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Abstract  9 
On the macroevolutionary timescale, does trait evolution proceed gradually or by rapid bursts 10 
(pulses) separated by long periods of stasis? Although studies have shown pulsed evolution is 11 
prevalent in animals, our knowledge about the tempo and mode of evolution across the tree of 12 
life is very limited. This long-standing debate calls for a test in bacteria and archaea, the most 13 
ancient and diverse forms of life with unique population genetic properties. Using a likelihood-14 
based framework, we analyzed patterns of microbial genomic trait evolution on a broad 15 
macroevolutionary timescale. Here we show that pulsed evolution is both prevalent and 16 
predominant in microbes. For the first time, we detected two distinct types of pulsed evolution 17 
that are predicted by the punctuated equilibrium and quantum evolution theories. Our findings 18 
suggest that major bacterial lineages originated in quick bursts and pulsed evolution is common 19 
across the tree of life despite drastically different population genetic properties of animals, plants 20 
and microbes. 21 
 22 
Introduction 23 
There has been a long-standing debate about the tempo and mode of trait evolution on the 24 
macroevolutionary timescale. The gradualism theory states that evolution occurs gradually by 25 
small changes that accumulate over a long period of time 1. The pulsed evolution theory, on the 26 
other hand, argues that evolution mostly proceeds in bursts of larger changes (jumps) separated 27 
by long periods of stasis 1–3. Two types of jumps have been proposed in pulsed evolution. 28 
Simpson’s quantum evolution theory postulates that  jumps happen when lineages shift into new 29 
adaptive zones and these jumps play an import role in the origination of higher taxa 2, while 30 
Eldredge and Gould’s later punctuated equilibrium theory focuses exclusively on jumps 31 
associated with speciation 1. Conceptually, these two types of jumps exist side-by-side but differ 32 
in their frequencies and magnitudes. Studies of animal fossil records support the punctuated 33 
equilibrium theory 4,5, and more recent phylogenetic comparative studies of vertebrate body size 34 
6–8 also provide evidence for quantum evolution. Together, they show that evolution is not solely 35 
composed of slow and gradual changes but also instant jumps on the macroevolution timescale. 36 
 37 
Analogous studies in bacteria and archaea, the most ancient and diverse forms of life on Earth, 38 
are lacking, largely due to the scarcity of fossil records and well-measured quantitative 39 
phenotypic traits in microbes. Fortunately, the phenotypic evolution of microbial species can be 40 
reconstructed from extant genome sequences. Several genomic features are highly correlated 41 
with the microbial life strategy. For example, the GC% of the ribosomal RNA gene is correlated 42 
with the optimal growth temperature of bacteria and archaea 9. According to the genome 43 
streamlining theory, genome size, genomic GC% and the nitrogen use in proteins all evolve in 44 
response to the nutrient level in the environment 10,11. These genomic features can be accurately 45 
determined from the thousands of complete genomes currently available that represent a broad 46 
range of closely and distantly related lineages, making it possible to study the tempo and mode 47 
of trait evolution in microbes over a broad spectrum of macroevolution timescales.  48 
 49 
Interestingly, long-term experimental evolution has shown evidence of pulsed evolution in 50 
Escherichia coli cell size 12. However, on the macroevolutionary timescale, the role of pulsed 51 
evolution in microbial trait evolution remains largely unknown. Although it is well known that 52 
there are large trait changes between bacterial clades (e.g., the genomic GC% of high GC vs low 53 
GC Gram-positives, AT-rich obligate intracellular bacteria vs their free-living relatives)13,14, it is 54 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.19.440498doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.19.440498
http://creativecommons.org/licenses/by-nc/4.0/


 

 
 

3 

unclear whether these large trait changes arose gradually or instantly by jumps during the time 55 
the clades diverged from each other. Compared to animals and plants, bacteria and archaea 56 
reproduce asexually and have relatively large population sizes, high dispersal rates and short 57 
generation times. Another salient feature unique to microbes is that their genomes can often leap 58 
by large scale horizontal gene transfer 15, which obviously will have an impact on the tempo and 59 
mode of evolution.  Given these unique features, a central question is whether the tempo and 60 
mode of microbial trait evolution are similar to those of eukaryotes and whether pulsed evolution 61 
is a universal theme across the tree of life, and if so, how much does pulsed evolution contribute 62 
to microbial trait evolution? 63 
 64 
Results 65 
Gradual evolution does not explain microbial genomic trait evolution 66 
We downloaded 10,616 and 263 complete bacterial and archaeal genomes respectively from the 67 
NCBI RefSeq database, from which we reconstructed genome trees and selected 6,668 and 247 68 
representative genomes that passed quality control (Methods). For each representative genome, 69 
we calculated four genomic traits (genomic GC%, rRNA GC%, genome size and the average 70 
nitrogen atoms per residual side chain N-ARSC), all of which showed strong phylogenetic 71 
signals (Pagel’s λ>0.99). Although the four genomic traits are significantly correlated, the 72 
correlation is very weak (Supplementary Fig. 1). For any trait, the proportion of variation 73 
explained by the other traits is less than 13.5% when evaluated using phylogenetically 74 
independent contrast (PIC). Therefore, to capture the possible variation in the tempo and mode of 75 
evolution, we chose to test all four traits separately. Notably, the PIC distributions of these traits 76 
in bacteria drastically deviate from the normal distribution expected by the Brownian motion 77 
(BM) model of gradual evolution (Fig. 1 A-D, two-sided Kolmogorov–Smirnov test, P<0.001 for 78 
all 4 traits). Specifically, all PIC distributions exhibit a strong leptokurtic (heavy-tailed) pattern 79 
with a positive excess kurtosis ranging from 5.79 to 13.47, indicating that extremely rapid trait 80 
changes occur more frequently than expected by the BM model. For archaea, the deviation of the 81 
PIC distribution from the normal expectation is less severe (Supplementary Fig. 2 A-D, two-82 
sided Kolmogorov-Smirnov test, P<0.001, P=0.024, P=0.018 and P=0.155 for rRNA GC%, 83 
genomic GC%, genome size and N-ARSC, respectively), with the excess kurtosis ranging from 84 
1.47 to 7.58. Although inconsistent with gradual evolution, such a heavy-tailed pattern can be 85 
explained by pulsed evolution. Extremely rapid trait changes (|PIC|>3) take place more 86 
frequently than expected by the normal distribution (0.27%) throughout the bacterial 87 
evolutionary history (Supplementary Fig. 3), suggesting repeated episodes of pulsed trait 88 
evolution. 89 
 90 
Modeling microbial trait evolution 91 
When plotted against the branch length, the trait changes between two sister nodes in the bacteria 92 
phylogeny display a “blunderbuss pattern” (Fig. 1 E-H). It starts with a period of stationary 93 
fluctuations where trait changes are bounded and the variance does not accumulate over time. 94 
Segmented linear regression analysis indicates that this phase of stasis lasts until the branch 95 
length reaches 0.001 substitutions/site for rRNA GC% (Supplementary Fig. 4). On longer 96 
timescales, the stasis yields to a pattern of increasing divergence over time. The archaeal traits 97 
display similar patterns (Supplementary Fig. 2 E-H). This “blunderbuss pattern”, first observed 98 
in the evolution of vertebrate body-size, is a signature of pulsed evolution 6. Interestingly, for 99 
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rRNA GC%, we observed a second spike in the trait divergence rate at 0.025 substitutions/site 100 
(Supplementary Fig. 4), indicating a change of evolution tempo at this point. 101 
 102 
To formally test whether pulsed evolution explains the patterns, we model the trait change 103 
between two sister nodes using the Levy process 8. More specifically, we model the trait change 104 
as the sum of three independent stochastic variables: pulsed evolution, gradual evolution, and 105 
time-independent trait variation. We assume pulsed evolution occurs at a constant rate relative to 106 
the molecular divergence and the jump size follows a normal distribution with a mean of zero. 107 
As a result, the pulsed evolution is modeled as a compound Poisson process with normal jumps, 108 
with parameters λ and σ2 denoting the frequency (number of expected jumps per lineage per unit 109 
branch length) and the magnitude (variance of trait change) of the jumps, respectively. We model 110 
gradual evolution using the classic BM model with a single parameter 𝜎!"#  denoting the rate of 111 
the gradual trait change. Meanwhile, we observed trait variation between genomes with identical 112 
phylogenetic marker sequence alignments, indicating the presence of time-independent variation 113 
in our phylogeny. This variation follows a leptokurtic distribution. Therefore, we model the time-114 
independent variation with the Laplace distribution with one single parameter ε denoting its 115 
variance for simplicity and convenience. It should be noted that a jump in the genomic trait may 116 
be coupled with an increase in the molecular divergence rate, especially for those traits affecting 117 
protein sequences (e.g., genomic GC% and N-ARSC). However, such correlation between the 118 
molecular branch length and the trait change will only reduce the signal of pulsed evolution, as 119 
the increased branch length provides greater power for gradual evolution to explain the trait 120 
variation.  121 
  122 
The changing tempos revealed by segmented linear regression suggested that one Poisson 123 
process may not adequately describe the patterns of pulsed evolution, prompting us to add 124 
multiple Poisson processes to our modeling. Therefore, using the framework described above, 125 
we tested six different models (Table 1). The BM model delineates gradual evolution. The PE1, 126 
PE2 and PE3 models describe pulsed evolution with one, two or three Poisson processes 127 
respectively. The PE(n)+BM models represent trait evolution with both pulsed and gradual 128 
evolution. Details of these models are provided in the Supplementary Text.  129 
 130 
Microbial trait evolution is dominated by frequent and rare pulsed evolution 131 
For the four traits we have examined in bacteria and archaea, the best model is always one with a 132 
pulsed evolution component, while the relative support for the BM only model is negligible (all 133 
BM Akaike weights < 0.5%, Table 2), indicating that pulsed evolution is present in both bacteria 134 
and archaea. The best models fit the PIC distributions much better than the BM does (Fig. 1 and 135 
Supplementary Fig. 2). To test the prevalence of pulsed evolution in bacteria, we separately 136 
fitted our models on 17 bacterial families that each contained at least 100 genomes. We found 137 
that trait evolution in 100%, 94.1%, 58.8% and 35.3% of tested families were best explained by a 138 
model with a pulsed evolution component (PE1, PE1+BM, PE2, PE2+BM) for rRNA GC%, 139 
genomic GC%, genome size and N-ARSC respectively, indicating that pulsed evolution is 140 
prevalent in bacteria (Supplementary Table 1). Our simulation shows that when the number of 141 
genomes decreases, the power to detect pulsed evolution in genome size and N-ARSC also 142 
decreases (Supplementary Table 2), suggesting that we might have underestimated the 143 
prevalence of pulsed evolution in these two traits in the 17 bacterial families. We did not test the 144 
prevalence of pulsed evolution in archaea because of insufficient archaeal genomes. 145 
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 146 
Using parameters of the best models (Table 3), we estimated the relative contribution of each 147 
compound Poisson process. The variable ε represents the trait variance in the initial stasis phase 148 
(Fig. 1). Its estimated value approximates the intraspecific trait variation between genomes with 149 
identical marker gene alignments (i.e., zero branch length) and therefore is used as the baseline. 150 
The jumps vary greatly in their frequencies and magnitudes, but can be roughly classified into 151 
two types: small and frequent, or large and rare (Table 3). For example, for rRNA GC%, rare 152 
jumps (1.96 jumps per lineage per unit branch length) are extremely large in magnitude, as the 153 
standard deviation of trait change introduced by one jump is approximately 60 times of √ε, or 154 
roughly equivalent to that introduced by gradual evolution under the BM model over a branch 155 
length of 0.35 substitution per site, and approximately corresponds to 5.8 °C change in the 156 
optimal growth temperature 9. In comparison, the frequent jumps (118 jumps per lineage per unit 157 
branch length) are 60 times more frequent but their sizes are only about 3 times of √ε. Overall, 158 
rare jumps predominate in trait evolution as they contribute more than 74% of variation in each 159 
trait over the whole phylogeny. Similarly, pulsed evolution also predominates in archaea as the 160 
PE1 and PE2 models are the best model in all archaeal traits (Table 2). Due to the limited 161 
number of archaeal genomes, we cannot robustly estimate the parameters of each jump process 162 
in archaea. To evaluate the effect of the tree topology on our model fitting, we fitted models on 163 
the genome tree of the family Enterobacteriaceae (with 748 genomes) made using either 164 
FastTree or RAxML. We found that the fitted model parameters are highly similar using these 165 
two trees (data not shown).  166 
 167 
Rare jumps are correlated with cladogenesis in bacteria 168 
For each branch in the bacterial phylogeny, we calculated the posterior probability of it having at 169 
least one jump and mapped rare and super rare jumps onto the phylogeny. We found that jumps 170 
occurred throughout the phylogeny (Fig. 2.), again indicating that pulsed evolution is prevalent 171 
in bacterial evolution history. Some jumps are associated with known key evolutionary 172 
adaptations. For instance, a classic example of adaptation to endosymbiosis occurred within the 173 
family Enterobacteriaceae, in the lineage leading to a clade of insect endosymbionts that includes 174 
the genera Buchnera, Wigglesworthia and Candidatus Blochmannia. Our model detects large 175 
rare jumps at the base of the clade in the genome size and genomic GC% (posterior probability > 176 
0.9, Fig. 2). The recently described order Candidatus Nanopelagicales within the phylum 177 
Actinobacteria makes up the most abundant free-living bacteria in freshwater. Nanopelagicales 178 
has adapted to live in the nutrient poor environment by streamlining their genomes16 . Compared 179 
to its high GC Gram-positive sister clade, Nanopelagicales has dramatically reduced genome size 180 
(~1.4 Mbp) and genomic GC% (~48%). Our modeling indicates that the genomic streamlining 181 
process happened not gradually but by jumps. We detected large rare jumps in all genomic traits 182 
at the base of the order with extremely high confidence (posterior probability >0.99). Similar 183 
patterns have also been observed in the branch leading to the most abundant free-living marine 184 
bacteria Pelagibacterales and the intracellular bacteria Rickettsiales and Holosporales. Our model 185 
also predicts large rare jumps at higher taxonomic levels such as those at the base branch leading 186 
to the a-, b-, g- and d-proteobacteria (posterior probability >0.96) and the branch that separates 187 
the g-proteobacteria from the rest of the proteobacteria (posterior probability >0.99). Our results 188 
suggest that these key evolutionary adaptations evolved in rapid bursts instead of through slow 189 
divergence of species over long periods of time. 190 
 191 
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Next, we tested whether jumps are correlated with cladogenesis in bacteria by comparing the 192 
posterior frequency of jumps to the expected frequency for which we assume no correlation of 193 
jumps with cladogenesis (the null hypothesis). For example, if jumps happen significantly more 194 
frequently between two congener sister nodes than expected, jumps are considered correlated 195 
with the speciation event (cladogenesis at the species level). For frequent jumps, simulations 196 
indicated that we lacked the statistical power to reject the null hypothesis at every taxonomic 197 
level, and therefore we excluded them from this analysis. For rare and super rare jumps, we 198 
tested their correlation with cladogenesis from the species to order levels. We found that rare and 199 
super rare jumps occur more frequently than expected for all traits at the genus, family and order 200 
levels, except for N-ARSC at the genus level (Table 4). This increase in frequency is significant 201 
for rRNA GC%, genomic GC% and genome size at the genus and family levels (P£0.050), and 202 
for rRNA and genomic GC% at the order level (P<0.001). Interestingly, we found that rare and 203 
super rare jumps happen less frequently than expected for all traits at the species level, although 204 
it is significant only for ribosomal GC% (P<0.001). Our results suggest that rare and super rare 205 
jumps are correlated with cladogenesis at higher taxonomic ranks. 206 
 207 
Discussion 208 
Microbes are known for rapid evolution. Why are these genomic traits constrained for millions 209 
of years before they diverge? The stasis at the species level can be explained by stabilizing 210 
selection that eliminates variants falling outside of a stable niche 17. Alternatively, it can be 211 
maintained by gene flow, as suggested by Futuyma’s ephemeral divergence theory 18. Futuyma 212 
proposes that novel adaptive trait variation arises frequently in local populations, but the spatial 213 
and temporal mosaic nature of niches prevents such local adaptations from spreading to the 214 
entire species because they are wiped out by the gene flow from the prevailing intervening 215 
ancestral populations. As a result, trait changes perish and do not accumulate over time, resulting 216 
in stationary fluctuations, until speciation interrupts the gene flow. Although reproducing 217 
asexually, microbes do exchange genes through homologous recombination and there is evidence 218 
that gene flow plays a critical role in bacterial speciation at least under certain conditions 19–21. 219 
Interestingly, the transient trait variation in the initial stasis phase when jumps are absent (the ε 220 
term in our model) approximately matches the intraspecific trait variation. 221 
 222 
At longer timescales or higher taxonomic levels, trait evolution can be constrained through 223 
stabilizing selection exerted by the adaptive zone 22, defined as a set of ecological niches to 224 
which a group of species are adapted 2. This will generate the pattern of phylogenetic 225 
conservatism where organisms in a clade tend to have similar traits (synapomorphy) and occupy 226 
similar habitats. Accordingly, both genome analyses and ecological studies support that 227 
ecological coherence exists at higher taxonomic levels in bacteria 23. For example, different 228 
bacterial clades have their unique set of genes 24 and analysis of thousands of cultured microbial 229 
strains showed that strains related at the genus, family or order levels occupy the same habitat 230 
more frequently than expected by chance 25.  231 
 232 
Interestingly, for the first time, we detected two types of jumps in one dataset: small frequent 233 
jumps and large rare jumps. This is possible because the large bacterial dataset spans a wide 234 
range of macroevolutionary timescales. For example, the bacterial genome tree in our study has a 235 
total branch length of 442.9 substitutions/site. For super rare jumps (e.g., genome size jumps 236 
with a rate of 0.17 jump per lineage per unit branch length), it is estimated that there are still 75 237 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.19.440498doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.19.440498
http://creativecommons.org/licenses/by-nc/4.0/


 

 
 

7 

events in the entire phylogeny. On the other hand, the resolution of our bacterial genome tree is 238 
5⨯10-5 substitutions/site, meaning that we can detect jumps that occurs as frequently as 20,000 239 
jumps per unit branch length on average. The large difference in the frequency and size of the 240 
jumps suggests that they represent different kinds of evolutionary events. Although our modeling 241 
does not stipulate the coupling of cladogenesis and pulsed evolution (as in the classical 242 
punctuated equilibrium theory), the rate of the frequent jumps in bacteria (115-634 jumps per 243 
lineage per unit branch length or 0.06-0.32 jumps per lineage per Myr) approximates the recently 244 
estimated bacterial speciation rate (0.03-0.05 speciation per lineage per Myr) where species is 245 
defined as having 99% identical 16S rRNAs 26, suggesting that frequent jumps and the speciation 246 
events may be correlated. Two features of the rare jumps fit the description of quantum 247 
evolution. First, the rare jumps are fairly large in magnitude, most likely resulting from shifting 248 
between major adaptive zones. Second, our test shows that rare jumps happen less frequently 249 
than expected at the species level but significantly more frequently than expected at higher 250 
taxonomic levels (genus, family and order), suggesting there is a correlation between rare jumps 251 
and the origination of higher taxa. A key insight from this study is that the major evolutionary 252 
adaptations in bacteria and the origination of major bacterial lineages happens in quick bursts 253 
(quantum evolution) instead of through slow divergence of species over long periods of time 27. 254 
 255 
Microbial genomes are highly dynamic 28,29. They can change by mutation, gene loss, gene 256 
duplication and horizontal gene transfer. Whatever the mechanism, our study suggests that large 257 
genome changes happen in episodes of bursts rather than gradually and slowly. These large 258 
changes are not due to the simple gain and loss of plasmids as we have excluded plasmids in our 259 
study. Chromosomes are in constant exchange with phages, plasmids and other mobile elements 260 
and can change by “quantum leaps” in the form of genomic islands 15. It is worth pointing out 261 
that jumps in our model represent trait changes that persist over time, not the processes that drive 262 
the changes. The rarity of detected jumps does not mean the evolutionary processes (e.g., 263 
selection, population bottleneck) that drive the jumps are rare. It merely means the success rate 264 
of such jumps is low. The rarity of jumps can result from adaptation to a large environmental 265 
shift that happens infrequently, or it can be manifestation of multiple frequent small jumps 266 
occurring in quick succession, which is also rare.  267 
 268 
In conclusion, our modeling of phylogenetic comparative data shows that pulsed evolution is 269 
both prevalent and dominant in bacteria and archaea genomic traits evolution. The signatures of 270 
pulsed evolution detected in this study are consistent with both the punctuated equilibrium and 271 
quantum evolution theories. More broadly, our results suggest that pulsed evolution is the rule 272 
rather than the exception across the tree of life, despite the drastically different population 273 
genetic properties between animals, plants and microbes. 274 

Methods 275 
Bacterial and archaeal phylogeny and genomic traits 276 
We downloaded 10,616 complete bacterial genomes and 263 complete archaeal genomes from 277 
the NCBI RefSeq database on September 6, 2018 (Supplementary Table 3). From each genome 278 
we identified either 31 bacterial or 104 archaeal protein-coding marker genes using 279 
AMPHORA2 30 with the default options and constructed a bacterial and an archaeal genome tree 280 
based on the concatenated and trimmed protein sequence alignment of the marker genes. We 281 
reconstructed the archaeal genome tree using RAxML (version 8.2.11) 31 with the option -m 282 
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PROTCATLG. Because of its large size, it is impractical to make the bacterial genome tree using 283 
RAxML. Instead, we inferred the bacterial genome tree using FastTree (version 2.1.11) 32 with 284 
the option -wag -gamma. For better resolution, we re-optimized the branch length of the genome 285 
trees with the DNA sequence alignments of the marker genes using RAxML with the option -m 286 
GTRGAMMA. We removed genomes with identical alignments, extremely long branches, 287 
ambiguous bases or unreliable annotations from the genome trees. For each of the 6,668 bacterial 288 
and 247 archaeal genomes remained, we calculated four traits: the ribosomal RNA stem GC% 289 
(rRNA GC%), genomic GC%, genome size (excluding plasmids), and the average nitrogen 290 
atoms per residual side chain (N-ARSC). We transformed these traits (logit transformation for 291 
rRNA GC% and genomic GC%; log transformation for genome size and N-ARSC) to make them 292 
comply with the assumption of continuous trait evolution. For conversion from rRNA GC% to 293 
the optimal growth temperature, we used the empirical formula determined by Wang et al 9: 294 
𝑇$%&'()*(℃) = 3.75 × 𝐺𝐶+,-.(%)– 216.27 295 

 296 
Calculating PIC with time-independent variation 297 
Phylogenetically independent contrast (PIC) assumes a Brownian motion (BM) in which trait 298 
variance increases linearly with time 33. However, we observed variation in trait values between 299 
genomes that are separated by zero branch length (data not shown). Therefore, we introduce 300 
time-independent variation into the BM model and denote its variance with ε. When time-301 
independent variation is normally distributed, the PIC between a pair of sister tips is calculated 302 
as 303 

𝑃𝐼𝐶 =
𝑥/ − 𝑥#

:(𝑙/ + 𝑙#)𝜎!"# + 𝜀
 304 

where x1 and x2 are the trait values of the tips, l1 and l2 are their branch lengths to the parent 305 
node, and 𝜎!"#  is the rate of Brownian motion. The uncertainty of the parent node’s trait value is 306 
calculated as 307 

𝜀0 =
(𝑙/𝜎!"# + 0.5𝜀)(𝑙#𝜎!"# + 0.5𝜀)

(𝑙/ + 𝑙#)𝜎!"# + 𝜀
 308 

 309 
Testing the pairwise correlation between the four genomic traits 310 
To avoid dependence among extant trait values due to shared ancestry, we selected all 2,003 tip 311 
pairs in the bacterial genome tree and calculated their PICs for each trait. Using the PICs, we 312 
calculated Pearson correlation coefficient r and coefficient of determination R2 for each trait pair.  313 
 314 
Quantifying the frequency of extreme trait changes in bacterial evolution history 315 
We tested whether extremely rapid trait changes happen throughout the bacterial evolutionary 316 
history. We calculated the relative distance from the root (last common ancestor of bacteria) to a 317 
node i as 318 

𝑑@+$$&(𝑀𝑦𝑟) =
1!""#

1!""#21#$%
where 𝑑+$$& is the branch length of the node i to the root, and 𝑑&'% is the 319 

average branch length of the node i to all its descending tips. It should be noted that a PIC at the 320 
node i measures the trait difference between its two immediate descending nodes. We binned the 321 
PIC based on the relative distance to the root  of the node into 7 bins with exponentially 322 
distributed boundaries and calculated the frequency of extremely rapid trait changes (|PIC| >= 3) 323 
for each bin.  324 

 325 
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Segmented linear regression of absolute trait change on branch length 326 
To analyze the trend of trait change, we applied segmented linear regression of the absolute trait 327 
changes over branch length as described in Uyeda et al 6. For each trait, we log-transformed the 328 
absolute trait changes and added a small fixed value (0.001) to obtain approximately normal 329 
distribution. To account for uncertainty introduced by ancestral state reconstruction, we adjusted 330 
the branch length as described by Felsenstein 33 and log-transformed it as well. When regressing 331 
the log-transformed absolute trait changes against the log-transformed adjusted branch lengths, 332 
we constrained the slope of the first segment to be zero (to capture the stasis) and allowed the 333 
slopes of the remaining regression lines to change at certain breakpoints, but the regression lines 334 
had to be continuous (connected). We compared linear regression models with 1 or 2 breakpoints 335 
and selected the one with the lowest Akaike Information Criterion (AIC), and used the 336 
breakpoints to mark the transitions between different evolution tempos.  337 

 338 
Evaluating pulsed evolution in bacteria and archaea 339 
Using maximum likelihood (ML) method, we tested six models of trait evolution (Table 1). For 340 
models with more than one compound Poisson processes, we restricted the variances of jump 341 
sizes between any two jumping processes to be at least 3-fold different. We fitted the models to 342 
trait changes between sister nodes given their branch lengths. For internal nodes, we 343 
reconstructed their trait values with Felsenstein’s method 33 but took time-independent variation 344 
into account. We calculated confidence intervals for model parameters and statistics by 345 
bootstrapping with 50 replicates. We selected the best model using AIC.  346 

 347 
We estimated two parameters for each compound Poisson process: frequency λi and variance of 348 
jump sizes 𝜎'#, where i is the rank of the Poisson process. For further evaluation of pulsed 349 
evolution, we calculated the contribution and the relative jump size of each compound Poisson 350 
process in pulsed evolution. The contribution of a Poisson process (as proportion of variance 351 
explained, PVE) was calculated by 352 

𝑃𝑉𝐸' =
𝜆'𝜎'#

𝜎!"# +∑ 𝜆3𝜎3#4
35/

 353 

where i and j are the ranks of Poisson processes, and n is the total number of Poisson processes 354 
in the model. The relative jump size was calculated as 𝜎H' =

6$
√8

. To roughly compare the overall 355 

rate of the frequent jumps to the bacterial speciation rate estimated in Myr 26, we calculated the 356 
phylogenetically weighted average branch length of all tips to the root in the tree, and then 357 
calibrated time assuming the average branch length is equivalent to 3.5 billion years of evolution 358 
34,35. 359 

 360 
Testing the effect of sample size on model fitting 361 
To determine the effect of sample size on model fitting, we randomly sampled 2,250, 750, 250, 362 
and 100 branches between sister nodes without replacement from the full bacterial phylogeny 363 
that contained 6,667 branches between sister nodes. We simulated trait evolution along these 364 
branches based on the PE3 model fitted on the bacterial genome size and N-ARSC. We then 365 
fitted the six evolution models on the simulated traits, and selected the best model based on AIC. 366 
We repeated this procedure 10 times and counted the frequency each model was selected as the 367 
best model for each sampling size. 368 
 369 
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Testing the correlation between rare jumps and cladogenesis in bacteria 370 
We identified all contrasts between two congener sister nodes. Using a posterior probability 371 
threshold of 0.75, we calculated the frequency of having at least one rare jump in these contrasts 372 
for each trait (observed frequency). We computed the expected distribution of this frequency 373 
through simulations using the estimated model parameters of pulsed evolution under the null 374 
hypothesis that there is no correlation between jumps and cladogenesis. By comparing the 375 
observed frequency to the expected distribution, we calculated the two-sided P-value of the null 376 
hypothesis being true at the species level. We repeated the same statistical test at the genus, 377 
family and order levels. 378 

Data availability: The data that support the findings of this study are publicly available from the 379 
NCBI RefSeq database under the accession numbers listed in Supplementary Table 3. 380 
 381 
Code availability: The customized R code and scripts used in this study are provided as 382 
Supplementary Files. 383 

 384 
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 459 

Fig. 1. Pulsed evolution models fit bacterial trait evolution better than the BM model. (A-D) PIC 460 
distributions (black bars) deviate significantly from the normal distribution of the BM model (red 461 
line). The pulsed evolution models that include two or three Poisson processes (PE2 or PE3, 462 
green line) greatly improve the fit to the PIC distributions. Square-root transformation is applied 463 
to the y-axis (density) to better show the deviation in the frequency of large PICs. (E-H) Patterns 464 
of bacterial trait changes at different branch lengths. Trait changes derived from the bacterial 465 
phylogeny are shown in black dots. Trait differences between genomes separated by zero branch 466 
length are shown in red dots. The expected 95% confidence intervals (CI) of the models are 467 
shown in colored lines (red line for the BM model, green line for the pulsed evolution model). 468 
Pseudo-log transformation is applied to the y-axis (trait change) to better show the trend of trait 469 
change in short branches. 470 
  471 
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 472 
Fig. 2. Rare jumps are widely distributed throughout the bacterial phylogeny. For clarity, 473 
clades have been collapsed at the taxonomic rank order. Colored dots are placed on branches 474 
where the posterior probability of having at least one rare or super rare jump event is greater than 475 
0.9. Arrows point to branches leading to 1. the order Candidatus Nanopelagicales. 2. the a-, b-, 476 
g- and d-proteobacteria. 3. the orders Pelagibacterales, Rickettsiales and Holosporales. 4. g-477 
proteobacteria. 5. the genera Buchnera, Wigglesworthia and Candidatus Blochmannia within the 478 
family Enterobacteriaceae. 479 
 480 
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Table 1. The six trait evolution models tested in this study. 481 

Models Free parameters 

Brownian motion (BM) 𝜎!"# 	, 𝜀 

One Poisson process (PE1) 𝜆/	, 𝜎/#	, 𝜀 
Two Poisson processes (PE2) 𝜆/	, 𝜎/#	, 𝜆#	, 𝜎##	, 𝜀 
Three Poisson processes (PE3) 𝜆/	, 𝜎/#	, 𝜆#	, 𝜎##	, 𝜆:	, 𝜎:#, 𝜀 
One Poisson process and Brownian motion (PE1+BM) 𝜎!"# 	, 𝜆/	, 𝜎/#	, 𝜀 
Two Poisson processes and Brownian motion (PE2+BM) 𝜎!"# 	, 	𝜆/	, 𝜎/#	, 𝜆#	, 𝜎##	, 𝜀  

 482 

Table 2. List of AIC values for each model fitted for bacterial and archaeal trait evolution. 483 
The AIC values for the best model and models that are not significantly inferior (AIC change <2) 484 
in each trait are in bold. 485 

 486 

Domain Trait BM PE1 PE2 PE3 PE1+BM PE2+BM 

B
ac

te
ria

 

Ribosomal RNA GC% -41650 -43966 -44810 -44806 -44390 -44808 

Genomic GC% -28539 -30921 -31299 -31295 -31171 -31297 

Genome size -15572 -15929 -16075 -16107 -16022 -16090 

N-ARSC -41944 -42123 -42214 -42217 -42214 -42218 

A
rc

ha
ea

 

Ribosomal RNA GC% -642 -766 -802 -798 -796 -800 

Genomic GC% -440 -488 -504 -500 -503 -502 

Genome size -348 -359 -355 -351 -357 -353 

N-ARSC -1202 -1212 -1210 -1206 -1211 -1208 

 487 
  488 
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Table 3. Model statistics of pulsed evolution in different bacterial traits. 
The 95% confidence interval for each model statistic is listed in the parentheses after the statistic. 490 

Trait Jump type 
Jump rate  

(lineage-1∙unit	
branch	length-1) 

Relative 
jumps size Jump contribution Time-independent 

variance 

      

Ribosomal 
RNA GC% 

Rare 1.96 
(1.62 – 2.79) 

57.8 
(50.2 – 63.6) 

85.9% 
(83.8% – 88.3%) 1.81 

(1.43 – 2.32) ⨯ 10-6 Frequent 118 
(84.8 – 150)  

3.0 
(2.6 – 3.6) 

14.1% 
(11.7% – 16.2%) 

      

Genomic 
GC% 

Rare 6.31  
(5.42 – 7.34)  

34.2 
(31.0 – 37.3) 

92.7% 
(91.4% – 93.7%) 1.36 

(1.12 – 1.70) ⨯ 10-5 Frequent 167 
(101 – 261)  

1.9 
(1.4 – 2.4) 

7.3% 
(6.3% – 8.6%) 

      

Genome 
size 

Super rare 0.169  
(0.06 – 0.26) 

22.1 
(19.3 – 35.9) 

38.9%  
(30.3% – 49.1%) 

1.40 
(1.32 – 1.55) ⨯ 10-3 Rare 5.89  

(3.99 – 11.8)  
3.7 

(2.7 – 5.1) 
39.1% 

(31.0% – 49.9%) 

Frequent 115  
(48.3 – 271)  

0.6 
(0.4 – 1.0) 

22.0% 
(14.8% – 31.5%) 

      

N-ARSC 

Super rare 0.367 
(0.11 – 3.85) 

7.8 
(6.1 – 11.1) 

19.8% 
(10.4% – 67.3%) 

3.54 
(3.14 – 3.80) ⨯ 10-5 Rare 7.82 

(5.06 – 15.5)	 
2.8 

(2.2 – 3.7) 
54.1% 

(33.6% – 72.1%) 

Frequent 634 
(274 – 1610)	 

0.2 
(0.1 – 0.3) 

26.1% 
(17.1% – 33.8%) 

 
  492 
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Table 4. Differences in the percentage of contrasts with at least one rare or super rare 493 
jump between those inferred from the empirical data and the expectation from the null 494 
hypothesis.  495 
Significant differences are marked with asterisks. P-values and power (ꞵ) are listed in 496 
parentheses. 497 

 498 

Trait Species Genus Family Order 

Ribosomal GC% 
-2.3%* 

(P<0.001, 
ꞵ>0.999) 

+9.5%* 
 (P<0.001, 
ꞵ>0.999) 

+17.1%* 
(P<0.001,  
ꞵ =0.985) 

+21.3%* 
(P<0.001,  
ꞵ=0.870) 

Genomic GC% 
-2.1%  

(P=0.060, 
ꞵ>0.999) 

+8.1%*  
(P<0.001, 
ꞵ=0.995) 

+8.9%*  
(P<0.001, 
ꞵ=0.610) 

+11.5%* 
(P<0.001, 
ꞵ=0.205) 

Genome size 
-1.2%  

(P=0.150, 
ꞵ>0.999) 

+3.5%*  
(P=0.050, 
ꞵ>0.999) 

+4.9%* 
(P<0.001, 
ꞵ>0.999) 

+4.1% 
(P=0.075, 
ꞵ>0.999) 

N-ARSC 
-0.2%  

(P=0.630, 
ꞵ>0.999) 

-1.8%  
(P=0.240, 
ꞵ>0.999) 

+4.1%  
(P=0.06, 
ꞵ=0.990) 

+3.3% 
(P=0.290, 
ꞵ=0.770) 

 499 
  500 
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Supplementary Text 501 
Probability density of trait change under pulsed evolution 502 
For simplicity, we model pulsed evolution similar to the JN model described in Landis and 503 
Schraiber 8. Specifically, we assume that the pulsed evolution occurs at a constant rate relative to 504 
molecular divergence (branch length), causing sudden changes (jumps) in the trait value. We 505 
assume that the sizes of these jumps follow a normal distribution with a mean of zero and a fixed 506 
variance. As a result, the pulsed evolution is modeled as a compound Poisson process with 507 
normal jumps, with parameters λ and 𝜎# denoting the frequency and the magnitude (variance) of 508 
the jumps, respectively. And between any two tips with branch length Δl in the phylogeny, the 509 
trait change 𝛥𝑥;< introduced by pulsed evolution follows the probability density function: 510 

Φ;<(Δ𝑥;< , Δ𝑙) = NΦ4$+((Δ𝑥;< , 𝑛𝜎#) ⋅
=

450

Φ;$'>>$4(𝑛, 𝜆Δ𝑙) 511 

where n denotes the number of jumps occurred over the branch, Φ4$+((𝑥, 𝜎#) denotes the 512 
normal probability density function of the random variable x with a mean of 0 and variance σ2, 513 
and Φ;$'>>$4(𝑛, 𝜆) denotes the Poisson probability mass function of n events with expected 514 
occurrence of λ. When more than one Poisson processes are involved, the probability density 515 
function changes to: 516 

Φ;<(Δ𝑥;< , Δ𝑙) = N …N RΦ4$+((Δ𝑥;< ,N𝑛3𝜎3#
'

35/

) ⋅SΦ;$'>>$4T𝑛3 , 𝜆3Δ𝑙U
'

35/

V
=

4$50

=

4&50

 517 

where i is the total number of Poisson processes, and j denotes the specific compound Poisson 518 
process a variable belongs. 519 
 520 
We model the gradual evolution using the classic Brownian motion model with a single 521 
parameter 𝜎!"#  denoting the rate of the gradual trait change. The trait change Δ𝑥!" introduced by 522 
gradual evolution follows the probability density function: 523 

Φ!"(Δ𝑥!" , Δ𝑙) = Φ4$+((Δ𝑥!" , 𝜎!"# Δ𝑙) 524 
 525 
Meanwhile, we have observed trait variations between genomes with identical marker gene 526 
alignment (zero branch length), suggesting that branch length does not explain all the trait 527 
variation between tips. Consequently, we introduce the time-independent variation to the model. 528 
Because the distribution of the observed time-independent variation is leptokurtic (i.e., heavy-529 
tailed, with positive excess kurtosis), we model it with the Laplace distribution with a mean of 0 530 
and scale parameter b for simplicity and convenience. The probability density function of x 531 
following a Laplace distribution is denoted as Φ?)%*)@A(𝑥, 2𝑏#), where 2b2 is its variance and 532 
corresponds to the 𝜀 term in our models (i.e., 𝜀 = 2𝑏#). And thus, the time-independent trait 533 
change Δ𝑥8 follows the probability density function: 534 

Φ8(Δ𝑥8 , Δ𝑙) = Φ?)%*)@A(Δ𝑥8 , 𝜀) 535 
 536 
To put these three components together, we first derive the convoluted probability density 537 
function of a zero-mean normal distribution and a zero-mean Laplace distribution 538 
Φ∗(𝑥, 𝜎#, 2𝑏#)	as 539 

Φ∗(𝑥, 𝜎#, 2𝑏#) = 540 
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1
2𝑏 {𝑒

6'
#C'2

D
C[1 − Ψ4$+((𝑥, −

𝜎#

𝑏 , 𝜎#)	] +	𝑒
6'
#C'E

D
C ∙ Ψ4$+((𝑥, −

𝜎#

𝑏 , 𝜎#)} 541 

where σ2 is the variance of the normal distribution, 2b2 is the variance of the Laplace distribution 542 

and Ψ4$+((𝑥, −
6'

C
	 , 𝜎#) denotes the cumulative distribution function of a normally distributed x 543 

with a mean of − 6'

C
 and variance σ2. 544 

 545 
With the convoluted probability density function, we derive that the trait change Δx between any 546 
two tips with branch length Δl in the phylogeny (with one compound Poisson process) follows 547 
the probability distribution: 548 

Φ(Δ𝑥, Δ𝑙) = NΦ∗(Δ𝑥, 𝜎!"# Δ𝑙 + 𝑛𝜎#, 𝜀)
=

450

∙ Φ;$'>>$4(𝑛, 𝜆Δ𝑙) 549 

And in the case where more than one compound Poisson processes are involved, the probability 550 
density function of the trait change becomes: 551 

Φ(Δ𝑥, Δ𝑙) = N … N RΦ∗(Δ𝑥, 𝜎!"# Δ𝑙 +N𝑛3𝜎3#
'

35/

, 𝜀) ⋅SΦ;$'>>$4T𝑛3 , 𝜆3Δ𝑙U
'

35/

V
=

4$50

=

4&50

 552 

 553 
It should be noted that for trait changes that involve internal nodes, the uncertainty of estimated 554 
ancestral states (variance) will replace the ε term in the above calculation. 555 
 556 
Posterior probability of jumps between two sister nodes 557 
We calculate the posterior probability of having n jumps between two sister nodes. Specifically, 558 
with one compound Poisson process, for a trait change Δx over branch length Δl, the posterior 559 
probability of having n jumps between the two nodes is 560 

𝑃(𝑛|∆𝑥) = 	
Φ∗(Δ𝑥, 𝜎!"# Δ𝑙 + 𝑛𝜎#, 𝜀)

Φ(Δ𝑥, Δ𝑙) ∙ Φ;$'>>$4(𝑛, 𝜆Δ𝑙) 561 

And in the case where more than one Poisson processes are involved, the posterior probability of 562 
having 𝑛/ jumps in one of the Poisson process becomes 563 
 	564 

𝑃(𝑛/|∆𝑥) = 	
Φ;$'>>$4(𝑛/, 𝜆/Δ𝑙)

Φ(Δ𝑥, Δ𝑙) ∙ 565 

N …N RΦ∗(Δ𝑥, 𝜎!"# Δ𝑙 + 𝑛/𝜎/# +N𝑛3𝜎3#
'

35#

, 𝜀) ⋅SΦ;$'>>$4T𝑛3 , 𝜆3Δ𝑙U
'

35#

V
=

4$50

=

4'50

 566 

where i is the total number of Poisson processes in the pulsed evolution model. 567 
 568 
Implementation  569 
The functions and algorithms described above are implemented in R.  570 
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 571 
Supplementary Figure 1. The pairwise correlation between the four genomic traits. Upper 572 
triangle: the scatter plots of Phylogenetically Independent Contrasts (PICs) between different 573 
traits. Lower triangle: the corresponding coefficient of determination R2 and P value of the 574 
correlations. 575 
  576 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.19.440498doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.19.440498
http://creativecommons.org/licenses/by-nc/4.0/


 
 

21 
 

 577 

Supplementary Figure 2. Pulsed evolution models fit archaeal trait evolution better than 578 
the BM model. 579 
(A-D) Histogram shows that the PIC (black bar) pattern deviates significantly from the 580 
expectation of the BM model (red line), while it is better described by the pulsed evolution 581 
model with one or two Poisson processes (PE1 or PE2, green line). The y-axis (density) is 582 
square-root transformed to better show the deviation in the frequency of large PICs. (E-H) Trait 583 
changes derived from the archaeal phylogeny are shown in black dots. Trait differences derived 584 
from genomes separated by zero branch length are shown in red dots. The expected 95% CI of 585 
BM and pulsed evolution (PE1 or PE2) models are shown by red and green lines, respectively. 586 
The y-axis (trait change) is pseudo-log transformed to better show the trend of trait change in 587 
short branches. 588 
  589 
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 590 

Supplementary Figure 3. Extremely large PICs occur more frequently than expected by 591 
BM throughout the bacterial evolution history. 592 
Distributions of PIC over relative distance from the root are shown for (A) ribosomal RNA GC% 593 
(B) genomic GC% (C) genome size and (D) nitrogen use per amino acid N-ARSC. Extremely 594 
large PICs (|PIC|>3, outside the red dashed lines) are highlighted in red. Frequencies of the 595 
extremely large PIC over relative distance from the root are shown for (E) ribosomal RNA GC% 596 
(F) genomic GC% (G) genome size and (H) N-ARSC. The red dashed lines in (E-H) represent 597 
the expected frequency of extreme PIC by the BM model. Error bars in (E-H) represents the 95% 598 
confidence interval of extremely large PICs’ frequency in each bin. 599 
 600 
  601 
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 602 

Supplementary Figure 4. Segmented linear regression analysis indicates that the tempo of 603 
evolution changes at various points for ribosomal RNA GC% 604 
The distribution of absolute trait change over branch length is shown for ribosomal RNA GC%. 605 
The fitted relationship between the mean absolute trait change and branch length is shown in 606 
solid red lines, and the time points where the tempo of evolution changes are marked by dashed 607 
red lines. 608 
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