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Highlights 

 

● We propose a novel multi-scale semi-supervised clustering method, termed MAGIC, aiming at 

disentangling the heterogeneity of brain diseases. 

● We perform extensive experiments on large control samples (UK Biobank, N=4403) to precisely 

quantify performance under various conditions, including varying degrees of brain atrophy, different 

levels of heterogeneity, overlapping disease subtypes, class imbalance, and varying sample sizes. 

● We demonstrate the strengths of MAGIC relative to other standard clustering methods. 

● We apply MAGIC to MCI and Alzheimer’s disease datasets (ADNI, N=1728) to dissect 

neuroanatomical heterogeneity in AD and its prodromal stages.  
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Graphical abstract 
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Table of Abbreviations 
Item Abbreviation 

Alzheimer’s disease AD 

Grey matter GM 

Mild cognitive impairment MCI 

Healthy control CN 

Machine learning ML 

Adjusted Rand index ARI 

Atrophy strength level ASL 

Patients PT 

Subtype Sub 

Cross-validation CV 

Quality control QC 

ARIs during CV ARI_CV 

ARIs for ground truth ARI_GT 

T1-weighted MRI T1w MRI 

Magnetic resonance imaging MRI 

Non-negative matrix factorization NMF 

Voxel-based analysis VBA 

Multivariate pattern analysis MVPA 

Support vector machine SVM 

 

Table of variables 
Item Abbreviation 

Number of clusters/subtypes k 

Number of components M 

Number of subjects N 

Number of voxels D 

Input matrix X 

Component matrix C 

Loading coefficient matrix L 

Input label y 

SVM weight w 

SVM bias b 

Subtype membership matrix S 

Final subtype membership matrix after consensus clustering S* 

Index of number of subjects i 

Index of number of clusters/subtypes j 

Index of number of blocks in cyclic optimization q 

Total number blocks in cyclic optimization Q 
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Abstract 

Disease heterogeneity is a significant obstacle to understanding pathological processes and delivering precision 

diagnostics and treatment. Clustering methods have gained popularity in stratifying patients into subpopulations 

(i.e., subtypes) of brain diseases using imaging data. However, unsupervised clustering approaches are often 

confounded by anatomical and functional variations not related to a disease or pathology of interest. Semi-

supervised clustering techniques have been proposed to overcome this and, therefore, capture disease-specific 

patterns more effectively. An additional limitation of both unsupervised and semi-supervised conventional 

machine learning methods is that they typically model, learn and infer from data at a basis of feature sets pre-

defined at a fixed scale or scales (e.g, an atlas-based regions of interest). Herein we propose a novel method, 

“Multi-scAle heteroGeneity analysIs and Clustering” (MAGIC), to depict the multi-scale presentation of disease 

heterogeneity, which builds on a previously proposed semi-supervised clustering method, HYDRA. It derives 

multi-scale and clinically interpretable feature representations and exploits a double-cyclic optimization 

procedure to drive inter-scale-consistent disease subtypes or neuroanatomical dimensions effectively. More 

importantly, to fill in the gap of understanding under what conditions the clustering model can estimate true 

heterogeneity related to diseases, we conducted extensive and systematic semi-simulated experiments to 

evaluate the proposed method on a sizeable healthy control sample from the UK Biobank (N=4403). We then 

applied MAGIC to real imaging data of Alzheimer’s disease (ADNI, N=1728) to demonstrate its potential and 

challenges in dissecting the neuroanatomical heterogeneity of brain diseases. Taken together, we aim to provide 

guidelines on when such analyses can succeed or should be taken with caution. The code of the proposed method 

is publicly available at https://github.com/anbai106/MAGIC. 

Keywords: semi-supervised, clustering, multi-scale, heterogeneity, semi-simulated 
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1. Introduction 

Statistical and machine learning (ML) methods have been widely applied to neuroimaging data to derive 

disease-specific imaging signatures (Davatzikos, 2019). Voxel-based analysis (VBA) techniques generally 

involve performing independent mass univariate statistical tests on all voxels (Ashburner et al., 1998; Ashburner 

and Friston, 2000; Davatzikos et al., 2001; Friston et al., 1994), aiming to unveil detailed spatial maps of brain 

structures that are associated with clinical variables of interest. However, VBA approaches suffer from limited 

statistical power since they ignore multivariate data interactions. In contrast, multivariate pattern analysis 

(MVPA) techniques have gained traction due to their ability to capture complex multivariate interactions in data. 

Classical multivariate models, such as support vector machine (SVM), have been extensively utilized in the 

neuroimaging community to reveal imaging signatures for several brain diseases and disorders (Cuingnet et al., 

2011; Ecker et al., 2010; Gaonkar and Davatzikos, 2013; Habes et al., 2016; Koutsouleris et al., 2015; Lao et 

al., 2004; Rathore et al., 2017; Samper-González et al., 2018; Varol et al., 2018). More recently, highly nonlinear 

and multivariate deep learning models have also been applied to brain modeling (Bashyam et al., 2020; Schulz 

et al., 2020; Wen et al., 2020a). However, due to possible over-fitting, these models’ interpretability and 

generalizability in low sample size regimes have been under scrutiny. 

Whether performing mass univariate or multivariate analysis, it is typically assumed that a relatively 

pure pathological pattern exists in the disease population. The disease signature is often presented via a voxel-

wise or region of interest (ROI)-wise statistical map of the case-control group differences, i.e., between healthy 

controls (CN) and patients (PT). However, in nature, disease effects are commonly heterogeneously presented 

across different subpopulations due to the diversity of underlying risk factors. Such model assumption violations 

may cause the statistical learning to yield underpowered or false-positive results (Dwyer et al., 2018). Tackling 

this issue is of great importance given ample evidence of disease heterogeneity (Murray et al., 2011; Noh et al., 

2014; Whitwell et al., 2007) and increasing appreciation that this may undermine the precision of clinical 

treatment guidelines and obscure research findings (Insel and Cuthbert, 2015).  

Disentangling disease heterogeneity elucidates the underlying pathological mechanisms and potentially 

enables clinicians to offer targeted treatment options to different patient subpopulations. Nonlinear methods, 

such as deep neural networks, implicitly handle heterogeneity. However, there still exists a gap between these 

models and human interpretability, especially for clinicians who frequently seek discrete disease subtypes 

(Miotto et al., 2018). Thus, many recent efforts to discover the heterogeneous nature of brain diseases have 

investigated different clustering algorithms (Chand et al., 2020; Dong et al., 2016a, 2016b; Dwyer et al., 2018; 

Ezzati et al., 2020; Filipovych et al., 2012; Honnorat et al., 2019; Jeon et al., 2019; Jung et al., 2016; Lubeiro et 

al., 2016; Nettiksimmons et al., 2014; Ota et al., 2016; Pan et al., 2020; Park et al., 2017; Planchuelo-Gómez et 

al., 2020; Poulakis et al., 2020, 2020, 2018; Sugihara et al., 2016; Ten Kate et al., 2018; Varol et al., 2017; 

Young et al., 2018; Zhang et al., 2016). These methods can be divided into two categories depending on whether 

the clustering algorithm is unsupervised or semi-supervised2. Unsupervised clustering techniques, such as K-

means (Hartigan and Wong, 1979), hierarchical clustering (Day and Edelsbrunner, 1984), and non-negative 

matrix factorization (NMF) (Lee and Seung, 2001), aim to directly cluster the patients based on their 

demographic information, clinical presentation, or imaging biomarkers. However, the results of these methods 

have often been confounded by non-pathologic processes, such as demographics. To cope with these covariate 

confounds semi-supervised clustering methods (Dong et al., 2016a; Varol et al., 2017) leverage the group-level 

information and attempt to nullify the effect of nuisance variables. These methods generate clusters based on 

the pattern differences between the CN population and the subpopulations of patients (i.e., subtypes/clusters), 

hypothesizing that each pattern represents a distinct disease dimension or subtype. The main limitation of this 

family of methods is that they usually seek subtypes on a single scale set of features (e.g., atlas-based ROIs, 

voxels, networks), which makes the result heavily dependent on the level of granularity of the feature space. 

However, there has been abundant evidence that the brain is fundamentally constructed by multi-scale entities 

(Bassett and Siebenhühner, 2013; Betzel and Bassett, 2017). Therefore, it is beneficial to analyze disease 

heterogeneity on multiple spatial scales and seek a clustering solution that is compatible across scales, which 

will potentially better align with the brain’s multi-scale nature. 

                                                      
2 The term semi-supervised refers to the lack of subtype labels and the use of CN as a reference group to guide 

the clustering.  
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Despite that these clustering works have always led to a cluster solution, guidelines enabling the validity 

of the cluster solution claimed have yet to be established, presumably due to the lack of the ground truth in 

clustering problems or the “curse of dimensionality” in brain imaging settings. A previous study (Varol et al., 

2017) designed simulation experiments to validate the proposed model. However, the simulation data were 

generated by adding noise in the low-dimensional feature space under a specific distribution (i.e., Gaussian 

distribution), which was far less realistic than actual neuroimaging data. Thus, a more sophisticated and 

systematic simulation is needed to understand at what conditions clustering succeeds or fails with high-

dimensional brain imaging data. Specifically, in the current work, we performed an extensive and systematic 

evaluation on clustering performance using a large healthy control sample (UK Biobank, N=4403) in a semi-

simulated setting. The term semi-simulated is in reference to the fact that the disease effects (e.g., brain atrophy) 

are imposed on specific regions of tissue images of real healthy control individuals. With known ground truth 

for the number of clusters (k) and the cluster/subtype membership assignment, we quantitatively investigated 

the clustering model’s performance under a variety of conditions, including varying degrees of brain atrophy, 

different levels of heterogeneity, overlapping disease subtypes, class imbalance, and varying sample sizes. 

This work is a comprehensive extension of our preliminary results presented in Medical Image 

Computing and Computer Assisted Interventions (MICCAI) in 2020 (Wen et al., 2020b). The contribution is 

two-fold. First, to address the aforementioned multi-scale limitations, we propose a data-driven and multi-scale 

semi-supervised method termed MAGIC for “Multi-scAle heteroGeneity analysIs and Clustering”. Specifically, 

MAGIC extracts multi-scale features, from coarse to fine granularity, via orthogonal projective non-negative 

matrix factorization (opNMF) applied for varying scales (i.e., number of components). opNFM has been a very 

effective unbiased, data-driven method for extracting biologically interpretable and reproducible feature 

representations in the context of neuroimaging datasets (Sotiras et al., 2015). A convex polytope classifier, based 

on principles of the method in (Varol et al., 2017), is applied to these multi-scale features through a double-

cyclic optimization procedure to yield robust clusters that are consistent across different scales. Secondly, the 

results of our semi-simulated experiments are of great value. They allow us to compare MAGIC with previous 

standard clustering methods and provide future clustering analysis guidelines. Subsequently, applying MAGIC 

to Alzheimer’s disease (AD) and mild cognitive impairment (MCI) patients shows the potential of the proposed 

model and challenges in clinical application. 

We organize the remainder of the paper as follows. In Section 2, we provide the details of the proposed 

algorithm. Section 3 details the primary datasets and image preprocessing steps. Section 4 presents the results 

of the experiments. Section 5 concludes the paper by discussing our main observations, method limitations, and 

future directions.        
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2. Methods 

MAGIC builds upon the HYDRA formulation (Varol et al., 2017) and opNMF algorithms (Sotiras et al., 2015) 

to yield an inter-scale-consistent clustering solution. It generates an interpretable and spatially adaptive multi-

scale representation via opNMF, which drives semi-supervised clustering. The schematic diagram of MAGIC 

is shown in Fig. 1. 

 

Figure 1. Schematic diagram of the MAGIC algorithm. MAGIC first generates multi-scale feature 

representations of the brain anatomy from coarse to fine resolutions and then cyclically solves semi-supervised 

clustering subproblems with each of these feature representations. Generally, it consists of three key components. 

A) opNMF enables the extraction of multi-scale, biologically interpretable feature representations in a data-

driven manner. B) max-margin multiple SVM classifiers are utilized to construct a nonlinear polytope for 

simultaneous classification and clustering. In this fashion, the patients’ subtypes or subpopulations are clustered 

based on their distance from the polytope. C) the double-cyclic optimization procedure is adopted to fuse the 

knowledge from multi-scale features for inter-scale consistent clustering solutions. Specifically, the cluster 

polytope is first initialized at a specific representation scale. After optimization, the cluster polytope is 

transferred to the next representation scale, allowing the clustering routine to be guided by all anatomical scales. 

Furthermore, the polytope initialization is performed at different anatomical scales to further remove bias from 

the clustering solutions. Lastly, the resulting multi-scale clustering solutions are fused through consensus 

clustering to yield a final stable subtype membership assignment. X: input matrix; C: component matrix; L: 

loading coefficient matrix; CN: healthy control; Sub: subtype; M: number of components. S is the initial 

polytope solution. S1, S2, and S3 are the fine-tuned polytope for different initialization models, and S* is the 

final polytope after consensus clustering procedure. 

We detail the mathematical formulation of the optimization routine in the following subsections. To 

establish notation, let N denote the number of subjects and D the number of voxels in each image. We denote 

the data as a matrix X that is organized by arranging each image as a vector per column (X = [x1, …, xN], xi ∈ 

RD). We use binary labels to distinguish the patient and control groups, where 1 represents patients (PT) and -

1 means healthy controls (CN) (i.e., 𝒚 ∈ {−1, 1}𝑁). For subtype results, the subtype membership matrix (a.k.a., 

polytope) is denoted as S∈ RN x k before consensus clustering and S* as the final subtype membership matrix 

after consensus clustering.    

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.19.440501doi: bioRxiv preprint 

https://docs.google.com/document/d/1k26gW7cbHGViHZaAcyA5YNVkFm9JqpVuJj8GXiUQOvs/edit#figur_violin_classifier
https://doi.org/10.1101/2021.04.19.440501
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

2.1. Multi-scale feature extraction via orthogonal projective non-negative matrix 

factorization 

MAGIC utilizes opNMF, an unsupervised representation learning algorithm, to extract multi-scale and 

interpretable anatomical components covering the whole brain. The number of components (M) is optimized in 

opNMF and controls the granularity of the anatomical components (e.g., opNMF components at different 

granularities can be seen in Fig. 1C).  

The opNMF aims to represent the input matrix X as a rank-M matrix that is the product of two non-

negative matrices: i) C, termed as the component matrix, captures the groups of voxels that covary most and 

offers an interpretable anatomical parcellation (C = [c1, …, cM], ci ∈RD), and ii) L ∈RMxN, termed as the loading 

coefficient matrix, captures the amount of each spatial component that makes up each subject. The opNMF 

objective is as follows:  

min
𝑐

‖𝑿 − 𝑪𝑳‖𝐹
2     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑪 ≥ 0, 𝑳 ≥ 0, 𝑪𝑻𝑪 = 𝑰 , 𝑳 =  𝑪𝐓𝑿  (1)   

This formulation differs from the standard NMF since the loading coefficient matrix is obtained by projecting 

the input data X to the estimated component matrix C (i.e., L = CTX), and the orthogonality constraint is imposed 

on the component matrix (CTC = I, where I denotes the identity matrix). Therefore, the opNMF searches only 

the parameters of the component matrix during optimization (Zhirong Yang and Oja, 2010). Once the algorithm 

converges, we recover the loading coefficients by the projective step: 𝑳 =  𝑪𝐓𝑿 . 

2.1.1. Max-margin multiple SVM classifiers for clustering 

Once the high dimensional imaging data is reduced to a lower-dimensional representation using opNMF, we 

apply the HYDRA algorithm (Varol et al., 2017) on the set of loading coefficients, L ∈ RMxN and the 

corresponding set of diagnostic labels 𝒚 ∈ {−1, 1}𝑁  to perform clustering of the patients. In general, this 

algorithm solves for a convex polytope classification boundary that discriminates patients from controls with 

maximum margin. In essence, the polytope is composed of the k hyperplanes of the k linear SVMs, and each 

face corresponds to one subtype/cluster. The objective of maximizing the polytope’s margin can be summarized 

as: 

min
{𝒘𝑗,𝒃𝑗}𝑗=1

𝑘
∑

‖𝒘𝑗‖
2

2

2

𝑘

𝑗=1

+ 𝜇 ∑
1

𝑘
max{0, 1 − 𝒘𝑗

𝑇𝑳𝑖
𝑇 − 𝒃𝑗}

𝑖|𝑦𝑖=+1
𝑗

+ 𝜇 ∑ 𝑺𝑖,𝑗max{0, 1 + 𝒘𝑗
𝑇𝑳𝑖

𝑇 + 𝒃𝑗}
𝑖|𝑦𝑖=−1

𝑗

   (2) 

where 𝒘𝑗 and 𝒃𝑗 are the weight and bias for each hyperplane, respectively. 𝜇 is a penalty parameter on the 

training error, and S is the subtype membership matrix of dimension NxK containing information regarding 

whether a sample i belongs to subtype j. In general, this optimization problem is non-convex and is jointly 

optimized by iterating on solving for the polytope faces’ parameters using standard SVM solvers (Chang and 

Lin, 2011) and solving for the cluster memberships as follows:  

𝑺𝒊,𝒋 = {

1, 𝑗 =  argmax
𝑗

(𝒘𝑗
𝑇𝑳𝑇 + 𝒃𝑗)

0,   𝑗 ≠  argmax
𝑗

(𝒘𝑗
𝑇𝑳𝑇 + 𝒃𝑗)

    (3) 

 

2.1.2. Double-cyclic optimization procedure for scale-independent subtypes 

MAGIC optimizes the clustering objective, i.e., Eq. 2, for each anatomical scale as a sub-optimization problem. 

To fuse the multi-scale clustering solutions and enforce the clusters to be scale-independent, MAGIC adopts a 

double-cyclic optimization procedure that transfers and fine-tunes the subtype membership matrix (S) between 

different scales of features, i.e., solving the sub-optimization problems with the single-scale feature 

representation in a loop. Formally, MAGIC solves the overall clustering problem in the form of: 
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min
{𝑺𝑞,𝒘𝑞,𝒃𝑞}𝑞=1

𝑄
𝐹{(𝑺1, 𝒘1, 𝒃1), … , (𝑺𝑞 , 𝒘𝑞 , 𝒃𝑞)}    (4) 

where 𝑄 ∈ 𝑅 is the total number of blocks that the optimization takes until the pre-defined stopping criteria 

achieve. ( 𝑺𝑞 ,  𝒘𝑞 , 𝒃𝑞) are the polytope, weight, and bias terms estimated using the q-th set of features. 

 The double-cyclic fine-tuning procedure aims to offer scale-independent clustering solutions across 

multi-scale features. Cycle 1 (Fig. 1C components M1, M2, and M3 in a row) aims to derive a clustering solution 

that is informed by features across all scales. This is achieved by iteratively solving Eq. 2 using features derived 

at different scales. Specifically, the clustering membership matrix S is first solved for a particular set of features. 

It is then transferred to the next block, where it is used as initialization for fine-tuning driven by features from 

a different scale. This procedure is repeated till features from all anatomical scales have been used to inform the 

final clustering membership matrix (S1 in Fig. 1C). Since each optimization cycle starts at a pre-determined 

anatomical scale, an additional Cycle 2 (Fig. 1C components M1, M2, and M3 in a column) is executed using 

all different anatomical scales to initialize the model. This eliminates any initialization biases (S1, S2, and S3 

in Fig. 1C) and results in multiple clustering solutions. To determine the final subtype assignment (S* in Fig. 

1C), we perform consensus clustering. Consensus is achieved by grouping together samples that are assigned 

to the same cluster across the solutions estimated as part of Cycle 2 (Varol et al., 2017). Specifically, we first 

compute a co-occurrence matrix based on the clustering results of Cycle 2 and then use it to perform spectral 

clustering (Ng et al., 2001). 

 

3. Materials 

3.1. Datasets 

The neuroimaging data used in the current study are from three datasets: the UK Biobank (UKBB) study (Miller 

et al., 2016) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study (Petersen et al., 2010).  

The UKBB is a dataset of approximately 500,000 UK adults sampled via population-based registries 

(http://www.ukbiobank.ac.uk). Participants were recruited from across the United Kingdom, and initial 

enrolment was carried out from 2006 to 2010. Participants provided socio-demographic, cognitive, and medical 

data via questionnaires and physical assessments. Starting in 2014, a subset of the original sample later 

underwent brain magnetic resonance imaging (MRI). The UKBB data used in this work comprises 4403 CN 

participants whose T1-weighted (T1w) MRI was collected using Siemens 3T Skyra. The parameters of the 3D 

MPRAGE sequences are as follows: resolution=1.0×1.0×1.0 mm; field-of-view=256 mm x256 mm; TR = 2000 

ms; TE = 2.01 ms; TI = 880 ms; slices = 208; flip angle = 8 degrees (Miller et al., 2016).  

The ADNI was launched in 2003 as a public-private partnership (www.adni-info.org.1). The primary 

goal of ADNI has been to test whether serial MRI, positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment can be combined to measure the progression of MCI 

and early AD. The ADNI dataset used in our experiments comprises 1728 participants from ADNI 1, 2, 3, and 

GO, for whom a T1w MRI was available at baseline: 339 AD, 541 CN, and 848 MCI were finally included. 

ADNI T1w images were performed both on 1.5T and 3T scanners with similar protocol parameters: 256×256 

matrix; voxel size=1.2×1.0×1.0 mm; TI=400 ms; TR=6.98 ms; TE=2.85 ms; flip angle=11°.  

These datasets are described in detail in supplementary eMethod 1. Table 1 summarizes the basic 

demographics of all participants from the two datasets. 
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Table 1. Summary of participant demographics for UKBB and ADNI datasets. Values for age are presented as 

mean ± SD [range]. M: male, F: female. 

Study Diagnosis Subjects Age Gender 

UKBB CN 4403 63.21±7.41 [45, 80] 

 

2068 M / 2335 F 

 

 

 

ADNI 

CN 541 74.02±5.79 [56, 90] 253 M / 288 F 

MCI 848 73.15±7.56 [54, 89] 504 M / 344 F 

AD 339 74.78±7.87 [55, 90] 186 M / 153 F 

 

3.2. Image preprocessing 

Raw T1w MRIs were quality checked for motion, image artifacts, or restricted field-of-view. Images passing 

this quality check (QC) were corrected for magnetic field inhomogeneity (Tustison et al., 2010). A robust multi‐

atlas label fusion‐based method, MUSE (Doshi et al., 2016), was applied for tissue segmentation of the brain. 

Voxel-wise regional volumetric maps (RAVENS) (Davatzikos et al., 2001) were generated for grey matter (GM) 

tissues by registering skull-stripped images to a population-based template residing in the MNI-space using a 

deformable registration method (Ou et al., 2011). Another QC procedure was performed to control the quality 

of the images further. Specifically, the images were first checked by manually evaluating for pipeline failures 

(e.g., poor brain extraction, tissue segmentation, and registration errors). Furthermore, a second-step automated 

procedure automatically flagged images based on outlying values of quantified metrics (i.e., ROI values), and 

those flagged images were re-evaluated. 

4. Experiments and results 

We first validated the proposed model using semi-simulated data in which we knew the ground truth for the 

number of clusters (k) and subtype membership assignment. In this setting, we quantitatively assessed how 

several key components influenced the clustering performance and compared our method’s performance to 

other common clustering approaches. Finally, we applied MAGIC to a real clinical dataset for dissecting the 

heterogeneity of AD plus MCI. 

 

4.1. Evaluation strategy 

We adopted a cross-validation (CV) procedure with repeated and stratified random splits for 100 repetitions to 

determine the appropriate number of clusters. Specifically, during each repetition, 80% of the data was for 

training. The “optimal” number of clusters was guided by the clustering stability across the 100 repetitions. The 

Adjusted Rand index (ARI) was used for that purpose, which we denoted as ARIs during CV (ARI_CV). 

Moreover, for simulation experiments, where the ground truth for subtype membership was known, ARI was 

also used to quantify the clustering performance, referred to as ARIs for ground truth (ARI_GT).  

After obtaining the assignment of subtype membership, we performed voxel-wise group comparisons for 

RAVENS GM maps between each subtype with CNs  using the 3dttest++ program (Cox et al., 2017) in AFNI 

(Cox, 1996), to detect the distinct neuroanatomical patterns of the corresponding. The two-sample t-test T-value 

map of AFNI was further converted to a P-value map considering correction for multiple comparisons with the 

Benjamini-Hochberg procedure. Moreover, it has been advocated for reporting effect size over P-value in the 
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literature since P-values are highly dependent on the sample size (Sullivan and Feinn, 2012). Thus, we calculated 

the local effect size, Cohen’s f2 (Selya et al., 2012), for voxels that are significantly different between subtypes 

after adjusting the confounding covariates (i.e., age and sex). We present the voxel-wise effect size maps to 

delineate the subtypes’ neuroanatomical patterns for all experiments. For reference, Cohen’s f2 ≥ 0.02, ≥ 0.15, 

and ≥ 0.35 represent small, medium, and large effect sizes, respectively (Selya et al., 2012). 

 

4.2. Experiments using UKBB semi-simulated data 

The UKBB RAVENS GM maps were used to generate semi-simulated data. We first divided all CN subjects 

(N=4403) into pre-defined number of splits. Part of the splits were regarded as the true CN, and the remainder 

(i.e., pseudo-PT) was further divided into another number of splits for subtype simulations. The sample size of 

each subtype was balanced. Brain atrophy was then imposed to RAVENS maps of each of the subtypes within 

different patterns. To simplify the simulation, we assume that patterns across the k subtypes are orthogonal with 

each other (we further tested the influence of overlapping patterns between subtypes). These regions were 

priorly chosen based on the segmentation image of the template image in the MNI space. Different choices for 

the number of subtypes (k) and atrophy strength level (ASL) were tested. For instance, for experiments with 

k=2 and ASL=0.1, voxel intensity values inside the two pre-defined patterns were reduced by 10% compared 

to its original values. Moreover, the ASL varied by ±2% across images to add randomness. In total, nine 

experiments were performed and summarized in Table 2. The ground truth of the pre-defined atrophy patterns 

of each subtype is shown in Fig. 3 (i.e., the first column). 

Table 2. Summary of the original semi-simulated experiments. The number of subjects for each group is shown 

in parentheses. ASL: atrophy strength level; k: the number of clusters. Sub: Subtype. 

Experiment Subtype and sample size 

k=2 & ASL=0.1 CN (2201), Sub1 (1101), Sub2 (1101) 

k=2 & ASL=0.2 CN (2201), Sub1 (1101), Sub2 (1101) 

k=2 & ASL=0.3 CN (2201), Sub1 (1101), Sub2 (1101) 

k=3 & ASL=0.1 CN (1103), Sub1 (1100), Sub2 (1100), Sub3 (1100) 

k=3 & ASL=0.2 CN (1103), Sub1 (1100), Sub2 (1100), Sub3 (1100) 

k=3 & ASL=0.3 CN (1103), Sub1 (1100), Sub2 (1100), Sub3 (1100) 

k=4 & ASL=0.1 CN (883), Sub1 (880), Sub2 (880), Sub3 (880), Sub4 (880) 

k=4 & ASL=0.2 CN (883), Sub1 (880), Sub2 (880), Sub3 (880), Sub4 (880) 

k=4 & ASL=0.3 CN (883), Sub1 (880), Sub2 (880), Sub3 (880), Sub4 (880) 

The semi-simulated experiments’ first aim is to compare MAGIC’s clustering performance to other 

unsupervised or semi-supervised clustering methods. Second, the influence of confounds on clustering 

performance can be assessed under different conditions. 

4.2.1. MAGIC discovers the correct number of clusters and corresponding 

simulated neuroanatomical patterns 

MAGIC was able to discover the correct number of clusters for the following experiments: k=2 & ASL=0.1, 

0.2 or 0.3 (Fig. 2A, B and C), k=3 & ASL=0.2 (Fig. 2E) or ASL=0.3 (Fig. 2F), and k=4 & ASL=0.3 (Fig. 2I). 

For other experiments, MAGIC failed to find the true k (Fig. 2D, G, and H), indicating the presence of high 

heterogeneity (K>2 or 3) and very subtle disease effect (10%-20%), the algorithm reaches a detection threshold.  
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Voxel-wise effect size maps were generated to demonstrate whether MAGIC can find the ground truth 

of neuroanatomical atrophy patterns of subtypes. The ground truth of neuroanatomical patterns is shown by 

masking out the simulated atrophy regions (i.e., the first column in Fig. 3). MAGIC was able to find the ground 

truth for all experiments, except for k=4 & ASL=0.1 (Fig. 3G), in which minor effects (Cohen’s f2<0.06) were 

detected in subcortical structures for all four subtypes. Besides, the effect size of the subtype patterns increases 

with increasing ASL.  

 
Figure 2. MAGIC finds the ground truth of the number of clusters (k) when the clustering conditions are 

favorable, i.e., higher ASL or lower k. The “optimal” k was determined by ARI_CV. A) k=2 & ASL=0.1; B) 

k=2 & ASL=0.2; C) k=2 & ASL=0.3; D) k=3 & ASL=0.1; E) k=3 & ASL=0.2; F) k=3 & ASL=0.3; G) k=4 & 

ASL=0.1; H) k=4 & ASL=0.2; I) k=4 & ASL=0.3. The bold lines represent the ground truth of k for each 

experiment. 
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Figure 3. MAGIC finds the ground truth of subtype’s neuroanatomical patterns when the clustering conditions 

are favorable, i.e., higher ASL or lower k. Neuroanatomical patterns are displayed using effect size maps based 

on voxel-wise group comparisons between CN and subtypes. Positive values denote brain atrophy (CN > Sub), 

while negative values correspond to larger brain volume in subtypes (CN < Sub). The ground truth of the 

subtypes pattern is presented with a binary mask (white) for each k in the first column. Of note, as expected, 

due to the variances from the original data before the simulation, the ground truth and the actual patterns might 

not always be in concordance. For instance, for Sub in Fig A, the bilateral caudate showed smaller effect sizes, 

but they pass the significant threshold (0.05). A) k=2 & ASL=0.1; B) k=2 & ASL=0.2; C) k=2 & ASL=0.3; D) 

k=3 & ASL=0.1; E) k=3 & ASL=0.2; F) k=3 & ASL=0.3; G) k=4 & ASL=0.1; H) k=4 & ASL=0.2; I) k=4 & 

ASL=0.3. For reference, Cohen’s f2 ≥ 0.02, ≥ 0.15, and ≥ 0.35 represent small, medium, and large effect sizes, 

respectively. 

 

4.2.2. Comparison of MAGIC to other clustering methods  

We compared MAGIC to other commonly used unsupervised clustering methods and HYDRA. Specifically, 

K-means is a vector quantification method that aims to partition the patient population into k clusters in which 

each participant belongs to the cluster with the nearest mean (Hartigan and Wong, 1979). GMM performs 

clustering by assuming that there are specific numbers of Gaussian distributions in patients, and each of these 
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distributions belongs to one cluster (McLachlan and Basford, 1988). NMF aims to factorize the input matrix 

into two low-rank matrices with non-negative values. Intrinsically, the loading coefficient matrix conveys the 

clustering membership assignment (Lee and Seung, 2001). Lastly, the agglomerative hierarchical clustering 

(AHC) method is another unsupervised clustering method that seeks to build a hierarchy of clusters in a “bottom-

up” fashion (Day and Edelsbrunner, 1984). Moreover, we fit the unsupervised methods and HYDRA with i) 

single-scale features (dotted curve lines in Fig. 4) and ii) multi-scale features (solid straight lines in Fig. 4) 

together for comprehensive comparisons, since MAGIC always take multi-scale features. 

As displayed in Fig. 4, MAGIC obtained slightly better clustering results than HYDRA and 

substantially outperformed all other unsupervised clustering methods (i.e., K-means, GMM, NMF, and 

agglomerative hierarchical clustering). Specifically, MAGIC obtained higher ARI_GTs for the following 

experiments: k=2 & ASL=0.1 (Fig. 4A), k=3 & ASL=0.1 or 0.2 or 0.3 (Fig. 4D, E and F), and k=4 & ASL=0.2 

or 0.3 (Fig. 4H and I). All methods failed in clustering for experiment k=4 & ASL=0.1 (Fig. 4G). Furthermore, 

fitting all multi-scale features for HYDRA did not always perform better than the single-scale features and 

performed worse than MAGIC. Of note, fitting all multi-scales features (i.e., 910 features) for HYDRA took a 

much longer time to converge the model than single-scale HYDRA or MAGIC. 

 
Figure 4. MAGIC outperforms other common clustering methods. Comparisons of clustering performance 

between different methods: MAGIC, HYDRA, K-means, GMM, NMF and agglomerative hierarchical 

clustering (AHC) (M=40 to 100 with step as 5). The solid straight lines show clustering results for models that 

take multi-scale features as input and are drawn over all Ms only for visualization purposes. The dotted curve 

lines represent clustering results for models that take single-scale features as input. A) k=2 & ASL=0.1; B) k=2 

& ASL=0.2; C) k=2 & ASL=0.3; D) k=3 & ASL=0.1; E) k=3 & ASL=0.2; F) k=3 & ASL=0.3; G) k=4 & 

ASL=0.1; H) k=4 & ASL=0.2; I) k=4 & ASL=0.3.  
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4.2.3. Influence of the number of clusters 

When the number of clusters k increased, MAGIC’s clustering performance gradually decreased (i.e., each 

column in Fig. 4 represents the three experiments with the same ASL), except for experiments k=4 & ASL=0.3. 

For ASL=0.1, the ARI_GTs are 0.610, 0.368 and 0.091 for k=2, 3 and 4, respectively. For ASL=0.2, the 

ARI_GT decreased from 0.960 to 0.934 and to 0.713 for k=2, 3 and 4, respectively. For ASL=0.3, the ARI_GTs 

are 0.994, 0.995 and 0.966 for k=2, 3 and 4, respectively.  

 

4.2.4. Influence of the atrophy strength levels 

With the increase of ASL, MAGIC's clustering performance gradually improved (i.e., each row in Fig. 4 

represents the three experiments with the same k). For k=2, the ARI_GTs are 0.610, 0.960 and 0.994 for 

ASL=0.1, 0.2 and 0.3, respectively. For k=3, the ARI_GT increased from 0.368 to 0.934 and to 0.995 for 

ASL=0.1, 0.2 and 0.3, respectively. For k=4, the ARI_GTs are 0.091, 0.713 and 0.966 for ASL=0.1, 0.2 and 

0.3, respectively. 

We visualized the subtypes/clusters in 2D space for all experiments using multidimensional scaling 

(Cox and Cox, 2008) (Fig. 5). With the increase of ASL at a given k, the clusters become more separable (i.e., 

each row in Fig. 5 represents the three experiments with the same k). 
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Figure 5. Clusters found by MAGIC become more distinguishable when the clustering conditions are favorable, 

i.e., higher ASL or lower k. The clusters were projected into 2D space for visualization. Dimension 1 and 

Dimension 2 represent the two components projected by multidimensional scaling methods. A) k=2 & ASL=0.1; 

B) k=2 & ASL=0.2; C) k=2 & ASL=0.3; D) k=3 & ASL=0.1; E) k=3 & ASL=0.2; F) k=3 & ASL=0.3; G) k=4 

& ASL=0.1; H) k=4 & ASL=0.2; I) k=4 & ASL=0.3. 

 

4.2.5. Influence of the overlapping atrophy patterns 

We generated overlapping atrophy patterns based on the original experiments for each k. For k=2, Sub2 had 

subcortical atrophy in the initial experiments (Fig. 3), and we additionally simulated parietal atrophy. Similarly, 

for k=3 and 4, global cortical atrophy was imposed within Sub1 (frontal atrophy subtype in the original 

experiments) and Sub3 (temporal atrophy subtype in the initial experiments) members, respectively. The ground 

truth of overlapping neuroanatomical patterns is detailed in supplementary eFigure 2.  

As shown in Table 3, MAGIC obtained inferior clustering performance compared to the original 

experiments for i) k=2 & ASL=0.1, ii) k=3 & ASL=0.1, iii) k=3 & ASL=0.2 and iv) k=4 & ASL=0.2, and 

comparable results for experiments with ASL=0.3. The results for the ARI_CV, voxel-wise effect size maps 

and the 2D visualization of subtypes are presented in supplementary eFigure 1, 2 and 3, respectively. 

Table 3. Comparison of the original clustering performance (left column) to the influence of overlapping 

atrophy patterns (middle column) and the larger brain volume (right column). Compared to the original 

experiments, overlapping atrophy patterns result in lower clustering performance, while larger brain volume 

shows no extensive clustering performance effects. 

Experiment Original experiments Overlapping atrophy patterns Larger brain volume 

k=2 & ASL=0.1 0.610 0.501 0.562 

k=2 & ASL=0.2 0.960 0.946 0.947 

k=2 & ASL=0.3 0.994 0.992 0.992 

k=3 & ASL=0.1 0.368 0.281 0.393 

k=3 & ASL=0.2 0.934 0.879 0.926 

k=3 & ASL=0.3 0.995 0.977 0.976 

k=4 & ASL=0.1 0.091 0.111 0.210 

k=4 & ASL=0.2 0.713 0.628 0.731 

k=4 & ASL=0.3 0.966 0.967 0.965 

 

4.2.6. Influence of the larger brain volume in subtypes 

Instead of simulating brain atrophy as in the original experiments (Fig. 3), we introduced larger brain volumes 

by increasing the voxel’s intensity value inside the pre-defined patterns for Sub2 members for experiments k=2, 

Sub3 members for experiments k=3 and Sub4 members for experiments k=4. The simulated neuroanatomical 

patterns are detailed in supplementary eFigure 4. 

As shown in Table 3, MAGIC obtained comparable clustering performance to all settings’ original 

experiments. The results for the ARI_CV, voxel-wise effect size maps and the 2D visualization of subtypes are 

presented in supplementary eFigure 4, 5, and 6, respectively. 
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4.2.7. Influence of the data imbalance 

We first evaluated the influence of data imbalance for CN vs. subtypes. The imbalance ratios were achieved by 

randomly subsampling from the groups of subtypes. As shown in Fig. 6 A, B, and C, clustering performance 

considerably increased when the groups became more balanced. With the highest imbalance ratio (8:1), all 

experiments obtained the lowest ARI_GTs. Generally, the ratios of 2:1 performed on par with the ratios of 1:1 

and 1:2.   

We then evaluated the influence of data imbalance among subtypes by assuming that CN and PT (sum 

of all subtypes) were balanced (Fig. 6D, E, and F). Similarly, clustering performance considerably increased 

with more balanced data. On the other hand, when ASL is large (i.e., 0.3), data imbalance showed a limited 

impact on clustering performance (e.g., Fig. 6D and E). 

 
Figure 6. The influence of different ratios of imbalanced data between CN vs. subtypes is presented in Fig. A, 

B, and C, among subtypes in Fig. D, E and F. The influence of sample size is displayed in Fig. G, H, and I. A) 

influence of data imbalance between CN and subtypes for k=2; B) influence of data imbalance between CN and 

subtypes for k=3; C) influence of data imbalance between CN and subtypes for k=4; D) influence of data 

imbalance among subtypes for k=2. Clustering performance improves with the increase of the sample size. E) 
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influence of data imbalance among subtypes for k=3; F) influence of data imbalance among subtypes for k=4; 

G) influence of sample sizes for k=2; H) influence of sample sizes for k=3; I) influence of sample sizes for k=4. 

 

4.2.8. Influence of the sample size 

The influence of the sample size on clustering performance was assessed (Fig. 6G, H and I). For each experiment, 

MAGIC was run with data ranging from 10% to 100% of the sample size by keeping the original group ratios 

unchanged (i.e., CN vs. Sub1 vs. Sub2 vs ...). 

 Generally, clustering performance improved with the increasing sample size. For experiments k=2 & 

ASL=0.3 and k=3 & ASL=0.3, clustering performance was almost perfect at all different sample size choices. 

For experiment k=4 & ASL=0.1 (Fig. 6I), MAGIC obtained poor clustering performance.  

 

4.3. Experiments using Alzheimer’s disease data 

When applied to ADNI data, ARI_CV was the highest at k=2 (0.4<ARI_CVs<0.5), compared to other values 

of k (Fig. 7A). For k=2, The effect size maps revealed two distinct neuroanatomical patterns: i) Sub1 (N=396) 

showed relatively normal brain anatomy, except for focalized brain atrophy in subcortical regions. In contrast, 

Sub2 (N=791) had diffuse atrophy with the largest effect size (Cohen’s f2 = 0.45) in the hippocampus, amygdala, 

and temporal regions (Fig. 7B). For k=3, the three subtypes all presented diffuse brain atrophy (Fig. 7C). For 

k=4, Sub1 (N=363) preserved relatively normal brain anatomy. Sub2 (N=416) is the typical AD pattern showing 

whole-brain atrophy and most severe atrophy in temporal and hippocampus regions. Sub3 (N=210) showed 

atypical AD patterns without affecting the hippocampus and temporal lobes (Fig. 7D). Sub4 (N=198) showed 

only focal atrophy near frontal regions. The subtype visualization in the 2D space shows that the cluster 

boundaries are fuzzy (Fig. 7E, F, and G). Note that we present the subtypes’ neuroanatomical patterns for k=2, 

3, and 4 since they each reflect latent neuroanatomical patterns at different resolutions. The solution of k=2 

usually divides the patients into mild and severe atrophied groups, which might not be clinically interesting. 

The results of ARI_CV, together with our semi-simulated experiments, indicate that the CV procedure may not 

detect the true k due to unfavorable clustering conditions (e.g., the focalized effects or small sample size).  
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Figure 7. Applying MAGIC to AD and MCI patients of ADNI. We evaluated the clustering stability for 

different resolutions of the number of clusters and showed the subtype’s neuroanatomical patterns and the 2D 

visualization of the subtypes. A) Cross-validation for choosing the “optimal” k. B) Voxel-wise effect size 

(Cohen’s f2) maps for the neuroanatomical patterns between the two subtypes and CN. C) Effect size maps for 

the three subtypes and CN neuroanatomical patterns. D) Effect size maps for the neuroanatomical patterns 

between the four subtypes and CN. E) Visualization of the clusters projected to the 2D space for k=2. F) 

Visualization of the clusters projected to the 2D space for k=3. G) Visualization of the clusters projected to the 

2D space for k=4.  
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5. Discussion 

Synopsis 

This paper presents MAGIC, a novel multi-scale semi-supervised clustering method for dissecting disease 

heterogeneity. The proposed method seamlessly integrates multi-scale representation learning and semi-

supervised clustering in a coherent framework via a double-cyclic optimization procedure to yield scale agnostic 

delineation of heterogeneous disease patterns. In contrast to existing unsupervised approaches presented in  

(Ezzati et al., 2020, 2020; Jeon et al., 2019, 2019; Jung et al., 2016; Lubeiro et al., 2016; Nettiksimmons et al., 

2014; Ota et al., 2016; Pan et al., 2020; Park et al., 2017; Planchuelo-Gómez et al., 2020; Poulakis et al., 2020, 

2020, 2018; Sugihara et al., 2016; Ten Kate et al., 2018), MAGIC is a semi-supervised approach, leveraging 

the patient-control dichotomy to drive subtypes that reflect distinct pathological processes. In contrast to the 

existing state-of-the-art semi-supervised clustering method (i.e., HYDRA), MAGIC can accurately delineate 

effect patterns that are both global and focal, thanks to its multi-scale optimization routine. The validity of 

MAGIC is demonstrated in semi-simulated experiments. We show MAGIC’s ability to discern disease subtypes 

and their neuroanatomical patterns under various simulated scenarios constructed by varying the ASL, sample 

size, and sample imbalance, respectively. Subsequently, we applied MAGIC to AD plus MCI to disentangle 

their neuroanatomical heterogeneity, demonstrating the potential of MAGIC in real large neuroimaging studies, 

as well as our insights in interpreting the claimed subtypes.  

MAGIC outperforms comparable heterogeneity analysis methods 

Concerning clustering performance, MAGIC outperformed competing methods. On the one hand, compared to 

HYDRA, the minor gain in clustering accuracy in MAGIC is likely driven by multi-scale features that can better 

explain the variance due to heterogeneity. We hypothesize that the opNMF multi-scale components accurately 

reflect multi-scale brain organization that has previously been demonstrated in network analysis (Betzel and 

Bassett, 2017), brain modeling (Schirner et al., 2018), and signal processing (Starck et al., 1998) in the literature. 

Furthermore, multi-scale learning has shown great potential in medical imaging for different tasks, such as 

segmentation (Doshi et al., 2016; Kamnitsas et al., 2017) or classification (Cui et al., 2016; Hu et al., 2016). On 

the other hand, MAGIC substantially outperforms unsupervised clustering methods. Since unsupervised 

clustering methods directly partition patient samples into clusters based on similarity/dissimilarity or distance 

(Altman and Krzywinski, 2017), they may be more likely driven by confounding factors such as brain size, age, 

and sex instead of pathology-related variations, which is partially addressed by MAGIC. Namely, MAGIC can 

derive pathology-driven subtypes in a multi-scale manner by leveraging the reference label (i.e., CN) and the 

fuzzy patient labels (i.e., PT). 

Under what conditions does MAGIC succeed or fail? 

The critical yet challenging choice to be made in all algorithms related to clustering is to choose the appropriate 

number of clusters (Climescu-Haulica, 2007; Fu and Perry, 2020; Mirkin, 2011) since all clustering methods 

find patterns in data - whether they are real or not (Altman and Krzywinski, 2017). In addition to providing a 

new clustering method, we provided guidelines to these heterogeneity analysis algorithms’ practitioners. 

Specifically, our experiments shed light on selecting the number of clusters and provide criteria when the 

clustering analysis is reliable and when it needs to be approached with caution. In general, we suggest 

performing model selection using a cross-validation strategy based on clustering stability. In our experiments, 

ARI reliably recovered the ground truth number of clusters when the ASL and sample size were large and data 

was reasonably balanced. However, one should note that a lower number of clusters intrinsically gives more 

stable results (i.e., higher ARI_CV). In such cases, in actual clinical applications, other insights may be required 

to support further the subtypes found, such as the effect size map or prior clinical knowledge.   

Different choices of the key components (e.g., sample size or data imbalance) have detrimental or 

positive influences on clustering. With the increase of the complexity of clustering (e.g., increasing the number 

of clusters or decreasing ASL), MAGIC’s clustering performance degrades gradually. This is to be expected as 

the boundaries between clusters become increasingly blurred and indivisible. Moreover, imbalanced data have 

adverse effects on clustering results. This is in line with previous findings (Dubey et al., 2014; Samper-González 

et al., 2018). The authors found that balanced data obtained better classification results than the imbalanced 

using T1w MRI from ADNI. To note, MAGIC essentially performs clustering and supervised classification 

simultaneously. Unsurprisingly, increased sample size leads to better clustering performance, consistent with 
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the findings from previous studies (Abdulkadir et al., 2011; Chu et al., 2011; Franke et al., 2010; Samper-

González et al., 2018; Schulz et al., 2020). The rule of thumb in semi-supervised clustering is to collect 

moderately balanced data and large samples in practice. Finally, instead of larger brain patterns, adding 

overlapping patterns made it more difficult to disentangle these effects. The former situation is more commonly 

present in practice. In these cases, larger sample cohorts may be needed to unravel the overlapping heterogeneity. 

Our semi-simulated experiments are of great value for assessing clustering results. They enable us to 

understand potential false-positive results. Namely, suppose the sample size, ARI_CV, and/or the effect sizes 

are low. In that case, none of the existing methods may uncover the true heterogeneity or may reveal a lower 

number of subtypes than what is present.  

Subtypes of AD and MCI share overlapping neuroanatomical patterns   

Applying the proposed method to structural imaging data from ADNI resulted in subtypes that share overlapping 

neuroanatomical patterns. The model selection indicated the “optimal” number of clusters as k=2 

(ARI_CV<0.5). However, this stratification generally clusters the patients into mild and severe atrophy patterns, 

which is not clinically interesting. Here, we focused on the four-subtype resolution since this was consistent 

with previous findings (Dong et al., 2016b; Yang et al., 2020), in which the study population is similar to ours.  

Among these subtypes, Sub1 and Sub4 display normal brain anatomy (Fig. 7D). This was supported by 

the distribution of AD/MCI in these subtypes. Sub1 (278 MCI & 85 AD) and Sub4 (164 MCI & 34 AD) have 

the highest proportion of MCI. The normal anatomy subtype has been confirmed in previous works (Dong et 

al., 2016b; Ezzati et al., 2020; Jung et al., 2016; Nettiksimmons et al., 2014; Ota et al., 2016; Poulakis et al., 

2020, 2018; Ten Kate et al., 2018; Yang et al., 2020). In (Dong et al., 2016b), the authors examined the external 

validation of the subtypes. They demonstrated that the normal-like subtype had the lowest frequency with 

abnormal CSF amyloid-b 1-42 levels, normal CSF-tau levels, most minor baseline cognitive impairment, and 

slowest rates of cognitive decline. Sub2 showed typical AD-like neuroanatomical patterns with diffuse atrophy 

over the whole brain, with the largest effect size in the hippocampus and medial temporal lobe. Those affected 

regions have been widely reported as hallmarks of AD in case-control studies (Hanyu et al., 1998; Müller et al., 

2005; Varghese et al., 2013) and have been confirmed in previous clustering literature (Dong et al., 2016b; 

Nettiksimmons et al., 2014; Noh et al., 2014; Poulakis et al., 2018; Ten Kate et al., 2018; Varol et al., 2017; 

Yang et al., 2020; Young et al., 2018). Conversely, Sub3 showed an atypical widespread atrophy pattern that 

did not include the hippocampus and the temporal lobe (Dong et al., 2016b; Poulakis et al., 2018; Yang et al., 

2020). Despite the methodological difference across studies, the resulting subtypes’ agreement emphasizes that 

AD should be considered a neuroanatomically heterogeneous disease. These distinct imaging signatures or 

dimensions may elucidate different brain mechanisms and pathways leading to AD.  

Potential and challenges 

The application of clustering methods to neuroimaging data has recently drawn significant attention and has led 

to several key publications in recent years. Herein we demonstrated MAGIC’s potential for dissecting the 

neuroanatomical heterogeneity of brain diseases, indicating that the current “all-in-one-bucket” diagnostic 

criteria may not be appropriate for certain neurodegenerative and neuropsychiatric disorders. On the other hand, 

clustering methods always end up with clusters, even if there are no natural clusters in the data (Altman and 

Krzywinski, 2017). If they indeed exist, the disease subtypes often present neuroanatomically overlapping 

patterns, unlike the semi-simulated conditions with purely defined orthogonal patterns. None of the 

heterogeneity analysis tools were sufficiently powered to accurately disentangle heterogeneity in small sample 

cohorts or with weak discriminative power of pattern identifiability in our experiments. In this case, care must 

be taken to provide additional information, such as external validation of subtypes to clinical profiles, to 

substantiate any clinical interpretation of the identified subtypes. 

Furthermore, the reproducibility of clustering, effect size maps of subtypes, and sample imbalance 

should be carefully examined. Ultimately, good practices, such as extensive reproducibility analyses, including 

permutation tests (Chand et al., 2020), should be performed to support the subtypes’ stability and robustness. 

However, we observed a steady improvement of clustering performance with increased sample sizes even with 

overlapping anatomical patterns. This is a promising sign for the utility of these machine learning-based 

clustering tools with the increasing presence of large neuroimaging consortia. 
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Our model nevertheless has the following limitations. First, MAGIC is designed for “pure” clustering 

tasks that seek the disease’s subtypes without considering the disease progression factors or stages (Young et 

al., 2018). A future direction is extending MAGIC to assign subtypes to longitudinal scans and study the diseases’ 

progression. Moreover, the sample size of AD necessary to draw a solid conclusion for those subtypes may be 

larger than analyzed. Clustering performance was positively associated with sample size in our simulation. 

Lastly, a possible extension of the proposed method is integrating clinical or genetic data to derive subtypes that 

show consistency across different modalities. 
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