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ABSTRACT 

Motivation  

Stitching microscope images into a mosaic is an essential step in the analysis and visualization of large 

biological specimens, particularly human and animal tissues. Recent approaches to highly-multiplexed 

imaging generate high-plex data from sequential rounds of lower-plex imaging. These multiplexed 

imaging methods promise to yield precise molecular single-cell data and information on cellular 

neighborhoods and tissue architecture. However, attaining mosaic images with single-cell accuracy 

requires robust image stitching and image registration capabilities that are not met by existing methods.  

Results 

We describe the development and testing of ASHLAR, a Python tool for coordinated stitching and 

registration of 103 or more individual multiplexed images to generate accurate whole-slide mosaics. 

ASHLAR reads image formats from most commercial microscopes and slide scanners, and we show that 

it performs better than existing open source and commercial software. ASHLAR outputs standard OME-

TIFF images that are ready for analysis by other open-source tools and recently developed image 

analysis pipelines. 

Availability and implementation 

ASHLAR is written in Python and available under an MIT license at 

https://github.com/labsyspharm/ashlar . An informational website with user guides and test data is 

available at https://labsyspharm.github.io/ashlar/. 

 

INTRODUCTION  

Multiple approaches have been described for performing 20-60 plex subcellular resolution 

microscopy on normal and diseased tissues for research and diagnostic purposes (Angelo et al., 2014; 

Gerdes et al., 2013; Giesen et al., 2014; Goltsev et al., 2018; Lin et al., 2018; Tsujikawa et al., 2017). 

These methods make it possible to image differentiation markers, signaling proteins, cell cycle 
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regulators, oncogenes, and drug targets in a preserved tissue context. The resulting data can be processed 

to determine the molecular and physical relationships of cells within the tissue to each other, to the local 

vasculature, and to the noncellular components within connective tissue or basement membranes. 

Research has shown that spatial profiling by highly-multiplexed microscopy can reveal features of 

normal and diseased tissues and their responses to therapy that cannot be discerned in other ways 

(Färkkilä et al., 2020; Goltsev et al., 2018; Launonen et al., 2022; Schürch et al., 2020; Wagner et al., 

2019). For this reason, multiplexed spatial profiling of proteins and mRNA is the cornerstone of large 

scale atlasing projects such as the Human Cell Atlas (Regev et al., 2017), NIH HuBMAP consortium 

(HuBMAP Consortium, 2019), and NCI Human Tumor Atlas Network (HTAN) (Rozenblatt-Rosen et 

al., 2020). Such atlases promise to fundamentally advance understanding of tissue development and 

physiology and improve how diseases are diagnosed and individual patients matched to optimal 

therapies.  

Highly multiplexed imaging of proteins in tissues uses antibodies to detect specific antigens, 

building on 80 years of experience with immunohistochemistry in research and diagnostic settings 

(Wick, 2012). Methods such as MxIF, CyCIF, CODEX, 4i, and mIHC use conventional fluorescence 

and brightfield microscopes whereas MIBI and IMC vaporize specimens with ion beams or lasers 

followed by atomic mass spectrometry (Angelo et al., 2014; Gerdes et al., 2013; Giesen et al., 2014; 

Goltsev et al., 2018; Gut et al., 2018, 2018; Lin et al., 2018; Tsujikawa et al., 2017). Approaches to 

imaging nucleic acids are based on hybridization (Chen et al., 2015; Lee et al., 2014) and sequencing 

(Ståhl et al., 2016). Some methods require frozen samples, but methods that use Formaldehyde Fixed 

Paraffin Embedded (FFPE) specimens - the sample type universally acquired for diagnostic purposes - 

can tap into large archives of human biopsy and resection specimens (Burger et al., 2021). 

Existing imaging methods differ in resolution, field of view and number of distinct antigens or 

genes that can be detected (the assay “plex”). Most immunofluorescence methods (e.g. MxIF, CyCIF, 

mIHC, CODEX and Immuno-SABER) are cyclic approaches in which high-plex data are generated by 
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repeated acquisition of lower-plex images, each of which has 2-6 channels of information. Each channel 

represents an image acquired with excitation and emission filters matching one antibody or oligo-

coupled fluorophore. As such, cyclic imaging makes it possible to optimally exploit the optical 

properties of fluorescence microscopes while interrogating 60 or more distinct antigens from a single 

specimen. Conventional research-grade fluorescence microscopes can acquire data from up to 6 

different channels, at resolutions down 0.25 µm (laterally) which makes detailed analysis of intracellular 

structures possible. “Slide scanners” are microscopes equipped with rigid slide holders that move in X 

and Y and use non-immersion (air) objectives to rapidly move across the specimen. At resolutions 

sufficient for subcellular imaging, collecting data from a whole slide involves acquiring an array of 

multiple image “tiles” (103 or more for a large specimen of 6 cm2). Thus, each tile is a multi-wavelength 

megapixel-scale image that represents a different lateral (x, y) stage position. The number of 

wavelengths in each tile, the number of tiles, and the number of imaging “cycles” (each of which 

involves acquisition of a full set of tiles), differs with the microscope and the multiplexing technology. 

However, it is universally true that tiles from all cycles must be merged accurately into a single high-

plex “mosaic” image.  

High-plex mosaic images represent the key “Level 2 or 3” data type for all subsequent 

visualization and quantitative data analysis. The data level concept was introduced by dbGAP for 

genomics (Tryka et al., 2014) and its implementation to tissue imaging is described in detail in the MITI 

guidelines (Schapiro et al., 2022a). In this context, “data levels” denote different degrees of data 

processing, with Level 1 corresponding to single, raw image tiles, Levels 2 data to stitched, illumination 

corrected mosaics and Level 3 to mosaic images that have also been subjected to manual or automated 

quality control to improve interpretability and accuracy.  

It is increasingly clear that the greatest challenges in the acquisition and analysis of high-plex 

image data lies not in image acquisition per se, but in the subsequent image processing steps. For 

example, even the best microscopes require computational alignment of tiles to form a mosaic, since 
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mechanical tolerances and imperfect calibration introduce uncertainty into recorded tile positions. To 

enable assembly of a mosaic, tiles are slightly overlapped during acquisition so that each pair of adjacent 

tiles contains some identical cells. Image features in these cells are then used as reference points for 

“stitching” adjacent tiles into a seamless mosaic. In cyclic imaging (Gerdes et al., 2013; Lin et al., 

2018), all tiles from the second and subsequent cycles must also be aligned to the mosaic through 

“registration” of image features across corresponding tiles. DNA-stained nuclei serve as an excellent 

image feature for alignment since they stain well with a variety of fluorescent dyes, are present at 

suitable density in most tissue types, and have sharp edges with high contrast. Multiple tools exist for 

registering image stacks and stitching image tiles (Chalfoun et al., 2017; Holtkamp and Goshtasby, 

2009; Hörl et al., 2019) and some are available in common image analysis software such as ImageJ 

(Schneider et al., 2012). However, we have found that open source tools currently available for stitching 

and registering whole-slide images are unsatisfactory when applied to high-plex cyclic images with 

respect to speed, reliability and accuracy. Some commercial instruments have also integrated stitching 

routines, but we have found that these methods are only sufficient for visual review and are generally 

not accurate enough for quantitative single-cell analysis. Existing tools also struggle with very large 

images and generally require substantial format conversion and file renaming, a non-trivial task when 

confronted with 100 GB of data contained in 104 megapixel-scale image tiles (a large 10-cycle whole-

slide image).  

In this paper we report the development of a new open source Python package, ASHLAR 

(Alignment by Simultaneous Harmonization of Layer/Adjacency Registration), for coordinated stitching 

and registration of multiplexed, multi-tile images. The package offers both a command line file-oriented 

interface and a documented API for incorporation into other tools. ASHLAR can directly process any 

image format supported by the widely used Open Microscopy Environment (OME) BioFormats library 

(Li et al., 2016) and it outputs standard OME-TIFF files. We describe ASHLAR’s design and 

implementation and compare its performance to existing tools using high-plex CyCIF images. ASHLAR 
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is available as a Docker or Singularity container and has been incorporated into MCMICRO (Schapiro et 

al., 2022a), the Nextflow-based image processing pipeline developed by HTAN; as part of MCMICRO, 

ASHLAR has been tested with several hundred CyCIF, CODEX and mxIF images acquired from 12 

types of mouse and human tissues at seven different institutions on five different microscopes and slide 

scanner platforms (Supplementary Table 1). ASHLAR is therefore a robust and practical tool for use 

with diverse spatial profiling methods. 

METHODS 

Overview of assembly process for cyclic multi-tile fluorescence images 

ASHLAR operates in three broad phases to convert a multi-cycle multi-tile (Level 1) dataset into 

a cohesive (Level 2) mosaic image (Schapiro et al., 2022b) (Figure 1): (i) tiles within the first imaging 

cycle are stitched; (ii) tiles from the second and subsequent cycles are registered to corresponding tiles 

from the first cycle; and (iii) all tiles from all cycles are merged into a mosaic image. The output of 

stitching and registration is a list of new, corrected positions for all tiles in each cycle. Only in the final 

mosaic phase is the actual full-size many-channel mosaic image created. These mosaic images can be 

very large and contain information spanning length scales from less than 1 µm (subcellular structures) to 

cm in dimension (gross tissue morphology). In many cases, the boundary of a tissue specimen is 

irregular, and a significant fraction of the tiles in a rectangular data collection grid contain few if any 

cells, posing a challenge for stitching as well as an opportunity to reduce data collection demands by 

creating irregular-shaped tile sets that closely follow the outlines of the tissue. 
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Figure 1: Schematic of cyclic whole-slide data acquisition, stitching, and registration. (a) One cycle 
of whole-slide imaging (scanning) is achieved by moving the microscope stage along a controlled path 
and acquiring multichannel image tiles that overlap. Further cycles repeat the process after the 
specimens are re-labeled with new antibodies or other detection reagents. Note that the left-hand portion 
of this panel depicts just a single reference channel (blue) across three cycles for clarity – actual data 
contains multiple channels and an arbitrary number of cycles. To integrate information across a wide 
spatial context at high resolution, it is necessary to stitch neighboring image tiles within one cycle and 
also register tiles across different cycles. (b) The corners of four neighboring tiles (Hoechst 33342-
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stained channel, pseudocolored by tile) from one cycle are positioned using the recorded microscope 
stage positions (upper panel) and the corrected stitched positions (lower panel). Arrows indicate two 
individual cells in the tile overlap regions before and after stitching. (c) The centers of three Hoechst-
channel image tiles (pseudocolored by cycle) from different cycles are positioned using recorded stage 
positions (upper panel) and post-ASHLAR registered positions (lower panel). Arrows indicate one cell 
before and after registration. 

 

To generate an initial estimate of tile positions, ASHLAR uses data from image tiles (grids of 

pixels), recorded stage positions, and physical pixel dimensions. ASHLAR leverages the Open 

Microscopy Environment Bio-Formats library (Li et al., 2016) to extract the necessary image data and 

metadata (stage position and pixel size) directly from native image files produced by the great majority 

of commercial microscopes, obviating the need for image format conversion and manual metadata 

extraction. For microscopes that do not support BioFormats, ASHLAR accepts a set of TIFF files using  

a configurable naming convention along with explicit specification of tile overlap and acquisition order. 

Subsequent stitching and registration involve aligning one image to another. In stitching, the small 

overlapping strips of adjacent tiles are aligned (Figure 1b), and in registration, full tiles that cover the 

same region of the sample but acquired in different cycles are aligned (Figure 1c). We performed 

stitching and registration only on the reference image channel (typically Hoechst 33342-stained nuclei) 

and applied the resulting positional corrections to all other channels recorded within that cycle. This is 

sufficient because the chromatic aberration exhibited by research-grade wide-field microscopes is not a 

major contributor to image inaccuracy at resolutions typically used for tissue imaging (10X to 40X 

magnification, 0.3 to 0.95 NA air objectives). 

 

Image alignment with sub-pixel precision phase correlation 

ASHLAR uses the phase correlation algorithm (Kuglin and Hines, 1975) for image alignment 

during both stitching and registration phases. Phase correlation is a fast, parameter-free method that 

computes the image alignment with maximum cross-correlation, but it is only suitable for aligning 

images that are translated relative to each other in X and Y; it cannot directly align images that differ by 
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rotation, scaling, skew, or non-affine transformations. This trade-off is acceptable for accurate stitching 

of multi-tile images on the five microscopes we have tested (see Supplementary Table 2) since the 

rigidity of the sample and the construction of modern stages ensures that almost all of the discrepancy 

between recorded stage positions and true positions can be modeled by translation alone. Stage position 

errors encountered between multiple imaging cycles are also purely translational, as long as the slide is 

always placed at exactly the same angle on the stage; this can routinely be achieved with kinematic 

mounts that positively register the slide in a consistent position (this is a standard feature of 

contemporary slide-scanning microscopes). 

ASHLAR uses an enhanced method of phase correlation that improves the precision of tile 

alignment. The accuracy of classical phase correlation is limited to whole pixels. At pixel sizes around 1 

µm or larger, this represents a substantial error relative to the size of a single cell. We overcame this 

limitation by using an improved phase correlation algorithm (Guizar-Sicairos et al., 2008) that offers 

arbitrary sub-pixel precision with minimal extra computation. An alignment precision of 0.1 pixels 

produced a discernible improvement in final mosaic quality over whole-pixel alignment, with 

diminishing returns beyond that. ASHLAR also enhances phase correlation by pre-filtering input images 

with the discrete Laplacian operator (or Laplacian of Gaussian operator – LoG – for noisy images) to 

eliminate auto-correlation. It has been understood for at least a century that computing cross-correlation 

can yield spurious results with signals that exhibit auto-correlation, but this fact is often overlooked in 

practice (Dean and Dunsmuir, 2016; Yule, 1926) – we are aware of only one open-source image 

stitching tool, ITKMontage (Zukić et al., 2021), that performs decorrelation. Our work with ASHLAR 

shows that decorrelation substantially improves confidence in image tile alignments. 

 

Image Stitching 

The stitching procedure begins with the creation of a node-edge adjacency graph in which nodes 

represent tiles (Figure 2 – step A1). Edges are added to the graph to connect overlapping tile pairs, 
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which are initially identified by consulting recorded stage positions and other metadata. By reading 

recorded stage positions directly from BioFormats metadata, it is straightforward to support samples 

imaged with non-rectangular grids and irregular layouts. Figure 3a shows the overlap in adjacent tiles 

associated with one edge in the adjacency graph and reveals that one image is slightly translated relative 

to the next – this translation represents the stage positioning error we are trying to correct. When the 

overlap region contains many cell nuclei or other alignment features, phase correlation can accurately 

and confidently compute the correct translation between the images. Phase correlation will always return 

some value for translation of any two tiles, even when the overlap region is uninformative and contains 

only incidental signal or background noise in the registration channel; in these cases we rely on the 

recorded stage positions. Uninformative overlaps in tissue sections are most commonly encountered 

when nuclei are scant, such as in fat, connective tissue, or regions of necrosis, and in areas in which no 

tissue is present, such as along the edge of a specimen, between separate pieces of tissue, or between the 

circular cores that make up a tissue microarray (a regular grid of 50-200 0.3 to 1.2 mm pieces of tissue 

arrayed on a single microscope slide). 

We use normalized cross correlation (NCC) to score how well the translation returned by phase 

correlation aligns images, but the threshold dividing an effective alignment from a spurious one varies 

by dataset. We estimate this threshold by the 99th percentile of NCC values computed from a 

permutation test that considers 1,000 randomly selected pairs of non-adjacent tiles (Figure 2a – step 

A2); this corresponds to the unadjusted one-sided empirical p-value threshold of 0.01. For each tile pair 

represented by an edge in the adjacency graph, we crop the images to their mutually overlapping region 

based on recorded stage positions and align them using phase correlation as described above. This yields 

a corrected X,Y shift, and NCC value (Figure 2 – Step A3). For all downstream steps, we use the 

negative logarithm of the NCC values, hereafter referred to as ENCC (NCC error), which provides a more 

intuitive “lower is better” error metric and empirically appears to have a more normal distribution. We 

use this ENCC threshold and a user-provided translation limit parameter to determine whether to discard 
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low-quality tile pair alignments (Figure 3b). The value of the translation limit is not particularly critical, 

as physical translation distances for spurious alignments tend to be fairly extreme (note that the Y-axis 

in Figure 3b is on a log scale). When a low-quality alignment is discarded, we delete the corresponding 

edge from the adjacency graph (Figure 2 - step A3, Figure 3c). At this point, there are almost always 

more remaining pairwise alignments than tiles, leading to an overconstrained system. We solve this by 

constructing a minimum spanning tree with the ENCC values as the edge weights and retaining only the 

alignments corresponding to edges in this tree (Figure 2 - step A4). This allows us to discard extraneous 

alignments so the position of every tile is unambiguous. Since the edge deletion process in step A3 could 

split the graph into multiple disconnected pieces, we perform the spanning tree procedure independently 

for each piece.  
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Figure 2: ASHLAR phases for aligning whole-slide scans. (a) Steps for stitching tiles within one 
cycle. (b) Steps for registering tiles across cycles. (c) Seamless mosaic generation enables whole-slide 
visualization and flexible re-tiling for downstream parallel processing. Blue-colored graphic components 
in each step depict the key elements or processes of that step. See text for details. 
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With this spanning tree, it is straightforward to obtain final corrected positions by walking along 

the edges from tile to tile (starting at the root) and adding up each pairwise alignment along the way 

(Figure 3d). Even though individual pairwise tile alignments correct primarily for local uncorrelated 

stage position error, taken collectively they also characterize systematic errors such as miscalibrated 

pixel size or Z-axis camera rotation. To quantify these types of errors, we perform multiple linear 

regression of the corrected tile positions after stitching (dependent variable) against the original tile 

positions recorded by the microscope (independent variable) to generate a single affine transformation. 

This affine transformation is then used to adjust the relative positions of tiles with adjacency graphs that 

were split into multiple pieces (from step A3) to counteract systematic stage position error and improve  

accuracy (Figure 2 - step A5). At the end of steps A1 to A5 (Figure 2a), optimized global positions 

have been determined for all tiles in the first cycle and, the stitching is complete. 
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Figure 3: Visualizing stitching steps using a whole-slide scan from a colon specimen. All images 
and data in this figure derive from analysis of a large multi-tile image of human colon (see text for 
details). (a) Alignment of one pair of neighboring tiles from an image of human colon. Images of 
Hoechst 33342-stained nuclei in left and right tiles are pseudocolored in red and cyan respectively. The 
red and cyan images are overlaid before and after stitching to demonstrate the effect at the single-cell 
level. For context, in the remaining panels the location of this tile pair is denoted with a yellow X. (b) 
Alignment shift distance vs. ENCC for all neighboring pairs, with ENCC threshold and user-provided 
translation limit indicated. The null distribution generated by the permutation test (red) is overlaid on the 
ENCC marginal distribution. Note that while the ENCC threshold is computed as the 99th percentile of the 
null distribution NCC values, it appears at the left end of the null distribution in this figure due to 
transformation of NCC to ENCC by taking the negative logarithm (see text). (c) Adjacency graph with 
edges colored by ENCC overlaid on the Hoechst image. Edges corresponding to discarded alignments 
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(ENCC or shift distance above the thresholds) are hidden. Hidden edges correlate with regions containing 
scant or no tissue. (d) Minimum spanning tree with edges colored by alignment shift distance.  
 

Image Registration 

The procedure for registering subsequent cycles against the first cycle uses many of the same 

tools as stitching, although the goal is aligning whole tiles across data acquisition cycles rather than 

aligning adjacent tiles edge-to-edge within a single cycle (Figure 2b). First we establish a 

correspondence between each tile in the target cycle (the one to be registered) and the nearest tile in the 

first cycle by comparing recorded stage positions (Figure 2b - Step B1). Identifying these tile 

correspondences is trivial when recorded stage positions are consistent from run to run, and the 

geometry of the image acquisition grids is identical. However, a significant shift in stage positions can 

occur between cycles with microscopes that lack a physical “homing” procedure to zero stage position 

encoders at start-up. Shifts also arise where the planned tile grid is significantly displaced or rearranged 

between runs. To account for this shift when comparing tile positions, we down-sample the data by a 

factor of 20 and assemble low-resolution “thumbnail” mosaic images for each cycle using the recorded 

stage positions. We then align the thumbnails using phase correlation with sub-pixel precision to obtain 

a coarse alignment between the first and target cycles. Working with low-resolution images in this step 

saves compute time and memory while providing sufficient precision to accurately recover inter-cycle 

tile correspondences. Next, each corresponding tile pair is cropped to mutually overlapping regions and 

aligned using phase correlation (step B3). The resulting alignments are then filtered using the user-

specified translation limit. Note that we do not currently use a permutation test and ENCC threshold in the 

registration phase (step B2) as the translation limit alone has been sufficient for all images processed to 

date. For alignments that pass the filter, the target-cycle tiles are positioned by adding the alignment 

translations to the corrected positions of the corresponding tiles from the first cycle (step B4). The 

remaining tiles (generally those with sparse or no tissue, or where the tissue was damaged significantly 

during inter-cycle sample handling) are positioned using the affine transformation computed in the 
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stitching phase, assuming that the same microscope and calibration conditions were used for both cycles 

(step B5). The registration steps described above are then applied to all other cycles, establishing 

corrected global positions for all remaining tiles. Importantly, our method registers each cycle of tiles 

against the first cycle (rather than consecutively against each preceding cycle) because each successive 

alignment step incurs additional error. 

Mosaic image generation 

The result of the stitching and registration phases is a corrected global position for every image 

tile (Figure 4). To generate the final output image mosaic, we create an empty image large enough to 

encompass all corrected tile positions and copy each tile into it at the appropriate coordinates. Since 

each pairwise image registration is computed to a precision of 0.1 pixels as described above, the sum of 

these shifts for a given tile generally yields non-integer values for the final coordinates. ASHLAR 

defaults to applying sub-pixel translations on the tile images to account for this, but some users may 

prefer to round the final positions to the nearest pixel instead. Where neighboring image tiles overlap in 

the mosaic, they are combined with linear blending or one of several other user-selectable blending 

functions. The final many-channel image is then written out as a standard OME-TIFF file containing a 

multi-resolution image pyramid to support efficient visualization. 
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Figure 4: ASHLAR mosaic results. All images and data in this figure derive from analysis of the 
multi-tile image of human colon shown in Figure 3. (a) Pseudocolor image showing 5 channels from a 
28-plex (9-cycle) t-CyCIF image of a normal human colon section acquired using the antibodies 
described in Supplementary Table 3. Tiles, denoted by the white grid, overlapped by ~31 pixels (20 
µm) Inset: Hematoxylin and eosin (H&E) staining of an adjacent section of the same specimen. (b) 
Higher magnification view of the area surrounding a single tile showing 7 channels from 4 different 
cycles to highlight stitching and registration accuracy. Insets 1-4 depict regions of the tile overlap areas 
at full resolution (note that the antibodies shown in panels a and b differ to make structures relevant to 
different spatial scales more apparent). 
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Implementation 

ASHLAR is implemented in Python 3 and utilizes many numerical and image processing 

routines from the numpy, scipy, scikit-image, scikit-learn and networkx packages. The pyjnius Python-

to-Java connector provides access to the Java BioFormats library for reading microscopy image files. 

The user interface is mainly via command-line script but the underlying Python modules may also be 

used directly. 

RESULTS 

Evaluation of stitching accuracy 

We identified MIST (Chalfoun et al., 2017) as the current state-of-the-art public-domain tool for 

stitching large, tiled microscopy images. We used the evaluation framework described by Chalfoun et al. 

to compare the accuracy of stitching by ASHLAR and MIST using that manuscript’s most challenging 

dataset: a plate of widely-spaced GFP-labeled stem cell colonies that were grown for 2 days and imaged 

with 10% tile overlap. The Chalfoun et al. dataset contains two image sets acquired via separate 

mechanisms: i) images acquired with “traditional” overlapping tiles and ii) ground-truth images – with 

each colony centered and wholly contained in a single image field – acquired with a closed-loop 

microscope stage control algorithm. The Chalfoun et al. evaluation framework assesses the accuracy of a 

stitching algorithm by applying the algorithm to the overlapping tile set, segmenting the stitched output 

mosaic into colonies, and finally comparing each colony’s area and position to the ground truth data. 

Four metrics are reported: False negative count (FN), false positive count (FP), per-colony size error 

(Serr), and per-colony position distance error (Derr) (see Chalfoun et al. for full details). MIST and 

ASHLAR yielded the same false negative and false positive counts (FN = 47, FP = 4), the size error 

distributions were nearly the same and had indistinguishable medians (median Serr = 0.0474%), and the 

distance error distributions were also similar with a difference between medians that was not statistically 

significant (MIST median Derr = 10.8 pixels, ASHLAR median Derr = 11.5 pixels, Mood’s median test p-
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value = 0.32) (Figure 5a). We conclude that MIST and ASHLAR have similar stitching accuracy when 

applied to a previously described test set involving cells grown in vitro. 

 

 

Figure 5: Performance comparison of ASHLAR and MIST software. (a) Stitching error metric 
distributions (kernel density estimate) for MIST and ASHLAR computed according to the stitching 
evaluation framework of Chalfoun et al. (Chalfoun et al., 2017). Dotted lines indicate median values; 
neither difference in medians was statistically significant. (b-f) Images and data derive from analysis of 
the multi-tile image of human colon shown in Figures 3-4. (b) Local registration error distance 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2022. ; https://doi.org/10.1101/2021.04.20.440625doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440625
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20

distributions for MIST and ASHLAR mosaic images of two t-CyCIF cycles of a human colon section. 
Distances at the upper end in this plot as well as in panels d and f were clipped to the 90th percentile of 
the MIST error values (~4 µm) to highlight the relevant data. (c) Full-resolution view of four regions 
from the MIST mosaics demonstrating local registration error in different directions. The Hoechst 
images of nuclei from cycles 1 and 2 are pseudocolored red and cyan, respectively, to visualize the 
effect of registration error at the single-cell level. The MIST median error of ~2 µm is around one 
quarter of the diameter of the average cell nucleus, a shift that is clearly visible at full resolution. (d) 
Heatmap of MIST local registration error direction (hue) and magnitude (intensity) at 200-pixel 
resolution overlaid on the Hoechst image (brighter colors indicate larger errors). Characteristic tile-sized 
scale of heatmap features suggests inconsistent stitching. Yellow X marks indicate locations highlighted 
in panel c. (e) The same regions as in panel c, but taken from ASHLAR mosaics. An identical 
pseudocoloring scheme is used; the red and cyan images, now more accurately registered, combine to 
appear nearly white. The ASHLAR median registration error of ~0.1 µm is approximately 1% of the 
diameter of a nucleus. (f) Heatmap of Ashlar local registration error using the same intensity and hue 
scale as in panel d showing overall lower error and no apparent tile-scale features. Remaining small-
scale errors represent damaged tissue that could not be registered.  
 

Benchmark dataset for evaluating registration accuracy 

As a first test of ASHLAR and MIST on high-plex, whole-slide tissue data, we acquired a ~24 

mm x 14 mm x 5 µm thick section of a human normal colon sample from the Cooperative Human 

Tumor Network (https://www.chtn.org/). This sample was subjected to 9-cycle t-CyCIF (Lin et al., 

2018) to generate a subcellular-resolution 28-plex image. Cell nuclei were stained with Hoechst 33342 

in every cycle, providing reference features for image alignment. Imaging was performed on a RareCyte 

CyteFinder II HT Instrument with a 20X 0.75 numerical aperture (NA) objective and four excitation and 

emission filter pairs having peak and full-width at half-maximum bandpass wavelengths (in nm) of: 

395/25-438/26, 485/25-522/20, 555/20-590/20, and 651/10-692/40, respectively. 2 x 2 pixel binning was 

used during acquisition yielding a 4-channel tile with dimensions of 1280 x 1080 pixels and a pixel size 

of 0.65 µm per pixel. To image the entire specimen, a grid of 609 (29 x 21) tiles was used and each tile 

overlapped by ~31 pixels (20 µm or 2-3%) in both directions. Each cycle yielded one OME BioFormats-

compatible RCPNL file containing 16-bit imaging data from all 609 tiles, approximately 7 GB in size. 

The entire 9-cycle dataset comprises 5,481 image tiles and is 61 GB in size. The experimental protocol 

is documented on protocols.io (https://dx.doi.org/10.17504/protocols.io.bjiukkew) and antibodies used 

are listed in Supplementary Table 3. The primary unstitched image data are freely available for 
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download from Synapse at https://dx.doi.org/10.7303/syn25826362. We ran both MIST and ASHLAR 

on this colon dataset, yielding mosaic images approximately 36,000 x 22,000 pixels in dimension. 

Figure 4a shows the resulting image mosaic following stitching and registration with ASHLAR; the 

quality of the alignment is highlighted at four regions of tile-tile overlap in Figure 4b. We then used the 

Hoechst reference channel mosaic images from the first two cycles to evaluate whether the stitched and 

registered output from MIST and ASHLAR was aligned accurately enough for single-cell-level 

quantitative analysis. 

 

Image registration of independently stitched mosaics 

Whereas ASHLAR performs stitching and registration in a coordinated process, it was necessary 

to globally register the MIST output mosaics before evaluating local registration accuracy. We first 

downsampled the MIST mosaic images by 10X to obtain a manageable image size and then aligned 

them with subpixel-precision phase correlation (phase correlation on the full-size images required a 

computer with more RAM than was readily available to us). We performed the same process on the 

ASHLAR mosaics to verify that their global registration was already optimal. 

 

Optical flow computation and evaluation of registration accuracy and robustness 

We used dense optical flow fields to quantify and visualize local registration errors in the 

Hoechst reference channel. Because we could not find any general-purpose dense optical flow 

implementations capable of processing gigapixel-scale images on a reasonable workstation computer, 

we implemented our own approximate method suitable for small-magnitude flow fields using a block-

based approach which is memory-efficient and highly parallelizable. The two images to be compared are 

broken down into non-overlapping blocks of 200 x 200 pixels and the relative shift between each 

corresponding pair of blocks is computed using phase correlation. Any minor rotation, scaling, or shear 

between the full input images is then accounted for through a compensating affine transformation 
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computed via multiple linear regression on the full set of per-block shift vectors. This phase correlation 

and transformation procedure yields a 200x-downsampled “block-dense” flow vector field that 

characterizes the local registration error. It is important to note that there is no separate ground truth data 

in this method – it only measures the consistency of a stitching/registration algorithm against itself. 

Having previously established that Ashlar and MIST have equivalent stitching accuracy, we felt this 

approach was reasonable. 

We defined the local registration error as the magnitude of the flow vector field at each point. 

The median error was 1.94 µm for the MIST mosaics (~3 pixels) and 0.119 µm (~0.2 pixels) for the 

corresponding ASHLAR mosaics (Figure 5b). At a magnification sufficient to see individual cells, the 

error generated by MIST was readily apparent (Figure 5c). Visualizing the full vector field on top of the 

reference channel images (Figure 5d) showed that the field direction was often consistent across large 

regions but could change dramatically at tile boundaries. This most likely arises because small local 

stitching differences propagate across the mosaic in a manner that is uncorrelated between cycles, 

leading to inter-cycle shifts that cannot be corrected by any rigid adjustment of the entire mosaic. It is 

important to note that this is not a weakness of MIST per se, but rather a consequence of applying a tool 

designed for stitching alone to the combined process of stitching and registration, a use case for which 

MIST was not designed. With the ASHLAR-generated mosaic, vector field visualizations confirmed a 

much lower level of registration error (Figure 5e, f). Close inspection of the few regions with high error 

showed that they corresponded to parts of the tissue in which cells had become physically distorted or 

detached from the slide as a consequence of the cyclic staining procedure. Thus, remaining errors are not 

a result of errors in registration and stitching but rather extrinsic processes that must be identified and 

accounted for by downstream error-checking procedures.  

To demonstrate ASHLAR’s robustness and versatility with different image types, we compared 

its registration accuracy against MIST on four further datasets encompassing two cyclic imaging 

techniques, three vendors’ microscopes, and two new tissue types plus a tissue microarray (TMA) that 
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itself spans a multitude of tissue types and disease states. We also evaluated one additional open-source 

stitching algorithm, BigStitcher (Hörl et al., 2019), on some of these datasets. The datasets are described 

in Supplementary Table 4 and the evaluation results shown in Supplementary Figures S1-S5. 

Overall, ASHLAR compared favorably to MIST and BigStitcher on all datasets with respect to 

registration of cyclic datasets. 

 

Evaluation of commercial stitching algorithms 

Slide scanning microscopes include stitching algorithms as part of their data acquisition and 

analysis software. These algorithms use proprietary file types and in most cases they erase the original 

image tiles or strips after generating the final stitched output image. Thus, detailed evaluation of their 

performance is not straightforward, but it is possible to evaluate their stitching consistency by using our 

optical flow method to examine two re-scans of the same specimen. We performed such an analysis 

using a human colorectal adenocarcinoma specimen retrieved from the archives of the Department of 

Pathology at Brigham and Women’s Hospital with Institutional Review Board (IRB) approval as part of 

a discarded/excess tissue protocol. The specimen was stained with H&E and scanned in brightfield 

mode at the Brigham and Women’s Hospital Pathology Core Facility using three different slide scanning 

microscopes: a Leica Aperio GT450, Leica Aperio VERSA, and Hamamatsu NanoZoomer 2.0-HT. We 

also imaged the adenocarcinoma specimen in brightfield mode using a GE INCell 6000 microscope to 

produce tiles suitable for processing with ASHLAR. The specimen was imaged twice on each 

instrument to emulate a cyclic imaging workflow. Pre-stitched mosaic image pairs generated by the 

three scanners and the ASHLAR-stitched mosaic pair assembled from the INCell 6000 tiles were 

subjected to the registration accuracy evaluation described above. The results, shown in Figure 6, 

demonstrate that all of the tested systems exhibit worse stitching consistency than ASHLAR. Inspection 

of the underlying images reveals obvious stitching errors that would confound single-cell-level analysis. 

We also observed that the error field images also contained  “signatures” of each instrument’s internal 
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design, such as line sensor vs. area sensor and sensor size and orientation. Thus, commercial algorithms 

included with existing slide scanners do not appear to fully correct for intrinsic limitations of the 

instrumentation. Finally, we evaluated the registration accuracy of the stitching feature in Zeiss’s Zen 

software which was recently used to generate a publicly available 50-plex rat brain dataset (Maric et al., 

2021) based on cyclic fluorescence imaging on a Zeiss Axio Imager Z2 microscope. We compared the 

DNA channel images from two imaging cycles from this dataset with our evaluation framework and 

found conspicuous errors here as well (Supplementary Figure S6). Thus, while commercial algorithms 

may stitch well enough for visual review and gross structural analysis, they have weaknesses that are 

very likely to impact single-cell quantification – especially with cyclic imaging methods. 
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Figure 6: Comparison of registration accuracy between ASHLAR and software included with 
various commercial slide scanners. All images and data in this figure derive from a single section of a 
human colorectal adenocarcinoma biopsy (see text for details). (a) Local registration error distance 
distributions for technical replicate slide scans on three dedicated slide scanning microscopes as well as 
an ASHLAR mosaic from a research-grade microscope. All scans used the same H&E-stained section of 
a human colon adenocarcinoma biopsy to allow direct comparison of results. Distances in this panel as 
well as panels c-f were clipped to 1.5 µm at the upper end to highlight the relevant data. (b) H&E 
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staining of the sample used for this analysis. (c) Heatmap of ASHLAR local registration error direction 
(hue) and magnitude (intensity) at 200-pixel resolution overlaid on the blue channel of the brightfield 
image, inverted (bright becomes dark and vice versa). (d-f) Heatmap of the three slide scanners’ local 
registration error, as in panel c. Engineering details of the different instruments are readily apparent in 
the error field patterns. 
 

Runtime and memory usage 

The runtime and RAM usage for the stitching and registration phases of ASHLAR are each 

comparable to that of MIST stitching running on a single CPU core. On the first two cycles of the 

human colon dataset, ASHLAR required 306 seconds (149 s to stitch cycle 1 and 157 s to register cycle 

2) and 2.1 GB RAM. MIST-FFTW required 228 seconds (114 s per cycle) and 2.5 GB RAM to compute 

corrected tile positions. If we include the 30 seconds per cycle required to convert the datasets from the 

microscope vendor’s native file format into MIST’s required single-TIFF format (ASHLAR requires no 

such conversion step) the total for MIST is 288 seconds. MIST does execute more quickly when allowed 

to use multiple CPU cores or a GPU; we have not enabled parallel processing in ASHLAR but expect a 

similar increase in speed. ASHLAR’s runtime per imaging cycle varies linearly with the total number of 

pixels in all tiles of the reference channel (Supplementary Figure S7). All measurements were taken on 

a 3.5 GHz Intel Xeon E5-1620 v3 CPU with 32 GB of RAM and a SK Hynix SH920 512 GB SSD 

running Ubuntu Linux 20.04. Software versions were as follows: ASHLAR 1.14.0, MIST 2.0.7, Python 

3.8.10, OpenJDK 1.8.0. 

 

DISCUSSION 

To date, ASHLAR has been used to stitch several hundred whole-slide images collected using 

diverse acquisition technologies and instruments (Supplementary Table 1). ASHLAR, therefore, 

provides a robust and efficient way to generate large, multi-channel, mosaic images of tissues and other 

biological specimens by assembling individual megapixel image tiles collected at multiple wavelengths 

over multiple imaging cycles. The key innovation for image quality is joint optimization of stitching and 
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registration as opposed to stitching individual cycles independently and then attempting to register 

mosaic images against each other. Joint optimization becomes increasingly important as the size of the 

specimen increases. Coupling ASHLAR with tile-based image acquisition and cyclic data collection 

makes it possible to optimally balance the resolution, size, and plex of a tissue image for reliable 

analysis of spatial features on a wide variety of scales. Although many recent highly multiplexed studies 

have relied on small fields of view and TMAs, whole-slide imaging is emerging not only as a diagnostic 

necessity (Health, 2019) but also as a key requirement for basic research into the spatial organization of 

tissue and tumor microenvironments (Lin et al., 2021). ASHLAR is optimized for these data acquisition 

requirements and is more rapid and accurate than existing open-source methods we have tested as well 

as commercial software available with many slide scanners. ASHLAR reads and writes files in the 

OME-TIFF standard and can process images from almost all commercial microscopes using the OME 

Bio-Formats library (Li et al., 2016). This greatly streamlines the stitching and registration process since 

little manual intervention is required. Once an optimized whole-slide image mosaic has been generated, 

it is often convenient to visualize or analyze limited regions of the image. ASHLAR, therefore, supports 

re-tiling using adjustable block sizes and overlaps while retaining subpixel registration and without 

losing any information along the original tile seams (Figure 2c). This block-based processing is critical 

for downstream image processing such as single-cell quantification and pixel-level machine learning, as 

few methods can process gigapixel-scale images in a single pass.  

ASHLAR was designed as a general-purpose algorithm compatible with a wide variety of 

microscopes and image acquisition technologies. To establish that ASHLAR meets these requirements, 

we incorporated it into MCMICRO (Schapiro et al., 2022a), a data processing pipeline leveraging either 

Docker or Singularity containers (Kurtzer et al., 2017; Merkel, 2014) and implemented it in the 

workflow systems Nextflow (Di Tommaso et al., 2017) and Galaxy (Afgan et al., 2018). MCMICRO 

makes it possible to process high-plex tissue images of raw data into a table of computed single-cell 

features; stitching and registration by ASHLAR is an essential early step in the MCMICRO pipeline. 
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Via MCMICRO, ASHLAR has been made available to multiple research teams in the NCI HTAN 

consortium (Rozenblatt-Rosen et al., 2020) and, to date, has been used successfully in 17 published 

manuscripts and three posted pre-prints by investigators at seven different institutions. These papers 

encompass a total of ~240 whole-slide images and 11 TMAs that have been successfully stitched using 

data obtained with three data acquisition methods (CyCIF, CODEX, and mIHC (Gerdes et al., 2013; 

Goltsev et al., 2018; Lin et al., 2018; Tsujikawa et al., 2017)) and on five different types of microscopes 

(Supplementary Table 1). This experience demonstrates that ASHLAR operates as designed with most 

image data, but some edge cases may require tuning the algorithm’s parameters. This is most commonly 

encountered when tile overlaps are too small or the tissue has suffered grievous damage during 

processing. The online documentation for ASHLAR (available at https://labsyspharm.github.io/ashlar/) 

discusses these and related issues in greater detail. ASHLAR is available under the permissive MIT open 

source software license, making it possible for commercial companies to modify and package it with 

their instruments. 

ASHLAR is effective not only with conventional rectangular image acquisition grids, but also 

with images involving multiple non-overlapping regions of interest and tiles that do not form a 

rectangular grid. The ability to manage irregular and disconnected specimens has emerged as a key 

requirement in the broader application of tissue imaging. By instructing a microscope to avoid imaging 

empty space lying outside of the margins of the tissue, imaging time and file size can be reduced, often 

by a factor of two or more (a significant advantage as datasets approach terabyte scale). We have 

successfully used ASHLAR to assemble images of tissue microarrays (TMAs), in which 0.3 to 1 mm 

diameter “cores” from multiple tissue specimens are positioned in a regular array on a glass slide, 

making it possible to analyze over 100 specimens in parallel. This represents a potentially challenging 

stitching problem since much of the slide is devoid of sample, and individual cores are often divided 

among multiple fields. Core biopsies and fine needle aspirations are other samples in which collection of 

non-rectangular images is highly advantageous. Such biopsies are typically long and thin (0.3 x 10-20 
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mm) and rarely aligned along the axis of the slide, making it necessary to collect tiles on a diagonal. The 

ability of ASHLAR to reject spurious alignments using a permutation test followed by pruning of 

adjacency graphs make the algorithm robust to regions of the images such as these that contain little if 

any data in the registration channel.  

 Much of the recent discussion about multiplexed tissue imaging has focused on the importance 

of the number of channels (assay plex) (Baharlou et al., 2019), since more channels allow more proteins 

or genes to be assayed and yield more detailed molecular insights. However, two other considerations 

are at least as important: image resolution and field of view (speed also matters for high volume 

applications). In the case of fluorescent imaging of a single tile, resolution and field of view are 

functions of the optics, primarily the numerical aperture of the objective lens, the properties of the 

transfer optics and the number of camera pixels – which together specify pixel size (Ghiran, 2011). For 

large whole slide images assembled from many tiles, the accuracy of image stitching and registration 

also becomes critical. ASHLAR directly addresses this requirement. In most applications, it is also 

combined with other software to optimize the quality of image mosaics. Prior to stitching and registering 

tiles using ASHLAR we perform illumination correction using BaSiC (Peng et al., 2017), which exploits 

low-rank and sparse decomposition to correct for uneven shading and background variation in 

microscope images. This is essential because the illumination of each tile is typically brightest at the 

center of the field (along the optical axis) and dimmer at the edges. 

 

Limitations 

We have found that the spanning tree approach used to combine individual pairwise tile 

alignments is broadly effective. However, one recurrent weakness observed with large specimens is that 

tiles at the margin of the tissue that are adjacent in physical space are often found to lie far apart in the 

adjacency graph. When corrected positions are determined, uncorrelated error accumulates as pairwise 

shifts are added up along the edges in the spanning tree. The resulting stitching error is rarely noticeable 
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by eye in the resultant mosaic image, but we have identified this as an area for future improvement of 

the algorithm.  

To achieve reasonable processing speed, ASHLAR makes some compromises with respect to the 

factors it accounts for during stitching and registration. For example, ASHLAR currently performs only 

rectilinear correction of tile position and assumes tiles have the same magnification. When images from 

different microscopes must be combined it is usually necessary to account for changes in camera angle 

due to rotation of individual cameras and their microscope stages relative to each other. Scaling is also 

frequently different across instruments, even when the same objective is used, due to differences in 

transfer optics and sensor configurations. We have never encountered the need to assemble an image 

from multiple microscopes (partly because many other batch effects are introduced) but corrections for 

image rotation and scaling can be performed through minor additions to the alignment procedure 

(Gonzalez, 2011); we will add these features to ASHLAR as the need arises, most likely arising from a 

requirement to combine multiple different imaging modalities. 
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