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ABSTRACT 33 

 34 

TDP-43 aggregation and redistribution have been recognised as a hallmark of amyotrophic 35 

lateral sclerosis, frontotemporal dementia and other neurological disorders. While TDP-43 has 36 

been studied extensively in neuronal tissues, TDP-43 inclusions have also been described in 37 

the muscle of inclusion body myositis patients, highlighting the need to understand the role of 38 

TDP-43 beyond the central nervous system. Using RNA-seq we performed the first direct 39 

comparison of TDP-43-mediated transcription and alternative splicing in muscle (C2C12) and 40 

neuronal (NSC34) mouse cells. Our results clearly show that TDP-43 displays a tissue-41 

characteristic behaviour targeting unique transcripts in each cell type. This is not due to 42 

variable transcript abundance but rather due to cell-specific expression of RNA-binding 43 

proteins, which influences TDP-43 performance. Among splicing events commonly 44 

dysregulated in both cell lines, we identified some that are TDP-43-dependent also in human 45 

cells and show that inclusion levels of these alternative exons appear to be differentially altered 46 

in affected tissues of FTLD and IBM patients. We therefore propose that TDP-43 dysfunction, 47 

reflected in aberrant splicing, contributes to disease development but it does so in a tissue- and 48 

disease-specific manner. 49 

 50 

Keywords alternative splicing / ALS-FTLD / IBM / muscle / TDP-43 51 

 52 

INTRODUCTION 53 

 54 

TDP-43, a protein encoded by the TARDBP gene, is a ubiquitously expressed member of 55 

hnRNP family able to bind DNA and RNA that participates in various steps of mRNA 56 

metabolism including transcription, pre-mRNA splicing, miRNA generation, regulation of 57 

mRNA stability, nucleo-cytoplasmic transport and translation (Birsa et al, 2020; Budini & 58 

Buratti, 2011; Ederle & Dormann, 2017; Buratti & Baralle, 2012). TDP-43 was initially 59 

described as the major component of cytoplasmic inclusions formed in motor neurons of 60 

patients suffering from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia 61 

(FTLD) despite the fact that mutations in TARDBP gene only account for a small subset of 62 

those cases (Arai et al, 2006; Buratti, 2015; Neumann et al, 2006). However, TDP-43 63 

aggregates have as well been found in skeletal muscles of patients with inclusion body myositis 64 
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(IBM)  (Salajegheh et al, 2009; Weihl et al, 2008), oculopharyngeal muscular dystrophy 65 

(OPMD)  (Yamashita et al, 2013) and limb girdle muscular dystrophy type 2a (LGMD2a) 66 

(Harms et al, 2012) suggesting that TDP-43 aggregation may play a prominent pathological 67 

role also in muscle tissue. Accordingly, TDP-43 myogranules have been shown to provide 68 

essential functions during skeletal muscle development and regeneration, both in mouse and 69 

human (Vogler et al, 2018). Despite ubiquitous expression of TDP-43, however, most studies 70 

investigating this protein have focused on its role in the central nervous system. Nonetheless, 71 

given its importance of TDP-43, both in muscle development and potentially in the 72 

pathogenesis of numerous myopathies, we systematically investigate functions elicited by 73 

TDP-43 in muscle (C2C12) and neuronal (NSC34) mouse cells in parallel.  74 

Performing such a comparison is particularly interesting as these two cell environments display 75 

tissue-characteristic features, like for example: distinct post-translational modifications 76 

(PTMs) and cleavage products of TDP-43 described in muscles and neurons (Buratti, 2018), 77 

muscle-characteristic localization of TDP-43 in space and time  (Vogler et al, 2018), cell-type-78 

specific milieu of TDP-43 binding partners (Mele et al, 2015), and differential expression of 79 

RNA binding proteins (RBPs) controlling common mRNA targets (Appocher et al, 2017; 80 

Cappelli et al, 2018). It is important to note that all these differences occur in a context of 81 

highly variable transcriptome between tissues including non-coding transcripts (Cabili et al, 82 

2011; Jiang et al, 2016; Ludwig et al, 2016). Therefore, TDP-43 might likely elicit tissue 83 

characteristic functions by targeting unique subsets of transcripts, which encode proteins 84 

participating in tissue-specific cellular pathways and provide crucial structural and functional 85 

features of a cell. The consequences of TDP-43 dysfunction in muscles could thus possibly 86 

differ from those that have so far been described in the central nervous tissue (Polymenidou et 87 

al, 2011; Tollervey et al, 2011). 88 

In the last decade, high throughput methodologies have shifted the focus from characterization 89 

of individual events towards less biased global approaches, setting the ground for a systematic 90 

comparison of TDP-43 targeted RNAs across tissues and conditions. However, the overlap of 91 

TDP-43-controlled events identified by earlier studies is rather poor. It probably reflects the 92 

variation in technical approaches (microarrays, RNA-seq, CLIP-seq) and models employed in 93 

those studies: mouse brain (Polymenidou et al, 2011), human-post mortem brain samples 94 

(Tollervey et al, 2011; Prudencio et al, 2020), human neuroblastoma cell line SH-SY5Y (Fiesel 95 

et al, 2012; Tollervey et al, 2011), HEK-293 (De Conti et al, 2015; Prpar Mihevc et al, 2016), 96 

Hela (Prudencio et al, 2012). A clearer understanding of the extent to which TDP-43-mediated 97 

events are conserved between mouse and human is still lacking, yet it is a crucial point that 98 
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should be addressed in future as it will allow better comparisons of human and mouse models 99 

of disease.  100 

To finally address this issue in a systematic manner, we have identified subsets of unique cell-101 

type-specific mRNA targets, as well as commonly regulated mRNAs, the tight regulation of 102 

which might underlie functions crucial for cell survival. More specifically, we have further 103 

explored splicing events that commonly occur in C2C12 and NSC34 cells and are additionally 104 

conserved in humans. We finally show that inclusion of common mouse-human TDP-43-105 

regulated alternative exons is indeed altered in skeletal muscles of IBM patients and different 106 

brain regions of ALS and FTLD patients with reported TDP-43 pathology. 107 

 108 

RESULTS 109 

 110 

TDP-43 expression is similar in C2C12 and NSC34 cells 111 

To start comparing the functions of TDP-43 in cells of muscular and neuronal origin, we used 112 

the most commonly employed mouse cell lines representing skeletal muscle (C2C12) and 113 

motor neurons (NSC34). They have been previously used to study TDP-43-associated 114 

neurodegeneration as well as the role of TDP-43 in muscle development  (Budini et al, 2015; 115 

Colombrita et al, 2009; Militello et al, 2018; Vogler et al, 2018). We first assessed protein 116 

levels of endogenous TDP-43 in untreated cells (Fig 1A). Although in mature mouse tissues 117 

TDP-43 expression was reported to be higher in the brain compared to quadriceps muscle 118 

(Jeong et al, 2017), we noted no difference in the amount of total TDP-43 protein between 119 

undifferentiated C2C12 and NSC34 cells (Fig 1A), nor in the expression of TDP-43 at the 120 

RNA level of siLUC-transfected cells (Fig 1B). 121 

TDP-43 was silenced to a similar extent in both cell lines (Fig 1B) and reduction of the protein 122 

was confirmed by western blot (Fig 1C). TDP-43 loss functionally reflected in altered splicing 123 

of the two well characterized target transcripts Poldip3 and Sort1 (Fig 1D) (Fiesel et al, 2012; 124 

Mohagheghi et al, 2016; Prudencio et al, 2012; Shiga et al, 2012). To explore transcriptome-125 

wide effects of TDP-43 downregulation, we then performed deep RNA-seq analysis on 126 

polyadenylated mRNA extracted from TDP-43 depleted cells. Both cell lines displayed a 127 

characteristic transcriptional signature as revealed by PCA (PC1), whereas the effect of TDP-128 

43 knockdown explained a smaller portion of the variation between samples (PC2) (Fig 1E). 129 

This result suggests that TDP-43 silencing promotes transcriptional alterations in C2C12 and 130 

NSC34 based on the tissue-characteristic transcriptional profile. 131 
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 132 

mRNAs dysregulation following TDP-43 reduction in C2C12 and NSC34 cells is cell-type 133 

specific 134 

Tissues vary substantially in transcription levels of individual genes and splice isoforms they 135 

express, and these differences underlie specific biological characteristics and functions. To 136 

examine the effect of TDP-43 loss on expression levels (differential gene expression, DEG) in 137 

the two cell lines, we separately normalized reads of C2C12 and NSC34 datasets and obtained 138 

4019 transcripts, expression levels of which were subject to TDP-43 regulation. At padj < 0.05, 139 

we detected a very similar number of DEG in C2C12 and NSC34 (2325 and 2324, 140 

respectively), with 630 (15.7%) transcripts being commonly dysregulated in both cell lines 141 

(Fig 2A). Surprisingly enough, the small overlap could not be explained by the fact that some 142 

genes are expressed in a tissue-specific manner (i.e., muscle characteristic genes are not 143 

transcribed in neuronal cells and vice versa), as the overlap between TDP-43 targets remained 144 

small (19.3%) even if we only considered genes expressed in both cell lines (FPKM in both 145 

cell lines > 0.5) (Fig 2B). However, our data indicated that TDP-43 targets regulated in a cell-146 

type-specific fashion are highly expressed in one cell type but not in the other. On average, 147 

C2C12-specific TDP-43-regulated mRNAs show higher expression in C2C12 than in NSC34 148 

cells, and vice versa (Appendix Fig S1A).   149 

It has previously been proposed that TDP-43 binding is needed to sustain pre-mRNA levels 150 

and that mRNA downregulation would be a direct consequence of TDP-43 loss, while mRNA 151 

upregulation was explained by indirect effects (Polymenidou et al, 2011). In our datasets (Fig 152 

2A), the number of downregulated genes slightly outnumbered genes that were upregulated 153 

following TDP-43 depletion (Appendix Fig S1B), however, the overlap was very similar, 154 

irrespective the direction of the change (14.0% and 15.0% for upregulated and downregulated 155 

transcripts, respectively). Comparing the extent of expression changes of commonly regulated 156 

transcripts (630) induced by TDP-43 reduction, we saw a positive correlation (ϕ = 0.77, p-157 

value < 0.001) between the two cell lines, with a trend towards larger alternations in C2C12 158 

(Fig 2C). Of note, there were few mRNAs whose expression was altered in the opposite 159 

direction in the two cell lines, indicating that TDP-43 loss can elicit contrary effects (loss-of-160 

function vs. gain-of-function) depending on the cellular environment. Looking at individual 161 

target transcripts (Fig 2D, Appendix Fig S1C and D), we hypothesized that the biggest 162 

transcriptional changes induced by TDP-43 loss occurred in highly expressed genes. However, 163 

plotting the size of the change (log2 fold change) against background expression levels (FPKM 164 
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in siLUC transfected cells) of all DEGs revealed that there is in fact no correlation between the 165 

two (Appendix Fig S1E).  166 

Taken together, these results support the idea that unique sets of transcripts controlled by TDP-167 

43 in each cell type can only partially be explained by variable expression levels of cell-type-168 

characteristic mRNAs across tissues. Factors other than expression levels as such thus 169 

influence TDP-43 function that seems to be tissue-specific. At the sequence level, in fact, TDP-170 

43-regulated mRNAs detected in C2C12 or NSC34 appear to be equally well conserved across 171 

species (Appendix Fig S1F). 172 

 173 

Commonly enriched processes implicated in neurodegenerative and myodegenerative 174 

disease 175 

In the mouse brain, TDP-43 has been shown crucial for maintenance of mRNAs that encode 176 

proteins involved in synaptic activity (Polymenidou et al, 2011). To elucidate which cellular 177 

processes might be controlled by TDP-43 in cells of muscle and neuronal origin, we conducted 178 

enrichment analysis of genes differentially expressed in C2C12 (2325) and NSC34 (2324) (Fig 179 

2E). Among C2C12 enriched GO terms, we found those directly associated with muscle 180 

characteristic features like striated muscle development or muscle cell migration, in line with 181 

results highlighting the importance of TDP-43 in skeletal muscle formation and regeneration 182 

(Militello et al, 2018; Vogler et al, 2018). On the other hand, a great portion of neuronal 183 

processes like vesicle-mediated transport in synapse or regulation of postsynaptic membrane 184 

neurotransmitters appeared to be affected by TDP-43 loss in NSC34 cells. 185 

While the percentage of overlapping DEG was only 15.7%, by GO categories, almost a third 186 

of all biological processes (28%) enriched in C2C12 or NSC34 DEGs (Fig 2E) was commonly 187 

dysregulated upon TDP-43 depletion in both cell lines. Given that currently proposed picture 188 

of pathological processes implicated in myopathies bears several similarities with 189 

neurodegenerative disease (Askanas et al, 2015, 2012; Weihl et al, 2008), we investigated 190 

commonly enriched GO terms to see, if any of them could detect abnormalities previously 191 

described in the above-mentioned diseases. Significant GO terms enriched by DEG in both 192 

C2C12 and NSC34 (Fig 2F) suggest that some common TDP-43-mediated mechanisms might 193 

contribute to development of TDP-43-proteinopathies in both muscle and neuronal tissues. 194 

Pathomechanisms include aberrant protein accumulation (i.e., ubiquitin, amyloid β, α-195 

synuclein, phosphorylated τ and TDP-43), post-translational modifications of deposited 196 

proteins (phosphorylation, ubiquitination, acetylation, sumoylation), defects in protein disposal 197 
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(26S proteasome and autophagy) and mitochondrial abnormalities. However, while there was 198 

a greater overlap between biological response to TDP-43 depletion (GO: biological process), 199 

the specific differentially expressed transcripts in common terms were remarkably different 200 

between C2C12 and NSC34 (Appendix Fig S1G). This implies that TDP-43 can influence 201 

similar biological processes in both muscles and neurons, but it does so by mediating 202 

expression levels of genes encoding for distinct proteins that participate in those pathways.  203 

 204 

TDP-43-mediated splicing is more pronounced in NSC34 cells 205 

Along with mRNA depletion, aberrant pre-mRNA splicing has been described to contribute to 206 

neuronal vulnerability as a consequence of pathologic TDP-43 behaviour (Arnold et al, 2013; 207 

Polymenidou et al, 2011; Tollervey et al, 2011). Yet, little is understood about how TDP-43 208 

dysfunction affects pre-mRNA splicing in tissues beyond the central nervous system. In this 209 

work, we systematically compared alternative splicing (AS) alterations following TDP-43 210 

reduction in C2C12 and NSC34 cells. As expected, a considerably lower number of splicing 211 

events was detected in C2C12 than in NSC34 cells (730 and 1270, respectively) at FDR of 0.01 212 

(Fig 3A), which held true for events of any classical AS category (i.e., SE, MXE, RI, A3'SS, 213 

A5'SS) (Fig 3B). Neuronal and muscular targets did not vary with regard to event type 214 

proportion (Appendix Fig S2A); length of cassette exons (Appendix Fig S2B); the ratio 215 

between inclusion/exclusion events (Appendix Fig S2C); or percentage of frame-conserving 216 

events (Appendix Fig S2D). Interestingly enough, alternative sequences regulated by TDP-43 217 

in the neuronal cell line seem to be more conserved across species than TDP-43-regulated 218 

sequences in muscle cell line (Appendix Fig S2E). This holds true particularly for cassette 219 

exons (Appendix Fig S2F), which represent the most frequent event type detected by our 220 

pipeline (Appendix Fig S2A). 221 

This observation that TDP-43 regulates more events in NSC34 cells might reflect the 222 

importance of alternative splicing as a regulatory mechanism in neurons and support the 223 

existence of a distinct splicing program in neuronal tissues, as already suggested by others 224 

(Irimia et al, 2014; Mele et al, 2015; Yeo et al, 2004). Moreover, very few AS events (on 225 

average 5.2%) appear to be commonly regulated by TDP-43 in both cell types, with the 226 

percentage of overlapping AS events being small (5.8%) even when we only considered AS in 227 

transcripts commonly expressed in both cell lines (FPKM > 0.5) (Fig 3C) or when we used a 228 

less stringent overlap threshold (Appendix Fig S2G).  229 
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Jeong et al. (Jeong et al, 2017) have previously reported that TDP-43’s repression of  cryptic 230 

exons is tissue-specific. This posed a question whether annotated TDP-43-controlled events 231 

(Fig 3A and 3B) display more or less tissue-variation compared to TDP-43-repressed cryptic 232 

exons. As rMATS, the splicing tool used to identify annotated AS events, is not capable of 233 

identifying non-canonical splicing we used a separate analysis tool, MAJIQ (Green et al, 2018), 234 

that allows quantification of both, novel (cryptic) and regular (annotated) AS events. MAJIQ 235 

and rMATS quantify in separate ways (Mehmood et al, 2020), thus comparable results are only 236 

produced (junctions or AS events, respectively) when the same pipeline is applied. Using 237 

MAJIQ, we show that the percentage of commonly detected cryptic splicing is in fact bigger 238 

than that of commonly detected classical AS events (Fig 3D) (21.6% and 15.5%, respectively), 239 

implying that TDP-43 displays tissue-specific behaviour in cryptic repression but even more 240 

so in control of classical alternative exons. 241 

 242 

Alternatively spliced TDP-43 targets are implicated in neuronal functions and DNA-243 

related processes 244 

We further employed GO analysis to see whether genes with TDP-43-regulated splicing 245 

identified in C2C12 and NSC34 form interconnected networks and if TDP-43 can, by 246 

mediating AS, influence particular biological processes in each cell type. Since the number of 247 

C2C12 AS genes entering GO analysis (578) was considerably lower than that of NSC34 genes 248 

(1018), the analysis resulted in fewer GO terms found to be enriched in C2C12 compared to 249 

many in NSC34 (23 and 203, respectively) (Fig 3E). As expected, GO terms enriched in 250 

NSC34 cells exclusively suggest that in these cells, alternatively spliced mRNA predominantly 251 

encode for proteins implicated in processes taking place in the nervous system (e.g., 252 

axonogenesis, regulation of neuron differentiation) (Fig 3F). This is in line with earlier studies, 253 

which demonstrated that in human neuroblastoma cells SH-SY5Y TDP-43-dependent splice 254 

isoforms encode for proteins regulating neuronal development and those involved in 255 

neurodegenerative disease (Tollervey et al, 2011). 256 

On the other hand, GO terms (56%) enriched in C2C12 cells exclusively (Fig 3G) suggested 257 

involvement of AS genes in DNA-related processes (e.g., covalent chromatin modification or 258 

regulation of chromosome organization), while only one implied a muscle characteristic 259 

feature (i.e., regulation of cardiac muscle cell action potential). As we thought this observation 260 

might be biased due to the low number of GO terms detected in C2C12 (18), we repeated 261 

enrichment analysis, this time using a more relaxed threshold (non-corrected p-value < 0.01 262 
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instead of FDR < 0.01) on AS genes that would enter GO analysis. However, even among 45 263 

enriched GO terms obtained using less stringent threshold, DNA-related processes comprised 264 

more than a third of all GO terms (36%, Appendix Fig S2H), which was not the case for 265 

NSC34 cells. 266 

 267 

Different RBPs are expressed in NSC34 and C2C12 cells 268 

The observation that TDP-43 loss elicits a tissue-characteristic response did not come as a 269 

surprise, as RNA binding proteins (RBPs) other than TDP-43 might be differentially expressed 270 

in these cells. Inspecting expression levels of some RNA-binding proteins (Mele et al, 2015), 271 

which either directly interact with TDP-43 (Freibaum et al, 2010) or influence processing of 272 

its target transcripts (Cappelli et al, 2018; Lagier-Tourenne et al, 2012; Mohagheghi et al, 273 

2016), we saw a higher average expression of RBPs in neuronal NSC34 cells (Fig 4A) in line 274 

with previous observations (Mele et al, 2015). Their joint functions in coordinating mRNA 275 

processing might underlie a more complex splicing regulation that is unique for neuronal 276 

tissues and explain why TDP-43-regulated splicing is more frequent in NSC34 than in C2C12 277 

cells (Fig 3A). The two cell types clearly express a distinct array of RBPs (Fig 4B), while 278 

transcription levels of some are additionally affected by TDP-43 depletion (Fig 4C). 279 

 280 

Common TDP-43 splicing targets detected in C2C12 and NSC34 281 

Previous studies have already disclosed lists of transcripts, whose splicing is affected by TDP-282 

43 removal or dysfunction (Colombrita et al, 2009; De Conti et al, 2015; Lagier-Tourenne et 283 

al, 2012; Tollervey et al, 2011). Yet, the reproducibility of target identification is rather poor, 284 

possibly due to differences in methodological approaches, low conservation of TDP-43 targets 285 

across species (Colombrita et al, 2009), and, as we show, the unique function TDP-43 elicits 286 

in each tissue or cell type. The most consistently reported TDP-43-regulated splicing event 287 

across studies and conditions is skipping exon 3 within Poldip3/POLDIP3 mRNA (both mouse 288 

and human) (Fiesel et al, 2012). This being so, inclusion level (percent spliced in, ΔPSI) of 289 

Poldip3 exon 3 often serves as a readout of TDP-43 functionality (Cortese et al, 2018; Klim et 290 

al, 2019; Roczniak-Ferguson & Ferguson, 2020). In search of new splicing events that would, 291 

similarly to Poldip3/POLDIP3, show high reproducibility across experimental settings, we 292 

chose mRNAs that underwent the biggest shift in TDP-43-dependent exon inclusion and whose 293 

isoform proportion was altered in both C2C12 and NSC34 cells. The isoform switch of these 294 

targets was validated using isoform-sensitive semi-quantitative RT-PCR (Fig 5A). 295 
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Compared to cell-type-specific TDP-43 targets, commonly spliced transcripts on average show 296 

higher expression in C2C12 and NSC34 cells than transcripts alternatively spliced in a cell-297 

type-specific manner (Fig 5B). Furthermore, commonly detected events display bigger splicing 298 

transitions (bigger ΔPSI) (Fig 4C). Most of the splicing changes detected in C2C12 and NSC34 299 

occurred in the same direction (83%, ρ = 0.62, p-value < 0.001) (Fig 5D), meaning that for that 300 

subset of transcripts, TDP-43 exerts a similar function in cells of neuronal and muscular 301 

background. We observed a higher frequency of frame-preservation among splicing events 302 

found to be controlled by TDP-43 in both cell lines (Fig 5E) along with better conservation of 303 

common TDP-43-regulated sequences across species (Fig 5F). 304 

Alternative splicing occurs co-transcriptionally and the two mechanisms have been known to 305 

influence one another in a coordinated manner (Kornblihtt et al., 2013). In our case, however, 306 

only a small portion of transcripts undergoing TDP-43-dependent splicing additionally showed 307 

altered overall transcript abundance (21.9% and 21.2% in C2C12 and NSC34, respectively) 308 

(Appendix Fig S3A). At least in C2C12 cells, transcripts whose splicing was affected by loss 309 

of TDP-43 more often decreased in abundance, which might be indicative of nonsense 310 

mediated decay (Appendix Fig S3B). Finally, KEGG analysis performed on sets of 311 

differentially expressed or alternatively spliced genes suggest that TDP-43 knockdown could 312 

influence a particular molecular pathway such as axon guidance through change in transcript 313 

levels (DEG) or by the means of alternative splicing (Appendix Fig S3C). 314 

 315 

Novel TDP-43-regulated splicing events conserved between mouse and human 316 

While incorporation of exon 3 into mature Poldip3 mRNA is regulated by TDP-43 in both 317 

mouse and human cells (Fiesel et al, 2012), most of TDP-43’s regulated splicing has shown to 318 

be highly species and even tissue-specific. We therefore investigated if any of commonly 319 

detected TDP-43 targets (Fig 5A) are (according to VastDB (Tapial et al, 2017)) predicted to 320 

have an orthologous event in humans. Some TDP-43-mediated events found in mouse (Rgp1 321 

exon 3, Sapcd2 exon 2, Fam220a exon 2) do not even have a corresponding orthologous exon 322 

in humans. For those with putative AS orthology (i.e., the presence of orthologous alternative 323 

exon in both species), we tested whether alternative exons were subject to TDP-43 control also 324 

in human cells. We silenced TDP-43 in two human cell lines representing neuronal and 325 

muscular cells – human neuroblastoma SH-SY5Y and rhabdomyosarcoma RH-30 (Reber et al, 326 

2016) (Fig 6A), which resulted in exon skipping within POLDIP3 (Fig 6B). Likewise, TDP-327 

43 depletion led to enhanced inclusion of exon 19 in PPFIBP1 and exon 23 of ASAP2 but not 328 
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exon 5 of TRAF7 or exon 3 of NFYA (Fig 6C). Although one study reported a great portion of 329 

TDP-43-controlled exons in mouse to have prior evidence of alternative splicing in humans 330 

(Polymenidou et al, 2011) we still lack understanding to what extent TDP-43 regulation of 331 

mRNA processing is conserved between species. Exon orthology (as assessed by sequence 332 

similarity) could not be predictive of AS conservation since exon incorporation into mature 333 

mRNA depends on the exonic sequence but also on cis-regulatory motives and trans-acting 334 

factors (Barbosa-Morais et al, 2012; Gueroussov et al, 2015; Raj & Blencowe, 2015). In fact, 335 

iCLIP performed in SH-SY5Y cells (Tollervey et al, 2011) identified direct TDP-43-binding 336 

sites in a close proximity of alternatively spliced exons within PPFIBP1 and ASAP2, while that 337 

was not the case for TRAF7 and NFYA (Fig 6D). This finding suggests that alternative exons 338 

of PPFIBP1 and ASAP2 found to be regulated by TDP-43 in mouse and human cells are most 339 

likely controlled by TDP-43 in a direct fashion by its binding to regulatory sequences 340 

neighbouring splice sites. 341 

 342 

Altered splicing patterns imply on TDP-43 dysfunction in FTLD and IBM patients 343 

To explore if dysregulated alternative splicing could play a role in pathophysiology of TDP-43 344 

proteinopathies, we measured inclusion levels of TDP-43-mediated alternative exons in IBM 345 

muscles (Fig 7A) as well as in pathological brain regions of ALS and FTLD cases with reported 346 

TDP-43 pathology (ALS-TDP and FTLD-TDP) (Fig 7B and 7C). Since neuroanatomical 347 

regions markedly vary with regards to splice isoform expression (Appendix Fig S4A), we 348 

considered each brain region independently rather than analysing them together. Tissue-349 

specific accumulation of truncated STMN2, which has recently been described as a very good 350 

clinical marker of TDP-43 impairment (Prudencio et al, 2020; Melamed et al, 2019; Klim et 351 

al, 2019), in fact occurs in brain areas previously known to be affected by TDP-43 pathology. 352 

We thus investigated TDP-43-controlled splicing in the spinal cord (lumbar and cervical, 353 

respectively) and the motor cortex of ALS cases (Fig 7B), whereas frontal and temporal 354 

cortices were the site of interest for FTLD patients (Fig 7C). 355 

The splicing signature examined herein consisted of six TDP-43-regulated alternative exons: 356 

POLDIP3 exon 3 is consistently detected as a TDP-43-regulated splicing event; exon 15 of 357 

TNIK has been previously described as TDP-43 target and was also detected in C2C12, SH-358 

SY5Y and RH-30 cells (Appendix Fig S4B and S4C); exon 19 of PPFIBP1 and exon 23 of 359 

ASAP2 are newly identified TDP-43 targets conserved across species; exons 12 and 13 of 360 

TBC1D1 are detected to be controlled by TDP-43 in C2C12 cells and are associated with 361 

muscle differentiation (Bland et al., 2010). The long TBC1D1 isoform, which is dependent on 362 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.04.20.440589doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440589
http://creativecommons.org/licenses/by-nc-nd/4.0/


TDP-43, appears to be crucial in mature tissues (Bland et al., 2010) but not in undifferentiated 363 

cells (as thus it was not detected in undifferentiated NSC34, SH-SY5Y and RH-30 cells 364 

(Appendix Fig S4B and S4C)). As TDP-43 binding sites were indeed found in the proximity 365 

of these alterative exons (Appendix Fig S4D), inclusion levels of exons 12 and 13 of TBC1D1 366 

gene were investigated in mature tissues coming from patients. 367 

Interestingly, when we assessed inclusion levels of six TDP-43-controlled AS events in patient 368 

tissues, we got distinct patterns. For example, out of the six AS events, we only observed 369 

increased ASAP2 exon 23 inclusion in IBM muscle relative to healthy controls (Fig 7A). In 370 

ALS cases, we detected significantly different inclusion of one exon (exon 19of PPFIBP1) in 371 

the lumbar and cervical spinal cord but not in the motor cortex, while in motor cortex, we saw 372 

enhanced skipping of both alternative exons within TBC1D1 (Fig 7B). Surprisingly enough, 373 

FTLD appears to be the disease, in which splicing of six alternative exons is most heavily 374 

perturbed. Multiple TDP-43-targeted exons show significantly altered inclusion in patients, 375 

both in frontal and temporal cortices (Fig 7C). Apart from that, some non-significant changes 376 

clearly show a trend towards altered exon inclusion in patients. 377 

At this point it is important to consider cell-type specific splicing activity of TDP-43 (Fig 3A), 378 

which makes it unlikely that upon TDP-43 malfunction splicing of the same transcripts would 379 

be altered across all cell types (Fig 7D). This being said, the scheme in Fig 7D summarizes 380 

splicing changes of six TDP-43-controlled exons detected in different tissues affected with 381 

TDP-43 pathology. The fact that splicing changes do not necessarily occur in the same 382 

direction as upon TDP-43 depletion in cell lines (as in the case of ASAP2 and TNIK) again 383 

highlights the complexity of splicing control provided by TDP-43 that is generally acting 384 

within an interwoven network of splicing regulators. The same phenomenon (i.e., different 385 

directionality) was in fact observed when comparing the consequences TDP-43 depletion has 386 

on gene expression and alternative splicing in vitro using cell lines (Fig 2C and 5D). 387 

 388 

DISCUSSION 389 

 390 

TDP-43 inclusions represent the hallmark of ALS/FTLD (Arai et al, 2006; Neumann et al, 391 

2006) and are frequently recognized as a secondary pathology in other neurodegenerative 392 

disease (Hasegawa et al, 2007; Higashi et al, 2007). In recent years, great progress has been 393 

made in explaining how potential loss- and gain-of-function mechanisms contribute to the 394 

pathogenesis observed in the brain and spinal cord (Budini et al, 2015; Cascella et al, 2016; 395 
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Fratta et al, 2018). Nonetheless, a growing evidence of TDP-43 mis-localization and 396 

aggregation in tissues beyond the CNS has raised the possibility that TDP-43 dysfunction and 397 

consequently, impairment of RNA processing, might be deleterious for other tissues (Cortese 398 

et al, 2018, 2014).  399 

To this date, cell- and tissue-characteristic molecular features of TDP-43 have seldom been 400 

investigated in parallel. Considering recent attention that TDP-43 has received in IBM and 401 

related pathologies (Harms et al, 2012; Salajegheh et al, 2009; Weihl et al, 2008; Yamashita 402 

et al, 2019), we therefore sought to fill this gap. The purpose of our study has been to further 403 

explicate the role of TDP-43 in different tissues to better understand its involvement in 404 

pathogenesis in cell types other than neurons, and to set the ground for development of potential 405 

therapeutic or biomarker strategies that focus on shared or specific disease mechanisms. We 406 

thus aimed to model loss-of-function effect in skeletal muscles vs. neurons and to focus on 407 

TDP-43-controlled alternative splicing (AS) events, as this is one of the best characterized 408 

features of this protein to date. 409 

Although protein levels of TDP-43 itself are not different between C2C12 and NSC34, there 410 

is a tissue-characteristic expression of other RNA-binding proteins (e.g., those from Elavl, 411 

Nova and Celf families) that, like TDP-43, mediate RNA-related processes in a coordinated 412 

fashion. This result, together with differences in tissue-specific gene transcription levels, can 413 

presumably explain why there is little consistency across studies in identifying TDP-43-414 

targeted transcripts (Buratti et al, 2013) and it clearly outlines the importance of cellular 415 

context in shaping the functional role of TDP-43. With regards to future TDP-43 investigations, 416 

our findings highlight the need to employ tissue models, which are most relevant for a certain 417 

condition. Most importantly, our results show that in the case of TDP-43 proteinopathies the 418 

knowledge acquired by studying neuronal cells could be translated to muscles only to a limited 419 

extent. Despite not investigated in this work, the same presumably applies for the interpretation 420 

of iCLIP results, in which TDP-43 binding should be always considered in the context of tissue 421 

characteristic environment, having in mind possible differences in binding behaviour of the 422 

protein across cell types that might affect splicing (Highley et al, 2014) and expression changes 423 

(Klim et al, 2019).  424 

In some cases, our parallel study has given expected results. In NSC34 cells, for example, TDP-425 

43 loss impacts expression of genes participating in pathways that provide elemental functions 426 

of neuronal cells, like vesicle-mediated transport and regulation of postsynaptic membrane 427 

neurotransmitters, which is perfectly in line with previous studies (Polymenidou et al, 2011; 428 

Tollervey et al, 2011). Similarly, the loss of TDP-43 in C2C12 cells impairs muscle 429 
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characteristic features, like striated muscle development, muscle cell migration or regulation 430 

of muscle cell differentiation, what has been functionally confirmed by others (Militello et al, 431 

2018; Vogler et al, 2018). However, we have also detected tissue-specific TDP-43-associated 432 

dysregulation of molecular functions that will probably deserve further investigation. For 433 

example, we found that in muscles TDP-43 mediates splicing of mRNAs encoding proteins 434 

implicated in DNA-related processes. This is a particularly interesting observation as DNA-435 

related processes play an important role in muscle differentiation. In adult skeletal muscle, 436 

DNA and histone modifications participate in adaptive response to environmental stimuli, 437 

which challenge structural and metabolic demands and thus make skeletal muscle a very plastic 438 

tissue (Barrès et al, 2012; McGee & Hargreaves, 2011). Also the early commitment towards 439 

myogenic lineage involves epigenetic changes mediated by chromatin remodelling enzymes 440 

like histone deacetylases (HDACs), histone acetyltransferases (HATs) and histone 441 

methyltransferases (HMTs) (Guasconi & Puri, 2009). In keeping with this, Dnmt3a, Dnmt3b, 442 

Hdac9, Hdac7, Prdm2 are just few of chromatin-modifying enzymes that underwent splicing 443 

changes upon TDP-43 depletion in C2C12 but not in NSC34 cells. Interestingly, telomere 444 

shortening was described in primary muscle cultures of sIBM patients suggesting premature 445 

senescence (Morosetti et al, 2010) and epigenetic changes have been described in congenital 446 

myopathies (Rokach et al, 2015). Therefore, the results obtained in C2C12 suggest another 447 

possible mechanism on how TDP-43 may control gene expression in muscle in an indirect 448 

fashion and eventually participate in disease. Recently, loss of TDP-43 was associated with 449 

increased genomic instability and R-loop formation (Giannini et al, 2020; Wood et al, 2020) 450 

possibly through mechanisms involving Poldip3, which has been shown to play a role in 451 

maintaining genome stability and preventing R-loop accumulation at sites of active replication 452 

(Björkman et al, 2020). 453 

On the other hand, some molecular processes such as dysregulation of protein assembly and 454 

disposal; mitochondrial changes and apoptosis; as well as alterations in post-translational 455 

modifications seem to occur upon TDP-43 depletion in both cell types, which possibly links 456 

these pathological changes to TDP-43 dysfunction in both tissues. As we have drawn our 457 

conclusions based on the RNA-seq analysis, a crucial future step will be to functionally assess 458 

to what extent TDP-43 loss impacts the above-mentioned processes in each tissue. Ideally, 459 

functional experiments should be performed in the two cell types in parallel, as only such 460 

approach would allow a direct comparison of the regulatory role played by TDP-43 in each 461 

context and would answer the question, whether impairment of RNA processing is as central 462 

in IBM as it is in ALS. 463 
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Working with cell lines representing muscles (Militello et al, 2018; Vogler et al, 2018; Reber 464 

et al, 2016) and neurons (Colombrita et al, 2009; Fiesel et al, 2012; Highley et al, 2014; Nonaka 465 

et al, 2009; Tollervey et al, 2011) allowed us a direct (and unbiased) assessment of TDP-43 466 

activity across cell types. Mouse cell lines have been routinely employed to study TDP-43 467 

(Militello et al., 2018; Vogler et al., 2018). In our case, they were chosen over human cells due 468 

to the lack of an appropriate and well-established cell line derived from human skeletal muscle. 469 

With regards to the contribution of TDP-43 malfunction to human pathology, we observed that 470 

transcripts, whose splicing was commonly affected by TDP-43 loss in the two mouse cell lines, 471 

appear more likely to undergo TDP-43-regulated processing also in human cells. Herein, we 472 

show for the first time that alternative sequences regulated by TDP-43 in both cell lines are 473 

better conserved between species than those regulated in a cell type-specific manner. 474 

Nonetheless, a conservation of the alternative sequence itself cannot guarantee for splicing 475 

conservation. Thus, it would be extremely insightful to investigate conservation of TDP-43-476 

regulated splicing between human and mice on a transcriptome-wide level by actual 477 

sequencing experiment (rather than comparing gene sequences as such), possibly using 478 

analogous tissues (Cardoso-Moreira et al, 2020). A good example of commonly regulated 479 

event is skipping of  exon 3 within POLDIP3, the regulation of which is conserved between 480 

mouse in humans (Fiesel et al, 2012; Shiga et al, 2012; Polymenidou et al, 2011) and has made 481 

it the most consistently detected event across studies. In this study, however, we identified two 482 

novel targets, ASAP2 and PPFIBP1, and show that they indeed undergo TDP-43-dependent 483 

splicing in all (mouse and human) cell lines tested. These additional findings could be of 484 

interest to identify common endpoints of mouse and human disease models that could then be 485 

used to monitor the efficiency of eventual novel therapeutic approaches or to follow disease 486 

course/onset. 487 

Finally, as a proof-of-principle, we show that splicing alterations of TDP-43-dependent 488 

transcripts does in fact take place in different tissues (i.e., skeletal muscle and certain brain 489 

regions) affected by TDP-43 pathology. While expression levels of a given transcript heavily 490 

vary between individuals and, in our experience, seem to be influenced by experimental 491 

procedure itself (how and when biopsies are taken), the relative abundance of characteristic 492 

isoforms appears to be a more reliable readout. Considering cell-type-specific activity of TDP-493 

43, it is reasonable to deduce that splicing of other TDP-43-controlled transcripts would be 494 

affected in the skeletal muscle and in neurons. In conclusion, we show that splicing changes as 495 

such indeed represent a robust indication of pathological conditions both in the skeletal muscle 496 

of IBM patients and in the brain of individuals affected with FTLD. 497 
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 498 

MATERIALS AND METHODS 499 

 500 

Cell culture 501 

C2C12 immortalized mouse myoblasts (ECACC), SH-SY5Y human neuroblastoma (ECACC) 502 

and RH-30 human rhabdomyosarcoma (kindly donated by Marc-David Ruepp) were 503 

maintained in DMEM (Thermo Fisher Scientific), supplemented with 10% FBS (Thermo 504 

Fisher Scientific) and antibiotics/antimycotics (Sigma-Aldrich) under standard conditions. 505 

NSC34 motoneuron-like mouse hybrid cell line (available in house) was cultured in DMEM 506 

(Thermo Fisher Scientific) with 5% FBS (Sigma-Aldrich) and antibiotics/antimycotics (Sigma-507 

Aldrich). All experiments were performed with cells of similar passage number (± 2). To 508 

silence TDP-43 in C2C12 and NSC34 cells, 40 nM of siTDP (mouse siTDP 5’-509 

CGAUGAACCCAUUGAAAUA-3’, Sigma-Aldrich) or non-targeting siLUC (5’-510 

UAAGGCUAUGAAGAGAUAC-3’, Sigma-Aldrich) were mixed with 54 μl of RNAiMAX 511 

(Invitrogen) following the manufacturer’s reverse transfection protocol and applied to cells 700 512 

000 seeded in a 10 cm dish. 48 h later, transfected cells were collected for subsequent analysis. 513 

The same reagent was used to silence TDP-43 in human SH-SY5Y and RH-30 cells. 400 000 514 

RH-30 were seeded in a 60 cm dish, reversely transfected (human siTDP 5’-515 

GCAAAGCCAAGAUGAGCCU-3’, Sigma-Aldrich or siLUC) and harvested 48 h later. To 516 

deplete TDP-43 in SH-SY5Y cells, 1 000 000 cells were seeded in a 6 cm dish and reversely 517 

transfected. After 48 h, they were transfected again and harvested 48 h later.  518 

 519 

Western blotting 520 

Whole-cell extracts were resuspended in PBS in the presence of protease inhibitor and 521 

sonicated. 15 μg of protein sample were separated on a 10% Bis-Tris gels (Invitrogen) and 522 

transferred to the nitrocellulose membrane (Invitrogen). The membrane was blocked in 4% 523 

milk-PBST and proteins were stained using the following antibodies: anti-TDP-43 (rabbit, 524 

Proteintech, 1:1000), anti-GAPDH (rabbit, Proteintech, 1:1000), anti-HSP70 (rat, EnzoLife 525 

Science, 1:1000), anti-tubulin (mouse, available inhouse, 1:10000) and HRP-conjugated 526 

secondary antibodies anti-rabbit (goat, Dako, 1:2000), anti-mouse (goat, Dako, 1:2000), anti-527 

rat (rabbit, Dako, 1:2000). Image acquisition and result quantification were conducted using 528 

Alliance Q9 Advanced Chemiluminescence Imager (UviTech). 529 
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 530 

RNA extraction, RT-PCR 531 

Total RNA was isolated using standard phenol-chlorophorm extraction. Only undegraded (RIS 532 

> 8) RNA of high purity (A260/A230 and A260/A280 > 1.8) was taken for subsequent analysis. 500 533 

ng of RNA was reversely transcribed using random primers (Eurofins) and Moloney murine 534 

leukaemia virus reverse transcriptase (M-MLV, Invitrogen) according to manufacturer's 535 

instructions. 536 

 537 

Splicing-sensitive PCR and qPCR 538 

For detection of alternatively spliced mRNAs, PCR primers were designed complementary to 539 

constitutive exonic regions flanking the predicted alternatively spliced cassette exon. PCR mix 540 

was prepared using gene-specific primers (0.6 μM, Sigma, primer sequences in the Appendix 541 

Table S1 and S2) and TAQ DNA polymerase (Biolabs or Roche) according to manufacturer's 542 

instructions and subjected to 35-45 cycles long thermal protocol optimized for each primer 543 

pair. PCR products were separated by capillary electrophoresis (DNA screening cartridge, 544 

Qiaxcel) and splicing transitions were quantified using Qiaxcel software (QIAxcel ScreenGel 545 

(v1.4.0)). Exon inclusion was calculated by the software. Percentage of the inclusion (Inc. %) 546 

reports the area under the curve of the peak representing the longer (inclusion) splicing isoform. 547 

For assessment of transcript levels, real-time quantitative PCR was performed using PowerUp 548 

SYBR Green master mix (Applied Biosystems) and gene-specific primers (primer sequences 549 

in the Appendix Table S3). cDNA was subjected to 45 cycles of the following thermal 550 

protocol: 95 ºC for 3 min, 95 ºC for 10 s, 65 ºC for 30 s, 95 ºC for 10 s, 65 ºC for 1 s. Relative 551 

gene expression levels were determined using QuantStudio design and analysis software 552 

(Thermofisher Scientific (v1.5.1)) always comparing treated samples (siTDP) with their direct 553 

controls (siLUC) normalized against Gapdh. p-values were calculated using one-tailed paired 554 

t-test as qPCR was conducted to validate expression changes detected by RNA-seq. 555 

 556 

RNA-seq 557 

Both polyA cDNA library generation and RNA-seq were performed by Novogene (Beijing, 558 

China). cDNA libraries with insert length of 250-300 bp were generated using NEB NextUltra 559 

RNA Library Prep Kit. Sequencing was conducted on Illumina with paired-end 150 bp (PE 560 

150) strategy. 561 

 562 
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Read mapping 563 

Sequencing quality control and filtering were performed to prune reads with average Phred 564 

score (Qscore) below 20 across 50% of bases, as well as those with more than 0.1% of 565 

undetermined (N) ones. Obtained reads were aligned to the mouse genome GRCm38 (mm10) 566 

using the Spliced Transcripts Alignment to a Reference (STAR) software (v2.5)  (Dobin et al, 567 

2013), an RNA-seq data aligner that utilizes Maximal Mappable Prefix (MMP) strategy to 568 

account for the exon junction problem. 569 

 570 

Quantification of gene expression level 571 

Counting of reads mapped to each gene was performed using HTSeq (v0.6.1) (Anders et al, 572 

2015). Raw read counts together with respective gene length were used to calculate Fragments 573 

Per Kilobase of transcript sequence per Millions base pairs sequenced (FPKM). In contrast to 574 

read counts, FPKMs account for sequencing depth and gene length on counting of fragments 575 

(Mortazavi et al, 2008) and are frequently used to estimate gene expression levels. 576 

 577 

Differential expression analysis 578 

Differential gene expression (DEG) analysis of two conditions was performed using the 579 

DESeq2 R package (v2_1.6.3) (Anders & Huber, 2010), a tool that utilizes negative binomial 580 

distribution model to account for variance-mean dependence in count data and tests for 581 

differential expression (Love et al, 2014). Three biological replicates were included per cell 582 

type and condition, in control (siLUC) and TDP-43-silenced (siTDP) cells. Read count matrix 583 

was pre-filtered by removing rows with row sum below one. Multiple testing adjustments were 584 

performed using Benjamini and Hochberg's approach to control for the false discovery rate 585 

(FDR). Transcripts with padj < 0.05 were considered as differentially expressed. 586 

Differentially expressed genes identified in both cell lines under different experimental 587 

conditions were hierarchically clustered based on log10(FPKM+1) and visualized with 588 

pheatmap R package (v1.0.12)  (Kolde, 2019). Further, distance between silenced and control 589 

samples of each cell line was illustrated with principal component analysis (PCA), using the R 590 

function “prcomp” (R Core Team, 2019). Differences in gene expression levels 591 

(log10(FPKM+1)) between cell lines were tested for significance using Wilcoxon signed-rank 592 

test. 593 

 594 
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Alternative splicing analysis 595 

Five major types of alternative splicing events – skipped exons (SE), mutually exclusive exons 596 

(MXE), alternative 5’ and 3’ splice sites (A5’SS and A3’SS) and intron retention (RI) - were 597 

detected and analysed by Novogene using replicate multivariate analysis of transcript splicing 598 

(rMATS) software (v3.2.1)  (Shen et al, 2014). Every alternative splicing event can produce 599 

exactly two isoforms. Each isoform is adjusted for its effective length before calculating the 600 

ratio of two isoforms and testing significance of differential splicing between two conditions. 601 

Multiple testing was corrected using Benjamini and Hochberg’s method. Splicing events 602 

having FDR < 0.01 were considered significant irrespective of ΔPSI. 603 

Alternatively (for analysis of cryptic splicing and patient's data (Fig 3D and Fig 7 and 604 

Appendix fig S4D)), differential splicing analysis was performed using MAJIQ (v2.1) and the 605 

GRCm38 as a reference genome as previously described elsewhere (Brown et al, 2021). 606 

 607 

Enrichment analysis 608 

Gene Ontology GO  (Ashburner et al, 2000) and Kyoto Encyclopaedia of Genes and Genomes 609 

databases KEGG (Kanehisa, 2000) are widely used in gene enrichment analysis to classify list 610 

of individual genes based on their expression pattern, or other similar feature, with the aim to 611 

predict dysregulated biological processes, functions and pathways or any other general trend 612 

within a subset of data (Yu et al, 2012). In this study, GO enrichment and KEGG analysis were 613 

conducted in R, using clusterProfiler package (v3.14.3) (Yu et al, 2012) either on the set of 614 

differentially expressed genes (padj < 0.05) or alternatively spliced genes (FDR < 0.01), if not 615 

stated otherwise. Additionally, GO enrichment analysis was conducted using less stringent 616 

threshold for inclusion of alternatively spliced genes (where we considered genes with non-617 

corrected p-value < 0.01 instead of FDR< 0.01). Genes of a particular dataset were assigned 618 

Entrez gene identifiers from Bioconductor mouse annotation package org.Mm.eg.db (v3.10.0). 619 

Enrichment test for GO terms and KEGG pathways were calculated based on hypergeometric 620 

distribution. The resulting GO terms/KEGG pathways were considered significant after 621 

applying multiple testing corrections with Benjamini-Hochberg method (padj < 0.05). 622 

Subsequently, significant GO terms (category: biological process) were functionally grouped 623 

or manually edited depending on the underlying biological question. 624 

 625 
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Conservation analysis 626 

Gene/exon conservation analysis within mouse (mm10) was performed by calculating phyloP 627 

(phylogenetic p-values) scores, i.e., per base conservation scores, generated from aligned 628 

genomic sequences of multiple species (Pollard et al, 2010). 629 

For each differentially expressed gene, the average per gene phyloP score was computed with 630 

bigWigSummary (UCSC)  (Kent et al, 2010). To calculate phyloP scores of TDP-43-regulated 631 

alternative sequences (hereafter referred to as per exon phyloP score), we considered TDP-43-632 

regulated sequences of all event types. Those include A’3SS and A’5SS (long and short exon), 633 

retained introns and cassette exons (SE, the 1st and the 2nd exon of MXE). 634 

 635 

Patient samples 636 

The NYGC ALS cohort has previously been detailed elsewhere (Prudencio et al, 2020; Brown 637 

et al, 2021). Herein, we only considered ALS and FTLD patients with TDP-43 pathology 638 

(ALS-TDP and FTLD-TDP) and healthy controls while excluding ALS with SOD1 mutations 639 

of FTLD patients without TDP-43 inclusions. 640 

Muscle biopsies (vastus lateralis or biceps) were obtained from 4 patient diagnosed with IBM 641 

according to the Griggs criteria (Griggs et al, 1995) and 4 healthy controls. Participants were 642 

investigated for cramps or fatigue, they underwent regular examination, neurophysiology tests 643 

and histological examinations. IBM biopsies were taken from moderately affected muscles and 644 

routinely investigated for histological and immunohistochemistry features. In case muscle 645 

fibrosis was present, it did not compromise a definite pathologic diagnosis. Basic demographic 646 

features of all participants are summarised in Appendix Table S4. Biopsies were stored at 80 647 

°C. Institutional board reviewed the study and ethical approval was obtained. 648 

Sample processing, library preparation, and RNA-seq quality control have already been 649 

described elsewhere (Brown et al, 2021). 650 

 651 

DATA AVAILABILITY 652 

 653 
Datasets generated for this study are deposited in NCBI’s Gene Expression Omnibus and are 654 

accessible through GEO Series accession number GSE171714. [The following secure token 655 

has been created to allow review of record GSE171714 while it remains in private status: 656 

ibkdwqwkxjuvbaj]. 657 
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 944 

FIGURES 945 

 946 

Figure 1. TDP-43 expression and functional consequences of TDP-43 silencing in C2C12 947 

and NSC34 cells. 948 

A Western blot shows similar expression of endogenous TDP-43 in C2C12 and NSC34 cells. 949 

The amount of TDP-43 was normalized to the sum of peak intensities of three loading controls 950 

(tubulin, HSP70 and P84) (n = 3 replicates per group).  951 

B Expression levels of Tardbp in TDP-43-silenced C2C12 and NSC34 and corresponding 952 

controls assessed by RNA-sew plotted as log10-transformed FPKM values show TDP-43 was 953 

depleted (on the mRNA level) to the same extent in both cell lines (n = 3 replicates per group). 954 

padj = 1.6 ·10-18 for C2C12 and padj = 2.3·10-72 for NSC34. p-values were generated using Wald 955 

test and Bejamini-Hochberg multiple testing correction (Love et al, 2014). 956 
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C Western blot shows the reduction of TDP-43 in C2C12 and NSC34 cells upon siTDP 957 

transfection. siLUC-transfected cells were used as a control. TDP-43 expression was 958 

normalized against GAPDH (n = 3 replicates per group).  959 

D TDP-43 depletion led to altered splicing of Poldip3 and Sort1. Semi quantitative RT-PCRs 960 

conducted in TDP-43-silenced samples and corresponding controls are shown along with the 961 

quantification of splicing changes (% of alternative exon inclusion). The number of the 962 

alternative exon is given below (see the exact transcript numbers in Appendix Table S1, n = 963 

3 replicates per group). 964 

E PCA plot visualizes distances between siLUC- and siTDP-transfected C2C12 and NSC34 965 

cells based on FPKM of all genes obtained by RNA-seq (left). Variation in the PC2 is explained 966 

by the presence/absence of TDP-43 (right). 967 

 968 

Figure 2. TDP-43 mediates transcription levels of different mRNAs in C2C12 and NSC34 969 

cells. 970 

A Venn diagram shows the number of TDP-43-regulated transcripts identified in C2C12 and 971 

NSC34 cells exclusively (1695 and 1694, respectively), along with those that are commonly 972 

regulated by TDP-43 in both cell types (630). Transcripts with padj < 0.05 were considered as 973 

differentially expressed irrespective their log2 fold change.  974 

B The Venn diagram shows the overlap (599 transcripts, 19.3%) of TDP-43-regulated DEG 975 

identified in C2C12 and NSC34 cell line (as in (A)), considering only transcripts expressed in 976 

both cell lines (FPKM in both cell lines > 0.5). Transcripts with padj < 0.05 were considered as 977 

differentially expressed irrespective their log2 fold change.  978 

C Transcription changes of common targets ((A), 630) are plotted by their log2 fold change 979 

values in C2C12 and NSC34 (Spearman's ρ = 0.77, p-value < 2.2 ·10-16). Grey line represents 980 

y = x and the blue line represents the fitted regression. 981 

D TDP-43-mediated transcription changes in C2C12 and NSC34 represented as volcano plots. 982 

C2C12- and NSC34-specific targets are shown in red and blue, respectively, while common 983 

targets are plotted as grey dots. Vertical lines indicate fold changes of 0.7 (30% increase) and 984 

1.3 (30% decrease). Best hits are labelled with gene names. 985 

E The Venn diagram shows the number of cell-type-specific and overlapping GO terms 986 

enriched by DEGs identified in C2C12 or NSC34 cells. GO terms (category: biological 987 

process) were grouped based on their names as those implying muscle- (red) or neuron-related 988 

features (blue). 989 
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F Representative GO terms (category: biological process) commonly enriched by DEGs in 990 

C2C12 and NSC34 cells suggesting pathological abnormalities described in neurodegenerative 991 

and myodegenerative disease (hand curated). 992 

 993 

Appendix figure S1. DEGs detected in C2C12 and NSC34.  994 

A The plot shows log10-transformed FPKM values of muscular, neuronal and common TDP-995 

43 targets in siLUC-transfected C2C12 and NSC34 cells. C2C12-specific DEGs exhibit higher 996 

expression in C2C12 cells (p-value < 2.2·10-16), while NSC34-specific DEGs have higher 997 

expression in NSC34 (p-value < 2.2·10-16). Expression levels of common targets is more 998 

similar between cell lines (p-value = 0.02). Significance was tested using Wilcoxon signed-999 

rank test. 1000 

B The diagram shows the number of upregulated and downregulated genes detected in C2C12 1001 

and NSC34 cells following TDP-43 silencing. 1002 

C Expression changes of representative DEGs (C2C12-specific vs. common vs. NSC34-1003 

specific, Fig 2D) as assessed by RNA-seq and plotted as log10-transformed FPKM. 1004 

D Relative expression changes of DEGs from (C) were validated using qPCR. p-values were 1005 

generated using Student’s t test (paired, one-tailed, n ≥ 3 per group). 1006 

E Scatter plots show there is no correlation between the absolute change in gene expression 1007 

following TDP-43 depletion (plotted as log2-transformed fold change) and the baseline 1008 

expression of a given transcript (FPKM in siLUC-transfected cells) for DEGs identified in 1009 

C2C12 (2325) and NSC34 (2324) (Spearman’s ρ = -0.50, p-value < 2.2·10-16 and Spearman's 1010 

ρ < -0.48, p-value < 2.2·10-16, respectively). 1011 

F Average per gene PhyloP conservation scores plotted as box plots show TDP-43-regulated 1012 

DEGs detected in C2C12 (2325) and NSC34 (2324) are equally well conserved across species 1013 

(p-value = 0.48). p-value was generated using Wilcoxon rank sum test, the grey line represents 1014 

the median of average PhyloP scores of all exons in the mouse genome. 1015 

G The number of DEGs found in commonly enriched GO terms (Fig 2E, 459) is similar 1016 

between two cell lines (left). Grey line represents y = x and the blue line the fitted regression 1017 

(Spearman’s ρ = 0.95, p-value < 2.2 ·10-16).  Frequency plot shows that commonly regulated 1018 

terms are highly enriched for cell-type-specific TDP-43-regulated DEGs (right). 1019 

 1020 

Figure 3. TDP-43-regulated splicing changes show cell-type specificity. 1021 
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A Venn diagram shows the total number of AS events (detected by rMATS at FDR < 0.01) 1022 

induced by TDP-43 depletion in C2C12 and NSC34 specifically (630 and 1170, respectively), 1023 

together with those commonly detected in both cell lines (100).  1024 

B The number of annotated AS events (A) visualized by event type. SE - exon skipping, MXE 1025 

- mutually exclusive exons, RI - intron retention, A3’SS and A5’SS - alternative 3’ or 5’ splice 1026 

site. The percentage of overlapping AS events is reported on the plot. 1027 

C Venn diagram shows the total number of AS events (detected by rMATS as in (A)) occurring 1028 

in transcripts, which are expressed in both cell lines (FPKM in both cell lines > 0.5). 1029 

D The percentage of common (green) and cell-type-specific (grey) TDP-43-dependent splicing 1030 

events detected in C2C12 and NSC34 as assessed by MAJIQ (in contrast to (A)-(C) and (E)-1031 

(G), where rMATS was used).  1032 

E Venn diagrams show the number of alternatively spliced transcripts (as detected by rMATS, 1033 

FDR < 0.01) in C2C12 and NSC34 cells together with GO terms (category: biological process, 1034 

padj < 0.05) enriched in AS genes detected in each cell line. 1035 

F GO terms uniquely enriched in NSC34 (198) imply on deregulation of neuronal processes, 1036 

mRNA metabolism and DNA biology in NSC34 cells (representative GO terms are shown on 1037 

the plot). 1038 

G GO terms uniquely enriched in C2C12 (18) suggest involvement of TDP-43-regulated AS 1039 

genes in DNA-modifying processes (representative GO terms are shown on the plot). 1040 

 1041 

Appendix figure S2. General features of TDP-43-controlled AS events detected in C2C12 1042 

and NSC34. 1043 

A TDP-43-regulated AS events detected in C2C12 and NSC34 cells do not differ in terms of 1044 

event type distribution (the number below shows the total number of AS events detected in 1045 

each cell line); 1046 

B the average length of TDP-43-regulated cassette exons (SE and MXE); 1047 

C the ratio between inclusion/exclusion events; 1048 

D the percentage of frame-conserving events. 1049 

E Average per exon PhyloP conservation scores plotted as box plots show TDP-43-regulated 1050 

alternative sequences detected in NSC34 cells (4281) are better conserved across species than 1051 
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those detected in C2C12 cells (2372) (p-value = 1.1·10-4). p-value was generated using 1052 

Wilcoxon rank sum test with continuity correction, the grey line represents the median of 1053 

average PhyloP scores of all exons in the mouse genome. 1054 

F Average per exon PhyloP conservation scores of TDP-43-regulated alternative sequences 1055 

stratified by event type (SE, MXE, RI, A3’SS, A5’SS). The difference (p-value = 6.5·10-6) 1056 

among all groups was tested with Kruskal-Wallis rank sum test, followed by pairwise 1057 

comparisons using Wilcoxon rank sum test with Benjamini-Hochberg correction for multiple 1058 

testing. Significant difference is highlighted only for within event comparison between two 1059 

tissues, SE (p-value = 9.7·10-3). The grey line represents the median of average PhyloP scores 1060 

of all exons in the mouse genome. 1061 

G Venn diagram shows the total number of AS events detected by rMATS at relaxed threshold 1062 

(considering events that were detected at FDR < 0.01 in one dataset and p-value < 0.05 in the 1063 

other). 1064 

H GO enrichment analysis (refers to Fig 3G) was performed on alternatively spliced genes 1065 

detected in C2C12 using less stringent threshold for genes which entered GO analysis (p-value 1066 

< 0.01 instead of FDR < 0.01). Resulting GO terms (45) imply on dysregulation of DNA-1067 

related biological processes. 1068 

 1069 

Figure 4. Expression of RNA-binding proteins in C2C12 and NSC34 cells. 1070 

A Boxplot shows that NSC34 cells on average display higher expression of 63 RNA-binding 1071 

proteins compared (Mele et al, 2015) compared to C2C12 cells (p-value = 0.0028). Average 1072 

expression levels are plotted as log10-transformed FPKM values of all 63 transcripts and p-1073 

value was generated using Wilcoxon signed-rank test. 1074 

B Expression of 63 RBPs (plotted as log10-transformed FPKM values) in C2C12 and NSC34 1075 

cells (Spearman’s ρ = 0.94; p-value < 2.2 ·10-16). Those with higher expression in one cell line 1076 

than another (> 150%) are shown in red (C2C12) or blue (NSC34). Grey line represents y = x. 1077 

C Venn diagram shows RBPs the expression of which changes following TDP-43 reduction. 1078 

The overlapping event is downregulation of Tardbp. 1079 

 1080 

Figure 5. Commonly regulated TDP-43 splicing targets are more often frame-conserving, 1081 

display higher expression levels and undergo bigger changes in isoform proportion.  1082 
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A Validation of TDP-43 dependent splicing of 10 representative mRNA targets. Semi 1083 

quantitative RT-PCR conducted in TDP-43-silenced samples and corresponding controls is 1084 

shown along with the quantification of splicing changes (% of alternative exon inclusion). The 1085 

number of the alternative exon is shown in the scheme (see the exact transcript numbers in 1086 

Appendix Table S1, n = 3 replicates per group). 1087 

B Average expression expression levels of transcripts that are commonly spliced in both cell 1088 

lines (164) or in one cell line exclusively (1268) is plotted as log10-transformed FPKM values 1089 

(p-value < 2.2·10-16). 1090 

C Absolute changes (∆PSI) of overlapping splicing events (100) compared to those uniquely 1091 

occurring in C2C12 or NSC34 (1800) (p-value = 1.0·10-7). p-values for (B) and (C) were 1092 

generated by unpaired Wilcoxon rank sum test. 1093 

D The correlation of splicing changes for commonly detected splicing events (100) plotted as 1094 

∆PSI in C2C12 and NSC34 (Spearman’s correlation coefficient ρ = 0.62, p-value = 4.1·10-12).  1095 

E The percentage of frame-preserving AS events among those that commonly occur in both 1096 

cell lines (100) and those regulated by TDP-43 in a cell-type specific manner (1800).  1097 

F Average per exon PhyloP conservation scores plotted as box plots show TDP-43-regulated 1098 

alternative sequences detected in both cell lines (634) are better conserved across species than 1099 

those detected in one cell line exclusively (6019) (p-value = 0.02). p-value was generated using 1100 

Wilcoxon rank sum test, the grey line represents the median of average PhyloP scores of all 1101 

exons in the mouse genome. 1102 

 1103 

Appendix figure S3. Transcripts subject to TDP-43-dependent splicing and expression 1104 

level changes.  1105 

A Venn diagrams show the percentage of transcripts affected by TDP-43 loss due to altered 1106 

splicing (AS) or changes in the overall transcript abundance (DEG) in each cell line (21.9% of 1107 

AS genes in C2C12 and 21.0% of AS genes in NSC34, respectively).  1108 

B The barplot shows the percentage of down- and upregulated genes among those subject to 1109 

altered splicing following TDP-43 loss. 1110 

C A representative KEGG pathway (axon guidance pathway, mmu04360) significantly 1111 

enriched (padj < 0.05) in AS and DE genes in NSC34 cells demonstrates that TDP-43 might 1112 

influence axon guidance by regulating AS and expression levels of transcripts encoding 1113 

proteins that participate in the given biological process. Proteins encoded by AS transcripts are 1114 

shown in yellow and those encoded by DEG are shown in blue. 1115 
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 1116 

Figure 6. Alternative exons regulated by TDP-43 in mouse are subject to TDP-43 1117 

regulation in human cell lines or not.  1118 

A Western blot shows efficient reduction of TDP-43 in SH-SY5Y and RH-30 cells upon siTDP 1119 

transfection. The amount of TDP-43 was normalized against GAPDH or tubulin (n = 3 1120 

replicates per group). 1121 

B TDP-43 depletion led to altered splicing of POLDIP3. Semi quantitative RT-PCR conducted 1122 

in TDP-43-silenced samples and corresponding controls is shown along with the quantification 1123 

of splicing changes (% of alternative exon inclusion). The number of the alternative exon is 1124 

given below (n = 3 replicates per group). 1125 

C Alternatively spliced exons regulated by TDP-43 in mouse cells are either subject to TDP-1126 

43 regulation in human cells (PPFIBP1 exon 19 and ASAP2 exon 23) or not (TRAF7 exon 5 1127 

and NFYA exon 3). Semi quantitative RT-PCRs conducted in TDP-43-silenced samples and 1128 

corresponding controls are shown along with the quantification of splicing changes (% of 1129 

alternative exon inclusion). The number of the alternative exon is given in the scheme (see the 1130 

exact transcript numbers in Appendix Table S2, n = 3 replicates per group).  1131 

D Schematic representation of TDP-43 binding sites identified by iCLIP analysis in SH-SY5Y 1132 

cells (Tollervey et al, 2011) in the vicinity of exons represented on panel (C).  1133 

 1134 

Figure 7. Inclusion of TDP-43-controlled exons is altered in TDP-43-proteinopathies.  1135 

A Inclusion levels (PSI) of six alternative exons in skeletal muscle biopsies in IBM patients vs. 1136 

healthy controls (n = 4 per group).  1137 

B PSI of six alternative exons in different brain regions (motor cortex, lumbar spinal cord, 1138 

cervical spinal cord) of ALS patients and healthy controls (n motor cortex: 223 ALS and 23 1139 

ctrl, n cervical spinal cord: 134 ALS and 32 ctrl, n lumbar spinal cord 136 ALS and 33 ctrl). 1140 

C PSI of six alternative exons in frontal and temporal cortices of FTLD patients with reported 1141 

TDP-43 pathology and healthy controls (n frontal cortex: 33 FTLD and 40 ctrl, n temporal 1142 

cortex: 30 FTLD and 23 ctrl). (A)-(C) p-values were generated using Wilcoxon rank sum test. 1143 

* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001. 1144 

D Schematic summary of all splicing alterations (A)-(C) detected in skeletal muscles of IBM 1145 

patients and across neuroanatomical regions of ALS and FTLD patients compared to healthy 1146 
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controls. Dark green marks significant changes, which occur in the same direction as in TDP-1147 

43-depleted SH-SY5Y and RH-30 cells (refers to Fig 6C); light green marks non-significant 1148 

changes that occur in the expected direction (p-value is reported in the scheme); red marks 1149 

significant changes occurring in the opposite direction relative to TDP-43-depleted SH-SY5Y 1150 

and RH-30 cells; light red marks non-significant changes that occur in the opposite direction 1151 

(p-value is reported in the scheme). 1152 

 1153 

Appendix figure S4. Tissue-characteristic inclusion of alternative exons regulated by TDP-1154 

43. 1155 

A Dot plots demonstrate variable inclusion levels of alternative exons across different brain 1156 

regions of healthy controls (in the absence of TDP-43 pathology), as exemplified by two 1157 

alternative exons – exon 23 of ASAP2 and exon 13 of TBC1D1. p-values (p-value = 1.6·10-9 1158 

for ASAP2 and p-value = 2.4 ·10-11 for TBC1D1, respectively) were generated using Kruskal-1159 

Wallis chi-squared test. 1160 

B TDP-43-depenent splicing of exon 14 of mouse Tnik and exons 12 and 13 of mouse Tbc1d1 1161 

occur in cell-type-specific fashion in mouse C2C12 and NSC34 cells.  1162 

C Exon 15 of human TNIK is regulated by TDP-43 in both, SH-SY5Y and RH-30 cell line, 1163 

likely in a direct fashion by TDP-43 binding in the upstream intron as shown in (D). The long 1164 

isoform of TBC1D1 gene (exons 12 and 13 included) is not expressed in undifferentiated SH-1165 

SY5Y and RH-30 cells, as inclusion of exons 12 and 13 increases with differentiation (Bland 1166 

et al, 2010), however, TDP-43 binding sites were identified in the vicinity of exons represented 1167 

on panel (D). (B)-(C) Semi quantitative RT-PCRs conducted in TDP-43-silenced cells and 1168 

corresponding controls are shown along with the quantification of splicing changes (% of 1169 

alternative exon inclusion) (see the exact transcript numbers in Appendix Table S1 and S2, n 1170 

= 3 replicates per group). 1171 

D Schematic representation of TDP-43 binding sites identified by iCLIP analysis in SH-SY5Y 1172 

cells (Tollervey et al, 2011) in the vicinity of exons represented on panel (C).  1173 
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