+ (14 Bx)o) =371

which meets the phase constraints. Thus for the stability boundary with strong binding there is a negative real root

. : . B .
and a complex pair of roots in the region |o| < Tpa(ITBy)” 28 well as one large negative root.
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2. Stability Conditions

To determine the stability boundary, we next determine the conditions for which the complex roots are purely
imaginary. Substituting s = iw<y,, we have

o "y p L D
il +io)(1+ 0+ Boie) (4 (mpu FB) 70 )~ am

From these equations, the magnitude and phase constraint are

W1+ 31+ (14 B (w0 +7) = R+ BYTED)

tan ! (w) + tan "1 ((1 + By)w) + tan~! <:) =T ok

2
T
ayp(14B2) (14 B1)

for some integer k. Using the strong binding assumption (ﬁ > max {txz (1+5B) ayp(1+ By) }) then from above

(1+By)
B(1+By)
‘L(J| < m and so
«
w(1+w?)%5(1 + (1 + By )2w?)05 =
tan ! (w) + tan 1 ((1 + By)w) = g + 2k7t.
Rewriting the phase constraint, we have
tan ! (w) — g = g —tan"1((1+ By)w).

Applying tan(-) and trigonometric identities to both sides, we have

w—-1_ 1-(14By)w
w+1 1+ (1+Byw’

Solving, we have

1
Vv1+ By

Thus the stability boundary occurs at

_ o 1+ By
T A B2+ B

From above, we know that all roots are real and stable if a/ (7, (1 + By)) is sufficiently small, and so the stability
condition is

o 1+ B,

(1+By)2+ By

Yp >

or

5 016k 1+B,

> R
'Yp (1+Bl)2+Bx

Thus increasing By improves stability and increasing B, has no effect on stability. Further, increasing B, worsens
stability, although this effect saturates as By increases.
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SI13. BUFFERING CAN STABILISE ANTITHETIC INTEGRAL FEEDBACK: x, BUFFERING WITH DEGRADATION

In this section, we analyse the stabilising effect of buffering at the output species x, on antithetic integral feedback,
where the buffering can be degraded. Consider the model (54) with buffering at x, that is degraded

X1 = 61z1 — vpx1

Xy = kxy — YpX2 — byxo + bywy
Wy = byXp — bWy — YWy

Z1 =W —1z2122

Zy = Opxp — 2122

where w, is the buffering species of x5, and by, b, are the kinetic rates for the buffering reactions. If we assume
rapid buffering such that w, + x; is the slow variable, wy = Byxp and By = br _ and use the methodology from

bw+yx’
SI1 and SI2 then we have the reduced model
X1 = b1z1 — vpx1
(1+ By)xp = kxy — ('Yp + Byyx)x2
21 = p— 212
Zp = 92)(2 — 12123.
Steady State Analysis
We next analyse the steady state. We have
Z1—2» :‘Z/l—GQJCQ
and so the steady state of the output is
_ K
Xy = 92 .
We also have corresponding steady states
T HER NG
Tp TpH Vx p Tx
=—x; = 1 — | ==(1+By—
Z1 o, 0,k6, + By , " + x')/p
1u %

0,6,k
7

where & =

Stability Analysis

We next analyse the stability of the system. If we linearise about the steady states, we have
Axl = 91A21 — "yprl

(14 By)Ax, = kAx; — 7, (1 i BXZ’C> Ax
14

Az = —nZ2Az1 — 121022
Azy = 0r)Axy — nZAz1 — Z1Az).
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This system can be rewritten as
Ax1 = 91A21 — ’)/prl

(14 By)Aty = kAxy — 7, (1 + sz") Axa

P
Az = — (1 D]; )A21 — P (1 ZBMZ) Azy
+ xT;
Azy = 0Axp (1 +D]; x) Azq p (1 +“Bx'Y:) Azp.
*p

where a = 91;# and B = nyu. Taking the Laplace transforms, we have
Z

(s+7p)X1 =617

’Yp+Bx'Yx N
(14 By) <S+1+Bx )Xz_kxl
B (14 By2x

s+ % 71 = _(ocW)ZZ

(1+8:3)

B(1+B:1) «
S+7p 22:92){2—721

: o)

where Z1 = L{Az1}, Zy = L{Az}, X1 = L{Ax1}, Xo = L{Ax,} are the Laplace transforms of the time-domain
concentration deviations. Substituting, we have

T +Bx')’x
(14 Bx)(s +7p) (s + 1+Bx> Xy = 61kZ4
B(1+B, 2z
(1+Bx7';)
B(1+B.2) "
T e
(1+8:3)
Rewriting and substituting, we have
+B B(1+B:7*
(1—|—Bx)(s+’7p) (s—l—’Yp x’yx)s s+ 4 + ( W> X5
e (1+Be)

B (1 + Bx%
= —T”QleszZ.

Simplifying and taking the limit of strong binding for the sequestration process in the antithetic integral feedback

2 ay
> & , £ then
ﬁ (1+3x%)2 (1+Bx%)
1B B(1+ByLx B(1+ByLx
(1+Bx)(5+')/p) <S+m) S S+(D(’Yp) Xz = _(067”)916sz2.
X
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Thus we have the characteristic equation

1+ B, Ix
7+ B p+BR)Y L 72\ _
(1+Bx)(5+’)/p) <S+1-f—Bx S S+# +‘B')’p 1+Bx7p =0.
Substituting s = 7,0, we have
1+ ByLx B(1+B.2)
Tp Tp B Yx
1+By)A+0)|lc+——F—|o|lo+————% | =—5 |1+ B—|.

Using the same argument as that in SI2, for the stability boundary with strong binding there is a negative real and
p(1i)
Tp&

To determine the boundary of stability, we next determine the conditions for which the roots are purely imaginary.

Substituting s = iw7y,, we have

complex pair of roots in the region || < , as well as one large negative root.

1+ B, Lx B(1+B:1)
. . '}/p . . ,YP ﬁ ,YX
1+By)(1+iw) |iw+ ——— |iw|iwt+ ———" ] =—— |1 +By— ).
1+B, 1x
Taking the strong binding limit where |iw| < W, we have
1+ Byx
. . T\ o
1+iw) | iw+ ——— | iw=——r———.
( )< 1+ By ) ¥p(1+ By)
The phase and magnitude constraints are
2\ 05
1+ B x "
1+ [?+ [ —2 =—
( ) 1+ By Yp(1+ By)

_ _ 1+ By T
tan~ ! (w) + tan~? <%w> =~ +2km
1+Bx7p 2

for some integer k. Solving the phase constraint, we have

w—-1 1-Cw
1+w 14 Cw

_ 148
1+ Bx,T;
For this constraint we require
Cw? =1
which reduces to
1+ Bxfo
w* = ——"L
1+ By

Substituting into the magnitude equation, we have

_*
Yp(1+ By)
=(1+C)C.

=(1+0)%» <C + C—2>O'5 c 05
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Rearranging, we have the stability condition

73 016,k 1+ By
p Dx ’
2+ (1+2) B, 143 Bx

V

We can differentiate the right hand side with respect to By to determine whether increasing By has a stabilising
effect. If we set

f(By) = (2+ (1 . 1;;33 (1 - %Bx)_

then
of :1—3%—2%(1—#%)&(—(14_%)%3%
P g (g

Thus for small By then buffering stabilises antithetic integral feedback if v, > %’yp. For large By then increasing By
improves stability if v, > 0.

Sl4. RAPID x; BUFFERING WITH DEGRADATION CAN STABILISE ANTITHETIC INTEGRAL FEEDBACK

In this section, we analyse the stabilising effect of buffering at the intermediate species x; on antithetic integral
feedback, where the buffering can be degraded. This section uses identical methodology and obtains equivalent
results to SI3.

Consider the model (S3) with buffering at x; that is degraded

X1 = 0121 — Ypx1 — bix1 + byw;

Xo = kxy — ypx2

Wi = bixy — byw; — yjwy

Z1 = U —Nz122

Zy = Opxy — Hz122
where w; is the buffering species of x1, and b;, by, are the kinetic rates for the buffering reactions. If we assume rapid
buffering such that w; 4 x; is the slow variable, w; = B;x; and B; = bwb—i%, and use the methodology from SI3 then

(14 Bj)%1 = 6121 — (7p + Bxvi)x1
Xo = kX1 — TpX2
21 = p—N2122
Zp = 923(2 — NZ123.

Steady State Analysis

We next analyse the steady state. We have
21 —Zp = —02x7

and so the steady state of the output is
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The corresponding steady states of the other species are

T, T H
S T AN
By 2 , ,
2 = (vp+ z')’z)xl _ pH (1+Bi%> _k (1+Bi%)
04 6102k Tp x Tr
1 ilin
U (1+B'7P)
where & = w.
Ty

Stability Analysis

We next study the stability of the system. If we linearise about the steady states, we have

u+&mh_mmrq¢0+&$)ml
p

Axy = kAx1 — vpAxz

Az = —nZ2Az1 — 121025

Azy = 0pAxy — n2aAz1 — 121 Az).

This system can be rewritten as

(1 + Bl‘)Axl = 91A21 —Tp <1 + Bl:)):l> Ax1
p
Axy = kAx1 — ’)/pAXZ

Az = —

AZZ = 92AX2 - AZ] —

(1+8%)
0,0

where o = 722]( and B = nu. Taking the Laplace transforms, we have
P

‘ Tp + Bivi
(1+ B)) <S+1+Bl~
(s + 'Yp)XZ =kXq
. ~ B(1+B)
1 «
(1 +B17P>
5(r+&ﬁ

7,,) Zy =0:,Xp — =

: ()

> Xy = 91Z1

s+
s+

Z1

where Z1 = L{Az1}, Zy = L{Az}, X1 = L{Ax1}, Xo = L{Ax,} are the Laplace transforms of the time-domain
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concentration deviations. Substituting, we have

Tp + Bivi
B(1+B;L
(1+53)
B(1+B;1L
__<“17F’) 92X2—%Zl
(1+8:3)
Rewriting and substituting, we have
s 1+ Bt
'Yp"’Bz'Yz) o '8( 17}0)
1+ B;)(s+ s+ ——-—]s|s+ + X
1+ B)(s ) (5+ 22 e _ )
i,

B(1+BL
= *%9192]()(2.

The above equation is equivalent to x, buffering (see SI4), and so for strong integral binding we have the stability
condition
6162k 1+ B;
3 1v2 i
Ty . Ti g
2+ (1+;—;) B, 1+ 1LB;

which is equivalent to the case of x; buffering.

SI5. RAPID x; BUFFERING WITH DEGRADATION CAN ENABLE NEAR-PERFECT ADAPTATION DESPITE LEAKY
INTEGRATION

In this section, we analyse the ability of buffering at x, to enable near perfect adaptation by stabilising antithetic
integral feedback. Consider the model (S4) with buffering at x; that is degraded

X1 = 61z1 — vpx1

Xp = kxi — YpX2 — byXp + by,
Wy = byXp — bWy — YWy

Z1 = W — 12122 — YcZ1

Zy = 02Xy — 2122 — YeZ2

where wy is the buffering species of x,, and by, b;, are the kinetic rates for the buffering reactions. Using the
methodology from SI1 and SI2, we have the reduced model

X1 =b1z1 — 1px1
(1 + BX)XZ =kx; — ("}’p + Bx')’x)XZ

Z1 = W — 12122 — YcZ1
2y = OpXp — 2122 — YcZ2.

(S11)

Steady State Analysis

We next analyse the steady state. We have

21 —Zo = U — 0X2 — Yez1 + Y22
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and so the steady state of the output is

We also have the steady state

and so

v e, T 1
0 Oy 62 tan z1

k Tp
2
e T Tx b2 Yx
zZ1 = 0, 1_9k< +Bx’)’p>x2_ 1—|—Bx’)/p X2

where o = w

P

. Substituting, we have

2
Ye Vx 2 H Ye Y
1+(1+B>)x2:(>x2+. S12
( « "y INCY 03 (1+ B2 58

We assume strong binding of the sequestration mechanism in antithetic integral feedback (y large), which for
steady state is the condition

’B>>l(% Yehx
! 2 X )
"6 (1+Bx7p)

With this assumption, we have
<1 4 Xe (1 +Bx%(>) 2=y,
x Ty 62

We ignore the zero solution, which corresponds to a negative solution in (512), and so the steady state
concentrations are

w=" !
921+%(1+Bxﬁ)
e (emE) emm)

Ko1+2(1482) oty (1+B2)

The steady state error of x; is

Xopy — Xp 1 0. — o
=

Xom 140y A (1+B"7;) .
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Stability Analysis

We next study the stability of the system. If we linearise (S11) about the steady state, we have

Axl = 91A21 — 'ypr1
(1 + Bx)sz = kAx1 — Yp <1 + szx) Axy
p

AZ) = —nz2Az) — 121Dz — Y Azq
Azy = O0pAxy — N2 Az — 1Z1Az) — Y Azp.
This system can be rewritten as

qu = 91AZ1 — ’)’prl

(14 By)Ax, = kAx; — 7, <1 4 B,fy") Axo
p

) p(1+5:3)
Ay =— | ———— e | Az — P Az,
(1+Bx7—p) &+ e (1+Bx7p)
N ) [ B (1+Bx7p)
Azy = OhAxyg — ——NAZq + 7 Azy
(1+B:22) a7 (1+B:2)
where a« = 91,;# and B = nu. Taking the Laplace transforms, we have
P
(s+7p)X1 =012
Tp + BxYx _
(1+Bx) (S+ 1+ B, Xz—kX1
14 Byt
« p x
s+ 77 + Ye Zl = — ( Wp)
(1+B:22) atye (1+ B L)
p(1+5:3) .
s+ Y | Zo=0X - — <7
a7y (14 B2 (14 B 1)

where X, X1, Z1 andZ; are the Laplace transforms of Axj, Axp, Az; andAz;. Substituting, we have

Yp T Byyx

(1+Bx)(s+7p) <s+ 17 B,

) X, = 01kZ,
B (1 + Bx%)
a4+ v (1 + BxTZ

5+ + Ye s+ )+'Yc Z1

p(1ng) a

- _zx—i-% (1+Bx7:) P2 = (1 +Bx7;)

Z1

Rewriting and substituting, we have

1+ Bema 2 p(1+5:3;)
) V(s e) [ 5+ +
1+ By (1+Bx%) a+%(1+3x%

(14 Bo)(s +7p) (s+ e X,

_ ﬁ(HBx%) 6,6,k X,.

atye (14 B.2)
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Simplifying and taking the limit of strong binding of the sequestration mechanism in antithetic integral feedback

(Dé + 7 (1 + Bxﬁ)>2 (@ +7e(1+ Bxﬁ))yp

p> E—
(1+Bx,7;> (1+Bx,7p)
then
+B B(1+ By *
(1+Bx)(s+7p) (s+w> (s+7) s+ ( 7”> X2
+ By D““'Yc(l‘f‘Bx*X)
Tp
B(1+B:2)
= — P 9192kX2.
wt e (14 B2
Thus we have the characteristic equation
Tx x
+B '8 1+Bx* 44 1+Bx7
(14 Bx)(s +7p) <s+ TpZ s B”") (s+70) [ s+ (1 Bf) +B7; i) =0.
o o (1Bf) ) Tare (14 B )
Substituting s = 7,0, we have
1+ B x B(1+By a1+ Byt
(1+By)(1+0) <U+1 BW> (04—%) o+ ( 7’0) :—ﬁz ( 'y”) .
+ bx Tp Yp (IX‘F'}’C <1+Bx%;>) ’YPIJH‘% (]-_"Bx?;)
Using the same argument as that used in SI2, for the stability boundary with strong binding there is a negative real
B(1+B:2%)

and complex pair of roots in the region |o| <

, as well as one large negative root.
Tp (zx-l—'yc <1+Bx%> & &
To determine the boundary of stability, we next determine the conditions for which the roots are purely imaginary.
Substituting s = iw7y,, we have

e (T (s 2) fa POTEE) ) g ale)
1+ By T o (a+% (1+Bx1—;)) o+ <1+Bxf;—;)
Taking the strong binding limit where |iw| < f (HBX %) we have

Tp (‘X‘i")’c(l‘f‘Bx%))’

14 B lx
. . . Ye 4
1+ iw) | iw+ ——T7 <1w—|—> .
( )< 1+ By > Yp ¥p(1+4 By)

The phase and magnitude constraints are

.5
(1+w?)? [ ?+ 15, 2 w2+ﬁ 0.5:7“
1+ By 75 7p(1+4 Bx)

tan~!(w) + tan~? ﬂw +tan ! (’pr> = 7w+ 2km
1 + Bx,T: ’YC

for some integer k. Solving the phase constraint, we have
1+A Hw+ :%w(l — A7 1w?)
1= (a4 1+ a D) 2
1+ Bx,T;
1+By

-1

tan =+ 2k

A:
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For this we require

1+ A Nw+ Pl — A 1w?) =0

Yc

which reduces to

=T 14 A)+A
Tp

Substituting into the magnitude equation, we have

(<1+::;) (1+A))0'5<<::;+A) (1+A))0‘5<<::;+1> (,,;:;+A)>0.5
—<1+:::J>(1+A)<;Z+A>

Simplifying, we have

ﬁ: (1+;Y;> (1+A) (“Z:;+A)'

. . 17
Multiplying by A™" 2=, we have

& a1k (1+%) (1+A) <%+A>
7e (14 B 22) Te N\ v 7
1+ BxfT;
A=
1 + Bx

and so the stability condition is

Q, < <1+%) (1+ A) <W+A1>
Yp Ye

1+Bx7;

A= —F7—
1+Bx

where

o

Qx:%(HBM;)'

From earlier, we know that the steady state error of x; is

X2y — X2 1

X2n 1+0,

S16. RAPID x; BUFFERING WITH DEGRADATION CAN ENABLE NEAR-PERFECT ADAPTATION DESPITE LEAKY
INTEGRATION

In this section, we analyse the ability of buffering at x; to enable near perfect adaptation by stabilising antithetic
integral feedback. This section uses identical methodology and obtains equivalent results to SI5.
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Consider the model with x; buffering and dilution

where wy is the buffering species of x1, and b;, by, are the kinetic rates for the buffering reactions. Assuming rapid

buffering and using the same

X1 = 0121 — Ypx1 — bix1 + bywy
Xy = kx1 — YpX2

Wy = bix1 — bywy — yiwy

Z1 = U —1NZ2122

Zp = Oxp — 12122

methodology as previous sections, the reduced model is

(14 B;j)%1 = 6121 — (vp + Bivi)x1
Xp = kx1 — ypx2
21 = U — 12122 — Y21
Zy = bpXxa — 12122 — Y22

where B; = % is the buffer equilibrium ratio.

Steady State Analysis

We next analyse the steady state of the system. We have

21 —Zp = P — X2 — YeZ1 + Y22

and so the steady state of the output is

We also have the steady state

and so

A i v
Now at steady state we have
X1 = %xz
g ~ g ' 6 j
2 =17 (1+Bi%> X = 2 <1+Bi%) Xy = 2 <1+Bi%> X
6 Tp 01k Tp & Tp
where « = Glfzzk. Substituting, we have
P

1

Assuming strong binding

. 2
+k <1+Bi%>)x%: (g—gc) X2+¢_.
« T 2 O 0%y (1+ B, )

N> ﬁ Ycp
ko3 (14 B,21)
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we have

(1+ Je <1+Bi%>) 3= ﬁxz
Yp &)

and so, ignoring the solution x; = 0, the steady state is

Xy = ﬂ 1

6214 % (1+B,1)
N S SR [ Ol ) R S

k02142 (14B2) a+ 7 (1+Bi) p(1+B2)

The steady state error of x; is
Xop — X2 1
o
Xon 1+ 77 (1+Bz%’a>

Stability Analysis
We next study the stability of the system. If we linearise about the steady state, we have

(1 + Bi)Axl = 01Az1 — Yp (1 + B; :)): ) Axq
P

Axy = kAx1 — vpAxa
AZy = —NnZ2pAz1 — 21023 — YeDAzq
Azy = O0pAxy — N2 Az — 121 Az) — Y Azp.

This system can be rewritten as
Af(l = 91A21 — ’)’pAXl

(14 B;)Axy = kAxy — Tp (1 + Bi:)):i> Ax;
P

| p(1az)
Ay =— | 77—+ 7| Dz1 — ~Azp
(1+B:2) a+ 7 (1+Bi)
. , p(1+53)
Azy = 92AX2 — 7’Y'A21 — , + 7Y Azp.
(1+Bi7p> &+ e <1+Bi7p)
where o« = 6192k and B = nu. Taking the Laplace transforms, we have
, Tp + Bivi _
(14 By) (s—l— 1+ B, X; =012y
(s +7p) X2 = kX4
i
N ~ B(1+BL)
s+ 77 + Ye Zl = — .
i
B(1+B:2) B .
s+ —~ + e Zo = 0:X5 — 7121.
(i) (o)
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where X1, Xp, Z1 and Z; are the Laplace transforms for Axq, Axy, Azq and Az;. Substituting, we have

Yp + Bivi
1+ B;
TS R G
<1+Bi3—;) a+'yc(1+Bi;Y—;
) /3<1+Bi$) .

a+%(1+Bi§;) e (1+B:2)

Rewriting and substituting, we have

(1 + Bl')(S + ’)/p) <S + ) X, = 01kZy

s+

> +7c | 41

Z1

+ By
(1+Bi)(s+7p)<s+m> (s+7) s+(
1

« ﬁ(HBi%‘;)

T+ B2) e (14B:2) e

b1

v 1e8)

The above equation is equivalent to that for x, buffering (see SI5), and so for strong integral binding we have the
equivalent stability constraint and steady state error

0102k X5

xZn—XQ: 1
X2n 1+
Q; < <1+%) (1+ A) <W+A‘1>
Yp c
Jig.
P i
1+B;

SI7. RAPID z; BUFFERING WITH DEGRADATION HAS A TRADE-OFF DUE TO LEAKY INTEGRATION

In this section, we analyse the trade-offs for rapid buffering at z; on stability and the steady state error from perfect
adaptation. For buffering at z; with dilution, we use the model

X1 = 6hz1 — Ypx1

Xy = kxy — ypX — ypx2

21 = | — 2122 — Yez1 — b1z1 + bow

Zp = Oaxp — 2122 — V22

W = bi1z1 — byw — yow
where x; is the output concentration being controlled, x; is another concentration in the process being controlled,

and z; and z; represent the molecular species involved in the perfect adaptation mechanism. Assuming that the
buffer is rapid then w is at quasi-steady state then

by
by + ’)/c.
If x7 = w + z; is the slow variable then x7 = (1 + Bq)z;. Thus X1 = (1 + B1)2z1 and so
(1 + 31)791 =W —Nz12p — ’)’C(l + 31)21.

w = B121 Bl =

Thus we have
X1 = 0121 — Vpx1
Xo = kx1 — ypx2
(1+ B1)z1 = u—nz122 — 1e(1 + B1)z1
Zy = Xy — 12122 — YcZ2-
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Steady State Analysis
We next determine the steady state and and any error from perfect adaptation. For the case of dilution, we have
(14 B1)z1 —22 = p — bhxo — (1 + B1)z1 —22) =0
resulting in
=1 T Bz + o
6 6
We also have
1
z == (ﬂ —7e(1+ Bl))
n
and so
7 Te e 1
=_—-——(1+B1)—(1+B —.
2= ¢ 9217( +B1) 92( +Bi)zi+ 4 o
Now at steady state we have
X1 = %3@
2
T ()
AT T gk T Wt
where a = Glﬂ;izzk. Substituting, we have
P
2
Ye 2 B¢ TYepa
1+—(1+B =|——-—"-(1+8B .
(14 aem)d= (5 - gm0 u s
Assuming strong binding of the sequestration mechanism
2(1+B
p s X0 +B) Teps
2 03
we have
e 2 _ H
(1 +- (1+ Bl)> x5 = 92x2
and so, ignoring the zero solution, the steady state is
Xy = T S (513)
2T 01+ %(1+By)
Tr K 1 K a
X1 = — — , Z1 = ’ Zy) = —. 814
1 k 621+ 2(1+By) 1 a~+v:(1+ By) 2 Ul (519
The steady state error of x; is
Xop — X2 1 _ o
Xon 1+0;" 7 (1+By) |

We can see that increasing B increases the steady state error of xp when there is degradation/dilution of z; and zj.
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Stability Analysis

We next study the stability of the system with degradation. If we linearise about the steady states, we have
AfCl = 91A21 — ’)’prl
Ay = kAx1 — ypAx2
(1+ By)Azy = —nzpAz1 — 121825 — v (14 B1)Azq
Ay = 0Axy — nZ2pAz1 — 421 Azy — Y Az).
This system can be rewritten as
Af(l = 91A21 — ")’prl
sz = kAx1 — ’YPAXZ

. p
1+ By)AZ1 = —(a + 1+By))Az — ——F———Az
( 1)A% (4 e( 1))Az; i (B ?
. B >
Azr = O Axy —aAz — | ———————— + Az
2 20X 1 (a+'yc(1+B1) Ye 2
where
016>k
v=——, p=1p
Tp

Taking the Laplace transforms, we have

(s+7p)X1 = 0174
(s +7p) X2 = kX4

p
1+B 1+B))Zj=——— 7
((1+By)s+a+v.(1+ By))Zy T (B2
; )
7o = 0, Xy — aZy.
(S+a+%(1+31)+% 2= 2% — &8

where X1, X», Z1 and Z; are the laplace transforms for Axy, Axp, Az; and Azp. Substituting, we have
(s +7p)* X2 = 61kZ4

(1 Bos ot e+ B) (s b ) 2

p
=—— (60X —aZq).
“+’)’C(1+B])(2 2 x 1)

Rewriting and substituting, we have

s ) ) | xa

(s+7p)? {(S +7e) ((1 + B1)s +a + at (B

B
= 016,kX,.
DC+'YC(1+Bl) 1ranae

Taking the limit of strong binding (/3 > max { (M—%(HBl))Z, Tp(at7e(11B1)) }) then

T+B; T+B;
(14 B1) (s +7p)*(s + 7c) (s + ﬁ) Xo=——b _p0k%,.
&+ 7c(1+ By) &+ ye(1+ Bq)
Thus we have the characteristic equation
2
IB ) ﬁ’)/p 14
+7p)% (s + + + —0.
2020400 (34 iy ) * e R
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Substituting s = ,0, we have

Ve B B «
1+0'2<0'+><0'+ )—— .
U, )\ T By T A B a kB
Using the same argument as above, for the stability boundary with strong binding there is a negative real and

complex pair of roots in the region || < m

To determine the boundary of stability, we next determine the conditions for which the roots are purely imaginary.
Substituting s = iw7y,, we have

, as well as one large negative root.

o8N & . ,B _ ﬁ &
(i) (“"Up) (""*wm(lwl))) = TR+ B) At (T By

Taking the strong binding limit where |iw| < m, we have
. . Ye o
14 iw)? <za)+) =——
( ) Tr TYr (1+ Bl)
The phase and magnitude constraints are
2 0.5 .
I+ |+ 5] =——r
( )< 7%) 70T B)

2tan (w) + tan~! (,chu> = 7+ 2km.

c

for some integer k. Solving the phase constraint, we have
i 2
2w+ 2fw(l - w?)

1- (1422 w2

-1

tan = 71+ 2k7t.

For this, we require

2w + ﬁw(l —w?)

Ye

w =, /ZE + 1.
Tp
Substituting into the magnitude equation, we have
2
o Ye
o o(1s ) .
Yp(1+ By) ( Yp

As a consequence, the stability constraint is

2
0= —2 <o Tp (g de)
By e U Ty

We can observe that increasing B; improves the stability constraint. However, the steady state error of x; is

which reduces to

Xop — X2 _ 1
Xon 1+ 04

o
QH=—
! Ye(1+ By)

2
0, <21 <1 + %>
Ye Yp

Thus there is a steady state error constraint that is independent of By, and so increasing B; does not enable the
removal of leaky integration. This result is a consequence of the added degradation of the buffer, which cancels the
stabilising effect of the buffer.
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SI8. NON-RAPID BUFFERING CAN ALLOW NEAR PERFECT ADAPTATION WITH LEAKY INTEGRATION

In this section, we analyse the ability of non-rapid buffering at z; to enable near perfect adaptation by stabilising
antithetic integral feedback. We use the model

X1 = 0121 — Ypx1

Xy = kxy — px2

21 = p —Nz1zp — Yez1 — bizg + bpw (S15)
Zy = OXxy — 12122 — Y22

W = bi1z1 — byw — yow.

where the buffer w is not assumed to rapidly reach equilbrium. As a result, the model cannot be reduced in a similar
manner to previous sections. The steady state for (S15) is identical to the rapid case in SI7. The linearisation is

Axy = 01421 — vpAxq

Axy = kAx1 — ypAxp

Azy = —nZpAzy — 4Z1Azy — YAz — D1Az1 + byAw
AzZy = 0pAxp — §ZoAzy — 1Z1Az0 — YAz

A = b1Az1 — (by + yc) Aw.

This system can be rewritten

Ax1 = 91AZ1 — ’)/prl
Axy = kAx1 — vpAxy

. B B B
Azy = —(a+ 9c) Az oc—f—’yc(l—i—Bl)AZZ b1Azy + by Aw
. p )
Azy = OhAxy — Az — | ———M——— + A
¥%) 2QXy — AAQZ <06+’7c(1+31) Ye ¥4
AW = b1Az, — (bw + ’yc)Aw.
where
016,k
N=—, = nu.
7 B=nu

Taking the Laplace transform of Aw = bjAz; — (by + 7c)Aw, we have

by

=7
S+ by + e 1

where W and Z; are the Laplace transforms of w and z;. We have

by

—b1Z{ +b W = —b1Z{ + bpy——————
141+ bw 141 wS+bw+’Yc

Z1

where
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Thus

(s4+7p)X1 = 60174

p
taty+C)Z = —— b7
et ) = A By

a7 )
S$+—mF——~ + Zy = 0, Xy —Zq.
( tx+%(1+B1) Ye 2 A2 1

Combining, we have

(s+7p)* Xy = 01kZy

p > B
C _— Z1=——F———(0:Xp —aZy).
eractact ”(“*a+%u+Bn+”C EERTETET A
Simplifying, we have
[(S+%)(5+tx+ﬁ +%>+Cb<s+ﬁ +fyc)]Z1
&+ ve(1+ By) &+ ve(1+ By)

_ p

=0, X>.
a+7.(1+By) 7

Taking the strong binding limit of the sequestration mechanism
(B> max {(a+vc)(a+7(1+Bi)), vp(a+7:(14 B1))}), we have

B
(S+'Yc+Cb) (S+D(<|>’)/C(1<|>B1)) Z1

B
S S—
a+ 7 (1+By) 272

and so

(s +7p)? [(s+%+cb) <s+ tx+%(ﬁl+Bl)>] X,

2 4
= — _——X5.
ﬁly”ﬂﬂr%(l +By) 7

Rewriting C;, we have

1+ By +7s B o
2 1 2

I x, =
{(”7’7) (s +7e) =77 45 <S+a+%(1+31)>+mpa+%(1+131)} 2=0

or

B a(1+7s) B
Jx,_o

{(s +9p)? (s +7¢) (1 + By + 75) (S + a+%(1+31)> HM’W

Substituting s = iw7y,, we have

(1+ By +iwTy,) (1 + iw)? (% + iw) (iw +
Tp Tpl(

B )_’_,3 a(1+iwtyp) B
a+7(1+B1))  ria+(l1+B)

. e . B
Taking the strong binding limit where |iw| < T arE)) Ve have

(1+ By +iwtyy) (1 +iw)? (:YYC + iw) = —%(1 +iwTyp).
P P
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The magnitude constraint is
w22 05 ) 0.5
(1+By) (1 ﬁ (14 w?) %Jﬂf :%(1—1—(4)2 5)%° (S16)
p
and the phase constraint is
-1 1 (7 -1 -1 _Trp —
2tan” *(w) + tan (rrcw) —tan"" (Ty,w) + tan (1 B w) = 71 + 2k7t.

for some integer k. Using trigonometric identities, we have
2w + %w(l —w?)
1- (1+22) w2

tan !

B,
= 71+ 2kt + tan~ ! (W)
L+ 5, 715w
This can be simplified to
Y 2 B
2w+ Fw(l—w?) 78 TYpw

1—(14—2%) w? 1+1+131

Tpw?
Ignoring the trivial solution w = 0, we have

Yo 2)( 1 55 2) By ( ( W) 2)
24—+ — —w 1+ T = T 142 .
( Ye Yc 1+ B T 14+ B T Ye

If for simplicity we assume that B is large, then we have

2_,_&_%602:7%’_7% (1—1—2%’)
c

c c

and so

1+2%—T’yc 1
- AN T:b + 7|
17T%(1+2?) w

Thus w? is monotonically increasing wrt T for Tyc(1 + 277’;) <L
From the magnitude constraint 516, we have the stability constraint

!
0 =——
! Ye(1+ B1)
) 14 (ul}ziv)%] 0.5 72 05
Oy < | B g2y (Do g 2]
Yo | 1+ w2123 ( ) 75
We can rewrite () as
0.5
21_27% 0.5 1 _i_wz::é )
Q 1+ —— — 1 )
v\ T 1+ w222 (1+e)

We can observe that ()1 is monotonically increasing with w as T = 1/ (¢ + bw) < 1/7.. Combining, (); is
monotonically increasing with respect to 7. Thus increasing T improves the stability constraint for large B;. As the
steady state error is

Xop — X2 1

Xon N 14+ 0y

then increasing T decreases the steady state error constraint.
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S19. BODE INTEGRAL OF BUFFERING AND ANTITHETIC INTEGRAL FEEDBACK

Feedback is a highly effective method of robust regulation, but this mechanism is subject to fundamental limits. The
Bode integral describes one of these fundamental limit, where improving the regulation at one frequency of a
disturbance will worsen regulation of disturbances at other frequencies.

To observe this mathematically, we let 7(t) be the reference signal (corresponding to y). We can mathematically

decompose r(t) and e = r(t) — x(t) into their ‘fast’ and ‘slow’ components (via a Fourier transform), which we
E(iw)
R(iw)*

write as R(iw) and E(iw) respectively. A useful measure of regulation is the sensitivity function S(iw) =
The model of the system is

X1 = bhz1 — vp11

Xo = kx1 — YpXx2 — byw + bywy

Wy = byx — bywy — YW

Z1 = g —Nz122 — Ycz1 — b1z1 + bpwy
w1 = b1z1 — bywy — Yewq

Zp = Oxo — 2122 — YcZ2.
We can write the open-loop model of the two state

X1 = 01Uy — vpxq
Xy = kx1 — ypx2 +uy

where u, is the process input for antithetic integral feedback and uy, is the input for buffering at x,, and z1, zp and
wy are controller variables.

Buffering at z; and antithetic integral feedback act through the input u, while buffering at x; acts through u,.

The bode integral is a fundamental constraint on the effectiveness of feedback in any system. It provides a
constraint on the overall regulatory effectiveness in terms of the sensitivity function. With output buffering, Bode’s
integral is'®

/Ooolog(|5(iw)|)dw: b

where the integral of S(iw) represents an overall measure of regulation, by is the kinetic rate of the forward
buffering reaction and it is assumed that the system without feedback is stable. The integral of S(iw) sums the
regulation of disturbances at different ‘speeds’. Without buffering, if regulation is improved at one ‘speed” of
regulation, it worsens at other ‘speeds’. However, increasing b, reduces the integral. Thus the trade-off does not
occur with buffering, which can uniformly improve regulation.

In contrast, control species buffering is part of the feedback regulation mechanism and so Bode’s integral is'®

./0 log (|S(iw)]) dw = 0.

Thus control buffering does not remove fundamental constraints, despite stabilising buffering. The tradeoff remains
such that improving regulation at one frequency will worsen regulation of disturbances at other frequencies.
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