








Figure 4: Field plant projected element scores on CCA axis 1 (a), tissue phosphorus (c,
natural log of µg g−1 dry weight), and measured traits (b, d), plotted against either site
mean annual temperature (MAT◦C, a & c) or proportion of field roots colonized by AMF
(b, d) when AMF effects were in best models. Color indicates MAT of the site (redder =
warmer). Predictions (lines) and 95% HPDI intervals (shading) are shown for the mean
across MAT of the sites in gray (a, c), or for the mean across the proportion of root length
colonized by AMF, split into expectations for the warmest and coldest sites (red and blue,
respectively) for height (b), and stem width (d).

stems than inoculated greenhouse plants (11±0.43 and 6.1±0.06 mm, respectively, pMCMC401

< 0.01) despite equivalent scores on this axis (pMCMC > 0.05, Figure S10).402

While the CCA axes showed strongly or marginally similar trends in the field, trends403

for PCA projections (agnostic to trait-element links) did not show any pattern across field404

sites, despite variation in greenhouse plant PCA scores across source sites (Tables S5,S4),405

suggesting that the linked trait-element CCA axes are better, though imperfect, predictors406

of field patterns.407

Discussion408

Abiotic environments play a consistent role in structuring local adaptation in plants and other409

species, but local adapation to biotic environments may be highly variable (Briscoe Runquist410

et al., 2020; Hargreaves et al., 2020). Rampant shifts in the outcomes of species interactions411

across environmental conditions (Bronstein, 1994; Bertness and Callaway, 1994; Chamber-412
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lain et al., 2014; He and Bertness, 2014) perhaps underlie this variable strength of local413

adaptation (e.g. Thompson, 2005; Bronstein, 2009; O’Brien et al., 2018). Like most species414

interactions, plant interactions with rhizosphere biota vary substantially in both outcomes415

(Berg and Smalla, 2009; Smith and Read, 2008; Anacker et al., 2014) and degree of local416

adaptation (Rúa et al., 2016). Further, plant traits are influenced by rhizosphere microbes417

that they associate with (Friesen et al., 2011), especially through changes to plant nutrition418

(Desbrosses and Stougaard, 2011; Paszkowski and Gutjahr, 2013; Lu et al., 2018), suggest-419

ing that adaptive changes in plant-microbiome interactions may alter the concentrations of420

elements in plant tissues. We investigated the influence of rhizosphere biota on plant fitness,421

trait expression, and elemental profiles in teosinte within the context of correlated environ-422

mental gradients of both climate and soil fertility. We found that changes in fitness (via a423

proxy of biomass) and traits were linked to changes in elemental profiles and were affected424

by the source of the rhizosphere biota and the plant population it was paired with.425

Local adaptation is strengthened in cold sites426

Plants from colder sites derived greater specific benefits from their local biota, matching427

one of our predictions based on COCO (O’Brien et al., 2018): increased local adaptation428

between plants and biota from colder sites, which we presume are more stressful (Figure429

1, using biomass as a proxy for fitness, see Methods). However, biota from colder sites430

produced less fit plants, in contrast to our other prediction: that biota from stressful sites431

would provide greater generalized benefits across plants. This prediction of COCO relies on432

at least some benefits provided by biota to plants being independent of plant genotype and433

environment, i.e. if some microbes always provide more phosphorus than others, this would434

likely be beneficial across all hosts and environments. However, our results are consistent435

with most benefits of rhizosphere biota being either host-plant- or environment-dependent:436

i.e. there may be little variation in benefits from rhizosphere biota that is not context437

dependent, and thus limited potential for the evolution of generalized benefits.438

Recent experimental work has suggested that more benefits from plant-microbe inter-439

actions may derive from local adaptation and genotype-dependent effects than previously440

thought (Batstone et al., 2020; Ramı́rez-Flores et al., 2020). Other studies have also sug-441

gested that benefits provided by biota to plants are greatest when experimental conditions442

match the environment to which the biota are adapted (Johnson et al., 2010; Lau and443

Lennon, 2012), and mean greenhouse temperature during our experiment was closer to mean444

annual temperature of our warmest sites (Table S1, Methods). This prevalence of host- and445

environment- dependent effects suggests that efforts to leverage and manipulate organisms446

in the plant rhizosphere for increased resilience to abiotic stress in agricultural crops (e.g.447

18

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.20.440703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440703
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bouwmeester et al., 2019), must tailor solutions to specific sites and cultivars.448

Indeed, the existence of environment-dependent benefits is an assumption of COCO to449

begin with. Given that we expect benefits of rhizosphere biota to increase in cold, drought,450

and infertile conditions, the benefits we observed in the greenhouse may have been under-451

estimates, especially at cold sites. We used field-measured traits and links between traits,452

elements, and fitness in the greenhouse as a window into benefits of rhizosphere biota in the453

field. In the field, multivariate patterns across sites for elemental profiles and traits matched454

only patterns across plant source sites and sympatric effects observed in the greenhouse.455

Both field and greenhouse plants from colder sites, especially those paired with sympatric456

biota (greenhouse) or more colonized by AMF (field), were taller and higher on CCA axis 1457

(Figures 3b, 4a). We observed opposite relationships between teosinte size and mycorrhizal458

colonization between warmer (slope weakly negative) and colder (slope strongly positive)459

field sites (Figure 4b,d, stem width and height), consistent with increased benefits of biota460

at cold sites, with previous work showing that maize benefits from mycorrhizae increase in461

the cold (Zhu et al., 2009), and with increased benefits of these biota in sympatric contexts462

as observed in the greenhouse. Patterns in the field are thus consistent with greater benefits463

of biota from and at cold sites.464

Plants and biota have both opposing and aligned effects on traits across envi-465

ronmental gradients466

Mechanistically, local adaptation to abiotic environments or biotic interactions must ulti-467

mately be based on genetic differences in the expression of traits, yet biotic interactions468

themselves can alter the expression of traits. For example, microbiomes shape traits from469

obesity to life history in their animal hosts (Turnbaugh et al., 2008; Gould et al., 2018),470

and plant-microbiomes shape a comprehensive range of vegetative and floral traits in plants471

(Friesen et al., 2011; Rebolleda-Gómez et al., 2019). If one species’ influence on another472

species’ phenotype feeds back to affect its own fitness, selection will shape any genetic varia-473

tion in the first species affecting traits in the second (so-called ‘extended’ phenotypes Dawkins474

et al., 1982; Rebolleda-Gómez et al., 2019; O’Brien et al., 2021). Indeed, reciprocal feed-475

backs of traits on the fitness of interacting species is a condition of co-evolution and likely476

to be common (Thompson, 2005). Perhaps unsurprisingly, a growing number of examples477

document evolving extended phenotypes (Lau and Lennon, 2012; Panke-Buisse et al., 2015;478

Rudman et al., 2019) with the implication that extended phenotypes could contribute sub-479

stantially to local adaptation or local co-adaptation between interacting species.480

Here, we observed that the effects of biota and plant source on plant fitness, elemental481

profiles, and phenotypes sometimes opposed, and sometimes matched each other. Plants482
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from cold sites were relatively taller with earlier germination, and tissue concentrations of483

most elements that were low relative to rubidium levels, but biota from cold sites produced484

relatively shorter and later-germinating plants that had opposite shifts in elemental profiles485

(Figures 2,3b, Figure S9). However, the second major axis of trait co-variation instead shows486

similar, or reinforcing effects of plants and rhizosphere biota from the same site. Opposing487

or correlated impacts on trait values between hosts and microbes have been theoretically488

linked to the evolution of extended phenotypes under conflicting or identical trait optima,489

respectively (O’Brien et al., 2021), suggesting that plants and microbes may have different490

fitness optima across sites for traits on the first CCA axis, but similar optima for traits on491

the second axis.492

Potential mechanisms of links between elemental profiles and traits493

We observed that variation in fitness (biomass) was shaped by the influence of biota and494

climate on linked, multivariate axes of plant phenotypes and elemental profiles (CCA, Figures495

1-3). These linked axes primarily included connections between elements and size (height,496

stem width) or elements and phenology (germination, timing of peak growth).497

Phenology is an important trait for ecological adaptation in both maize and teosinte, with498

colder high elevation populations flowering earlier and having less seed dormancy (Rodŕıguez499

et al., 2006; López et al., 2011; Navarro et al., 2017). Elemental profiles can signal physio-500

logical variation (Baxter et al., 2008), but we cannot ascribe causality to particular elements501

here. However, several elements and traits that load heavily onto the CCA axes match502

with known links between phenology and nutrition, and may be worth further investigation.503

Eelays in germination in teosinte from, or growing with biota from, warmer sites were associ-504

ated with multivariate shifts in elements loading strongly onto CCA axes 1 (higher rubidium505

relative to the concentrations molybdenum and most other elements) and 2 (including si-506

multaneously increased sodium and boron, Figures 2,3b-c,S9). Only sodium was at levels507

expected to be limiting (Figure S13, Maron et al., 2014). Sodium toxicity has been previously508

linked to inhibited germination in maize, and maize tolerance to sodium can be impacted by509

rhizosphere biota (Farooq et al., 2015). Likewise, multivariate increases in elements loading510

positively onto CCA axis 2 (primarily boron and sodium) was associated with plants from,511

or growing with biota from, warmer sites that had an earlier burst of growth (Figures 1, 3c,512

S9). Boron is required in large amounts by reproductive tissues of maize (Lordkaew et al.,513

2011; Marschner, 2011), and precocious flowering can be favored by sodium stress (Farooq514

et al., 2015), suggesting possible links between sodium, boron, growth timing and flowering515

in teosinte. In the field, teosinte plants in warmer sites complete flowering earlier (Table S2),516

and a boron transporter was implicated in adaptation to different climatic environments in517
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teosinte (Pyhäjärvi et al., 2013).518

We expected mycorrhizal fungi to drive some linked changes in elemental profiles and size519

traits, as phosphorus deficiency in our experiment should have enhanced both their coloniza-520

tion of teosinte roots and benefits from phosphorus provided (Smith et al., 2010). Indeed521

phosphorus and rubidium (which can also indicate increased AMF colonization, Hawkes522

and Casper, 2002) increased significantly from uninoculated to inoculated plants (Table S3).523

However, phosphorus patterns in the field (Figure 4c) do not match with spore counts or524

colonization rates (Table S2, Figures 4b,d, S13), and other changes in our leaf elemental525

profiles only partially reflect changes observed in maize profiles following inoculation with526

mycorrhizal fungi (Kothari et al., 1990; Ramı́rez-Flores et al., 2017). Trade-offs that we527

observed between small plants with more concentrated elements versus plants that grow528

larger despite low, or even deficient concentrations of elements (CCA axis 1, Figures 1, S9,529

S13) could instead be driven by other microbes: a wide array of root-associated bacteria can530

synthesize, metabolize or interfere with plant hormones (Duca et al., 2014; Gamalero and531

Glick, 2015) and many soil bacteria alter plant-available nitrogen or phosphorus (Bulgarelli532

et al., 2013). Indeed, the rhizosphere biota we manipulated here certainly include microbes533

beyond mycorrhizal fungi.534

Conclusions535

Our results highlight the co-influence of abiotic and biotic factors on plant phenotypes. We536

observed that environment patterned the extent of local adaptation between plants and537

rhizosphere biota, and the effects of plant-biota interactions on phenotypes. Going a step538

further, we also know that rhizosphere community composition and function commonly shift539

across climatic gradients (Veen et al., 2017; Van Nuland et al., 2017; Praeg et al., 2019;540

Karray et al., 2020; Vieira et al., 2020). As species colonize new habitats in response to541

global change, the turnover from locally adapted to novel species interactions may drive542

unexpected phenotypic changes and have implications for successful range shifts.543
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Rúa, M. A., A. Antoninka, P. M. Antunes, V. B. Chaudhary, C. Gehring, L. J. Lamit, B. J.760

Piculell, J. D. Bever, C. Zabinski, J. F. Meadow, M. J. Lajeunesse, B. G. Milligan, J. Karst,761

and J. D. Hoeksema. 2016. Home-field advantage? Evidence of local adaptation among762

plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. BMC Evolutionary763

Biolology, 16.764

Rudman, S. M., S. Greenblum, R. C. Hughes, S. Rajpurohit, O. Kiratli, D. B. Lowder, S. G.765

Lemmon, D. A. Petrov, J. M. Chaston, and P. Schmidt. 2019. Microbiome composition766

shapes rapid genomic adaptation of Drosophila melanogaster. Proceedings of the National767

Academy of Sciences, 116:20025–20032.768

Sánchez, G. and J. Corral. 1997. Teosinte distribution in mexico. In F. C. E. J.A. Serratos,769

MC Willcox, editor, Gene Flow Among Maize Landraces, Improved Maize Varieties and770

Teosinte: Implications for Transgenic Maize, pages 18–39. INIFAP, CIMMYT and CNBA.771

Sawers, R. J. H., M. N. Gebreselassie, D. P. Janos, and U. Paszkowski. 2009. Characterizing772

variation in mycorrhiza effect among diverse plant varieties. Theoretical and Applied773

Genetics, 120:1029–1039.774

Schwartz, M. W. and J. D. Hoeksema. 1998. Specialization and resource trade: biological775

markets as a model of mutualisms. Ecology, 79:1029–1038.776

Smith, S. E., E. Facelli, S. Pope, and F. A. Smith. 2010. Plant performance in stress-777

ful environments: interpreting new and established knowledge of the roles of arbuscular778

mycorrhizas. Plant and Soil, 326:3–20.779

Smith, S. E. and D. J. Read. 2008. Mycorrhizal symbiosis. Academic press, London, 3rd780

edition.781

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. Van Der Linde. 2002. Bayesian measures782

of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical783

Methodology), 64:583–639.784

Strauss, S. Y. and R. E. Irwin. 2004. Ecological and evolutionary consequences of multispecies785

plant-animal interactions. Annual Review of Ecology, Evolution, and Systematics, 35:435–786

466.787

Tabachnick, B. G., L. S. Fidell, and J. B. Ullman. 2007. Using multivariate statistics,788

volume 5. Pearson Boston, MA.789

Thompson, J. N. 1982. Interaction and coevolution. John Wiley & Sons, Inc.790

Thompson, J. N. 2005. The geographic mosaic of coevolution. University of Chicago Press,791

Chicago.792
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Figure S1: Locations of source sites for teosinte and rhizosphere biota (points), with respect
to Mexico City (asterisk), and elevation (color scale, meters above sea level). Inset shows
zoom for detail of geographic features around sites, as well as circling the sites from which
rhizosphere biota was applied to all plants (see Figure S2, and O’Brien et al., 2019; elevation
data from Hijmans et al., 2005).
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Table S1: Sampling site abiotic characteristics. Climate and elevation data downloaded from BioClim (Hijmans et al., 2005)
extracted with raster in R (Hijmans, 2015). MAT, mean annual temperature in ◦C; TAP, total annual precipitation in mm;
SWC (%), soil water holding capacity. Soil testing service was purchased from INIFAP in Celaya, Gto, methods as provided.
Inorganic N was KCl extraction with MgO distilation, P was quantified with the Bray method. K, Ca, Mg, and Na were
extracted in ammonium acetate 1N at pH7, while Fe, Mn, Cu, and Zn were extracted with diethylenetriaminepentaacetic acid.
Both metal groups were quantified with atomic absorption or inductively coupled plasma. Elevation is in meters above sea level
Soil elements are in micrograms per gram of dry weight (equivalently, ppm). A * indicates sites used as rhizosphere inocula
across all populations of teosinte. A † indicates measurements or extracted variables also reported in O’Brien et al. (2019).
Growing season for teosinte is in the warmer, wetter, portion of the year. Greenhouse average temperature from first possible
germination day to last harvest day was 23.8 ◦C, average night temperature for the same period was 19.4 ◦C, and relative
humidity average was 61.7.

Calimaya
Upper

Toluca* Calimaya
Lower

San
Mat́ıas
Cuijingo

San
Francisco
Pedregal

Tenango
Del
Aire

San
Mateo
Tezoquipan

Texcoco* Malinalco*Tepoztlán*

Longitude -99.633 -99.722 -99.616 -98.843 -99.127 -98.863 -98.809 -98.922 -99.501 -99.070
Latitude 19.161 19.260 19.151 19.077 19.212 19.146 19.212 19.505 18.954 18.976
MAT† 12.9 13.0 13.2 14.3 14.4 14.7 15.0 15.3 18.6 19.8
TAP† 857 836 828 926 935 817 730 585 928 966
Elevation† 2792 2776 2698 2491.5 2507 2408 2353 2253 1881 1665
P (Bray) 71.1 29.7 39.2 27.1 44.3 48.3 68.5 175 223 33.3
Inorganic N 16.2 17.6 14.1 12.7 13.4 15.5 12.0 13.4 16.9 12.0
SWC† 23.3 33.0 21.8 33.0 33.8 27.8 30.8 40.5 55.5 30.0
K 142 143 96.3 261 498 189 315 1055 827 428
Ca 749 1181 354 1034 966 757 1575 2710 4076 915
Mg 26.2 286 55.5 170 167 240 227 660 527 290
Na 25.9 34.3 26.4 10.3 27.5 10.7 14.8 419 31.5 28.2
Fe 31.8 176 25.9 64.8 34.5 56.0 53.8 29.6 81.8 58.6
Zn 0.67 3.25 0.39 1.24 2.63 1.81 7.17 10.5 48.7 1.94
Mn 4.63 75.0 2.23 5.95 2.51 5.94 6.02 6.28 20.5 15.7
Cu 0.38 1.49 0.23 0.97 1.07 0.88 1.4 2.12 0.96 1
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Table S2: Sampling site biotic characteristics. Coarse phenology was approximate qualitative percentages at two metrics scored
by visually estimating the population at the time of seed collection. Plants that remained at least partly green were “Alive”
(others were fully senesced). Plants with undeveloped fruit (even if also fully dead) were “Immature Fruit”(%Immat Fruit),
while other plants were either empty of fruit or had mature fruits (%Mat Fruit). Spore counts are per gram of soil used to mix
inocula. A * indicates sites used as rhizosphere inocula across all populations of teosinte. Populations are sorted by increasing
MAT, see Table S1

Calimaya
Upper

Toluca* Calimaya
Lower

San
Mat́ıas
Cuijingo

San
Francisco
Pedregal

Tenango
Del
Aire

San
Mateo
Tezoquipan

Texcoco* Malinalco*Tepoztlán*

%Alive 8 5 2 5 5 2 10 0 0 0
%Immat Fruit 45 35 35 15 20 10 10 85 10 5
%Mat Fruit 50 60 60 80 75 80 80 10 75 75
Spore count 1233 159 532 915 762 432 223 174 567 419
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Figure S2: Schematic of experimental design. Outlined columns represent biota sources, outlined rows represent teosinte seed
sources. MAT of the site of collection is given for each source. Blank areas represent a significant gap in MAT of sampled
sources. Treatments included in the experiment are filled in grey squares and represent 12 pots (one pot per each maternal
plant in the field from which seeds were collected), and “2x” denotes double the number of experimental pots (2 pots per field
maternal plant, or 24 pots total). All plant populations were also grown uninoculated.
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Figure S3: Time series of height through time for all measured plants. Plants fall into either
delayed growth pattern (posiive squared term in fitted parabola, top) or early growth pattern
(negative squared term in fitted parabola, bottom), see Methods text.
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Figure S4: Histogram of measured data for traits. W-statistics from Shapiro tests are
included, as well for Shapiro tests for the natural log of the data (plus 1 for Stem Hairs to
retain observations with 0 hairs as datapoints), and an asterisk marks which distribution
(raw or natural log) was used in analyses.
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Figure S5: Histogram of measured data for tissue element concentrations (by weight). W-
statistics from Shapiro tests are included, as well for Shapiro tests for the natural log of the
data, and an asterisk marks which distribution (raw or natural log) was used in analyses.
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Table S3: All element concentrations are in micrograms per gram dry weight, but were
logged where this improved normality (based on the W statistic of a Shapiro test in R, those
not logged marked with †; see main text, Figures S4, S5. Intercepts are significantly different
from 0, unless indicated with “n.s.”. For slopes pMCMC of interest are indicated with: ***
is < 0.001, ** < 0.01, * is < 0.05, . is < 0.1. Models were fit with MCMCglmm (Hadfield,
2010), with 13,000 iterations, 3,000 burn-in, and thining by 10. Note pMCMC values are
not multiple-test corrected.

Trait or element Live intercept Live Slope Sibling Intercept Sibling Slope

Biomass 2.58 0.91*** 3.48 -0.56***
Shoot:Root 1.28 -0.028 1.28 0.008
Height cm 34.20 0.55 28.22 3.02***
Stem width mm 5.48 0.75*** 7.26 -0.79***
Leaf Number 6.34 0.097 6.54 -0.002
Leaf Length cm 13.09 0.28 10.67 0.49***
Leaf Width cm 0.75 0.013 0.59 0.027*
Growth Acceleration 0.0025 -0.0022** 0.0012 n.s. 0.0002
Germination Day† 1.37 0.10 1.15 0.035***
Hairs per cm2† 0.97 0.013 0.80 0.045***
B 2.60 -0.046 2.03 0.18**
Na 5.62 0.011 5.48 0.029
Mg 7.33 0.031 5.30 0.28***
Al 3.76 0.032 3.71 0.020
P 6.32 0.53*** 7.08 -0.037
S† 5778 -172*** 4683 0.16***
K† 33086 -0383 29500 0.097.
Ca 8.71 -0.21*** 6.67 0.21***
Fe 4.61 -0.079* 4.50 0.0065
Mn 4.42 -0.016 3.37 0.23***
Co -2.67 -0.042 -2.59 0.059
Ni -1.34 -0.13* -1.49 0.019
Cu 2.17 -0.31*** 1.63 0.10*
Zn 2.80 -0.039 3.01 -0.087
As† 9.48 0.063 9.27 0.03
Se 2.77 -0.0063 2.19 0.20***
Rb 2.81 0.27*** 2.61 0.17***
Sr 3.53 -0.17** 2.75 0.17***
Mo† 9.78 -4.72*** 3.85 0.11***
Cd -1.78 -0.41*** -1.71 0.27***
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Figure S7: Left, linear discriminant analysis of elemental profiles between inoculated (black)
and uninoculated (grey) plotted against tissue phosphorus (logged values). Projections for
field plants in yellow. Right, correlations of individual element concentrations with the
resulting LDA prediction scores in orange (negative) or purple (positive), with stronger
colors indicating stronger ρ.
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Figure S8: Left, linear discriminant analysis of traits between inoculated (black) and uninoc-
ulated (grey) plants relies primarily on stem width. Right, correlations of individual traits
with the resulting LDA prediction scores in orange (negative) or purple (positive), with
stronger colors matching strength of ρ.
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Figure S9: Visualizng a subset of the multivariate relationships identified by the CCA. CCA
axes identify correlations in highly multivariate space; meaning, they often include shifts
in the relative concentrations of elements to each other, or relative values of traits to each
other. Plots in the upper row some of the relationships identified in the first CCA axis:
rubidium and plant height load strongly on this axis in the positive direction, and most
other elements (potassium here, for example), as well as the log of days until germination
load in the negative direction. Plants that were relatively higher in rubidium for a given
concentration of potassium (points shifted towards the upper left corners of plots) were
taller, germinate earlier, and had higher scores on the CCA axis. Plots in the lower row
show examples of the multivariate relationships identified by the second CCA axis: boron,
sodium, and the log of germination day load strongly in the positive direction on this axis,
while the the timing of vegetative growth loads negatively. Plants that had higher levels
of both boron and sodium in tissues (those in the top right corners only) germinated later
but grew fastest right after germinating. See Figure 2 for complete multivariate CCA axis
loadings. Abbreviations: log(GermDay), natural log of days until germination; GrwTime,
timing of vegetative growth; standard elemental abbreviations. The natural log of elemental
concentrations is shown here when logged data were used in the analyses (Figure S5).

12

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.20.440703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440703
http://creativecommons.org/licenses/by-nc-nd/4.0/


−4 0 2 4

−
4

0
2

4

CCA Axis 1

Inoculated
Projected Uninoculated

Tr
ai

t S
co

re

a.

−4 0 2 4

0
20

F
re

qu
en

cy

c.

−4 0 2 4
−

4
0

2
4

CCA Axis 2

Element Score

b.

−4 0 2 4

0
20

Projected Field Plant Element Score

d.
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(a). Loadings of traits onto the first axis of the PCA of trait data alone (b). In (c), scores
for plants on the first axis of each respective PCA are plotted against each other, showing
no strong relationship. Abbreviations of traits and elements are as elsewhere.
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Figure S12: Correlation of multivariate axes with biomass three different ways: within plant
source mean annual temperature (MAT, but across families, replicates and biota source
MAT), within biota source MAT (but across families, replicates and plant source MAT),
and across all data (Grand ρ). Note that correlations within biota source MAT are based on
sympatric combinations only (plants from the same site) for most sites (MAT 15, 14.7, 14.4,
14.3, 13.2, and 12.9◦C). Colors are purple for positive correlations and orange for negative
correlations, with color strength reflecting strength of correlation.
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CC1 elmt CC2 elmt Height Germ StemW LDA elmt LDA trt PCA1 trt PCA1 elmt
Intercept a -0.33 -2.75** 75.7** -0.91** -2.24** 0.18 4.17** 8.22** -0.62
Biota source Env. βB 0.18** 0.068** – 0.0012 0.020** -0.027** -0.019** -0.0097** -0.012**
Plant source Env. βP -0.17** 0.11** -0.26** 0.017** 0.034** 0.0099. -0.0075** -0.044** 0.017**
Sympatry βS 1.63* – – – 2.28* – -2.16** – –
Sympatry×Env. βE×S -0.097* – – – -0.014* – 0.013** – –
Best Env. MAT MAT MAT MAT MAT SWC MAT MAT MAT

Table S4: Biota and plant source effects on plant values for select other response values including: the top trait on each of the
first two CCA axes between trait and element matrices (height and germination), stem width (since it was measured in the
field and somewhat strongly correlated to CCA2), the first axis of each PCA for element and trait values separately (agnostic
approach for trait-ion linkage), and LDA axes. Abbreviations: elmt is element; trt is trait; Germ is the natural log of the
germination day, and StemW is Stem width. Intercepts, representing values for 0 MAT, are not meaningful. –: not included in
best model **: pMCMC < 0.01,*: pMCMC < 0.05.
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Intercept βMAT βC βMAT×C

LDA 2.29* -0.014** -2.05.* –
PCA -2.60** – – –

Table S5: Best models fitted to selected further response variables for plants in the field:
projections of the field elemental profiles onto the LDA axis and first PCA axis for elemental
profiles from the greenhouse data. For each response variable, we report the model coeffi-
cients of the best model in rows. Significance of intercepts is not meaningful, representing
values for 0 ◦C. –: not included in best model, **: pMCMC < 0.01, *: pMCMC < 0.05, .:
pMCMC < 0.1.
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Figure S13: Average measured tissue element concentrations (µg g−1 using dry weight) for
field (yellow), greenhouse inoculated (black) and uninoculated (grey) plants plotted against
mean annual temperature of the field site. Vertical bars indicate one standard error of the
mean. Horizontal lines indicate a value at which that element is very likely (red) or possibly
(orange) limiting growth due to deficiency, or where that element is very likely (dark blue)
or possibly (light blue) limiting growth due to toxicity (values from maize, grasses or plants
broadly as available in Marschner, 2011). In many cases, one or more thresholds are far from
actual tissue concentrations and are not visible. Seven elements (Al, Co, Se, Rb, Sr, and
Cd) have no visible thresholds because they have no, or uncertain, beneficial concentrations
and are not near any toxicity threshold.
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