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Abstract

Neurons in the primary visual cortex are selective to orientation with various degrees of selectivity to the spatial
phase, from high selectivity in simple cells to low selectivity in complex cells. Various computational models have
suggested a possible link between the presence of phase invariant cells and the existence of cortical orientation
maps in higher mammals’ V1. These models, however, do not explain the emergence of complex cells in animals
that do not show orientation maps. In this study, we build a model of V1 based on a convolutional network
called Sparse Deep Predictive Coding (SDPC) and show that a single computational mechanism, pooling, allows
the SDPC model to account for the emergence of complex cells as well as cortical orientation maps in V1, as
observed in distinct species of mammals. By using different pooling functions, our model developed complex
cells in networks that exhibit orientation maps (e.g., like in carnivores and primates) or not (e.g., rodents and
lagomorphs). The SDPC can therefore be viewed as a unifying framework that explains the diversity of structural
and functional phenomena observed in V1. In particular, we show that orientation maps emerge naturally as the
most cost-efficient structure to generate complex cells under the predictive coding principle.

Significance

Cortical orientation maps are among the most fascinating structures observed in higher mammals brains: In
such maps, similar orientations in the input image activate neighboring cells in the cortical surface. However, the
computational advantage brought by these structures remains unclear, as some species (rodents and lagomorphs)
completely lack orientation maps. In this study, we introduce a computational model that links the presence
of orientation maps to a class of nonlinear neurons called complex cells. In particular, we propose that the
presence or absence orientation maps correspond to different strategies employed by different species to generate
invariance to complex stimuli.
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1 Introduction

Cells in the primary visual cortex of higher mammals (V1) have historically been divided into two classes: simple
and complex [1]. Simple cells show linear responses to drifting sinusoidal grating of a specific frequency. In
particular, it has been shown that the simple cells’ responses are modulated by drifting gratings and are thus
maximal when the stimulus matches a specific phase inside their receptive field (RF) [1–3]. On the other hand,
complex cells show the same selectivity for oriented patterns but, in contrast, their responses are not modulated
by the drifting phase and remain almost constant throughout the whole cycle [1, 2, 4, 5]. As such, complex cells
are thought to be encoding for edges of a specific orientation independently from their phase or position [6].
The presence of these two different cell types is in line with the idea that the brain solves the challenging task
of object recognition by decomposing it into a series of simpler problems along a computational hierarchy [7].
In fact, the emergence of complex cells in V1 can be explained by hierarchical models where simple cells feed
information into complex cells through a nonlinear spatial pooling [8, 9]. This hypothesis is consistent with the
remarkable hierarchical structure of mammal’s visual system: Neurons respond to more complex stimuli moving
along the ventral stream: from simple cells responding to simple edges in the primary visual cortex (V1), shapes
and textures in V4 [10] and specific objects in the inferotemporal region (IT) [11]. In this computational chain,
complex cells are thought to play a role in building invariance to the stimulus’ properties within V1 and for
the sensory information to be processed upstream in the hierarchy [12]. Such a mechanism could implement an
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efficient algorithm for the detection of the objects’ boundaries and indeed, it represents a crucial computational
step in numerous models of contour integration and object recognition of human vision [7,13–15]. How the brain
develops this structure, however, remains an open question.

One successful model in understanding the responses of V1 cells is sparse coding (SC) [16]. This framework
has long been used to model the strategy employed by mammals’ primary visual cortex (V1) to detect low-level
features. According to SC, neurons in V1 try to reconstruct the input signal while attempting to respond in the
most energy-efficient way possible, generating a sparse activity pattern where the majority of cells are inactive
and only a few are firing. Sparse activity is in line with the efficient coding hypothesis stated by Barlow in
1961 [17]: Neural systems actively minimize the total firing required to represent sensory information. SC can
achieve this by refining the neural responses through a recurrent inference process. Interestingly, when trained
on natural images, sparse coding can model the diversity of the receptive fields (RFs) properties found in the
primary visual cortex of macaques [18]. Although this method is efficient in modeling simple (shallow) visual
networks and the emergence of simple cells, sparse coding does not directly tackle deeper hierarchical processing
and, in general, fails to predict the emergence of complex cells. In particular, extending its mathematical
framework to account for visual hierarchies is nontrivial. SC also fails to predict the emergence of extra-classical
receptive field effects, that is, the ability of a stimulus presented outside its classical RF to modulate the response
of a neuron to a stimulus inside its classical RF.

One theory that explicitly addresses the problem of hierarchical processing in the brain is Predictive Coding
(PC). This framework introduced by Rao & Ballard [19] exploits feedback and feed-forward connectivity to solve
a Bayesian inference problem by modeling visual processing as a cascade of dynamical systems organized along
the hierarchy of the visual pathways [20]. Predictive Coding suggests that every cortical area predicts at best
the upstream sensory information. The mismatch between the prediction and the lower-level activity elicits a
prediction error that is used to adjust the neural response until an equilibrium is reached. Information transfer is
made possible by feedback and feed-forward connectivity; the first carries predictions while the second transmits
prediction errors [21]. With this simple idea, PC offers on one hand an elegant explanation for the abundance of
feedback connectivity in the brain [22] and on the other hand, extra-classical RF effects in V1 [19].

To take advantage of the modeling power of SC and PC we integrated both these mechanisms in a model of
V1, called Sparse Deep Predictive Coding (SDPC). This framework introduces biologically realistic convolutional
architecture which integrates predictive coding while accounting for sparsity constraints [23, 24]. Yet, both
these SC and PC models are missing a third key component necessary to model the emergence of complex cells:
nonlinear pooling. Sakai and Tanaka [8] showed that classical cascade models fail to predict phase-invariance.
The existence of complex cells in V1 can be explained by hierarchical models where simple cells feed information
into complex cells through a nonlinear spatial pooling, which is usually modeled as the sum of squared simple
cells responses or a winner-take-all mechanism (also known as max-pooling) [25]. Thanks to pooling, a single
complex cell could respond to the same stimulus, independently of its exact position, efficiently generating
invariance when stimulated with a drifting grating. Indeed, visual areas in mammals share the common property
of being organized in retinotopic maps [26,27]: cells on the cortical surface can be mapped to contiguous locations
on the retinal surface. In other words, neighboring cells in the visual cortex respond to neighboring regions of
the visual field, defining a spatial encoding within the cortical space. We predict that complex cells could emerge
by pooling across neighboring positions in the retinotopic map, given a cortical pooling region large enough to
span across different spatial locations.

Another structure of the cortex that could explain the emergence of complex cells is the presence of an
orientation map, that is, a functional structure of the selectivity of cells for which neighboring cells on the
cortical surface are tuned to similar orientations. Orientation preference varies smoothly but also shows local
singularities, called pinwheels [27–29]. Similar to the retinotopic feature, pooling across the response of local
groups of neurons in this topological structure could explain the emergence of phase invariance in complex cells,
while keeping selectivity to orientation. Important results in this sense were obtained by Hyvarinen et al. [30],
by defining a sparse coding model that included pooling that efficiently reproduces complex cells’ responses in
V1. In addition, such a model offers a functional link between complex cells and topographic orientation maps
observed in higher mammals’ visual cortex. Similar results were obtained with a type of independent component
analysis (ICA) [31]. Remarkably, Antolik et al. [9] managed to build a neuro-inspired model that extended the
principle of topographic maps to complex cells. It is important to note at this point that neurophysiological
evidence shows that there is no evident spatial structure or orientation preference in rodents (most notably
mice, rats, and squirrels), although single neurons are observed to be orientation selective [27, 29]. This type of
organization is commonly referred to as salt-and-pepper. Besides, these species, while not having clear orientation
maps, do have V1 cells which show complex cell properties. The models listed above, however, cannot explain
the presence of these complex cells in animals that do not present topographic maps in V1. Altogether, these
observations open two important questions: How are orientation maps and complex cells related? Can the same
framework be used to explain complex cells emergence in animals that lack orientation map?
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Here, to shed light on the link between cortical maps and complex cells, we propose to include sparse,
hierarchical processing, and nonlinear pooling within a single model of the primary visual cortex. In this study,
we show that the SDPC can develop both complex cells and orientation maps, as well as complex cells without
orientation maps, and we interpret these results under the predictive coding principle. Interestingly, we found
that a single mechanism (pooling) is sufficient to explain different cortical architectures across species. We
define two distinct pooling functions that act in different subspaces: the spatial retinotopic space, and a feature
space that can be learned by the network in an unsupervised fashion. First, we show that biologically plausible
orientation maps emerge naturally in the feature space as the most cost-efficient structure, given the right
pooling function. Second, we show that these orientation maps represent the most cost-efficient structure that
allows the emergence of complex cells. These results allow us to present SDPC as a unifying model of the early
visual cortex, which building principles can explain the link between topographical structures (retinotopic maps
and orientation maps) and functional phenomena (complex cells). The paper is organized as follows: First, we
describe our model by detailing its computations. In particular, we will concentrate on briefly outlining the
SDPC model and introduce the pooling functions used to integrate local information. Then, we will present
simulations of this model in light of current neuroscientific knowledge. Finally, we will discuss the implications
of this work with respect to the state-of-the-art.

2 Methods

2.1 The SDPC framework

The Sparse Deep Predictive Coding (SDPC) framework solves a series of hierarchical inverse problems with
sparsity constraints. A group of neurons γi predicts, at best, the activity from the previous cortical layer γi−1,
trough a set of synaptic weights Wi. Given a network with N layers, we can define the generative model [23, 24]
as: 

x = WT
1 γ1 + ε1, s.t. ||γ1||0 < α1 and γ1 > 0.

γ1 = WT
2 γ2 + ε2, s.t. ||γ2||0 < α2 and γ2 > 0.

...

γN−1 = WT
NγN + εN , s.t. ||γN ||0 < αN and γN > 0.

(1)

Where x represents the input stimulus and γi are the rate-based neural responses for layer i (see Fig. 1, b).
Sparsity constraints are introduced using the `0 pseudo-norm which computes the number of active elements
in each activity map γi. The Wi matrices represent the network’s weights (convolutional kernels) which will
be described later, and εi is the prediction error associated to each layer. One limit of this formulation is that
it only allows the stacking of sparse, yet linear, inverse problems. In order to model complex cells, we wish
to introduce an additional nonlinear pooling defined as functions pi(γi) (Fig. 1, a). We modify the generative
problem as follows: 

x = WT
1 γ1 + ε1, s.t. ||γ1||0 < α1 and γ1 > 0.

p1(γ1) = WT
2 γ2 + ε2, s.t. ||γ2||0 < α2 and γ2 > 0.

...

pN−1(γN−1) = WT
NγN + εN , s.t. ||γN ||0 < αN and γN > 0.

(2)

The optimal state of the neural activity for each layer can be found by defining a series of local loss functions:

li = ai
2

∥∥pi−1 (γi−1)−WT
i γi

∥∥2
2

= ai
2 ‖εi‖

2
2

gi = λi ‖γi‖1

(3)

Where li represents for layer i the loss relative to the prediction error, gi is a sparse inducing prior that constrains
the majority of the model neurons in γi to be inactive and ai is a therm that scales the loss function and regulates
the strength of the feedback. In this notation, we also have γ0 = x and p0 (x) = x. In order to solve the inverse
problem, we use the `1 norm (denoted ‖ · ‖1) instead of the `0 pseudo-norm which is non-derivable. In a network
composed of N hierarchical layers the total loss is given by:

F =
N∑
1

li +
N∑
1

gi = L+G (4)
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Fig 1. The SDPC network. a. Update scheme of the SDPC network used in this study: x is the input
image, γs and γc represent simple and complex cells response maps, respectively. Ws and Wc are convolutional
kernels that encode for the RFs of the simple and complex cell layers, where each synaptic weight matrix is
composed of Ms and Mc neurons (kernels) respectively. ps(γs) is the pooling function used to generate position
and feature invariance in the response of the second layer. feed-forward connections carry information on the
prediction errors (εs and εc) that is used to refine the neural activities. Feedback information is carried through
the unpooling function p−1s (γs), that approximates the derivative of the pooling function. b. Here, we show a
representation of γs and p (γs). Each pixel represents a model neuron and the color code indicates the amplitude
of the neural response (lighter for no response and darker blue for the maximal response, here normalized to 1).
In this figure, we illustrate three possible outputs ps (γs), used to generate different network structures:
MaxPool 2DS selects the maximum activity over spatial (retinotopic) positions, in each plane independently;
MaxPool 2DF acts in the feature space by selecting the maximum activity across planes in γs. When the
network integrates the two pooling functions in sequence, we refer to them as a unique max-pooling operator
called MaxPool 2DS + 2DF .
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The best γi for each layer is inferred through a multi-layer version of the Fast Iterative Thresholding Algorithm
(FISTA) [32], introduced in [24]. This process is usually referred to as inference [33]. The update term is:

− ∂L

∂γi
= ai Wi εi − p−1i (ai+1 εi+1) (5)

The left term in the above equation encodes for the reconstruction error, while the right one carries the feedback
from the upper layer. p−1i is defined as the unpooling function, that is, an approximation of the max pooling
derivative; it is composed by a matrix filled with ones in the position of the local maximum elements and with
zeros everywhere else. Finally, sparsity is obtained through a thresholding operator Tηλi . We also impose the
elements in the neural maps γi to be non-negative. The optimal state at the step k + 1 is given by:

γk+1
i = T +

ηλi

(
γki − η

∂L

∂γki

)
(6)

Where η is the time step of the inference process, λi is the sparsity parameter and T + is the non-negative
soft-thresholding operator (also known as a Rectified Linear Unit, or ReLU), defined as:

T +
ηλi

(x) =

{
x− ηλi, if x− ηλi > 0.

0, otherwise.
(7)

T + serves as both a rectified activation function and a sparsifying operator, forcing the majority of neurons in
γi to be inactive. Similarly, the synaptic weights can be updated by gradient descent:

W k+1
i = W k

i − ω
∂L

∂W k
i

(8)

With ω being the learning rate for the weight update. It is worth noting that equation (8) represents a local
Hebbian learning rule, as the update of Wi only depends on the pre-synaptic (γi−1) and post-synaptic (γi) sparse
activity:

− ∂L

∂Wi
= ai γi ε

T
i (9)

The optimization of Wi is called learning. In this study, we model simple and complex-cells in a 2 layer SDPC
network, with γs encoding the activity of simple cells in the first layer and γc for complex cells in the second
layer. The loss function we wish to minimize is:

F =
as
2

∥∥ x−WT
s γs

∥∥2
2

+
ac
2

∥∥ p (γs)−WT
c γc

∥∥2
2

+ λs ‖γs‖1 + λc ‖γc‖1 (10)

Fig. 1-a, shows the update scheme of the SDPC network used in this study.

2.2 Retinotopy and convolution

In the SDPC framework, we impose the weight matrix W to have a convolutional structure. Convolution is
an efficient mathematical framework to model retinotopic activity in the visual system: synaptic weights are
repeated across the image to tile the whole input image. This brings the advantage of having a model that is
translation invariant: the synaptic weights (also called features or kernels) encoded by W can be freely translated
across the input image. The resulting vector γ can thus be viewed as a neural response map, whose pixels encode
for neurons sensitive to a specific feature and responding at a specific position in the input image, in perfect
analogy with a retinotopic map (see Fig. 1, b). The convolutional structure is repeated for M different kernels,
such as to define M different maps, called channels. Every channel represents the response of the identical
neurons (sharing the same kernel) for each position in the input image. The convolution in each layer of the
network is then defined by two terms:

• Kernel size: it indicates the size, in pixels, of the synaptic weights in W . Each pixel in γ can be mapped
to a region equal to the kernel size in the input image.

• Stride: it is a measure of the amount of overlap of the convolutional kernels in the input image. Intuitively,
for a given image x, the higher the stride the smaller will be the corresponding map γ.

Importantly, replacing classical matrix multiplication with convolution does not change the mathematical
framework of SC and PC but rather makes the model scalable to different image sizes and imposes neural
representations to be translation invariant. One limitation of convolution is that each plane of the M maps in γ
is independent from the others. This makes convolution unable to account for interactions between different
feature and to model higher order structures like orientation maps.
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Fig 2. Response of simple-like and complex-like model neurons. Example of two model neurons
exhibiting a simple (left) and complex (right) behavior. The black lines indicate the model neuron’s response
when its receptive field contains a drifting (top) or rotating (bottom) stimulus; the red lines indicate the
response modeled according to a half-rectified sinusoidal model as in [34]. The modulation ratio, F1

F0
, is greater

than 1 for simple neurons that are tuned to a specific phase. A complex response, that is partially or completely
independent to phase, is quantified by a low modulation ratio (less than 1). Importantly, both neurons remain
tuned to orientation.

2.3 Inducing invariance by pooling

In section 2.1, we introduced the concept of a pooling function p(·) to model complex cells in the SDPC network,
and we showed that the classical PC framework can be extended to take into account this kind of nonlinearity.
Such a behaviour can be achieved with max-pooling, a function that selects the maximum response within a
group of cells (here, γs1 and γs1 for an example):

p (γs1, γs2) = max (γs1, γs2) (11)

The max-pooling performs a winner-takes-all computation rather than calculating the energy of the firing of a
pool of neurons [8]. We decided to use max-pooling as a way of generating invariance for two reasons: First,
winner-take-all can account for numerous nonlinear responses in the sensory cortex, and it is regarded as one of
the fundamental components of sensory processing in the brain [8, 12, 35]; Second, max-pooling is the most used
form of spatial nonlinearity in convolutional neural networks [36] and this allows us to draw a parallel between
classical feed-forward neural networks and deep predictive coding models like SDPC. Given a neural response
map, γs, max-pooling can be seen as a nonlinear convolution whose output, ps (γs), is the maximum value in
each pooling region (see Fig. 1, b). Just as convolution, max pooling can be defined in terms of kernel size and
stride. In this study, we introduce three types of pooling function:

• MaxPool 2DS , acts in the spatial dimension, independently for each feature. In this study, we use a pooling
kernel of 2× 2 neurons with a stride of 2.

• MaxPool 1DF , selects the maximum across a neighborhood of adjacent planes of γs along a 1D circular
space. This function acts in the feature space, leaving the spatial encoding unchanged. For this function,
we used a linear kernel of size 4 and stride equal to 1.

• MaxPool 2DF , arranges a feature space composed of M neurons on a grid of
√
M ×

√
M grid, for each

spatial location. Then it selects the maximum activity across 2D pooling regions, with a size of 2 × 2
neurons with a stride of 1. This pooling function only acts in the feature space, just as the one we defined
above.

Since the pooling functions operate in two different sub-spaces, we can apply them in sequence to combine the
effect of the two strategies (see Fig. 1, b). We call these functions MaxPool 2DS +1DF and MaxPool 2DS +2DF .

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.19.440444doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.19.440444


2.4 Training

We built different SDPC networks to model simple and complex cells in V1. Each network had kernel sizes of
7× 7 pixels for the first layer (Ws), and 4× 4 for the second layer (Wc). For both layers, we used a stride of 1.
We tested the network with 4 different pooling functions: MaxPool 2DS , MaxPool 2DF MaxPool 2DS + 1DF

and MaxPool 2DS + 2DF . Importantly, we introduced a zero padding before the pooling to make sure that first
and second layer cells have the same receptive field size with respect to the input image (14× 14 pixels). In all
the settings, as and ac were set to 1 and 4 respectively. Each network was also trained with different neural
populations sizes: with Ms and Mc equal to 36, 49, 64, 81, 100 and 121 neurons for the first and second layer
respectively, leaving us with 36 networks for each tested pooling function. The parameters of the network Ws

and Wc were initialized as random noise and were normalized during training such that the energy (Euclidean
norm) of each kernel was set to 1. All the networks were trained using grayscale natural images from the STL-10
dataset (96× 96 pixels per image) [37] for 9 epochs (28125 iterations with mini-batches of 32 images). The input
images were pre-processed with a whitening filter similar to the one used in [16] to model retinal processing.
Each image was then bounded between the values −1 and 1. The synaptic weight Ws and Wc were updated
using stochastic gradient descent with a learning rate, ω, of 0.01 and a momentum, β, of 0.9. Additionally, the
sparsity parameters λs and λc were gradually incremented during training up to a value of 0.1. The full model is
implemented in PyTorch and available at https://github.com/XXX/YYY_ZZZ.

2.5 Modulation ratio and complex behaviour

In this study, in order to quantify the simple and complex behaviour of model neurons in the SDPC, we use
the classical F1

F0
measure, also known as the modulation ratio [4]. Given the response of a neuron to a grating

drifting at temporal frequency f , the F1

F0
measure represents the ratio between the first harmonic of the response

(f = F1) and the mean spiking rate F0. Intuitively, a high modulation ratio (between 1 and 2) indicates that
the cell is sharply tuned to a specific phase and it is thus regarded as simple. If a cell shows a low modulation
ratio (between 0 and 1) it is then regarded as complex, showing a broad tuning to the stimulus’ phase. For a
neural population containing simple and complex cells, the distribution of the modulation ratios will appear
to be bi-modal, with two peaks roughly in the regions described above. In [34] the authors showed that the
modulation ratio can be derived analytically from a half-rectified model of the a neuron’s response to a drifting
grating. In particular, F1

F0
depends nonlinearly on χ defined as:

χ =
Vth − Vmean
|A|

(12)

Where Vmean and Vth represent respectively the mean membrane potential and the threshold for spiking
generation and A is the maximal amplitude of the modulation. Here we use the simplified rate based model:

γ (φ) = (a cos (φ− φ0)− b)+ (13)

With γ being response of the model neuron, φ is the stimulus’ phase and φ0 the phase at which the response is
maximal. Finally, ( )+ indicates an half-rectified function that only output zero or positive values. In this case
χ = b

|a| and the modulation ratio can be obtained through the nonlinear mapping (see [34] for details):

F1

F0
= g (χ) =


−χ
√

1−χ2+arccosχ√
1−χ2−χ arccosχ

, if −1 ≤ χ ≤ 1.

− 1
χ , if χ < −1.

undefined, if χ > 1.

(14)

In [34], the authors suggest that the classification of V1 cells as simple or complex might be caused uniquely by
the nonlinear relationship between F1

F0
and χ rather than reflecting an actual neuro-physiological difference.

Here, for simplicity, we refer to the same values conventionally used in literature: we consider model neurons as
simple-like if F1

F0
> 1 and as complex-like if F1

F0
≤ 1. We use the modulation ratio also to evaluate the response to

rotating stimuli in order to compare it to the response in the case of drifting phase. Although this measure is not
in standard use to evaluate orientation tuning, it can be seen as a spectral analysis of the orientation response,
similarly to the work of Wörgötter and Eysel [38]. Nevertheless, to perform statistical tests on the different
conditions, we analyse the distribution of χ (see Supplementary information S.1.1). Indeed, χ is much easier
to analyse as it does not show the typical bimodal distribution of F1

F0
and is linked to F1

F0
through a nonlinear,

monotonous and invertible function (equation 14).
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2.6 Local homogeneity index (LHI)

To evaluate the functional implication of the orientation maps learned by our model, we used the local homogeneity
index (LHI) as defined by [39]. The LHI measures the similarity of the preferred orientation in neighboring cells:

LHI(m) =

∣∣∣∣∣1k∑
n

exp

(
− (n−m)

2

2σ2

)
exp (j2θn)

∣∣∣∣∣ (15)

With m being a location on the orientation map, n a set of neighboring locations and θm the preferred orientation
at n. j is the imaginary unit, so that j =

√
−1 and | | represents the module of a complex number. k is constant

that normalizes the measure, it can be change if m and n are bi-dimensional or mono-dimensional, for example
in the case of MaxPool 2DF or MaxPool 1DF . Finally, σ is proportional to the width of the gaussian window in
which the LHI is calculated, here we set σ = 1 pixel. The LHI is bounded between 0 and 1, with high values
corresponding to iso-orientation domains and low values to pinwheels. We define pinwheels as local minima in
local neighborhoods of 3× 3 pixels with LHI under a threshold of 0.2. In order to calculate the pinwheel density

we define the average size of a cortical column as the ratio c =
(

180◦

mean(HWHH)

)2
, for each tested network. The

pinwheel density is then defined as:

ρ =
num. of pinwheels

Ms

c

(16)

2.7 Log-Gabor fitting

To estimate the optimal frequency and orientation for each model neuron, we fitted the synaptic weights of each
cell with log-Gabor wavelets [18,40]. This fit allows us to identify the preferred stimuli for each neuron in the
first and second layer. Specifically we can extract: the preferred orientation (θ), phase (φ), frequency (f0) as
well as the the orientation tuning width (half width at half height, HWHH) [41]. Since second layer cells in the
model project into the first layer of the network through a nonlinearity (pooling) we defined an approximated
linear mapping V ∗c for the second layer such that:

V ∗c = argmin
Vc

1

2

∥∥ x− V Tc γc ∥∥22 (17)

Specifically, V ∗c is used to back project (and visualize) the second layer’s weights in the input space. The kernels
in V ∗c were then fitted using log-Gabor wavelets to assess for the best orientation and spatial frequency to
stimulate the second layer of the network.

2.8 Drifting grating vs. Rotating grating

One goal of our study is to assess the ability of our network to predict complex behavior in V1, that is, to show
phase-invariant responses. We test the network’s invariance to drifting and rotating gratings. We do this to
make sure that the networks we model are show indeed responses invariant to phase but that they remain tuned
to orientation, as observed in neurophysiological experiments. Using the preferred orientation, θ, and frequency,
f0, for each neuron in the first and second layer, we created sinusoidal grating at the right bandwidth for each
neuron. All stimuli were masked by a circular window of 14 pixels in diameter, that is the size of the receptive
field of model neurons. Finally we evaluated the response of the network at different phases and orientation of
the same grating (see Fig. 4).

3 Results

3.1 Pooling in a predictive coding network.

The first important result of this study is the convergence of the SDPC algorithm in all the tested network
settings: the SDPC efficiently learned translation-invariant representations for the naturalistic stimuli used
during training: in all tested conditions, the network reached a stable point in terms of the loss function value
(see eq. 4). This was the case for the different network sizes (36, 49, 64, 81, 100 and 121 neurons for each layer)
and the different combinations of pooling functions: MaxPool 2DS , MaxPool 2DF , MaxPool 2DS + 1DF , and
MaxPool 2DS + 2DF . As in [23] and [24], the network efficiently developed edge-like receptive fields (RFs) in the
first layer (see Fig. 1,b). Inferring the shape of the second RFs is less trivial, indeed the pooling function ps (γs)
makes it challenging to project the learned filters in the space of the input image (see [23] for details). In Fig. S1
we show Vc, a linear approximation for the second layer kernels (see Methods 2.7). From these linear projections,
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we can see that the RFs in Wc also have the shape of localized edge-like filters (see Fig. S1). Nevertheless, as we
introduce the nonlinear function ps (γs), the response of the neural map γs will be strongly nonlinear and show
different degrees of robustness to changes in the input stimuli. We will analyze these results in detail in the
following sections.

3.2 Phase invariance and complex behavior.

Complex cells are present in all networks with ps=MaxPool 2DS , ps=MaxPool 2DS+2DF and ps=MaxPool 2DS+
1DF . Indeed, in the second layer neurons are invariant to changes in the stimulus’ phase but still selective to
orientation (see Fig. 2). To quantify phase invariance, we use the modulation ratio (F1

F0
) introduced by [4] (see

Methods 2.5). A cell is classified as simple if F1

F0
> 1 and as complex if F1

F0
< 1. In these three settings, the

distribution of F1

F0
shows that the first layer develops exclusively simple-like neurons, while the second layer shows

a broader distribution with the presence of complex-like neurons depending on the pooling function used (Fig. 3,
fourth column). When spatial pooling and feature pooling are combined together (for ps =MaxPool 2DS + 1DF

and ps =MaxPool 2DS + 2DF ), the second layer of the network develops a large number of complex-like neurons,
which explains the higher peaks at F1

F0
' 0 (see Fig. 3, c-d). Interestingly, these two conditions correspond to

networks that develop a topographic map in the orientation space, but not in the phase space. Indeed, we
observe that for ps =MaxPool 2DF , our model does not develop complex cells, i.e. the F1

F0
is high for both layers.

Similar distributions of complex neurons are observed for ps =MaxPool 2DSbut, in this condition, the network
does not develop a cortical map.

3.3 Learning topographic orientation maps in an SDPC network

Networks trained using pooling functions that act in the feature space (MaxPool 2DF , MaxPool 2DS +2DF , and
MaxPool 2DS + 1DF ), learned different topographic structures for Ws and, by consequence, γs. Interestingly,
as we introduce pooling in the feature space (see Methods 2.3), the arrangement of filters on Ws converges
to form a topographic orientation map where neighboring neurons become tuned to similar orientations. To
compare quantitatively the orientation maps learned by our model with the ones observed in neurophysiological
experiments, we used the local homogeneity index (LHI), introduced by [39] (see Fig. 3, b-c-d, second column).
We observed that the orientation maps developed by the SDPC contain regions where orientation preference
varies smoothly (high LHI) combined with local discontinuities (low LHI), in analogy with pinwheels observed in
higher mammals [27–29].

One may wonder if the existence of these topographic maps has functional implications in the properties of
the first layer neurons. Indeed, some electrophysiological experiments have shown a clear link between a neuron’s
position in the cortical map and its tuning properties [39,42] (but see [28]). Specifically, neurons located near
pinwheels tend to have a broad orientation tuning, while neurons located in iso-orientation regions display a
narrower, more selective tuning. We evaluated the relationship between the LHI of single neurons in the first
layer and their orientation tuning, evaluated as the half-width at half-height (HWHH) of their response to a
rotating grating. We found the linear relationship already found in [39] and [42]. This relationship is valid
for all networks with a 2D topographic map (ps =MaxPool 2DS + 2DF ) and Ms ≥ 64 (p < 0.01). The linear
relationship is significant (p < 0.01) for few configurations of ps =MaxPool 2DF and ps =MaxPool 2DS + 1DF ,
with no clear dependence on Ms.

Interestingly, the networks trained with a combination of spatial and feature pooling (MaxPool 2DS + 1DF

and MaxPool 2DS + 2DF ) appear to develop a topographic map when we look at the preferred orientations θ
of neurons in the first layer (Fig. 3, second column). However, this structure is not present if we look at the
preferred phase map φ, where there appear to be no particular structure (Fig. 3, third column), in line with
the known neurophysiology [43]. This is not true in the case of MaxPool 2DF , where both maps appear to be
organized in groups of cells sensitive to similar orientations and phases, in contrast with neurophysiological
evidence. In the following sections, we will analyze the implication of these results.

We used the LHI to evaluate the number of pinwheels generated by our model in different tested conditions
(see Methods 2.6). We found that the tested pooling functions, MaxPool 2DF , MaxPool 2DS + 2DF , and
MaxPool 2DS + 1DF , generated a comparable number of pinwheels centers even for networks about 4 times
bigger that the smallest network tested: Ms = 36 and Ms = 121 (see Fig. S2). Thus, the number of pinwheels
singularities remarkably does not depend on the size of the first layer Ms, with a value in the same order of
magnitude of π [44].
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Fig 3. Emergence of orientation maps in the first layer and complex response in the second
layer. We show the different properties learned by our model depending on which pooling functions we used (a
- d). All networks showed here are trained with Ms = 100 and Mc = 100. First column. Representation of the
synaptic weights of the first layers Ws. The red rectangles for (b - d) indicate the size of the feature pooling,
the red arrows illustrate the circular (c) or toroidal (b and d) structure of the feature space. Second column.
Orientation preference of each neuron represented by the filters in Ws. The luminance of the map is modulated
by the orientation selectivity (HWHH) of each neuron. Third column. Phase preference of each neuron
represented by the filters in Ws. Fourth column. Distribution of the modulation ratio (F1

F0
) for the first and

second layer of the network. Fifth column. Local homogeneity index (LHI) associated with each element is
Ws. White stars indicate the position of pinwheels. Sixth column. Linear relationship between the LHI and
the orientation selectivity, measured by the half width at half height (HWHH) of the response of cells from the
first layer.
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3.4 Invariance to phase vs. invariance to orientation.

We want to explore further how is it that the complex cells developed by the second layer of our model show
invariance to the stimulus phase while remaining tuned to orientation (Fig. 4). A highly nonlinear network
could respond unspecifically to a broad set of different stimuli. Invariance to multiple properties of the stimuli
(e.g. both to phase and orientation) would be in contradiction with neurophysiological experiments. In fact, it
is well established that complex cells exhibit phase invariance but show orientation tuning similar to simple
cells [4, 5]. To assess whether the network’s response is orientation-selective or not, we tested the network’s
invariance property to both phase and orientation of gratings. We used drifting gratings as stimuli that change
phase over time. Conversely, we used rotating gratings that change orientation, to modulate the response of
orientation-selective neurons. This was performed for each cell of the second layer of our network at its optimal
spatial frequency (see Methods 2.8). For quantification purposes, we define R as the percentage of cells that show
a complex-like response for phase, or that are unselective to orientation (F1

F0
< 1). We report the results relative

to the second layer of the networks, as in all the tested conditions, the first layer of the network exclusively
exhibited simple-like responses (Rφ = 0, see Fig. 3, fourth column). In Fig. 4, the black and green lines Rφ
and Rθ correspond to the dependence on phase (drifting) and orientation (rotating), respectively. We analyze
these results as a function of the number of channels in the first layer, Ms to evaluate the impact of the network
structure on the second layer’s responses. For ps =MaxPool 2DS , the networks showed high Rφ (up to 60%)
and low Rθ (at most 20%), independently to Ms. This suggests that the SDPC network efficiently develops
phase-invariant responses while maintaining a relatively narrow tuning to the stimulus’s orientation (see Fig. 4,
top-right). When ps =MaxPool 2DS + 1DF , that is, a spatial pooling and a feature pooling organized on a
linear structure, Rφ is much higher (up to 100%, see Fig. 4, bottom-right) and a smaller Rθ, also independent
on Ms; this can be explained by the combined action of pooling across spatial locations and across features
with same orientation but different phases (see Discussion and Fig. 3). Interestingly, only when we impose
ps =MaxPool 2DS + 2DF , the network’s behavior appears to vary as a function of Ms (see Fig. 4, bottom-left).
For low dimensions (up to Ms = 64), the tested networks show a high fraction of complex-like cells. For Ms > 64,
Rφ decreases as Ms increases (see Supplementary Info. S.1.1 for statistical tests). The same effect can be
observed for Rθ, which appears to be high for Ms = 36, and then decreases with increasing Ms. Overall, none
of the observed behaviors did depend on number of neurons in the second layer (Mc), for any of the tested
conditions (not shown).

4 Discussion

In [23], we introduced the SDPC algorithm, and we used this framework to model local interactions in the early
visual cortex (V1/V2). We showed the SDPC can predict how strong intra-cortical feedback connectivity (from
V2 to V1) shapes the response of neurons in V1 according to the Gestalt principle of good continuation. Here, we
show that the SDPC algorithm can be extended to account for highly nonlinear operations in cortical processing
within V1. Our goal in this study was to implement a 2-layer model of V1 to explain the emergence of two
distinct populations of neurons: simple and complex cells. In particular, we introduced a max-pooling operation
between the network’s layers to increase the generalization capability of our model (see Fig. 1, a). Thanks to
this nonlinear stage, the SDPC model can account for nonlinear neural responses, in analogy to complex cells in
V1. We tested and combined the effect of three classes of max-pooling functions: MaxPool 2DS , MaxPool 1DF

and MaxPool 2DF ; the first allowed our model to pool responses across spatial locations, the other two to pool
across feature space.

4.1 Results summary

Here we summarize the results obtained by training the SDPC model with four different sets of pooling functions,
for the first and second layer of the neural network: For MaxPool 2DS , the network only pools in the retinotopic
space, and no orientation map is learned in the first layer. Nevertheless, the model efficiently develops complex
cells, as observed in rodents, in its second layer (see Fig. 3, a and Fig. 4). This network structure can be seen
as a model of rodents’ visual cortex, as they lack orientation maps. In the case of MaxPool 2DF , the network
only pools in the feature space. In this condition, the model learns a topographic map in the first layer for
both orientation and phase (Fig. 3, b). This condition has no physiological basis and is only used as a control
condition. Indeed, in this configuration, no complex cells are present in the second layer for any tested condition
(Rφ ≈ 0%), and cortical maps for phase have never been described. The two last pooling conditions can be
seen as an equivalent of carnivores’ or primates’ visual cortex. For MaxPool 2DS + 1DF , the network pools in
both retinotopic and feature space (circular topology). In this case, the first layer of the network develops a
topographic structure for orientation preference but not for phase (Fig. 3, c). The second layer presents a high
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Fig 4. Complex cells population analysis. Here we show how the type of pooling function used and the
number of cells type present in the first and second layers of the network (Ms and Mc, respectively) affect the
complex cells population’s properties developed by the model. Top-left. We tested the network’s second layer
invariance to phase (drifting) and orientation (rotation) in sinusoidal gratings (see Methods 2.8). The ratios of
cells Rφ (complex) and Rθ (orientation invariant), are defined as the percentage for which F1

F0
< 1 in the second

layer of the network. While the network’s second layer shows a strong invariance to a drifting grating (black
lines), the same effect is not present for the rotating grating (green lines). This result indicates that the
network’s invariant response is specific to the stimulus’s phase and not to its orientation. Overall Rφ is much
higher when the max-pooling acts also in the feature space (ps =MaxPool 2DS + 1DF and
ps =MaxPool 2DS + 2DF ). Interestingly, for ps =MaxPool 2DS + 2DF , the number of complex-like cells seems
to depend on the size of the network’s first layer Ms.
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fraction of complex cells (up to Rφ = 100%) in all tested conditions irrespective of Ms. For MaxPool 2DS + 2DF ,
the network pools in both retinotopic and feature space (toroidal topology). Similar to the previous case, the
network develops, in the first layer, a topographic map for orientation but not for phase (Fig. 3, d). In this case,
however, Rφ appears to depend on Ms, with smaller first layers (low Ms) appearing to produce more complex
cells (Fig. 4). Thus, a simple pooling rule can explain the emergence of both complex cells and cortical maps in
higher mammals.

4.2 Relation to the state-of-the-art

Our work proposes a novel framework to understand the emergence of complex cells’ properties through pooling
in a topographically organized network. It builds upon existing literature but differs in some essential points.
First, Karklin and Lewicki [45] studied the emergence of complex cells using a probabilistic framework. However,
their model is equivalent to a single-layer network, thus not addressing the hierarchical nature of phase invariance.
Hyvarinen et al. [30] defined a network that is specifically designed for a 2-layered structure. This sparse coding
model explicitly minimizes the local pooled energies of groups of complex cells. In contrast, in the SDPC the
topographical organization is not imposed but emerges as a consequence of the prediction error generated by the
second layer. Similarly, Hyvarinen et al. [31] defined a probabilistic framework to model the residual statistical
dependencies in the latent variables of an Independent Component Analysis (ICA) framework. This latter model
bears some similarities with ours. But crucially, rather than explicitly modeling the statistical relationships in a
one-layer network, we separate the generative problem into multiple sub-functions, each belonging to a specific
layer, according to the predictive coding principle. This process can be summarized in two steps. First, we
allow the transfer of information between layers thanks to the forward and feedback connections. In this stage,
the hidden relationships in the latent variables (neurons’ firing) can be inferred thanks to the feature pooling
function we defined in section 2.3. Second, these dependencies are predicted by the second layer’s activity,
whose variables are regarded as independent. This structure allows the model to grasp higher-order relationships
between the variables while leaving the core PC framework unchanged and making it extendable to an arbitrary
number of layers. The networks defined in [30] and [31] are composed of neurons with relatively large receptive
fields (32× 32 pixels). Most importantly, these models are based on a fully connected architecture, which means
that each neuron has learnable synaptic weights that span the whole size of the input image. This type of
architecture does not allow to disentangle the role of retinotopy from the one of orientation map in building
complex cell responses, as the two structures are merged in the same map. As a consequence, the models listed
above do not explain the emergence of complex cells in animals that do not show orientation maps, such as
rodents [27,29]. On the other hand, our model is based on a convolutional structure that makes the algorithm
translation invariant and scalable to any input size (see Methods 2.2). The convolutional structure of the SDPC
allows evaluating separately retinotopy (convolution and spatial pooling) and orientation maps (feature pooling).
Lastly, we would like to emphasize that another major novelty of our proposed model is interpreting complex
cells’ properties within the predictive coding framework.

Similar to [14] and [15], our network is based on multiple layers encoding the hierarchical structure of the
input data. In these studies, the authors define a multi-layer sparse network to model contour-sensitive cells
in the early visual cortex (V2). Hierarchical sparse coding and the SDPC share the same generative problem
(see [24] for details). However, the SDPC can account for feedback connections that carry information backward
in the network during inference. In previous works, we showed that a feedback information stream offers
significant advantages to classical multi-layer sparse coding networks. These effects are relevant both in terms of
efficiency [24] and plausibility of the neuroscientific modeling [23]. Besides, the models defined in [14] and [15] are
based on an energy model in the Fourier space while, in the SDPC, we learn the synaptic weights of the network
directly from the input data. For a detailed discussion of the critical points of our model see Supplementary
information S.1.2.

4.3 Contributions

The pooling stage, ps(γs), allows the SDPC model to create representations that are invariant to local changes
in the spatial (retinotopic) domain (MaxPool 2DS) and in the feature space (MaxPool 1DF and MaxPool 2DF ).
The prediction generated by the second layer (WT

c γc) inherits the same invariant structure of ps (γs), allowing the
network to learn representations that maximize invariance by minimizing the prediction error εc (see section 2.1).
We found that our model of V1 learns RFs in the form of localized, band-pass, orientation-selective filters. This
result is an important sanity check for any unsupervised sparse network used to model the behavior of V1.
Indeed, sparse networks are known to efficiently predict the shape of V1 RFs in higher mammals [16,18]. The
SDPC network generates cells tuned to specific orientation and spatial frequency in both the first and second
layers. We can state that the SDPC framework can be efficiently extended to include highly nonlinear functions
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(max-pooling) while making valid predictions on the structure of V1 receptive fields and the shape of V1 neural
responses.

4.3.1 SDPC predicts the emergence of cortical orientation maps

We observed that when the pooling function used in the model acts in the feature space (MaxPool 2DF ,
MaxPool 2DS + 1DF , and MaxPool 2DS + 2DF ), the SDPC model develops a topographical orientation map
for the RFs of the first layer. These orientation maps show quantitatively strong similarities with those observed
in higher mammals: First, we found that a linear relationship exists between the local homogeneity index (LHI)
of a model neuron (i.e. its position relative to pinwheels in the map) and its orientation tuning as observed
in neurophysiological studies [39,42]. In particular, neurons near pinwheels (low LHI) have a broader tuning
than those in iso-oriented regions (see Results 3.3). Second, we found the number of pinwheels for each of the
conditions listed above to be independent of the network first layer’s size, Ms (Fig. S2). This result is in line
with previous neurophysiological studies that found pinwheel density to be constant across species (circa 3.14
singularities per cortical column), regardless of the size of V1 [27,44] (but see [46] for a detailed computational
model). Our model did not converge to the same value, but the same order of magnitude, as in our study
orientation maps and cortical maps are generated by two different pooling functions. Nevertheless, we found
that the density of pinwheels remains constant even in networks four times bigger than the smallest one we
tested. To sum up, our model efficiently predicts a key property of cortical orientation maps across different
species, carnivores, and primates, that is the emergence of pinwheels and orientation domains with a constant
pinwheel density even for a large diversity of V1 sizes [27,44,46]. The most remarkable fact is that, in our model,
this structure is not enforced but learned directly from the data in an unsupervised manner (see Fig. S3), and
it only depends on the type of pooling function used. But how could this particular topography be learned?
The response of the model is not driven by a feed-forward transform but by a prediction mechanism. In other
words, the second layer of the network learns representations that are invariant thanks to the max-pooling stage.
The elicited prediction error, in turn, forces the representation in the first layer to align with the top-down
prediction. In short, the predictive coding mechanism induces a topographic organization through feedback
connectivity. Moreover, the SDPC solves a convex optimization problem and is, thus, guaranteed to converge to
a near-optimal solution [32]. This indicates that orientation maps are the most cost-efficient representation,
under the predictive coding principle. Thus, this simple computational framework offers an elegant explanation
for the existence of orientation maps in higher mammals, as observed in electrophysiological experiments [5, 28],
as well as a computational principle that explain their emergence [47].

4.3.2 SDPC explains the role of cortical maps across species

A second important result resides in the fact that SDPC predicts the emergence of complex cells as a result
of hierarchical processing. In fact, no complex-like cells were present in the first layer of the network in any
tested conditions (Fig. 3, fourth column). This is in line with neurophysiological studies on gray squirrel [48],
rabbit [49], cat [50] and macaque monkey [2, 18, 51], that found that simple cells are more common in the input
layer of V1 (named layer 4), corresponding to the first layer of our network. Conversely, complex cells appear to
be more common in superficial layers (named layers 2/3), corresponding to the second layer of our network,
suggesting the existence of a hierarchical mechanism (see [52] for a detailed review). However, complex cells can
also be found in the early stage of the primary visual cortex and have been shown to receive direct thalamic
input [52], our model fails to predict the emergence of this specific population. We can argue that the responses
predicted by our model can grasp some critical aspects of the neural processing in V1, like nonlinearities and
hierarchical processing, but are still subject to simplifications due to computational constraints. We were able to
efficiently model at least one component of the complex cells’ population in V1: layer 2/3 receiving input from
layer 4. According to our model, complex cells emerge by pooling in the retinotopic space, even in absence of
orientation maps, thanks to hierarchical pooling in V1. The same pooling principle could be applied directly to
thalamic input generating first-order complex cells, as observed in the rabbit (see [53]). Indeed, we observed
complex responses in networks that are at least able to pool in the retinotopic domain (MaxPool 2DS); this
is in line with our hypothesis on the emergence of a class of complex cells as the result of pooling simple cells
responses across a retinotopic organization (see Fig. 1, b) and with the fact that rodents and lagomorph show no
orientation maps despite a huge diversity in V1 sizes [27,29].

Nevertheless, the network can learn more efficient strategies to build up phase invariance by pooling across
the feature space. Indeed, when ps =MaxPool 2DS + 1DF (see Fig. 3, c), the network develops an orientation
map where the preferred orientation of adjacent neurons varies gradually along a circular structure (ring).
Interestingly, this type of structure does not appear in the phase space, where there is no particular organization.
The same computational principle can be extended to a 2D topology by using ps =MaxPool 2DS + 2DF . There,
the network can exploit an additional degree of freedom in the feature space and learns topographic orientation
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maps that show strong similarities to those observed in the primary visual cortex of higher mammals, as we
discussed earlier. In this case, too, there is no organization in the phase domain. This lack of structure implies
that for each pooling region in the feature space (red rectangles in Fig. 3, b-d) the network pools over the
responses to oriented features with different phases, generating phase invariance. An analogous mechanism was
suggested to explain binocular disparity in cat’s complex cells [54, 55]. Interestingly, networks trained with only
feature pooling (MaxPool 2DF ) were unable to explain the emergence of complex cells, although this pooling
mechanism generates orientation maps. We can observe that the features produce a topographic organization
in both orientation and phase space, in contrast with neurophysiology(see Fig. 3, b). This lack of complex
response is in line with our previous statement, as this topographic map does not allow the network to pool
neural response in the phase space efficiently. This result is not surprising as, in the case of MaxPool 2DF , the
networks do not perform pooling in the retinotopic space. This condition is not physiologically plausible as
retinotopic maps are a structure common across all mammals [27,29,56]. Pooling across retinotopic positions
(MaxPool 2DS) can explain, by itself, the emergence of complex cells by position invariance, a fundamental
mechanism observed in complex cells [54]. In this case, the absence of cortical orientation maps suggests that
the emergence of complex cells depends solely on pooling across different positions in the retinotopic space. This
type of network could be the one preferably implemented in animals that do not exhibit orientation maps [27,29].
This is in line with the results from [57], showing that orientation selectivity can emerge even in networks
that connect locally neurons with a random preferred orientation, as in a salt-and-pepper map; in analogy
with the random maps that the network produces in the case of MaxPool 2DS [57,58]. On the other hand, in
the case of MaxPool 2DS + 1DF and MaxPool 2DS + 2DF our model can generate feature invariance by
pooling in the feature space. By consequence, the model converges to a configuration where complex cells can
be generated by pooling across the same orientations and different phases (Fig. 3, c, d). In fact, in the Result
sections 3.2 and 3.4, we showed that networks that develop topographic maps, on top of classical spatial pooling,
develop more complex-like cells and, in general, more phase invariant responses, see in particular Fig. S4 and
Supplementary Information S.1.1 for a detailed analysis. These results allow us to expand our previous statement:
orientation maps represent the most cost-efficient way to generate nonlinear complex cell responses, under the
predictive coding principle. These findings suggest that rodents should show a lower fraction of complex cells
in V1, compared with other mammals. This prediction is, indeed, in line with neurophysiological findings in
mouse [56, 59] and the rabbit [49], although squirrels (that are highly visual rodents) show a fraction of complex
cells comparable to other mammals [58]. The most remarkable fact is that these results are obtained solely by
changing a single computation mechanism, that is the type of nonlinear pooling used, and by learning neural
responses directly from natural images. Altogether, these results suggest that SDPC could be regarded as a
unifying mechanism in mammals’ V1, explaining the emergence of complex cells in all types of topographical
structure (salt-and-pepper and orientation maps) as described in different species.

4.3.3 Non linear representations depend on structure

Lastly, in section 3.4 we demonstrated that, although our model contains multiple sources of nonlinearity, it
efficiently accounts for complex cells that are insensitive to the stimulus’ phase but remain significantly tuned for
orientation. This result is significant for two reasons: first, this is in line with those found in electrophysiological
studies [4, 5]. Second, it confirms that the network does not generate unspecific responses due to a high
degree of nonlinearity. We observed another interesting phenomenon: in the case of a 2D orientation map
(ps=MaxPool 2DS + 2DF ) the number of complex cells developed by the model (as quantified by Rφ in Fig. 4)
appears to be inversely proportional to the number of cell in the first layer of the network (Ms). This effect can
be interpreted as: Networks with a limited number of neurons in the first layer are constrained to learn more
nonlinear representations. At the same time, as the local neural population increases, the network is allowed to
generate more diverse cell types, thus converting to more linear, simple-like responses. This phenomenon could
explain different neural behaviors across species and cortical locations. Although the presence of topographic
maps cannot be predicted by the size of the visual cortex [27], our results here suggest that salt-and-pepper
organization could be linked to a particular pooling strategy. An interesting result in this sense was obtained
by [60]: the authors were able to model the emergence of topographic maps by modulating the density of cell
population between the lateral geniculate nucleus (LGN) and V1 (see also [53]): This simple model explains
the different columnar organizations across species, from salt-and-pepper in rodents to orientation maps and
pinwheels in primates. A similar principle could be translated to the SDPC model presented in this paper but
in relation to the connectivity between layer 4 and layers 2/3 of V1. A possible hypothesis is that cortical
regions show different types of topographic organization depending on the number of neurons they receive input
from. For example, rodents could use unspecific connectivity (large Ms) to generate a highly nonlinear response
without a topographic map. At the same time, higher mammals could exploit, under some evolutionary wiring
constraints, more adapted connections (lower Ms) to fully exploit the presence of pinwheels and iso-oriented
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domains to generate phase-invariant responses within layer 2/3 complex cells. This mechanism could give an
elegant and simple explanation for the different structural and functional aspects of V1 across species; however,
such a hypothesis remains to be validated.
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S.1 Supplementary Information

S.1.1 Analysis on χ

We define χθ and χφ as the measures obtained from the responses to rotating (angle, θ) or drifting (phase, φ)
gratings respectively (green and black lines in Fig. S4). We use non parametric tests as both χθ and χφ do not
follow a Gaussian distribution. We found that χθ was significantly higher (less complex) than χφ (one-tailed
Wilcoxon signed-rank test) with p < 0.001 in all tested conditions. The only exception being for ps =MaxPool 2DF

(not shown), as in this case, no network shows cells with F1

F0
< 1 in the second layer. It is worth noticing that the

median χφ tends to be much lower when the pooling function includes the feature space, for ps =MaxPool 2DF and
ps =MaxPool 2DS+1DF , than for a simple spatial pooling, ps =MaxPool 2DS+2DF (see Fig. S4). To assess the
significance of χφ and χθ generating more complex-like or simple-like behavior we used a one-tailed binomial test
(sign test). We set the null hypothesis median(χφ) < −1 and median(χθ) ≥ −1. Indeed, for ps =MaxPool 2DS ,
the median of χφ is found to be significantly lower than −1 in only a couple of conditions, whereas in general it
tends to be greater than −1. In analogy with the results shown above, for ps =MaxPool 2DS + 1DF the network
significantly generates a majority of complex-like cells χφ < −1. In the case of ps =MaxPool 2DS + 2DF , we
found again a dependence of the amount of complex-like cells and Ms with χφ being significantly less than −1 for
Ms ≤ 100 and highly significantly (p < 0.001) for Ms ≤ 81. On the other hand, χθ is found to be significantly
greater than −1 for all networks with ps =MaxPool 2DS + 2DF , ps =MaxPool 2DS + 1DF and Ms > 49.
This indicates that, for ps =MaxPool 2DS + 2DF and ps =MaxPool 2DS + 1DF low Ms tends to create highly
nonlinear networks with broad tuning to both phase and orientation, while increasing further Ms generates
networks with more simple-like behaviors (see Discussion). For ps =MaxPool 2DS and ps =MaxPool 2DF , χθ
is significantly greater than −1 in all tested conditions. Finally, we found χφ to be significantly smaller for
ps =MaxPool 2DS + 1DF than ps =MaxPool 2DS in all tested conditions (single-tailed Mann-Whitney U test,
p < 0.05). Whereas χφ was significantly smaller for ps =MaxPool 2DS + 2DF than ps =MaxPool 2DS for all
Ms ≤ 100 and highly significantly (p < 0.001) for all Ms ≤ 64.
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Fig S1. Sparse neural activity maps. Left. Example of synaptic weights learned from natural images Ws

and Wc, for the first and second layer, respectively. Here we show Vc, a linear approximation of Wc (see
Methods 2.8). Each kernel corresponds to a channel in the neural activity maps. Right. Representation of 3
channels from the neural activity maps (γs and γc) elicited by the input x. Here, each pixel represents a model
neuron and the color code indicates the amplitude of the neural response (lighter for no response and darker
blue for the maximal response, here normalized to 1). The kernel in top-left corner indicates the preferred
stimulus of each channel.
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Fig S2. Pinwheels density does not depend on network size. Here we show that there is no
relationship between the tested first layer’s network size (Ms) and the density of pinwheels (ρ). Pinwheel
density is defined as the average number of pinwheel per area unit (see Methods 2.6). For all networks showing
orientation maps, we found no significant trend between the size of the map, Ms, and the pinwheel density, in
line with neurophysiological observations.
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Fig S3. Emergence of topographic maps during learning. We show the evolution of the topographic
organization learned by Ws during training when the SDPC network embeds the MaxPool 2DS + 2DF function.
Here, for Ms = 100. The weights are initialized to random values and the network gradually learns from input
data. At first, we observe the emergence of edge detectors similar to the ones observed in the V1 of mammals.
Gradually, thanks to the combined action of the feedback coming from the second layer of the network and the
pooling function in the forward stream, neighboring cells in the topography become tuned to stimuli of similar
orientations but different phases, generating a topographically organized map.
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Fig S4. Complex cells population as a function of the network size. We analyze the same results of
Fig. 4 in terms of the unimodal variable χ as defined in [34] (see, Methods 2.5). In the top-left graph we
illustrate the nonlinear relationship between χ and F1

F0
. Here the results for Mc = 100 are shown. To avoid the

assumption of normally distributed variables, we represent χ using the median±MAD (median absolute
deviation). Black (χφ) and green (χθ) lines indicate distributions obtained using drifting and rotating grating,
respectively. The dashed lines indicate the value χ = −1 for which F1

F0
= 1, the threshold value for which a V1

cell is typically considered either simple or complex. Using drifting gratings as stimuli significantly generated
lower values of χφ (more complex-like cells) than rotating gratings, in all tested settings (one tailed Wilcoxon
signed-rank test). This result confirms that the network’s invariance is linked to the stimulus’ phase and that
model cells remain narrowly tuned to orientation. For ps =MaxPool 2DS and ps =MaxPool 2DS + 1DF the
distribution of χθ and χφ do not vary significantly as a function of the network size. When the network shows a
functional topographic map, for ps =MaxPool 2DS + 2DF , we can see a clear dependency between χφ and the
number of features in the first layer of the network Ms.
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S.1.2 Critical points

In this last section, we highlight and discuss some of our model’s critical points and how they could be
implemented in a biologically plausible way. First, we wish to state that the main goal of this study is to offer a
computational framework able to explain some of the main phenomena observed in mammals’ V1 under a unified
computational principle. Here, we are not trying to replicate specific neural circuitry but rather to identify
possible mathematical principles that regulate structure and functionalities in biological networks. The SDPC
model presented in this study addresses the contribution of three main computational principles: predictive
coding, sparse coding and pooling. There is a large set of architectures that could implement such a network
in a biological substrate as long as the computation respects simple bio-plausibility rules (e.g., local computation,
Hebbian learning, nonnegative firing rates, etc.).

• Bio-plausibility of max-pooling: The non-bio-plausible component of max-pooling consists in the fact
that the backward network needs to know exactly the index (e.g., the position) of the maximum activity in
the previous layer. In other words, the feedback information stream (see Fig. 1) should hold information
about which neuron fired with the highest rate for each iteration of the network. This could be easily
overcome by approximating the max-pooling with an `α norm. Indeed, it can be demonstrated that, for
any vector γ:

max (γ) = lim
α→∞

‖γ‖α = ‖γ‖∞ (18)

We observed that a norm with a high exponent (α = 8) offers qualitatively similar results to the max-pooling.

In this case,
∂‖γ‖α
∂γ has the advantage of being fully derivable using a local update rule that could be

implemented by neural circuitry.

• Convolution: In convolution, synaptic weights are repeated across the image to tile the whole visual
field, making it impossible to implement a biological system. However, the same retinotopic architecture
can be achieved with local untied connections to keep the same structure without replicating the set of
weights at each spatial position. [61] showed that such a model converges to a network with the same
structure as a convolutional one. In this case, the weights of each plane of a feature map converge to
similar configurations, as it would happen in the convolutional case where the weights are forced to be
identical. Importantly, the performance is the same as a convolutional network, in terms of classification
accuracy, but at the price of a high computational cost. These results suggest that convolutions can be
regarded as a good model of retinotopic processing, even if it is not strictly biologically plausible.

• Symmetry of synaptic weights: One additional simplification resides in the fact that the SDPC
network (and PC networks in general) requires the weights in the recurrent part of the network to be
symmetric (see Fig. 1, a). Precisely, the feedback weights in the prediction path correspond to the
transpose of those in the feedforward path (respectively WT

i and Wi). The symmetry enforced in the
network should not be seen as a significant limitation for the modeling capabilities of the SDPC but, rather,
as a simplification needed for computational efficiency. Weight symmetry is a consequence of optimization
through gradient descent, but some studies showed that it is unnecessary for the convergence of the network
parameters. [62] showed that neural networks can still learn efficient representation even when the feedback
weights are fixed to a random distribution. [61] pushed this result even further by showing that not only
the two sets of weights can be learned separately by using a Hebbian (local) learning rule but that the
weights tend to converge to the transpose of each other (as in the SDPC). This phenomenon is referred to
as feedback alignment [63]. Although these last two results were obtained for feedforward neural networks,
the derivation of the learning rule for non-symmetric weights is general enough to be easily extended to
the SDPC network, as it is exclusively based on partial derivatives and Hebbian learning updates.
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