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Abstract 

The SARS-CoV-2 pandemic has caused widespread illness, loss of life, and socioeconomic disruption that 

is unlikely to resolve until vaccines are widely adopted, and effective therapeutic treatments become 

established. Here, a well curated and annotated library of 6710 clinical and preclinical molecules, covering 

diverse chemical scaffolds and known host targets was evaluated for inhibition of SARS-CoV-2 infection in 

multiple infection models. Multi-concentration, high-content immunocytofluorescence-based screening 

identified 172 strongly active small molecules, including 52 with submicromolar potencies. The active 

molecules were extensively triaged by in vitro mechanistic assays, including human primary cell models of 

infection and the most promising, obatoclax, was tested for in vivo efficacy. Structural and mechanistic 

classification of compounds revealed known and novel chemotypes and potential host targets involved in 

each step of the virus replication cycle including BET proteins, microtubule function, mTOR, ER kinases, 
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protein synthesis and ion channel function. In the mouse disease model obatoclax effectively reduced lung 

virus load by 10-fold. Overall, this work provides an important, publicly accessible, foundation for 

development of novel treatments for COVID-19, establishes human primary cell-based pharmacological 

models for evaluation of therapeutics and identifies new insights into SARS-CoV-2 infection mechanisms. 

Significance 

A bioinformatically rich library of pharmacologically active small molecules with diverse chemical scaffolds 

and including known host targets were used to identify hundreds of SARS-CoV-2 replication inhibitors using 

in vitro, ex vivo, and in vivo models. Extending our previous work, unbiased screening demonstrated a 

propensity for compounds targeting host proteins that interact with virus proteins. Representatives from 

multiple chemical classes revealed differences in cell susceptibility, suggesting distinct dependencies on 

host factors and one, Obatoclax, showed 90% reduction of lung virus loads in the mouse disease model. 

Our findings and integrated analytical approaches will have important implications for future drug screening 

and how therapies are developed against SARS-CoV-2 and other viruses. 

Introduction 

In December 2019, an unidentified pneumonia was reported in Wuhan, China, and by early January 2020, 

the causative agent had been identified as a novel coronavirus now called SARS-CoV-2. SARS-CoV-2, of 

the family Coronaviridae, is a single-stranded, positive-sense RNA virus with a genome of approximately 

29 kb (1, 2). SARS-CoV-2 is the third coronavirus in recent history to produce an epidemic, after SARS-

CoV and MERS-CoV (3, 4). The virus has rapidly spread across the world causing over 128 million cases 

globally of COVID-19, as of April 2021, resulting in more than 2.8 million deaths (5) and causing economic 

contraction, mass unemployment, disruption of education, and increasing poverty levels (6). Fortunately, 

effective vaccines have become quickly available and are being distributed on an emergency basis. 

However, given the emergence of more contagious and potentially pathogenic variants, and the need for 

more effective therapies for patients, the search for new therapeutics remains a priority (7, 8). These efforts 

were launched by a series of repurposing screens of varying sizes.  The largest was a screen of a 12,000 

compound library, termed ReFRAME (9), and a recently reported screen of a 3000 compound library by 

Ditmar et al (10).  Both studies identified PIKfyve inhibitors, numerous protease inhibitors (for example MG-

132), several classes of kinase inhibitors and cyclosporin and analogues. While it was encouraging to see 

overlap between these studies, each also highlighted the interassay variability seen in evaluation of small 

molecule inhibitors of SARS-CoV-2 replication to date and the need for additional and more detailed 

studies.   

Clinical successes to date have largely been confined to repurposed antivirals (11), highlighting the need 

for further efforts to identify compounds with novel mechanisms of action and better define pathways and 

targets of interest for future SARS-CoV2 therapeutics. The current study focused on screening of the Drug 

Repurposing Hub (DRH) library, a collection of 6710 compounds highly enriched with molecules which have 
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been FDA approved, entered clinical trials (4.8% Phase 1, 2.0% Phase 2, 7.5% Phase 3, 4.4% Phase 4), 

or have been extensively pre-clinically characterized (12).  The library comprises clusters of structurally 

related molecules that, with a well annotated database for host drug targets, provides a unique opportunity 

to capture preliminary structure-activity relationships of active molecules as well as identification of host 

targets of action that could be used to better design novel, specific therapeutics against SARS-CoV-2. The 

primary screen was the first to be conducted using multiple treatment doses at this scale, providing a data 

set that grades all compounds by activity from strongest to least active. These data were used to expand 

our previous computational studies in establishing SARS CoV-2 associated protein networks that may be 

enriched in host targets for future drug discovery efforts (13).  The most promising hits from the screening 

effort were assessed for efficacy in a series of orthogonal assays conducted in human cell lines (Huh-7 and 

A549 cells), and human primary cell-based tissue models. Our studies confirmed the activity of several 

previously identified (inhibitors of PIKfyve, cathepsins, protein synthesis) as well as novel compound 

classes. The most promising small molecule treatment to emerge from the screen, obatoclax, demonstrated 

consistent activity across all cell-based assays and reduced SARS-CoV-2 titers by up to 10-fold in a mouse 

infection model using clinically achievable compound exposures.   

Results 

Immunofluorescence-based screening of small compound library identifies potent 

inhibitors of SARS-CoV-2 infection of cells. 

The DRH compound library (Fig. 1A) was initially evaluated using an immunofluorescence-based assay to 

detect SARS-CoV-2 N protein expression. The screen was followed by computational analysis to prioritize 

the most potent for follow up in mechanistic assays evaluating impact on cell entry, genome replication and 

egress of progeny viruses as well as evaluation in primary human cell models (Fig. 1B). In order to capture 

all steps of the viral replication cycle, the primary screen was conducted for 36-48 hours to allow detection 

of 3-4 rounds of replication. While suitability of other cell types was evaluated for screening, VeroE6 cells, 

derived from African green monkey kidney cells, supported the most robust and consistent infection 

compatible with high-throughput screening at high biocontainment. Using automated analysis of stained 

cells (Fig. 1C, upper) the assay gave an average >80-fold difference between infection of untreated cells 

and those treated with a previously reported inhibitor of SARS-CoV-2 replication, the protease inhibitor, 

E64d (14) and yielded an assay Z’ of 0.6, indicating suitability for a high throughput screen (15) (Fig. 1C, 

lower).  

To identify compounds with concentration responses and to grade each for potency, four doses of each 

compound were tested, ranging from 8 nM to 8 μM in 10-fold increments. Compounds were initially grouped 

by Z-score difference from untreated controls for the 8 μM dose point and then by computer aided dose-

response evaluation to classify compounds (Table S1, S2) on potency as strong (Z-score >2.5), weak (Z-

score 1.5-2.5), inactive (Z-score <1.5) or cytotoxic (>60% cell loss by nuclei count). We identified 172 
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(2.56%) strongly active, 217 (3.23%) weakly active and 1.6% as cytotoxic (examples shown in Fig. 1D). 

The data is deposited in the DRH database: https://www.broadinstitute.org/drug-repurposing-hub with 

active compounds summarized in Fig. 2A.  

Structure-activity analysis reveals compound classes effective against SARS-CoV-2 

replication. 

To reveal the structural characteristics that defined active compounds, structures were encoded using 

Morgan Fingerprints (around molecular heavy atoms up to radius 3, and hashed each molecular fingerprint 

to a binary vector of 8,192 bits, Table S3) and similarity searches performed. While the library showed 

diverse structural characteristics, active molecules showed higher medians (Fig. S1), with strongly active 

compounds showing significant enrichment for 89 bits. Hierarchical clustering of the Jaccard similarity 

matrix showed no clear connections to experimental classes for the entire library (Fig. S2) as would be 

expected from a diverse library of this size but actives showed small clusters of structurally related 

molecules appearing close to the diagonal (Fig. 2B). Reducing the dimensionality of the bit vector 

representation to 3D with UMAP (16) revealed the presence of local clusters (Figure 2C and in interactive 

Fig. S3) rather than by global structural properties characterizing each experimental class. Of these, some 

have been previously reported, such as aminoquinolines (amodiaquine-related), nucleosides (Remdesivir-

like) and phenothiazines (chlorpromazine-like, antipsychotic drugs) but others have not been previously 

discussed in detail (pyrimidyl-indolines, similar to GSK2606414), azaspiranes, phenylpiperidines, 

benzodiazines, phenylpropanoids and steroid lactones (cardiac glycosides).  

We next evaluated if the drugs that presented structural similarity were also targeting the same or 

homologous proteins. For that, we selected all pairwise molecule structures with Jaccard similarity higher 

than 0.5 for which both had at least one protein target described in the Broad Library. We next calculated 

the gene overlap of those drugs, and found that out of the 32 pairwise similar drugs, 29 compound pairs 

shared at least one protein target (Fig. S4). For the remaining 3 pairs, we compared the protein target 

sequences and found each were related. Only one pair (sertraline and indraline) share structural similarity 

without sharing protein target similarity. This analysis suggests that for these related pairs of molecules, 

activity may correspond to homologous or similar protein targets.  

Computational analysis reveals enriched drug targets and pathways that are involved in 

SARS-CoV-2 replication. 

Of the 6710 compounds, 4,277 had attributable host targets annotated in the DRH database. GO 

enrichment showed a similar profile with active drugs enriched for processes related to rRNA, microtubules, 

collagen and proteoglycan binding, and GPCR receptor activity, GTP metabolism, viral transcription 

processes, ion channel function and protein folding (Table S4). It is interesting that angiotensin-related 

drugs were identified as SARS-CoV-2 uses angiotensin converting enzyme 2 (ACE2) as a receptor. While 

a topic of interest early in the pandemic, patients already taking such drugs have not shown a beneficial 
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outcome (17). Furthermore, effort was made to prevent oversampling of promiscuous compounds and over-

represented targets but GPCR-targeting compounds are one of the most abundant drug classes and, thus, 

must be interpreted with caution. Fisher’s exact test was used to identify if active compounds were enriched 

for known drug-targets. Of the 389 active compounds, 813 targets were identified and only 52 targets 

appeared enriched (Fisher’s exact test; p < 0.05). These were related to sodium ion export, membrane 

repolarization, regularization of cardiac conduction (Table S5). The drug-target network analysis for these 

compounds revealed two large modules of drugs sharing its targets, comprising 61 drugs, and 119 targets, 

and 43 drugs and 66 targets. We also identified 105 additional smaller modules suggesting compounds 

targeted a discrete group of host targets (Fig. 2D). 

To understand where these drug-targets are found in a human protein-protein interaction network, we first 

calculated the largest connected component (LCC) targets in each outcome class and the significance of 

the module size using a degree-preserving approach (18), preventing the same high degree nodes being 

selected repeatedly. We find that the LCC of the drug targets are statistically significantly larger than 

random for strong (149; 126.02 ± 10.91; Z-Score 2.11) and weak (211; 173.84 ± 15.18; Z-Score 2.45) 

classes. The combined class was also significant (311; 277 ± 18.69; Z-Score 1.8) (Fig. S5), taken together, 

the analysis suggests clustering of drug targets within the interaction network. 

To better understand the relationships of active compounds the network separation between targets of each 

category was computed (Fig. 2E). Similar to our previous study (13), targets of active compounds have a 

negative network separation (𝑆𝑆−𝑊= -0.35), indicating that each targets the same neighborhood in the 

human protein-protein interaction network. In contrast, inactive compounds have close-to-zero or positive 

separation from the active compounds (𝑆𝑁−𝑊= -0.05, 𝑆𝑁−𝑆= 0.11), indicating inactive compounds target a 

different network neighborhood. Interestingly, when we asked if targets were related to identified SARS-

CoV-2 host protein interactions (19) we found, similar to our previous study (13), that the relative network 

proximity of each target module to the COVID-binding proteins is predictive of efficacy. Active compounds 

have z-scores close to zero (Fig. 2F) whereas, inactive compounds have a much stronger positive proximity 

z-score, indicating their targets are far from COVID-binding proteins than random expectation. Taken 

together, these data show that active and inactive compounds target distinct network neighborhoods in the 

human protein-protein interaction network, and their network proximity to the COVID-binding proteins is 

predictive of drug efficacy.  

In addition to analyzing gene targets, 6,150 of the compounds were annotated for mechanism of action in 

the DRH (12). Using this information, we checked for over- and under-represented MOA that could be 

driving the drug response using a 𝜒2-test (p < 0.05, FDR-BH). Here, inhibitors of mTOR, antimalarial agents, 

ATPase, HSP, bromodomain, and tubulin polymerization were significantly enriched. Furthermore, mapping 

of compounds to the Anatomical Therapeutic Chemical Classification (ATC) drug categories (20) and 

chemical taxonomy identified compound classes that were over-represented in the hits (Table 1). These 

included previously identified classes of compounds active against SARS-CoV-2 in vitro, including 
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phenothiazines, benzothiazines, and other antipsychotic agents, as well as new classes such as PERK 

inhibitors and the cardiac glycosides. Each of these classes were also found clustered in the structural 

analysis (Fig. 2C) supporting the relationship between drug class and host targets.  

Rescreening and orthogonal validation of hits with human cell lines. 

Based on performance in the primary screen and compound classification using the structural similarity 

clustering and ATC classifications, 40 representative compounds were chosen for detailed potency 

determination, and mechanistic analysis. The compounds were initially rescreened in VeroE6 cells to 

confirm activity before evaluation in human cell lines and timing was set to capture limited virus replication. 

In general, most compounds yielded EC50 values similar to that expected from the primary screen potency 

determination (Table 2, third column, Figure S6 and examples in Fig. 3A). For some compounds, such as 

methotrexate, a complex inhibition pattern was observed upon dose titration, being inhibitory at low doses 

but reaching a plateau above the 50% infection level and so an EC50 was not calculated.  

Compounds were then evaluated using a human cell line, Huh7, that is intrinsically susceptible to SARS-

CoV-2 infection. Orthogonal assays measured cell-associated virus mRNA levels by a FISH assay, and 

virus associated genomic RNA (gRNA) by qPCR. Each assay provides information on the impact of a 

treatment at distinct stages of the replication cycle. Since the qPCR and FISH assays have low throughput, 

initial concentrations of compound were limited to the EC90 values from VeroE6 cell tests +/- 4-fold. For the 

PCR based assay, strong and statistically significant effects of harringtonine, homoharringtonine, 

proscillaridin, BAY-2402234, obatoclax, and sangivamycin were seen at <20 nM producing 74 to 93% 

(P<0.01) decreases in gRNA in the culture supernatant (Table 2, fourth column). While most of the 

compounds showed potencies similar to those in VeroE6 cells, the mTOR inhibitor, omipalisib, showed 

inhibition below the lowest concentration tested indicating >10-fold stronger potency than seen in VeroE6 

cells. Differences were also observed for two each of the HSP90 and BET protein inhibitors that were 

classed as weak inhibitors in Vero cells. For the HSP90 inhibitor AT13387, activity at the highest dose 

tested (150 nM) was observed. BET inhibitors, BET-BAY-002 and mivebresib, were also active. Overall, 

such changes in activity suggest differences in dependency on BET and HSP90 proteins or drug action in 

Vero versus human Huh7 cells.  

The impact of compounds on virus mRNA production was measured using a FISH assay targeting RNA 

production from the viral subgenomic promoter that controls expression of structural proteins (Fig. 3B) and 

image analysis to score replication efficiency. In general, activity in this assay reflected that seen in the 

qPCR-based assay with potency typically being within 3-fold of each other (Table 2). The DHODH inhibitor, 

BAY-2402234, was the most potent, inhibiting infection by 50% at 10 nM. The protein synthesis inhibitors, 

emetine, harringtonine, and homoharringtonine, were equally active, blocking >50% RNA production at 50 

nM (Fig. 3B). Other strongly active compounds were the nucleoside analog, sangivamycin, as well the 

mTOR and BCL inhibitors, omipalisib and obatoclax, respectively. Cardiac glycosides, proscillaridin and 
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ouabain, were also active at 50 and 150 nM, respectively. Of note was the large difference in activity of 

harringtonine and homoharringtonine being over 5 to 8-fold more potent in the virus genome release assay 

over the RNA production assay, which would be consistent with disruption of virus assembly and may reflect 

the need for balanced stoichiometry of structural proteins easily disrupted by protein synthesis inhibition. 

Similarly, differences were noted for compounds that inhibited genome release from cells in the qPCR 

assay but had negligible impact on the viral mRNA signal. These compounds were the DHFR inhibitor, 

pralatrexate, the COX inhibitor, talniflumate, the BET inhibitors, BET-BAY-002 and mivebresib, and the 

methyltransferase inhibitor, BIX-01294, suggesting that each also worked to disrupt packaging of viral 

genomes into new virus particles and/or their release into the culture medium. A recent report indicated that 

methotrexate, a paralog of pralatrexate, can block release of SARS-CoV-2 genomic RNA into the culture 

medium (21). For the COX inhibitor, talniflumate, COX activity has also been shown to be important for 

packaging of pseudorabies genomes into capsids (22). Furthermore, BET proteins were identified as 

interacting with SARS-CoV-2 E, a protein important for maturation and release of virions from cells (19) and 

were identified as a COVID-network associated drug target class l analysis in our computational analysis 

(Fig. 2E, F). To our knowledge, a role for methyltransferases in production and packaging of virus genomes 

has not been reported and will require additional work to understand its role.  

Entry inhibition. 

We next sought to evaluate the impact of compounds that displayed the most potent effects on virus 

replication on SARS-CoV-2 spike glycoprotein (S)-mediated entry. SARS-CoV-2 S protein mediates virus 

entry upon binding to the angiotensin-converting enzyme 2 (ACE2) receptor and subsequent proteolytic 

activation by either cell surface expressed serine proteases, such as TMPRSS2 or endosomal cathepsins, 

CatL or CatS, to trigger fusion of viral and host membranes (14). Eleven compounds were tested at Vero 

EC90 concentrations in A549 cells expressing recombinant ACE2 (Fig. S7) and challenged with SARS-CoV-

2 S pseudotyped lentiviral vectors (LV). Of the compounds evaluated, omipalisib and BAY-2402234 most 

potently inhibited SARS-CoV-2 S pseudotyped LV entry by >95% (Fig. 4), though similar inhibition was also 

observed against vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped LV, suggesting  these 

molecules likely targeted a post-entry step. Nanchangmycin also similarly affected both SARS-CoV-2 S 

and VSV-G pseudotype  LV entry (75% inhibition). In contrast, Narasin displayed selective inhibition (~80%) 

of SARS-CoV-2 S pseudotypes without significantly affecting VSV-G pseudotype LV entry. Salinomycin, a 

methylated analogue of narasin, has been shown to alter lysosome function (23), which is suggestive of an 

effect of narasin on endosomal uptake of the virus. Similarly, proscillaridin also appeared to specifically 

block entry of SARS-CoV-2 S pseudotype LV. Proscillaridin was shown to reduce receptor availability for 

hepatitis B virus (24) and thus may affect a membrane function important for SARS-CoV-2 infection. 

Obatoclax displayed partial inhibition of SARS-CoV-2 S pseudotype LV entry. Despite being characterized 

as a BCL inhibitor, obatoclax has been reported to interfere with endosomal acidification pathways needed 

for alphavirus and flavivirus entry into cells (25). The partial inhibition of SARS-CoV-2 S-mediated entry by 
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proscillaridin and obatoclax compared to the almost complete inhibition of virus replication (robust decrease 

in N protein expression and viral gRNA copy number in cell supernatants) suggests each drug may act at 

multiple steps in virus replication. The methyltransferase inhibitor BIX-01294, the PERK inhibitor 

GSK2606414, the CREBBP/p300 inhibitor A485, the nucleoside analog sangivamycin, and the protein 

synthesis inhibitor emetine, were each ineffective in blocking SARS-CoV-2 S-mediated entry, and based 

on activity in the replication assays, must act at steps after virus entry into cells.  

Confirmation of SARS-CoV-2 inhibition in a physiologically relevant 3D tissue model.  

Four of the most active treatments were evaluated using primary lung and gastrointestinal multicellular 

models. While COVID19 causes severe respiratory distress, several studies have reported over half of 

patients also suffer from gastrointestinal symptoms, including diarrhea, abdominal pain, and vomiting. The 

gut is also a prominent site for virus replication (26). Human donor-derived stratified epithelial cell models 

representing the airway and gut were obtained commercially (27). Similar to previous reports (28), infection 

in the lung model was variable between batches and not easily used for compound evaluation. However, 

the gastrointestinal model showed robust, uniform infection (Fig. 5A). By morphology, the infected cells 

appeared to be epithelial. The compounds tested in this model, including Remdesivir as an active control 

(29) were used at the VeroE6 EC90 concentration. Emetine, GSK2606414 and obatoclax were as effective 

as Remdesivir, preventing >80% of cell infection. Proscillaridin was less effective, showing inhibition 

ranging from 50 to 80%. These observed differences helped further refine compound activities, with the 

most promising showing consistent activity across cell lines and human tissue models.   

In vivo evaluation in the mouse disease model.  

Obatoclax was the most potent and consistently performing of all the compounds evaluated in this study. It 

is reported to have favorable pharmacokinetics and is well tolerated in mice (30) making it the strongest 

candidate for evaluation in a SARS-CoV-2 mouse disease model. We used K18-hACE2 transgenic mice, 

which express recombinant human ACE2 (hACE2) protein under control of a K18 cytokeratin promoter. 

Others have shown that challenge by the intranasal route results in virus replication in the lungs, heart, 

brain, kidneys and gut (31, 32) with titers increasing over 2-3 days and then subsiding after day 5 in most 

tissues, but with titers in the brain continuing to rise to >108 pfu/g tissue. The latter is thought to result in 

severe symptoms, which may not be relevant to human disease outcomes. To focus on treatments effective 

in the respiratory system, animals were treated daily for 4 days after virus challenge and virus load in the 

lungs was measured. Vehicle control animals reached titers consistent with previously reported levels of 1-

3 x 106 ffu/g lung tissue. In contrast, at a dose of 3 mg/kg, obatoclax gave a consistent and significant 

reduction in average virus load by >86% in both male (P<0.001) and female (P=0.027) mice. For two of the 

female and one of the male treated mice, lung virus load fell below the limits of detection (Fig. 5B) and 

suggest that obatoclax may be useful as a treatment candidate.  

Discussion 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.20.440626doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440626


While multiple vaccine candidates are now available, alternative therapeutic avenues will be needed to 

control COVID19 disease. Here, we evaluated 6,710 small molecules for inhibition of SARS-CoV-2 infection 

using in vitro and in vivo disease models. Of the approximately 200 active compounds, multiple candidates 

had potencies that are clinically achievable. We performed detailed mechanistic analysis for 40 inhibitors 

of SARS-CoV-2 replication with differing ascribed mechanisms of action, including proscillaridin, emetine, 

obatoclax, sangivamycin, omipalisib, GSK2606414, and BAY2402234. Each demonstrated in vitro potency 

that may be clinically useful given further evaluation in the context of disease. Structural analysis revealed 

distinct clusters of related molecules with conserved molecular motifs that could be further developed into 

additional active compounds. Further analysis of reported mechanism of action and associated gene targets 

suggested discrete families of host factors involved in SARS-CoV-2 replication, related to microtubule 

function, mTOR, ER kinases, protein synthesis and folding and ion channel function. Mechanistic evaluation 

of the antiviral effects of the lead candidates revealed activities impacting each step of virus replication from 

cell entry through to egress and may provide new tools to better understand the infection cycle of this virus. 

These results highlight the host dependency factors necessary for SARS-CoV-2 replication and potential 

sites of virus vulnerability for further development of antiviral therapeutics.  

Obatoclax was a highly consistent, potently active compound, demonstrating activity across all in vitro 

systems, as well efficacy in the mouse disease model. The 10-fold decrease in lung titers is promising given 

that a similar reduction of virus load has been associated with decreased mortality in COVID-19 patients 

(33). Obatoclax was originally developed as a broadly acting BCL-2 homology domain 3 inhibitor for cancer 

treatment (34) with activities including inducing apoptosis and elevating autophagy (34, 35), each potentially 

virucidal outcomes. However, the 7 other BCL-2 inhibitors that we tested were weak or inactive, indicating 

that BCL-2 inhibition is less likely to be a specific mechanistic target. A previous report showed inhibition of 

endosomal acidification by obatoclax but not by other BCL-2 inhibitors and explained inhibition of infection 

by alphaviruses through preventing pH-dependent endosomal escape (25). Consistent with this 

mechanism, the pseudotype infection assay (Fig. 4), showed obatoclax partially blocking infection for the 

SARS-CoV-2 pseudotype. However, another report showed that influenza virus, which also requires 

endosomal acidification to infect cells, was unaffected by obatoclax (36). Taken together, while SARS-CoV-

2 requires acidified endosomes for cell entry and entry is partly blocked by obatoclax, an additional entry-

independent modality may be involved in infection inhibition and will require more detailed characterization. 

One of the most potent classes of inhibitors identified were the cardiac glycosides, such as proscillaridin, 

that have Na+/K+ channel blocking activity. These steroid-like molecules affect cardiac function (37), have 

been reported to alter cell membrane fluidity (38), affect receptor function for a range of ligands, and can 

induce apoptosis (39) of cancer cells. Based on the potent cardiac effects and narrow therapeutic windows, 

they are unlikely to be viable for repurposing but may provide information on virus infection mechanism. 

The pseudotype entry assay suggested that proscillaridin, like obatoclax, partially interfered with the virus 

entry step. Cardiac glycosides were reported to inhibit hepatitis B entry into cells by interfering with binding 
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to its receptor, NTCPA3, as well as a post-entry replication step (24). Hepatitis B virus showed a similar 

spectrum of cardiac glycoside type and potency infection inhibition to that seen here for SARS-CoV-2, 

suggesting a similar mechanism may aid SARS-CoV-2 infection. In contrast, other cardiac glycosides, 

including ouabain, also a SARS-CoV-2 inhibitor, were found active against HIV-1 gene transcription by 

altering RNA processing (40) with disruption of MEK/ERK1/2 signaling being responsible for infection 

inhibition. Another action of cardiac glycosides is to inhibit protein synthesis (41). Indeed, other known 

protein synthesis inhibitors, such as emetine, harringtonine, and homoharringtonine, rivalled the cardiac 

glycosides as potent inhibitors, in some cases showing efficacy at low nanomolar concentrations. These 

agents have previously been well characterized as broad-spectrum antivirals (42) and likely reflect the 

importance of balanced protein production needed during virus replication and assembly.  

Another class of compounds that have not been reported to affect SARS-CoV-2 infection are the BET 

inhibitors. These compounds, like mivebresib, affected SARS-CoV-2 infection in both cell types tested and 

were identified in our protein network analysis (Fig. 2). Previous work showed two of the four BET proteins, 

BRD2 and BRD4, were bound by virus E protein (19). The E protein is involved in assembly and budding 

of newly formed coronaviruses from the cell. Our finding that the BET inhibitors block viral egress (Table 4) 

is consistent with this mechanism of action. Being able to identify such egress inhibitors also serves to 

demonstrate the utility of the secondary orthogonal assays to detect the effects of candidate compounds 

on virus at different points in its lifecycle.  

In addition to identifying individual compounds that can inhibit SARS-CoV-2, we have demonstrated that 

the data from the high-throughput screen can be used to identify the potential importance of cellular 

pathways required for virus replication that in turn may lead to new drug targets not part of the screen. 

Recent publications have demonstrated a convergence of data obtained from genetic screens, such as 

genome wide CRISPR and small molecule screens. For example, both genetic and compound screens 

have repeatedly suggested endosomal trafficking as an important pathway for viral entry and replication, 

including for coronaviruses (43–45). This view is bolstered by the reproducible activity of apilimod in our 

study and others (46), and the positive activity observed in our screen with APY0201, a second PIKfyve 

inhibitor. Small molecule screens have suggested that specific neurotransmitter pathways could be involved 

in viral replication, although this was not identified by genetic screens (44). Given the molecular promiscuity 

of many CNS therapeutics and modest cellular potency observed, one should exercise caution in 

interpreting the molecular mechanisms underlying these observations.   

The two largest compound screens reported to date are this study and the screen of the 12,000 compound 

ReFRAME library (9). Significant overlap was observed in the classes of molecules observed to have 

activity, but new active compounds were also observed. The main submicromolar potency leads identified 

in the ReFRAME study included apilimod, VBY-825, ONO 5334, Z LVG CHN2, and MDL 28170. Of these, 

apilimod and VBY-825 were present in the DRH library giving similar activities between each study. In the 

present study, we also identified additional active drug classes including the BET inhibitors. The main 
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difference in the assay design of the two screens was use of a single treatment dose (5 µM) and measuring 

infection by virus-induced cell death for the REFRAME screen versus multiple concentrations and virus 

protein expression used here and likely accounts for differences in outcomes.  

In summary, using a high-throughput drug screen, we have elucidated both potent antivirals and host 

factors strongly entwined in the SARS-CoV-2 lifecycle. We aimed here to provide both a more detailed 

understanding of how the virus hijacks host machinery to replicate, as well as methods to interrupt these 

dependencies. By making all the data publicly available through the DRH we anticipate that both the active 

and inactive compounds will inform future studies. Due to the pressing need for antivirals to combat COVID-

19, our findings will aid scientists and clinicians with identifying, prioritizing, and testing novel therapeutics, 

and help alleviate the burden this pandemic has placed on our society. While these findings are 

encouraging, and suggest drug-repurposing as a productive approach for rapidly identifying treatments, it 

is important to be mindful that novel drug-disease interactions may occur when used for a different purpose, 

necessitating prospective clinical trial assessments. 
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relevant data, including further image and processed data are available by request from the corresponding 

authors. The primary screening data is also available through the Drug Repurposing Hub portal: 

https://www.broadinstitute.org/drug-repurposing-hub or https://clue.io/repurposing-app.  

Code availability 

All code used for data analysis are available using the scripts provided at our GitHub page 

https://github.com/RDaveyLab/COVID/. The site also includes the Cell Profiler pipelines used for image 

analysis of the screen and the FISH assay.  

 

Methods 

Wet Lab methods 

Cell and virus cultivation.  

Vero E6 cells were obtained from ATCC (Manassas, VA, USA) and maintained in DMEM supplemented 

with 10% fetal bovine serum (FBS) at 37°C in a humidified CO2 incubator. The SARS-CoV-2 strain USA-

WA1/2020, used for all experiments, was isolated from a traveler returning to Washington State, USA from 

Wuhan, China, and was obtained from BEI resources (Manassas, VA, USA). The virus stock was passaged 

twice on Vero E6 cells by challenging the cells at an MOI of less than 0.01 and incubating until cytopathology 
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was seen (typically 3 days after inoculation). A sample of the culture supernatant was sequenced by NGS 

and was consistent with the original isolate without evidence of other viral or bacterial contaminants. The 

virus stock was stored at -80°C. 

Primary high throughput drug screening against SARS-CoV-2.   

A total of 6,710 compounds from the Broad Institute DRH (Cambridge, MA, USA) were Echo plated at 4 

doses in 384 well plates by Broad Institute staff. The night prior to screening, 7x103 Vero E6 cells were 

seeded into each well of a 384 well plate. For evaluation of small molecule efficacy against infection with 

wild type SARS-CoV-2 virus, compounds were first dissolved in DMSO and then diluted into culture medium 

before addition to cells (final concentration of DMSO <0.5%). The cells were incubated for a minimum of 1 

hour, moved to the biocontainment laboratory, and challenged with virus at an MOI between 0.1 and 0.3. 

Dosing was at a final concentration of 8, 0.8, 0.08, and 0.008 µM. As a positive control, 5 µM E-64d was 

used as it was previously reported to inhibit SARS-CoV-2 infection (14). Negative controls were treated 

with DMSO at 0.5%. After 36 to 48 hours, cells were submerged in 10% neutral buffered formalin for at 

least 6 hours, removed from the containment lab, and washed in PBS. Cells were permeabilized in 0.1% 

(v/v) Triton X-100 for 15 minutes and blocked in 3.5% BSA for 1 hour. Virus antigen was stained with SARS-

CoV-2 specific antibody MM05 (Sino Biologicals, Beijing, China) overnight at 4°C. Alexa Fluor 488-labeled 

goat anti-mouse antibody from ThermoFisher (Waltham, MA, USA) was added to cells for 2 hours, cells 

were washed in PBS, and Hoechst 33342 dye was added to stain cell nuclei. Plates were imaged on a 

Biotek Cytation 1 automated imager and CellProfiler software (Broad Institute, MA, USA) was used for 

image analysis incorporating a customized processing pipeline (available on 

https://github.com/RDaveyLab/COVID/). Infection efficiency was calculated as the ratio of infected cells to 

total cell nuclei. Reduction of nuclei was used to flag treatments as indicative of potential cytotoxicity. The 

assay was performed in duplicate. 

Reconfirmation of top hits.  

To verify the results of the initial screen, small molecules were chosen for full dose-response evaluation 

based on initial potency and drug class. The night before the screen, 2x104 Vero E6 cells were seeded in 

each well of a 96 well plate. As before, compounds were diluted in culture medium and incubated on cells 

for a minimum of 1 hour, with a range of final concentration from 4 µM to 0.2 nM in a three-fold dilution 

series. Infection, fixation, staining, and analysis were performed as described above. The assay was 

performed in triplicate. 

Validation of inhibitors in human cells.  

Compounds that yielded consistent dose-responses were further evaluated using qPCR to detect virus 

genomes and in situ virus mRNA detection as orthogonal assays. They were also evaluated in the 

intrinsically infectable human cell line, Huh7.  
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RT-qPCR detection of viral genomes from cell supernatants.  

To measure virus assembly and release, qPCR was used to detect viral genomic RNA in the cell culture 

supernatant using a method modified from Suzuki et al. (47). The cell supernatant was collected at 48 h 

post infection, and then mixed with 2x virus lysis buffer (0.25% Triton X-100, 50 mM KCl, 100 mM Tris-HCl 

pH 7.4, 40% glycerol) at an equal volume for 10 min at room temperature. Five microliters of the mixture 

was added to Luna Universal Probe One-Step RT-qPCR mixture (NEB, MA, USA) to a final volume of 20 

µl. PCR amplification was detected and validated by CFX96 Touch Real-Time PCR Detection System (Bio-

Rad, CA, USA). The cycling protocol used was 55°C for 10 min, 95°C for 1 min, followed by 40 cycles of 

95°C for 10 sec, and 60°C for 30 sec. The primer and probe sets were from 2019-nCoV RUO Kit (IDT, IA, 

USA) and nCoV_N2 forward and reverse primers. As a positive control for RT-qPCR of SARS-CoV2 RNA, 

an RNA fragment was synthesized. In brief, 2019-nCoV_N_Positive Control (IDT) DNA was amplified using 

T7 promoter-containing forward primer 5’-TAATACGACTCACTATAGGGTAAAGGCCAACAACAACAAG-

3’ and reverse primer 5’-GAGTCAGCACTGCTCATGGATTG-3’ from GENEWIZ (MA, USA). After 

electrophoresis and gel extraction by Monarch DNA Gel Extraction Kit (NEB), the PCR product was 

transcribed using HiScribe T7 High Yield RNA Synthesis Kit (NEB) according to the manufacturer’s 

instructions, followed by DNA template removal by DNase I (NEB) treatment and purification using Monarch 

Cleanup Kit (NEB). RNA copy number was calculated from its molecular weight and absorbance measured 

by a NanoDrop 1000 (Thermo Fisher Scientific, MA, USA). A standard curve was generated using dilutions 

of RNA to relate genome copy number to qPCR cycle threshold (Ct). For each qPCR reaction set, 4 of the 

standards were included to ensure assay performance.  

smiFISH detection of viral mRNA.  

RNA fluorescence in situ hybridization (FISH) was used to measure the amount of virus subgenomic mRNA 

being produced and its localization in cells following a method adapted from Tsanov et al. (48) and optimized 

for SARS-CoV-2. Thirty-one oligonucleotide probes were designed to hybridize to ORF3a and S 

subgenomic mRNA using Oligostan software. Each had a common tail that bound to a complementary 

sequence on an oligonucleotide conjugated to a Cy5 fluor. Cell nuclei were stained with Hoechst 33342 

dye and samples were imaged on a Cytation 1 microscope (Biotek, VT, USA). Images were quantified using 

CellProfiler (49), (using pipelines available on https://github.com/RDaveyLab/COVID/) and infection 

efficiencies calculated from the percentage of RNAFISH positive cells in each sample.  

Pseudotype evaluation of treatment effects on cell entry. 

Single round SARS-CoV-2 S or VSV-G pseudotyped luciferase-expressing lentivectors were generated via 

calcium phosphate mediated transient co-transfection of HEK293T cells with HIVΔenv/luc and SARS-CoV-

2 S/gp41 plasmids (50). The SARS-CoV2 S/gp41 expression plasmid was a gracious gift of Dr. Nir Hachoen 

(Broad Institute), that expresses a codon-optimized version of CoV-2 S and modified to include the eight 

most membrane-proximal residues of the HIV-1 envelope glycoprotein cytoplasmic domain after residue 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.20.440626doi: bioRxiv preprint 

https://github.com/RDaveyLab/COVID
https://doi.org/10.1101/2021.04.20.440626


1246 of the S protein. The VSV-G expression plasmid (HCMV-G) has been described previously (50). Virus-

containing cell supernatants were harvested 2 days post transfection and filtered using 0.45µm syringe 

filters, aliquoted and stored at -80°C until further use.  The p24gag content of the virus stocks was quantified 

using a p24gag ELISA, as described before (51). ACE2-expressing lentivectors were generated via transient 

co-transfection of HEK293T cells with RRL.sin.cPPT.SFFV/Ace2.IRES-puro (Addgene Plasmid #145839), 

psPAX2 and VSV-G. A549 cells were transduced with ACE2 lentivectors, selected for ACE2 expression by 

culturing in puromycin-containing media, and cell surface expression of ACE2 was confirmed by FACS. For 

entry inhibition assays, A549/ACE2 cells (1x104 cells per well of 96 well flat bottom plate) were pretreated 

with the compounds at the indicated concentrations for 1 h prior to spinoculation with 20 ng of p24gag 

equivalent SARS-CoV-2 S or VSV-G pseudotyped lentivirus particles. Cells were lysed 48 h post infection, 

and cell lysates processed for measurement of luciferase activity.   

Reconstructed in vitro 3D tissue model of small intestine. 

Human small intestine epithelial cells were obtained and used to produce a reconstructed tissue model as 

described previously (27). Briefly, cryoprotected intestinal epithelial cells were seeded onto collagen coated 

cell culture inserts (MatTek Corporation, 0.6 cm2) in medium (SMI-100-MM, MatTek Corporation, Ashland, 

MA). Cells were cultivated submerged for 24 hours, followed by cultivation for 13 days at the air-liquid 

interface (ALI) at 37°C, with 5% CO2 and 98% relative humidity. During the ALI culture period, tissues 

(designated SMI-200 or EpiIntestinal) were fed basolaterally through the membrane of the cell culture 

inserts of the 24-well plate. During this culture period, epithelial cells and fibroblasts self-assemble in the 

correct orientation.  Under this culture condition, the organotypic tissues stratify, differentiate, and form a 

distinct apical-basolateral polarity.  The polarized organotypic small intestinal full thickness tissues form 

“villi-like” tissue structure with an apical epithelial architecture on top of a fibroblast substrate. To complete 

cellular differentiation and stratification, cells were cultured for a total of 14 days prior to their shipment for 

the SARS CoV-2 infection studies.  

Tissues were supplied growing on permeable membranes in transwell cultures. The tissues were 

challenged on the apical and basolateral sides at an MOI of 1 (estimated from virus titer on Vero E6 cells 

and 106 cells in the tissue model). After 1 hour, the inoculum was washed off and the culture incubated for 

an additional 3 days. Tissues were then fixed in formalin, and stained for SARS-CoV-2 N protein and 

Hoechst 33342 as above. The tissue was mounted on a glass slide and imaged using a Zeiss LSM 700 

laser scanning confocal microscope.  

Mouse model treatment and infection focus assay detection of virus load in lungs.  

B6.Cg-Tg(K18-ACE2)2Prlmn/J (K18-hACE2) transgenic mice were purchased from Jackson laboratories 

(Farmington, CT). Mice were challenged at 10-15 weeks of age in groups of 4 or 5 by the intranasal route 

with 105 FFU SARS-CoV-2 per nare. Starting at 6 hours after virus challenge and once each day, animals 

were dosed by the intraperitoneal route with the indicated treatment. Four days after challenge, mice were 
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euthanized and lungs removed at necropsy. A biopsy punch (4 mm) was used to collect 2 samples of lung 

tissue and was stored frozen in PBS. For evaluation of virus load, the lung tissue was homogenized using 

a TissueLyser II (Qiagen, MD, USA) for two cycles at 30 Hz for 2 min. Debris was pelleted for 10 min at 

16,800 xg in a centrifuge (Eppendorf, CT, USA). The supernatant was titrated onto Vero E6 cells and after 

1 hour overlaid with a 5% solution of methylcellulose in DMEM and incubated overnight. Cells were fixed 

in 10% formalin and stained with the N specific antibody used for screening. Foci of infected cells were 

counted and titers calculated.  

Computational methods.  

Drug-Response Classifier 

In order to classify the drug response by potency, the infection efficiency and total cell nuclei count were 

normalized per plate to the average of in-plate untreated control wells. Infection efficiency was calculated 

as the ratio of total infected cells divided by the total cell nuclei count per well. Wells with an infection 

efficiency greater than one were removed from further analysis as these indicated a fault in the imaging. 

Treatments that resulted in >60% loss of cell nuclei compared to untreated controls were flagged as being 

potentially cytotoxic and were deprioritized. Treatments resulting in >80% cell loss were not evaluated as 

the virus MOI would be significantly altered together with a loss in calculation accuracy. 

The classification of the drug-response outcomes was performed using a drug response curve (DRC) 

model. We used the R package drc (52) to calculate the DRCs using a log-logistic model that estimates 

four parameters (Hill slope, IC50, min, and max). Each drug-response was classified by inspecting cell 

nuclei count, and then evaluating the drug effect on the inhibition of viral infection efficiency. Each drug-

response was classified in two steps: first inspecting toxicity by nuclei count and then evaluating the drug 

effect on the inhibition of viral proliferation using the model given by Eq. 1. 

𝑓(𝑥, (𝑏, 𝑐, 𝑑, 𝑒)) = 𝑐 +
𝑑−𝑐

1+𝑒𝑥𝑝𝑒𝑥𝑝 (𝑏(𝑙𝑜𝑔𝑙𝑜𝑔 (𝑥) −𝑙𝑜𝑔𝑙𝑜𝑔 (𝑒) )) 
. 

Eq.  1 DRC log-logistic Model with four parameters, where b is hill, c is the min value, d is the max value 

and e is the 𝐸𝐶50 

To inspect the cell nuclei count for each drug, we first estimated the model parameters using as response 

variable the normalized nuclei count in the treated cells. We tested the dose-response effect for all drugs 

using a 𝜒2 test for goodness of fit, and treatments with p < 0.01 (FDR-Bonferroni correction) were defined 

as potentially cytotoxic causing substantial nuclei loss. If a drug had a nuclei count reduction less than 40% 

of untreated, or if toxicity was observed only at the highest (8 μM) concentration it was not considered 

cytotoxic. To evaluate inhibition of viral replication, we used as response for the DRC model the normalized 

number of infected cells in the treated well. A drug was considered to have a dose-response effect by using 

a  𝜒2  test for goodness of fit (P < 0.01, FDR-Bonferroni correction), and the significant drugs were defined 
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as strong (Z score >2.5 corresponding to >80% inhibition), weak (Z-score 1.5-2.5 with 50-80% inhibition), 

or not effective (Z score <1.5 and <50% inhibition) over the range of concentrations. Z-scores were 

calculated based on the standard deviation and mean signals of vehicle treated cells from all plates.  

Treatments that showed cell nuclei loss greater than infection inhibition for at least half of doses tested 

were classified as being potentially cytotoxic and were de-prioritized for follow-up studies.  

Accuracy 

All outcomes were manually inspected in order to validate the two step-model and annotation compared to 

the computational model derived outcome.  

GO enrichment.  

Using all targets within each drug category, we performed a GO enrichment analysis in the biological 

process and molecular function mode using the enrichR tool.   

Gene-target network analysis.  

Using genes that were statistically significantly enriched in each category, we built a bipartite network, from 

drugs and targets for each category. 

Network effect.  

In order to understand where the drug-targets were placed in a human protein-protein interaction network, 

we first calculated the largest connected component (LCC) of each drug category and calculated the 

significance of the module size using a degree-preserving approach (18), preventing the same high degree 

nodes being selected repeatedly by choosing 100 bins in 1,000 simulations. For that purpose,  the R 

package NetSci was used.  

Target enrichment.  

To understand if there was an enrichment of any gene as a drug target in each category, we used a Fisher’s 

exact test, and considered a gene to be enriched in any category if its p-value is lower than 0.05 (complete 

results can be found in Table S4). For each set of genes, we performed a biological function enrichment 

using Enrichr  (53).  

Pathway analysis.  

We aggregated the targets of the compounds classified in the different outcome categories (e.g., strong, 

weak) and performed pathway enrichment analysis (Reactome) using the R package ReactomePA (54). 
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Mechanism of action.  

We retrieved mechanism of action annotations for 6,150 drugs from the Drug Repurposing Hub. (12). For 

each mechanism of action, we checked over- or under-representation of drugs in the different drug 

outcomes (e.g., strong, weak) by using a Chi-Square test (p < 0.05, FDR-BH). 

Chemical structural relationship analysis.  

To evaluate structure similarity between molecules, similarity searches and clustering were performed using 

molecular fingerprints (FPs). The python package RDKit (55) was used to standardize SMILES and 

InChIKeys associated with each drug tested in the experiments, and generate Morgan FPs (also known as 

extended-connectivity fingerprints). All molecular substructures up to radius 3 were assigned to unique 

identifiers and hashed to vectors of 8,192 bits in order to capture fragments of bigger size and reduce the 

potential bit collision. For all molecules with experimental outcome, structural similarity was quantified by 

Jaccard (or Tanimoto) similarity. We further leveraged the Jaccard metric to reduce the dimensionality of 

the bit vector representation to 3D with UMAP (16). In the bit representation of Morgan FPs each bit is 

mapped to multiple structural fragments appearing in molecules. We evaluated the significance of each bit 

for ligand binding by calculating the average number of non-hydrogen atoms in the associated fragments, 

finding that in the overall database the median size of the expected chemical fragment associated with each 

bit is 9. The enrichment of each experimental class in active bits (hypergeometric test, BH multiple testing 

correction with 𝛼 = 0.05) was then calculated. As shown in Figure S1, the significant bits for strong drugs 

appear to be moderately bigger and potentially more meaningful for binding, with 22 bits in the Strong Class 

with average size greater than the database median, compared to only 1 bit for ‘Cyto’, cytotoxic class. 

 

Statistics. 

Aside from the tests described above and within the text, statistical significance between treatments and 

across experiments was calculated using Student’s T test or one-way ANOVA with Tukey’s post-test for 

comparison of multiple groups. For the animal experiments,  nested ANOVA was used to compare multiple 

replicates for different samples within a single experiment. Dose-response curves were generated and IC50 

values calculated by fitting a four parameter [Inhibitor] versus response with variable slope curve to the 

data. Each test and curve fitting were performed using GraphPad Prism version 8.0.0 (GraphPad Software,  

GraphPad Software, San Diego, California USA).  

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.20.440626doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440626


Bibliography 

1.  F. Wu, et al., A new coronavirus associated with human respiratory disease in China. Nature 579, 265–
269 (2020). 

2. ,  The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and 
naming it SARS-CoV-2. Nat. Microbiol., 1–9 (2020). 

3.  R. A. M. Fouchier, et al., Koch’s postulates fulfilled for SARS virus. Nature 423, 240 (2003). 

4.  Z. A. Memish, S. Perlman, M. D. Van Kerkhove, A. Zumla, Middle East respiratory syndrome. Lancet 
Lond. Engl. 395, 1063–1077 (2020). 

5.  E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19 in real time. 
Lancet Infect. Dis. 20, 533–534 (2020). 

6.  S. P. Stawicki, et al., The 2019–2020 Novel Coronavirus (Severe Acute Respiratory Syndrome 
Coronavirus 2) Pandemic: A Joint American College of Academic International Medicine-World 
Academic Council of Emergency Medicine Multidisciplinary COVID-19 Working Group Consensus 
Paper. J. Glob. Infect. Dis. 12, 47–93 (2020). 

7.  M. Mwenda, Detection of B.1.351 SARS-CoV-2 Variant Strain — Zambia, December 2020. MMWR 
Morb. Mortal. Wkly. Rep. 70 (2021). 

8.  M. J. Firestone, First Identified Cases of SARS-CoV-2 Variant B.1.1.7 in Minnesota — December 
2020–January 2021. MMWR Morb. Mortal. Wkly. Rep. 70 (2021). 

9.  L. Riva, et al., Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. 
Nature 586, 113–119 (2020). 

10.  M. Dittmar, et al., Drug repurposing screens reveal cell-type specific entry pathways and FDA approved 
drugs active against SARS-Cov-2. Cell Rep. 0 (2021). 

11.  M. N. Namchuk, Early Returns on Small Molecule Therapeutics for SARS-CoV-2. ACS Infect. Dis. 
(2021) https:/doi.org/10.1021/acsinfecdis.0c00874. 

12.  S. M. Corsello, et al., The Drug Repurposing Hub: a next-generation drug library and information 
resource. Nat. Med. 23, 405–408 (2017). 

13.  D. M. Gysi, et al., Network Medicine Framework for Identifying Drug Repurposing Opportunities for 
COVID-19. ArXiv (2020). 

14.  M. Hoffmann, et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a 
Clinically Proven Protease Inhibitor. Cell, S0092867420302294 (2020). 

15.   null Zhang,  null Chung,  null Oldenburg, A Simple Statistical Parameter for Use in Evaluation and 
Validation of High Throughput Screening Assays. J. Biomol. Screen. 4, 67–73 (1999). 

16.  L. McInnes, J. Healy, J. Melville, UMAP: Uniform Manifold Approximation and Projection for Dimension 
Reduction (2018) (March 3, 2021). 

17.  D. Gurwitz, Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev. Res. 81, 
537–540 (2020). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.20.440626doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440626


18.  E. Guney, J. Menche, M. Vidal, A.-L. Barábasi, Network-based in silico drug efficacy screening. Nat. 
Commun. 7, 10331 (2016). 

19.  D. E. Gordon, et al., A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and 
Potential Drug-Repurposing. bioRxiv, 2020.03.22.002386 (2020). 

20.  G. Nahler, “anatomical therapeutic chemical classification system (ATC)” in Dictionary of 
Pharmaceutical Medicine, G. Nahler, Ed. (Springer, 2009), pp. 8–8. 

21.  A. Caruso, et al., Methotrexate inhibits SARS-CoV-2 virus replication “in vitro.” J. Med. Virol. n/a. 

22.  N. Ray, M. E. Bisher, L. W. Enquist, Cyclooxygenase-1 and -2 are required for production of infectious 
pseudorabies virus. J. Virol. 78, 12964–12974 (2004). 

23.  T. F. Baumert, T. Berg, J. K. Lim, D. R. Nelson, Status of Direct-acting Antiviral Therapy for HCV 
Infection and Remaining Challenges. Gastroenterology 156, 431–445 (2019). 

24.  K. Okuyama-Dobashi, et al., Hepatitis B virus efficiently infects non-adherent hepatoma cells via human 
sodium taurocholate cotransporting polypeptide. Sci. Rep. 5, 17047 (2015). 

25.  F. S. Varghese, et al., Obatoclax Inhibits Alphavirus Membrane Fusion by Neutralizing the Acidic 
Environment of Endocytic Compartments. Antimicrob. Agents Chemother. 61 (2017). 

26.  M. M. Lamers, et al., SARS-CoV-2 productively infects human gut enterocytes. Science 369, 50–54 
(2020). 

27.  J. Markus, et al., Human small intestinal organotypic culture model for drug permeation, inflammation, 
and toxicity assays. In Vitro Cell. Dev. Biol. Anim. 57, 160–173 (2021). 

28.  A. C. Sims, S. E. Burkett, B. Yount, R. J. Pickles, SARS-CoV replication and pathogenesis in an in vitro 
model of the human conducting airway epithelium. Virus Res. 133, 33–44 (2008). 

29.  A. J. Pruijssers, et al., Remdesivir Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-
CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. Cell Rep. 32, 107940 (2020). 

30.  M. Nguyen, et al., Obatoclax is a direct and potent antagonist of membrane-restricted Mcl-1 and is 
synthetic lethal with treatment that induces Bim. BMC Cancer 15 (2015). 

31.  E. S. Winkler, et al., SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung 
inflammation and impaired function. Nat. Immunol. 21, 1327–1335 (2020). 

32.  A. O. Hassan, et al., A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by Neutralizing 
Antibodies. Cell 182, 744-753.e4 (2020). 

33.  J. Fajnzylber, et al., SARS-CoV-2 viral load is associated with increased disease severity and mortality. 
Nat. Commun. 11, 5493 (2020). 

34.  F. McCoy, et al., Obatoclax induces Atg7-dependent autophagy independent of beclin-1 and BAX/BAK. 
Cell Death Dis. 1, e108 (2010). 

35.  C. Campàs, et al., Bcl-2 inhibitors induce apoptosis in chronic lymphocytic leukemia cells. Exp. 
Hematol. 34, 1663–1669 (2006). 

36.  J.-G. Park, et al., Identification and Characterization of Novel Compounds with Broad-Spectrum 
Antiviral Activity against Influenza A and B Viruses. J. Virol. 94 (2020). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.20.440626doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440626


37.  P. J. Hauptman, R. A. Kelly, Digitalis. Circulation 99, 1265–1270 (1999). 

38.  S. K. Manna, Y. Sreenivasan, A. Sarkar, Cardiac glycoside inhibits IL-8-induced biological responses 
by downregulating IL-8 receptors through altering membrane fluidity. J. Cell. Physiol. 207, 195–207 
(2006). 

39.  S. Fang, H. Tao, K. Xia, W. Guo, Proscillaridin A induces apoptosis and inhibits the metastasis of 
osteosarcoma in vitro and in vivo. Biochem. Biophys. Res. Commun. 521, 880–886 (2020). 

40.  R. W. Wong, C. A. Lingwood, M. A. Ostrowski, T. Cabral, A. Cochrane, Cardiac glycoside/aglycones 
inhibit HIV-1 gene expression by a mechanism requiring MEK1/2-ERK1/2 signaling. Sci. Rep. 8, 850 
(2018). 

41.  A. Perne, et al., Cardiac Glycosides Induce Cell Death in Human Cells by Inhibiting General Protein 
Synthesis. PLoS ONE 4 (2009). 

42.  P. I. Andersen, et al., Novel Antiviral Activities of Obatoclax, Emetine, Niclosamide, Brequinar, and 
Homoharringtonine. Viruses 11 (2019). 

43.  H. H. Wong, et al., Genome-Wide Screen Reveals Valosin-Containing Protein Requirement for 
Coronavirus Exit from Endosomes. J. Virol. 89, 11116–11128 (2015). 

44.  J. Wei, et al., Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection. 
Cell 184, 76-91.e13 (2021). 

45.  A. C. Puhl, et al., Repurposing the Ebola and Marburg Virus Inhibitors Tilorone, Quinacrine and 
Pyronaridine: In vitro Activity Against SARS-CoV-2 and Potential Mechanisms. BioRxiv Prepr. Serv. 
Biol. (2020) https:/doi.org/10.1101/2020.12.01.407361. 

46.  Y.-L. Kang, et al., Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS-CoV-
2. Proc. Natl. Acad. Sci. U. S. A. 117, 20803–20813 (2020). 

47.  Y. Suzuki, et al., Measuring Dengue Virus RNA in the Culture Supernatant of Infected Cells by Real-
time Quantitative Polymerase Chain Reaction. J. Vis. Exp., 58407 (2018). 

48.  N. Tsanov, et al., smiFISH and FISH-quant - a flexible single RNA detection approach with super-
resolution capability. Nucleic Acids Res. 44, e165 (2016). 

49.  C. McQuin, et al., CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol. 16, 
e2005970 (2018). 

50.  H. Akiyama, et al., HIV-1 intron-containing RNA expression induces innate immune activation and T 
cell dysfunction. Nat. Commun. 9 (2018). 

51.  C. M. Miller, et al., Virion-Associated Vpr Alleviates a Postintegration Block to HIV-1 Infection of 
Dendritic Cells. J. Virol. 91 (2017). 

52.  C. Ritz, F. Baty, J. C. Streibig, D. Gerhard, Dose-Response Analysis Using R. PLOS ONE 10, 
e0146021 (2015). 

53.  E. Y. Chen, et al., Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC 
Bioinformatics 14, 128 (2013). 

54.  G. Yu, Q.-Y. He, ReactomePA: an R/Bioconductor package for reactome pathway analysis and 
visualization. Mol. Biosyst. 12, 477–479 (2016). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.20.440626doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440626


55.  N. Schneider, R. A. Sayle, G. A. Landrum, Get Your Atoms in Order--An Open-Source Implementation 
of a Novel and Robust Molecular Canonicalization Algorithm. J. Chem. Inf. Model. 55, 2111–2120 
(2015). 

 

 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.20.440626doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440626


Figures and tables 

 

Figure 1. HTS screen for inhibitors of SARS-CoV-2. A) Composition of the Drug Repurposing Hub library 

based on ATC classifications for compounds (4,277 of the 6710). B) Workflow of immunofluorescence-

based infection focus assay developed for screening of SARS-CoV-2 inhibitors and secondary mechanistic 

assays performed on active compounds. C) Dynamic range of the HTS assay evaluated using 5 µM E64d 

(Aloxistatin) versus 2% DMSO as vehicle. Upper panel: Examples of microscope images of infected cells 

stained with SARS-COV-2 N specific antibody and cell nuclei stained with Hoeschst 33342 for DMSO or 

E64d-treated cells. Lower panel: Outcomes for 190 wells of each treatment are shown. The assay gave a 

Z-factor of 0.6 in 384 well plates and, thus, was suitable for HTS. D) Examples of concentration response 

curve classes seen in the screen and cell images with N protein staining at left and cell nuclei at right. The 

indicated compounds show: no effect, strong activity with no cell loss (E64d), weak reduction in infectivity 

and no cell loss (rimcazole), reduction in infection that parallels cell loss that is likely due to cytotoxicity 

(golgicide).  
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Figure 2. Computational analysis of primary screen outcomes. A) Chart showing the active compounds 

by ATC classifiers for strongly active, weakly active and cytotoxic compounds. The fraction of compounds 

in each category is shown as a percentage of all compounds in the library. B. Pairwise comparison of active 
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compounds based on computed structural similarity using Morgan fingerprints and Jaccard analysis. C. 3D 

representation of structural similarity of active molecules based on reduced dimensionality of the molecular 

bit vectors. Localized clusters of major structural classes are indicated by red circles and are approximate 

locations in the plot. Please refer to Fig. S3 for an interactive version with higher detail. D. Relationship of 

enriched protein drug targets (red circles) or unenriched targets (pink circles) to active compounds (blue 

circles) for compounds with annotated targets in the DRH database. E. Separation heatmap between the 

targets of different activity classes within the human protein-protein interaction network. Calculated 

separation coefficients are indicated with negative values reflecting overlap of each neighborhood. F. 

Proximity z-score between the drug targets of each category and the SARS-CoV-2 protein-binding host 

factors in the human protein-protein interaction network. Z-scores close to zero indicate correlation of 

treatment activity to proteins binding SARS-CoV-2 proteins.  
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Figure 3. Concentration response curves for active compounds and measurement of small molecule effect 

on mRNA production from the virus subgenomic promoter by FISH assay in Huh7 cells. A) Examples of 

response curves are shown for the indicated active compounds using treatment concentrations ranging 

from 4 uM down to 0.2 nM. Each concentration was repeated in triplicate and average and standard 

deviations shown and is normalized to vehicle (DMSO) treated controls. B) Virus mRNA production was 

measured by in situ oligonucleotide-based detection and is summarized in Table 3. Examples of images 

are shown for the indicated compounds. Cells were stained for production of virus mRNA encoding the N 

protein by the smiFISH method using virus gene specific oligonucleotides and a Cy5 labeled oligonucleotide 

that bound to a shared complementary region on each (red). Cell nuclei were stained with Hoechst 33342 

(blue).  
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Figure 4. Effect of compounds on infection by virus glycoprotein pseudotyped viruses. A549 cells 

expressing recombinant ACE2 protein were pretreated with each indicated compound at the EC90 

concentration from assays using wild type virus on VeroE6 cells. Lentivirus pseudotypes, encoding firefly 

luciferase, as a marker of infection, and bearing the SARS-CoV-2 or VSV glycoproteins (VSV-G) were used 

to transduce cells. Transduction efficiency was measured by luciferase activity as relative light units (RLU) 

and normalized to DMSO-treated controls. Measurements used 3 replicates with the average and standard 

deviation shown. Multiple t-tests compensating for false discovery (Q=2) were used to identify significant 

differences between the VSV-G and SARS-CoV-2 pseudotype infection efficiencies indicated by *.  
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Figure 5. Inhibition of infection in primary human cell model and efficacy testing in the K18 ACE2 

mouse model of disease. A) Primary intestinal epithelial cell cultures were challenged with SARS-CoV-2 

and after 3 days fixed in formalin. Cells were stained for N protein using a specific antibody (red) and cell 

nuclei using Hoechst 33342 (blue). Infection efficiency was measured by total fluorescence relative to 

DMSO-treated controls and normalized to the cell nuclei signal. Each test was performed in triplicate with 

average and standard deviations shown. B) Mice were challenged by the intranasal route with SARS-CoV-

2 and starting 6 hours later, daily treatment with obatoclax at 3 mg/kg. Virus load in the lungs (ffu/mg tissue) 

was measured 4 days post-challenge. For each tissue sample, two measurements were made with average 

and standard deviation indicated.  
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Tables 

Table 1. Relationship of active compounds based on the Anatomical Therapeutic Chemical (ATC) 

Classification and drug categories. Drug category and therapeutic indication were evaluated for 

overrepresentation using a one-sided binomial exact test and Benjamini-Hochberg correction for multiple 

hypothesis testing to calculate the p-value. 

  Classification Unadjusted p-value 

Drug category Phenothiazines 0.0004 

  Antipsychotic Agents (First Generation [Typical]) 0.0394 

Level 2 ATC Code 

  

Antimigraine Preparations 0.0483 

  Cardiac Glycosides 0.0082 

  Antipsychotics 0.0006 

  Antidepressants 0.0321 

  Agents Against Amoebiasis And Other Protozoal Diseases 0.0303 

  Angiotensin Ii Receptor Blockers (Arbs), Combinations 0.0483 

  Plant Alkaloids And Other Natural Products 0.0235 

  Angiotensin Ii Receptor Blockers (Arbs), Plain 0.0235 
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Table 2. Effects of small molecule treatment on virus infection. Shown are the annotated mechanism 

of action of each compound, the EC50 values obtained for infection inhibition in VeroE6 cells and 

subsequent testing in Huh7 cells for virus mRNA production and virus-associated gRNA release into culture 

supernatant. For the VeroE6 cell tests, 10 concentrations from 2 nM up to 4 µM were used to construct 

dose response curves (FIg. S6) and EC50 values calculated. For the Huh7 cells, treatments started at this 

EC50 value 土4-fold and tested again at reduced concentrations if higher than expected potency was seen. 

Measurements were performed in triplicate and concentrations giving the indicated reduction in signal are 

shown.   

 

Compound DRH 

mechanism 

of action 

target 

EC50 (µM) 

in VeroE6 

cells 

gRNA 

release 

inhibitory 

concentr

ation 

>50% 

(µM)  

Virus 

mRNA 

synthesis 

inhibitory 

concentr

ation 

>50% 

(µM) 

mRNA:gR

NA fold 

difference 

bIndicate

d site of 

actiona 

Narasin 

Antiprotozo

al agent 0.07 0.15 0.05 0.4 

 

K-

strophanthidin ATPase  0.75 0.15 0.45 3 

 

Ouabain ATPase  0.045 0.15 0.15 1  

VE-822 ATR kinase  1.33 0.45 1.30 2.9  

Nanchangmyci

n Autophagy 0.15 0.15 0.15 1 

 

Obatoclax BCL  0.048 0.02 0.05 3  

BET-BAY-002 BET  >4 0.15 >10 >10 egress 

BMS-986158 BET  >4 >10 >10 -  

CPI-0610 BET  >4 >10 >10 -  

Mivebresib BET  >4 0.15 >10 >10 egress 
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Calpeptin 

Calpain 

protease 2 1.30 4.00 3.1 

 

Proscillaridin 

Na+/K+ 

channel 0.001 0.01 0.05 3.9 

 

VBY-825 

Cathepsin 

protease 1.8 1.30 1.30 1 

 

Talniflumate 

Cyclooxyge

nase  >4 1.30 >10 >10 

egress 

Methotrexate DHFR  a- >10 >10 -  

Pralatrexate DHFR  >4 0.15 >10 >10 egress 

BAY-2402234 DHODH  0.006 0.02 0.01 0.4  

Sangivamycin 

DNA 

synthesis 0.045 0.02 0.05 3 

 

Anisomycin 

DNA 

synthesis  0.049 >10 >10 - 

 

Eliglustat 

Glycosyl 

transferase  >4 4.00 12.00 3 

 

A-485 

Histone 

acetyltransf

erase  >4 1.00 4.00 4 

 

BIX-01294 

Histone 

lysine 

methyltrans

ferase  0.82 0.45 >10 >10 

egress 

AT13387 

Heat shock 

protein >4 0.15 0.15 1 

 

Ganetespib 

Heat shock 

protein >4 >10 0.45 <0.1 

replicatio

n 

NVP-HSP990 

Heat shock 

protein >4 >10 >10 - 
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SNX-2112 

Heat shock 

protein >4 >10 0.45 <0.1 

replicatio

n 

Apilimod (STA-

5326) 

Interleukin 

synthesis  0.1 0.45 >10 >10 

egress 

Omipalisib 

(GSK2126458) 

mTOR/PI3

K  >4 0.05 0.15 3 

 

Deslanoside 

Na/K-

ATPase  0.165 0.45 0.45 1 

 

Mepacrine 

NFkB 

pathway  1.33 0.05 0.45 9 

egress 

APY0201 

Phosphoin

ositide 

dependent 

kinase  0.3 1.30 1.30 1 

 

MG-132 

Proteasom

e  0.15 0.45 1.30 2.9 

 

Bruceantin 

Protein 

synthesis  0.11 0.15 0.45 3 

 

Emetine 

Protein 

synthesis  0.125 0.05 0.05 1 

 

Harringtonine 

Protein 

synthesis 

inhibitor 0.12 0.01 0.05 5 

egress 

Homoharringto

nine 

Protein 

synthesis  0.43 0.02 0.15 8.9 

egress 

Tioguanine 

Purine 

antagonist 1.2 0.45 4.00 8.9 

egress 

Niclosamide 

STAT/ DNA 

replication  >4 1.30 4.00 3.1 

 

Bafilomycin A1 V-ATPase 0.12 0.05 0.05 1  
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GSK-2660614 

PERK 

inhibitor >4 ND ND - 

 

a Gave a dose response curve but did not cross 50% infection threshold and so EC50 was not calculated 

b Site of action is based on the ratio of potencies for inhibition of virus mRNA production in cells and gRNA 

release into culture supernatants. Potent inhibition of mRNA indicates inhibition of RNA replication, whereas 

a lack of replication inhibition but more potent inhibition of gRNA release indicates selective inhibition of 

egress. 

ND – Not determined.  
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Supplementary figures and tables.  

Supplementary figures.  

 

 

Figure S1.  Enrichment of bit vectors for active compounds. Structures of small molecules were 

encoded using Morgan Fingerprints with atoms up to radius 3, and hashed to a binary vector of 8,192 bits. 

Active small molecules showed higher medians with strongly active compounds showing significant 

enrichment for 89 bits, suggesting clusters of structurally similar molecules.  
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Figure S2. Jaccard similarity matrix for the entire DRH library. The figure shows the pairwise 

comparison of all compounds in the small molecule library used for the screen based on computed 

structural similarity using Morgan fingerprints and Jaccard analysis. 
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Jaccard_Binary_8192b_R3.html 

 

Figure S3. Interactive 3D representation of structural similarity of active molecules. The plot is based 

on the alignment of all molecules with outcomes in the primary screen and on the reduced dimensionality 

of the molecular bit vectors encoding each molecule. Classes of active molecules can be selected by 

clicking the legend. The graph can be reorientated by click-dragging on the plot using a mouse. Only the 

strong and weak activity classes were considered for most data analysis. The very weak and low classes 

(gave 35% and 25% inhibition respectively at the highest concentrations tested) are included for 

completeness but have Z-scores <1.5 from controls.   
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Fig. S4. Analysis of structurally related pairs of active molecules and relationship to protein drug 

targets. Similar small molecules are connected by yellow links if they share structural similarity, and by a 

blue link if they share the same host protein target. B) For 3 pairs of small molecules where no identical 

protein target was shared were analyzed for the relatedness of the known target. 2 of the pairs (wiskostatin 

and BAX) and (nocadalozone and flubendazole) share related protein targets. 
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Figure S5 Largest Connected Component significance of targets from each drug category. Active 

small molecules have a larger component by chance (Z-score > 1.5), suggesting that the compound protein 

targets responsible for inhibition of virus infection reside in a related PPI neighborhood. 
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Figure S6. Concentration response curves. The activity of the indicated small molecules was evaluated in 
VeroE6 cells at the indicated concentrations (µM).  Infection efficiency was measured by dividing the number of 
infected cells by the total cell nuclei present. Each concentration was performed in triplicate with averages and 
standard deviations indicated. Curves were fitted using Graphpad Prism software using the [Inhibitor] vs. 
response with variable slope, four parameter equation. EC50 values were calculated from the curve fits. 
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Figure S7. Characterization of ACE2 expression in A549 cells. Cells were transduced with a lentivirus 

encoding a recombinant ACE2 protein. The cells were selected and then analyzed by FACS using an ACE2 

binding antibody.  
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Supplementary tables.  

Table S1. All data from the primary screen. Shown is the name of compound tested, abbreviated Drug 

Repurposing Hub identifier, SMILES formula, InChIKey formula, outcome in the screening assay, 2D 

molecular structure, and combined concentration response curve showing effect of compound on virus 

infection and on cell nuclei normalized to DMSO treated controls.  In this classification curves were graded 

on a scale of strong, weak, very weak, low, no-effect or cytotoxic. Only the strong and weak categories are 

considered statistically significant based on a Z-score >1.5. Cytotoxic compounds are those that reduced 

cell nuclei counts by >60% relative to the vehicle treated controls. In other work, vehicle treated cells (DMSO 

at 0.2%) showed no significant difference to untreated cells for nuclei counts.  

 

Table S2. Primary screen activity for all compounds. This csv file contains the same information as 

Table S1 but lacks images of compounds and curves.   

 

Table S3. Morgan FP data. This file contains the encoding used to construct the Morgan Fingerprints with 

atoms up to radius 3, as hashed to a binary vector of 8,192 bits used for the structural alignment of the 

small molecules in the library.  

 

Table S4 Enrichment drug targets by genes and GO terms.  Fisher’s exact test was used to identify 

enriched gene categories and biological function enrichment was then performed using Enrichr. Enriched 

genes are shown at the bottom of the table.  

 

Term P-

value 

Adjusted P-

value 

Odds Ratio Combined 

Score 

sodium ion export from cell (GO:0036376) 1.51E-

18 

7.42E-16 725.2 29757.4658 

sodium ion export (GO:0071436) 1.51E-

18 

7.42E-16 725.2 29757.4658 

cellular potassium ion homeostasis 

(GO:0030007) 

8.94E-

16 

2.19E-13 517.014815 17915.1375 
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membrane repolarization (GO:0086009) 8.94E-

16 

2.19E-13 517.014815 17915.1375 

potassium ion homeostasis (GO:0055075) 1.24E-

15 

2.44E-13 213.165775 7316.46006 

cellular sodium ion homeostasis (GO:0006883) 3.34E-

15 

5.46E-13 387.722222 12924.0437 

cellular monovalent inorganic cation 

homeostasis (GO:0030004) 

1.01E-

14 

1.41E-12 310.146667 9996.39042 

cellular metal ion homeostasis (GO:0006875) 5.37E-

14 

6.60E-12 54.9889258 1680.17022 

regulation of cardiac conduction (GO:1903779) 9.98E-

14 

1.09E-11 71.776263 2148.6884 

sodium ion homeostasis (GO:0055078) 3.34E-

13 

3.28E-11 163.161404 4687.24517 

regulation of heart contraction (GO:0008016) 2.60E-

12 

2.32E-10 48.3391022 1289.52872 

potassium ion import (GO:0010107) 6.26E-

12 

5.12E-10 99.9419355 2578.21108 

G-protein coupled receptor signaling pathway, 

coupled to cyclic nucleotide second messenger 

(GO:0007187) 

3.19E-

11 

2.41E-09 35.7834804 864.850475 

cell communication by electrical coupling 

involved in cardiac conduction (GO:0086064) 

1.92E-

10 

1.35E-08 235.685579 5273.41938 

ion transmembrane transport (GO:0034220) 2.14E-

10 

1.40E-08 22.4868991 500.714331 

response to steroid hormone (GO:0048545) 5.01E-

10 

3.08E-08 83.802244 1794.55729 

ATP hydrolysis coupled proton transport 

(GO:0015991) 

1.41E-

09 

7.71E-08 554.027778 11289.6203 
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ATP hydrolysis coupled cation transmembrane 

transport (GO:0099132) 

1.41E-

09 

7.71E-08 554.027778 11289.6203 

phospholipase C-activating G-protein coupled 

receptor signaling pathway (GO:0007200) 

3.62E-

09 

1.87E-07 36.7851852 715.028168 

potassium ion import across plasma membrane 

(GO:1990573) 

5.07E-

09 

2.49E-07 332.383333 6348.60155 

action potential (GO:0001508) 5.38E-

09 

2.52E-07 54.076087 1029.60364 

energy coupled proton transmembrane 

transport, against electrochemical gradient 

(GO:0015988) 

8.43E-

09 

3.76E-07 276.972222 5149.28129 

cardiac muscle cell action potential 

(GO:0086001) 

1.10E-

08 

4.72E-07 88.3156028 1618.0494 

import across plasma membrane 

(GO:0098739) 

1.32E-

08 

4.99E-07 237.392857 4306.60467 

cardiac muscle cell membrane repolarization 

(GO:0099622) 

1.32E-

08 

4.99E-07 237.392857 4306.60467 

membrane repolarization during action potential 

(GO:0086011) 

1.32E-

08 

4.99E-07 237.392857 4306.60467 

protein autophosphorylation (GO:0046777) 1.59E-

08 

5.77E-07 21.5362003 386.775382 

negative regulation of calcium ion 

transmembrane transporter activity 

(GO:1901020) 

1.86E-

08 

6.53E-07 78.4909377 1397.05847 

membrane depolarization during action 

potential (GO:0086010) 

4.59E-

08 

1.55E-06 64.2005158 1084.82257 

chemical synaptic transmission (GO:0007268) 5.18E-

08 

1.67E-06 14.7019934 246.644285 

membrane repolarization during cardiac muscle 

cell action potential (GO:0086013) 

5.43E-

08 

1.67E-06 151.037879 2526.72813 
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positive regulation of potassium ion 

transmembrane transport (GO:1901381) 

5.43E-

08 

1.67E-06 151.037879 2526.72813 

adrenergic receptor signaling pathway 

(GO:0071875) 

1.91E-

07 

5.21E-06 103.8125 1606.17627 

response to progesterone (GO:0032570) 1.91E-

07 

5.21E-06 103.8125 1606.17627 

adenylate cyclase-activating adrenergic 

receptor signaling pathway (GO:0071880) 

1.91E-

07 

5.21E-06 103.8125 1606.17627 

cellular response to steroid hormone stimulus 

(GO:0071383) 

1.91E-

07 

5.21E-06 103.8125 1606.17627 

positive regulation of intracellular signal 

transduction (GO:1902533) 

3.63E-

07 

9.64E-06 9.8888212 146.636984 

potassium ion transport (GO:0006813) 5.20E-

07 

1.34E-05 37.7887538 546.800514 

ion transport (GO:0006811) 7.48E-

07 

1.88E-05 12.7253316 179.500178 

dopamine receptor signaling pathway 

(GO:0007212) 

7.94E-

07 

1.95E-05 69.1805556 971.709085 

regulation of dopamine uptake involved in 

synaptic transmission (GO:0051584) 

9.20E-

07 

2.20E-05 244.2 3394.1741 

negative regulation of cation channel activity 

(GO:2001258) 

1.06E-

06 

2.48E-05 63.8525641 878.502843 

adenylate cyclase-activating G-protein coupled 

receptor signaling pathway (GO:0007189) 

1.78E-

06 

4.07E-05 28.9638589 383.384832 

adenylate cyclase-inhibiting dopamine receptor 

signaling pathway (GO:0007195) 

1.96E-

06 

4.38E-05 174.411079 2291.88093 

cellular response to hormone stimulus 

(GO:0032870) 

2.02E-

06 

4.42E-05 28.1886525 369.57176 

regulation of potassium ion transport 

(GO:0043266) 

2.25E-

06 

4.60E-05 51.8645833 674.478795 
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regulation of nitric-oxide synthase activity 

(GO:0050999) 

2.25E-

06 

4.60E-05 51.8645833 674.478795 

cardiac muscle contraction (GO:0060048) 2.25E-

06 

4.60E-05 51.8645833 674.478795 

relaxation of cardiac muscle (GO:0055119) 2.70E-

06 

5.29E-05 152.602041 1956.97851 

List of enriched genes:  

ADRA1A, ADRA1B, ADRA1D, ATM, ATP1A1, ATP1A2, ATP1A3, ATP1A4, ATP1B1, ATP1B2, ATP1B3, 

( ATPase Na+/K+ Transporting ) BRD4, CALM1, CATSPER1, CATSPER2, CATSPER4 (Voltage gated 

calcium channels), DHFR, DRD1, DRD2, DRD4, EGFR, EHMT2, EPHA2, EPHB4, FGR, FXYD2, HRH1, 

HSP90AA1, HTR2A, HTR2C, HTR6, HTR7, IL12A, IMPDH1, IMPDH2, KCNA1, KCND2, KCND3, 

KCNH1, KCNH2, KCNH5, KCNQ2, KCNQ5, MAP3K9, MTOR, PIK3CA, RPL3, SRC, STAT3, SYK, 

TUBB, UGCG. 

 

 

Table S5. Enrichment of known drug-targets. For the 389 active compounds (strong and weak classes), 

protein targets were assigned as indicated. 
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