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Summary20

• While abiotic environments consistently shape local adaptation, the strength of local21

adaptation to biotic interactions may vary more. One theory, COCO (CO-evolutionary22

Outcomes across Conditionality), predicts it may be strongest where species experience23

greater stress, because stress increases fitness impacts of species interactions. For24

example, in plant interactions with rhizosphere biota, positive outcomes increase with25

stress from low soil fertility, drought and cold.26

• To investigate the influence of abiotic stress gradients on adaptation between plants27

and rhizosphere biota, we used a greenhouse common garden experiment recombining28

teosinte, Zea mays ssp. mexicana (wild relative of maize), and rhizosphere biota,29

collected across a stress gradient (elevational variation in temperature, precipitation,30

and nutrients).31

• We found stronger local adaptation between teosinte and rhizosphere biota from colder,32

more stressful sites, as expected by COCO. However, biota from less stressful, warmer33

sites provided greater average benefits across teosinte populations. Links between plant34

traits and 20-element profiles of plant leaves explained fitness variation, persisted in35

the field, were influenced by both plants and biota, and largely reflected patterns of36

local adaptation.37

• In sum, we uncovered greater local adaptation to biotic interactions in colder sites, and38

that both plants and rhizosphere biota affect the expression of plant phenotypes.39

Keywords: biotic interactions, stress-gradient, local adaptation, ionomics, phenotype40

expression, plant-rhizosphere interactions41

Introduction42

The striking power of both abiotic and biotic selective forces in evolution has been well-43

documented, yet meta-analyses reveal that while abiotic forces consistently drive strong local44

adaptation to sites across species and systems, local adaption to biotic interactions is incon-45

sistent in strength (Briscoe Runquist et al., 2020; Hargreaves et al., 2020). This is not un-46

expected: fitness impacts of biotic interactions vary across abiotic conditions as the impacts47

of individual interactions or the composition of suites of interacting species shift (Cushman48

and Whitham, 1989; Strauss and Irwin, 2004; Chamberlain et al., 2014; Trøjelsgaard et al.,49

2015; Kemp et al., 2017), driving mosaics of co-evolution and co-adaptation (Thompson,50
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1982, 2005). One well-known pattern of shifting outcomes is the strengthening of benefits51

between partners across gradients of abiotic stress, heightening mutualisms (Johnson, 1993;52

Schwartz and Hoeksema, 1998; Bever, 2015) and attenuating competition or shifting it to53

facilitation (Bertness and Callaway, 1994; Callaway et al., 2002; He and Bertness, 2014).54

Altered adaptation to species interactions is then expected to follow such shifts in outcomes55

(Bronstein, 2009; O’Brien et al., 2018). Specifically, the “(co)evolutionary outcomes of con-56

ditionaliy” (COCO) hypothesis predicts increased mutualism and local adaptation in one57

or both interacting species in stressful sites where the interaction ameliorates the stressor’s58

effect (O’Brien et al., 2018).59

For plants, one important class of biotic interaction is with the diverse community of60

organisms that live in, on, or near their roots (Hiltner, 1904; Bais et al., 2006; Raaijmakers61

et al., 2009; Lundberg et al., 2012; Toju et al., 2014). Though these interactions are primar-62

ily mutualisms involving exchange of plant photosynthetically-fixed carbon for nutritional63

benefits from biota (Smith and Read, 2008), outcomes for plants may sometimes be costly64

(e.g. Berg and Smalla, 2009; Smith and Read, 2008; Anacker et al., 2014). Like patterns65

across species, local adaptation between plants and components of their rhizosphere biota66

is variable in strength (Rúa et al., 2016). Because plant-rhizosphere interactions provide67

positive outcomes through ameliorating abiotic stress, they may shift to negative outcomes68

in the absence of that stress (Johnson, 1993), leading to the prediction of COCO and other69

theoretical frameworks that there should be stronger mutualistic adaptation between plants70

and microbes in high-stress sites such as those lacking in soil nutrients (Bever, 2015; O’Brien71

et al., 2018). In one tantalizing example, mycorrhizal fungi positively affect plants by allevi-72

ating phosphorus stress, and greater local adaptation between plants and fungi was observed73

in phosphorus-deficient sites compared to sites with less phosphorus stress (Johnson et al.,74

2010).75

Here, we address the influence of abiotic environments on local adaptation between76

teosinte, Zea mays ssp. mexicana, a wild relative of domesticated maize (Zea mays ssp.77

mays) from the highlands of central Mexico (Sánchez and Corral, 1997) and its rhizosphere78

biota. We experimentally combined teosinte plants and rhizosphere biota from sites spanning79

an elevational range that also captured gradients in soil fertility, temperature, and precip-80

itation (O’Brien et al., 2019). These gradients may have synergistic effects: cold stress in81

plants is physiologically driven by water and nutrients as roots function poorly in the cold,82

leading to nutrient deficiencies and wilting (Bloom et al., 2004; Zhu et al., 2009), potentially83

exacerbating effects of dry or nutrient-poor sites. Rhizosphere biota can alleviate drought84

(Kivlin et al., 2013), cold (Zhu et al., 2009) and nutrient stress (Smith et al., 2010), and may85

therefore be most beneficial in dry, nutrient-poor, and cold sites. COCO predicts the most86
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evolved mutualistic benefits where interactions have the most beneficial outcomes. Benefits87

can be general and provided to any interacting partner, or they may be locally adapted and88

provided only to partners from the local population (O’Brien et al., 2018). We hypothesized89

that 1) biota from the most stressful sites (cold, dry, nutrient-poor) would provide the most90

general and locally adapted benefits.91

In teosinte, many of the traits that underlie adaptive differentiation across elevation92

or cold stress (including phenology and height, Hufford et al., 2013; O’Brien et al., 2019;93

Fustier et al., 2019) also shift in response to changes in rhizosphere communities (O’Brien94

et al., 2019). Plant-rhizosphere interactions may simultaneously influence many different95

elements in plant tissues (e.g. the ionome, a 20-element profile, Baxter et al., 2008; Ramı́rez-96

Flores et al., 2017), and microbially driven shifts in plant tissue element concentrations97

are linked to shifts in plant traits from root architecture to flowering time (Desbrosses and98

Stougaard, 2011; Bulgarelli et al., 2013; Paszkowski and Gutjahr, 2013; Lu et al., 2018),99

suggesting an interplay between rhizosphere nutrient provisioning, and the expression of100

adaptive phenotypes. To investigate any such interplay between teosinte and rhizosphere101

biota, we identified plant phenotypes that co-varied with elemental profiles. We hypothesized102

that 2) adaptation associated with stress gradients (cold, fertility, precipitation) would shape103

co-varying plant traits and element profiles, i.e. that patterns in traits and elements would104

reflect general and locally adapted benefits from biota.105

Finally, benefits provided to plants by biota should be greater when conditions match106

the local environment from which plants and biota were sourced and to which they may107

be locally adapted (Johnson et al., 2010; Lau and Lennon, 2012). We therefore measured108

element profiles and a subset of traits in the field, and tested whether 3) rhizosphere biota109

both provide greater benefits to teosinte at more stressful sites (cold, dry, nutrient-poor),110

and shift traits and elemental profiles as observed in the greenhouse.111

Materials and Methods112

Characterization of field sites and collections113

We selected 10 populations of teosinte from central Mexico across its elevational range (Figure114

S1) that we expected to differ in soil fertility (based on underlying geology, Instituto Nacional115

de Estad́ıstica y Geograf́ıa, 2014) and climatic variables that were previously associated with116

shifting outcomes of plant-rhizosphere interactions and adaptation in Zea spp. and other117

plants (Sawers et al., 2009; Kivlin et al., 2013; O’Brien et al., 2019). Sites ranged 6.6◦C in118

mean annual temperature (MAT), >1100 meters in elevation, and the wettest site received119
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nearly twice the annual precipitation of the driest site (information extracted with raster,120

Bioclim in R, Hijmans et al., 2005; Hijmans, 2015; R Core Team, 2019, Table S1). In121

August 2013, we collected 2 kg of teosinte rhizosphere soil from each population (pooled122

individuals spanning the spatial extent), stored briefly at 4◦C, then sent it for analysis123

at INIFAP, Laboratorio Nacional de Fertilidad de Suelos y Nutrición Vegetal. Sites had124

an ≈10-fold difference in extractable soil phosphorous (29.7-223 ppm) and potassium (96-125

1055 ppm), and inorganic nitrogen ranged from 12 to 17.6 ppm. These variables did not126

shift independently across sites: as MAT increased, so did precipitation, soil water holding127

capacity, phosphorus, and potassium, but inorganic nitrogen decreased (ρ is 0.30, 0.55, 0.41,128

0.54, and -0.27, respectively).129

In December 2013, after plant senescence and seed set, we collected seeds from 12 different130

mother plants per population, chosen to span the population spatial extent and have sufficient131

seed quantity, and stored at 4◦C until use. At the same time, we scored coarse phenology of132

each population, and collected rhizosphere biota. Approximately 6 liters (4-7 L) of roots and133

attached soil were collected from plants spanning the whole population at each site. Plants134

were unearthed and roots lightly shaken, and then roots and loosely-adhering soil were135

placed in bags, dried at ambient temperature, and stored at 4◦C. To make biota inoculum136

for each source site, bag contents were homogenized in a blender until root pieces were137

approximately ≤ 2 cm in length and well mixed with soil. While pooling soil samples within138

sites can homogenize within site variation, homogenization effects should be unbiased with139

respect to local adaptation between plants and rhizosphere biota. To characterize abundance140

of a key rhizosphere microbe in inocula, we extracted arbuscular mycorrhizal spores from141

homogenized inocula (density gradient method Furlan et al., 1980).142

Testing whether biota from stressful sites provide more general and locally143

adapted benefits144

In May of 2014, we grew seeds from each teosinte population in each of six inoculum treat-145

ments: no inoculum, sympatric inoculum (collected from same site, contrasted with “al-146

lopatric,” collected from different sites), and inocula from four sites selected from the 10.147

These treatments ensured that each teosinte population experienced biota from its home site148

and biota from allopatric sites. The four plant populations from which these selected inocula149

came received doubled replicates of the sympatric treatment, and three allopatric treatments,150

while other populations received four allopatric treatments (see Figure S2). Source sites used151

for the shared biota inocula treatments spanned the range of described environmental vari-152

ables (Table S1, Figure S2).153

We grew sibling seeds from 12 mothers from each of the 10 teosinte populations (120154
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mothers × 6 treatments = 720 plants). We added four drainage holes to 2 L plastic grow155

bags, and filled with 1.5 L of sterile potting mix (90% sand, 5% perlite 5% vermiculite156

0.2% silt, steam sterilized for 4 hours at 90◦C using a PRO-GROW SS60). We inoculated157

each pot with 50 mL of 4:1 sterilized sand and homogenized inocula (sterilized sand only in158

uninoculated treatment) just below where seeds were to be placed, and topped with sterilized159

soil, resulting in a live layer of inocula sandwiched between sterilized soils. As only 0.5% of160

pot volume is inocula, we expect any non-biotic inocula effects to be minimal relative to biotic161

effects. We added three seeds from the same maternal plant family to pre-watered pots after162

scarification with overnight soaking, and thinned to one seedling after germination. Pots163

were randomly arranged on a bench in a temperature- and humidity-controlled greenhouse164

in Irapuato, Gto, Mexico (average temperature 23.8◦C during the experiment). We treated165

plants with Agrimycin and Knack in dual-application one time to prevent caterpillar and166

spider mite herbivory. We kept pots unfertilized and moist for the first two weeks as most167

plants germinated, after which we watered and fertilized weekly with 50 mL of Hoagland’s168

solution adjusted to low phosphorous (100µM). We chose this low nutrient and phosphorous169

regime to increase stress that rhizosphere interactions could alleviate (Smith et al., 2010),170

as recommended for tests of COCO (O’Brien et al., 2018).171

At 52 days post-germination (dpg), we harvested plants. When many plants were due172

for harvest on a particular day, we harvested over several days in random order; most plants173

were harvested within one or two days of 52 dpg (Figure S3; range 29-67 dpg). We measured174

traits (see below), then quantified a fitness proxy: pre-reproduction vegetative dry biomass,175

which predicts fitness in the related subspecies Zea mays ssp. parviglumis (Piperno et al.,176

2015, as analyzed in O’Brien et al., 2019). We washed plants of adhering soil, split into roots177

and shoots, dried (≈ 45◦C until mass stabilized), and weighed.178

We related our fitness proxy, biomass, to abiotic environments at plant and biota source179

sites with linear models (Bayesian methods, MCMCglmm Hadfield, 2010). Our environmen-180

tal variables included our three soil fertility measures (logged when normality improved), soil181

water holding capacity, and climatic variables (site mean annual temperature, mean annual182

precipitation). We explicitly tested whether biota effects on plant fitness are correlated to183

the environment at their source sites (EB), whether local adaptation alters these effects (S),184

and whether local adaptation is environment-specific (ES × S) by fitting:185

Y ∼ α + βEP
EP + βEB

EB + βSS + βE×SES × S +NM(0, εP ) + ε, (1)

where βs are slopes, and α is the intercept. Biota source environment effects (βEB
) may be186

a combination of species assemblage differences and divergence within rhizosphere species.187

Sympatric effects (βS and/or βE×S) may be plant- or biota- based. If βS is positive, it may188
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indicate local adaptation of plants to perform better in local biota, or filtering of biota via189

competitive exclusion or selection that results in biota that better support local plants. If190

negative, βS may indicate biota that grow more themselves at the expense of local plants.191

Significant βE×S would indicate a strengthening or weakening of local adaptation across192

abiotic gradients. We define all possible sources of βS and βE×S as local adaptation, as193

all involve a local-genotype dependent effect. As stress decreases with increases in our E194

variables, COCO predicts negative βEB
(biota from colder, drier, and nutrient-poor sites more195

beneficial) and negative βE×S with a positive βS (biota from colder, drier, and nutrient-poor196

sites provide even greater benefits to sympatric plants).197

We include plant source environment effects (βEP
), as it is important to account for198

population effects when testing for local adaptation (Blanquart et al., 2013; O’Brien et al.,199

2018), which could include genetic differences across populations and transgenerational envi-200

ronment responses (i.e. maternal effects). εP is a random effect for family (which can shape201

variation in teosinte, O’Brien et al., 2019, Table S3), and ε is error. We fit this model using202

each environmental variable in turn, removing non-significant terms until DIC (Bayesian203

verion of AIC, Spiegelhalter et al., 2002) stopped reducing or no non-significant terms re-204

mained (terms were removed one at a time, starting with most-complex and least significant205

based on pMCMC). We report the model for only the best fitting environmental variable,206

quantifying uncertainty with highest posterior density intervals (HPDI, Bayesian equivalent207

of confidence intervals, Plummer et al., 2006).208

Testing whether stress gradients and local adaptation shape traits and element209

profiles210

We measured plant traits largely from within the set of previously known adaptive or211

rhizosphere-influenced traits in teosinte or Zea mays subspecies (Kaur et al., 1985; Lauter,212

2004; Hufford et al., 2013; López et al., 2011; O’Brien et al., 2019). We recorded germination213

date, measured height to the highest ligule at five timepoints, and length and width of the214

second true leaf when expanded. At harvest we measured: final height, stem width (at the215

first node above the soil), leaf number, and number of stem macrohairs in 1 cm2 below the216

ligule on the edge of the lowest live leaf sheath. Some plants germinated much later than217

others (14 plants surviving to harvest germinated 30-72 days late). These were excluded218

from analyses including multivariate trait axes (see below) as they could not be measured219

for all traits, though they were included for biomass, above. We characterized growth timing220

by fitting parabolic growth curves to height measurements using days since emergence and221

the square of days (linear models in R, height ∼ α + β1days + β2days
2). We extracted the222

coefficient for the squared term (β2), which separated plants into early (β2 <0 plants grew223
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quickly early, with decreasing growth rate through time, no plants had negative growth),224

or delayed growers (β2 >0, plants initially grew slowly, and increased growth rate through225

time, see Figure S3). We sampled the youngest (most apical) fully expanded leaf, dried at226

45◦C then processed at Donald Danforth Plant Science Center to quantify plant tissue con-227

centration of 20 elements using inductively coupled plasma mass spectrometry (as in Baxter228

et al., 2008, ICP-MS, ionomics, see Figure 2 for list).229

Most element concentrations and some traits were not normally distributed. We took230

the natural log when this improved normality, but for phenotypes, we restricted taking the231

log to only traits where the Shapiro W statistic was < 0.9, evaluated in R; after necessary232

transformations all W were > 0.75, Figure S4). For all elements, we included greenhouse and233

field (see below) samples when evaluating normality. Only arsenic and selenium remained234

substantially non-normally distributed (best W statistic of Shapiro test < 0.75, Figure S5).235

We tested for differences between uninoculated plants and plants inoculated with biota.236

We used linear models (MCMCglmm, in R) for each element or trait. Because there were237

many elements and traits, we used linear discriminant analysis to explore multivariate dif-238

ferences with inoculation (LDA, package MASS in R, Venables and Ripley, 2002).239

We used canonical correlation analysis (with package CCA in R, González et al., 2008) to240

find the axes of greatest multivariate covariation between traits and elemental profiles, which241

we interpret as the traits that most likely depend on nutrient provisioning by biota. As our242

experiment was conducted at low phosphorus, we also explore phosphorus concentrations243

in particular. Plants may highly mis-express traits under artificial deprivation of soil biota244

(Partida-Martinez and Heil, 2011; Hubbard et al., 2019; O’Brien, 2019), so we restricted245

this analysis to inoculated plants, though we projected uninoculated plants onto resulting246

CCA axes for comparison. We evaluated links between composite axes and fitness using247

linear models (fitness ∼ axis), fit with MCMCglmm in R. To compare to results for local248

adaptation, we performed the same linear model analysis as for biomass (above) on the first249

two CCA axes and the traits most strongly correlated to them (strongest loadings), as well as250

leaf tissue phosphorus, due to expected links to a key rhizosphere component (AMF, Smith251

et al., 2010). To contrast these results with multivariate axes of traits and elemental profiles252

that may not be linked to each other (or to fitness, see Figure S12), we further extended253

the analysis to the previously described LDA axes, and the first axes of separate principal254

components analysis for traits and elemental profiles (see Table S4).255
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Testing whether biota provide greater benefits at stressful sites and retain effects256

on traits and elements257

Because predictions of COCO rest on increasing benefits of biota at stressful sites, and258

some adaptive benefits may be conditional on local environments, we evaluated relationships259

between environment, elemental profiles, size traits, and rhizosphere colonization at field260

sites. We focused on one important rhizosphere component: arbuscular mycorrhizal fungi261

(AMF, Smith and Read, 2008).262

During August 2013 collections, we quantified differences in field teosinte plants across263

the sites. We measured 20 plants per population (spanning the spatial extent) for height to264

the highest ligule, and stem width at the first node visible above the soil (only these traits265

could be measured in the field). We sampled the penultimate leaf (to avoid leaves still ex-266

panding), stored in paper envelopes, and included these in ICP-MS analyses described above.267

We also took a sample of mixed roots from throughout the upper 15 cm of the root system,268

transported from the field in 8 mL tubes of 10 % KOH, which we scored for AMF arbus-269

cules using standard methods (McGonigle et al., 1990), modified with less toxic alternatives.270

Briefly, we left roots in their field KOH solutions to clear (5-10 days), placed subsamples in271

histology cassettes, rinsed with deionized water, acidified in acetic acid (5%) for 2-3 hours,272

boiled in 5% acetic acid and 5% pen-ink (Parker, Quink Black-Blue Waterproof) for 3-5273

minutes (until roots take up the ink), and rinsed once with deoinized water. We mounted274

stained roots on slides in corn syrup (Karo brand), and scored approximately 60 intersections275

for arbuscules with brightfield illumination microscopy (Vierheilig et al., 2005).276

We projected field elemental profiles onto significant CCA axes we calculated from green-277

house data above. We selected the best performing environmental variable (present in the278

most best models, βE) from the greenhouse data to use in the field models, and we tested if279

projected field elemental profiles, field tissue phosphorus, or field-measured traits, suggested280

that effects of AMF (βC) increase at more stressful sites (βE×C):281

Y ∼ α + βEE + βCC + βE×CE × C + ε (2)

We fit the full model first and removed non-significant terms one at a time (as above,282

analogous analysis for LDA and PCA in Table S5).283
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Results284

Only the COCO prediction of increased local benefits for plants and biota from285

stressful sites is supported286

For biomass (our fitness proxy), we found that the best fitting plant and biota source variable287

was mean annual temperature (MAT, see also Figure S6). COCO predicted that biota from288

stressful cold sites should be the most generally mutualistic. Contrary to these predictions,289

overall, association with biota from warmer, less stressful sites increased plant biomass in290

the greenhouse (Figure 1, βEB
, Table 1). However, sympatric combinations of plants and291

biota produced greater plant biomass than expected from the effects of plant source and292

biota source on biomass (βS, Table 1), suggesting benefits from local adaptation. In line293

with COCO predictions for local mutualistic adaptation, benefits of local adaptation were294

stronger for plants from colder sites: the interaction effect between MAT and sympatry295

(βE×S) eroded the effect of sympatry (Table 1), reflecting that teosinte from colder sites296

paired with sympatric biota more strongly exceeded expectations for biomass when excluding297

sympatric terms (Figure 1, right).298

Inoculation increases phosphorus, biomass and affects elemental profiles, traits299

Inoculation with biota had the expected effects of increasing biomass and tissue phosphorus300

relative to levels in uninoculated siblings. Inoculated plants were over 30% larger (average301

3.50 and 2.59 grams total biomass, ± 0.04 and 0.09 SE, pMCMC < 0.05, see Table S3).302

Tissue concentrations of phosphorus were nearly double in inoculated plants (977 µg g−1
303

versus 569 µg g−1, standard error 11.8 and 12.1, respectively), but were still below levels for304

ideal plant growth (3000 µg g−1 Marschner, 2011, Figure S13). Beyond phosphorus, some305

greenhouse plants (and field plants) had concentrations in their tissues potentially signalling306

deficiency (magnesium and molybdenum) or toxicity (sodium, Figure S13, Marschner, 2011).307

Our multivariate LDA distinguished the elemental profiles of inoculated plants from308

those in the sterilized treatment (successful assignment 95% overall) primarily based on tis-309

sue phosphorous (Figure S7). LDA of trait data poorly distinguished plants growing with310

live biota from uninoculated plants (predicted only 5% of uninoculated plants) but plants in311

live biota had wider stems (6.2 and 5.5 mm, ± 0.07 and 0.13 SE) and grew earlier (Figure312

S8, and Table S3, both differences pMCMC < 0.05). Most plant traits and element concen-313

trations had significant correlations across inoculated and uninoculated siblings, indicating314

contributions from maternal environments, non-plastic genetic differences among families or315

populations, or similar (Table S3).316
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Figure 1: Mean biomass for each combination of plant and rhizosphere biota sources (points)
plotted against the mean annual temperature (MAT ◦C) of the plant source site. Left
panel: allopatric combinations show greater generalized mutualistic benefits from biota from
warmer sites; non-overlapping model expectations (lines, 95% HPDI for the mean in shaded
intervals) between plants grown with biota from the warmest (red) or coldest (blue) sites
(effect of plant source MAT n.s.). Right panel: sympatric combinations (means, points) of
teosinte and biota from colder sites show greater local, sympatric benefits (fall above vertical
lines: 95% HPDI model expectations for these points excluding sympatric effects, βS and
βE×S). Point color indicates MAT at the source site of the inoculated biota for both panels
(redder = warmer).
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Co-varying axes of elemental profiles and traits link to fitness317

Because we expected plant nutrition and plant traits to be causally linked, we employed318

canonical correlation analysis (CCA) to identify the strongest axes of covariation between319

them. The first two axes explained significant covariation between traits and elements (34%320

and 26%, chi-squared p < 0.01 and 0.05, respectively, Figure 2a-b,e), and explained mod-321

erate portions of variance within traits (9% and 15%) and tissue elements (10% and 6%,322

respectively). For ease of interpretation, we flipped loading signs on the first CCA axis; this323

does not change results.324

CCA axes identify highly multivariate relationships that may not be easily simplified325

into components, however, we identified several patterns. Briefly, on the first CCA axis,326

for a given concentration of rubidium, plants that had decreased tissue concentrations of327

molybdenum, cobalt, magnesium, potassium, and the majority of other elements were taller328

and also germinated earlier (Figure 2e, see Figure S9 for partial axis visualization). This axis329

may relate to potassium nutrition, as it is orthogonal to the well-known positive correlation330

between potassium and rubidium (Läuchli and Epstein, 1970, Figure S9). On the second331

axis, plants with elevated boron, sodium, and cobalt were linked to plants that germinated332

later but had wider stems, longer leaves and earlier timing of maximum growth rate (negative333

values for growth timing, Figure 2, see Figure S9 for partial axis visualization). Projected334

scores for uninoculated plants were lower than inoculated plants on the first and second axes335

(Figure S10, i.e. because they were smaller and had higher tissue concentrations of most336

elements excepting phosphorus, Figure S7, Table S3).337

We expected that traits and elemental profiles would link to fitness. In the greenhouse,338

biomass was strongly correlated to CCA axes of elements and traits, as would be expected if339

relationships were causal or had underlying shared causes (Figures 2c-d,S12, ρ >0.5 for CCA340

axis 1). Instead, for multivariate analyses agnostic to trait links, trait and element axes are341

not correlated to each other (Figure S11). Correlations to biomass were generally weaker or342

even anti-predictive for these axes and phosphorus (Figure S12). For example, while both343

phosphorus and biomass increased with inoculation, phosphorus was negatively correlated344

to biomass among inoculated plants (ρ -0.21).345

Local adaptation and source of plants, biota co-affect traits and elemental profiles346

Using linear models, we tested whether plant tissue phosphorus and linked axes of traits347

and elemental profiles differed across the environment of plant and biota sources. As seen348

for biomass, mean annual temperature (MAT) was the best fitting plant and biota source349

variable for these response variables (Table 1, see Table S4 for element score best models).350
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Figure 2: Two significant (as in Tabachnick et al., 2007) multivariate axes of covariation be-
tween traits and elements in greenhouse plants were identified by CCA, depicted by plotting
trait and element scores for each axis (a and b, axis 1 and 2, respectively). Both multivariate
axes were strongly positively correlated to biomass, for trait (c and d, for axis 1 and 2, re-
spectively) and element scores (not shown, both pMCMC<0.01). (e) shows full multivariate
correlations (equivalently, “loadings”) of trait (top) and elements (bottom) on CCA axes.
Stronger positive correlations are in darker purple, stronger negative correlations in darker
orange. Standard abbreviations for elements, GermDay = natural log of day of germination,
lnHair = natural log of stem hairs per cm2, S:R = shoot:root ratio, Width = stem width,
LeafL = leaf length, LeafW = leaf width, GrwTime = higher values indicate a delay in peak
growth rate. See Figure S9.
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parameter biomass ln(phosphorus) CC1 Trait CC2 Trait
Intercept a 1.27** 7.13** 0.92. -3.97**
Biota source Env. βEB

0.15** – 0.16** 0.11**
Plant source Env. βEP

-0.014 -0.017* -0.24** 0.15**
Sympatry βS 1.32* -0.44* 1.68** 1.53*
Sympatry×Env. βE×S -0.077* 0.025* -0.10** -0.096*
Env. in best model MAT MAT MAT MAT

Table 1: Biota and plant source effects estimated by best models for plant fitness (biomass),
plant tissue phosphorus, and trait scores on first and second CCA axes.1

We found mixed effects of locally matched plants and biota on tissue phosphorus and co-351

varying traits and elements. Plants from colder sites had more tissue phosphorus, but the352

only difference across biota was that teosinte from colder sites growing with sympatric biota353

had relatively lower tissue phosphorus (Figure 3a, Table 1), both trends likely reflecting354

elevated tissue phosphorus of smaller inoculated plants (see above). Plants sourced from355

colder sites had increased values on the first CCA axis for both traits and elemental profiles356

(Figure 3b, taller plants that also germinate early, and have high tissue rubidium relative357

to molybdenum, potassium, and most other elements), but plants growing in biota sourced358

from colder sites had decreased values for both traits and elemental profiles on the first CCA359

axis (shorter plants that also had later germination and opposite elemental profile shifts, see360

also Figure S9). Sympatric biota moved scores on the axis in the same direction as biota361

from warmer environments (positive sign of βEB
matches βS Tables 1, S4), and, as seen for362

biomass, the strength of the sympatric effect decayed for plants and biota from warmer sites363

(negative βE×S, Tables 1,S4).364

While plant source MAT and biota source MAT had opposite effects on the first CCA axis,365

they had aligned effects on the second (βEB
& βEP

> 0, Figure 3c). This signals that plants366

from warmer sites and plants growing with biota from warmer sites had later germination367

combined with earlier growth, and wider (but not taller) stems, as well as relatively higher368

concentrations of elements that load positively on CCA axis 2 (boron, sodium, and cobalt,369

see Figure S9). Sympatric biota shifted trait scores in the same direction as plants and370

biota from warmer environments, but sympatric effects decayed for plants from warmer371

environments (βS > 0, βE×S < 0, Table 1, Figure 3c, element score best model differs, Table372

S4). Similar results between the best models for CCA axes and best model for biomass373

reflect positive correlations between both CCA axes and biomass in the greenhouse (Figure374

2, Figure S12).375

1Significance of intercepts are not meaningful (representing 0 ◦C MAT). –: not included in best model
**: pMCMC < 0.01,*: pMCMC < 0.05, . : pMCMC < 0.1
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Figure 3: Mean tissue phosphorus (a, natural log) and CCA axis trait scores (b, c) for each
combination of plant and biota sources (points) plotted against the mean annual temperature
(MAT ◦C) of the plant source site. Point color indicates MAT at rhizosphere biota source
site (redder = warmer). Left panels: observations and model expectations for allopatric
treatments (lines, mean; shaded region 95% HPDI), separating predictions for plants grown
with biota from the warmest (red) or coldest (blue) sites (except for phosphorus; βEB

is n.s).
Right panels: observations for sympatric combinations. Vertical lines give 95% HPDI for
model expectations for means omitting sympatric effects, as in Figure 1. Observed means
outside this interval suggest local adaptation. See Table 1.
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Field data suggest increased benefits of biota in cold sites376

COCO predictions rest on increased benefits of biota to plants at stressful sites. Both377

height and stem width increased with colonization at colder sites, but weakly decreased with378

colonization at warmer sites (interaction pMCMC < 0.01, Table 2, Figure 4b,d). This is379

consistent with greater benefits of biota at colder sites, and with positive effects of sympatric380

biota for plants from colder field sites (in the field, all plants associate with sympatric biota).381

In field plants, the projections onto the first CCA axis are negatively correlated to mean382

annual temperature, concordant with plant source effects observed in the greenhouse (less383

concentrated elements, taller plants at colder sites, slope pMCMC < 0.01, Tables 1, 2, S5,384

Figures 3b, 4a,c), and therefore opposite to biota source effects observed in the greenhouse.385

However, field plants from colder sites are only taller when colonized by mycorrhizal fungi386

(Figure 4b, Table 2). Field plant scores on both this axis and the LDA for elemental profiles387

may reflect greater biotic inoculation: field plants are shifted away from uninoculated plant388

scores in the greenhouse, in the same direction as, and exceeding inoculated greenhouse plants389

(Figures S7, S10; Table 2). Compared to greenhouse plants, field plants had lower tissue390

concentrations of more than half of the elements, but higher concentrations of rubidium,391

Figure S13), and were indeed taller: average height was 80±4.5 and 35±0.4 cm in the field392

and greenhouse respectively (means±SE, pMCMC < 0.01).393

Intercept βMAT βC βMAT×C

CC1 Element-score 2.65** -0.13** – –
ln(phosphorus) -6.96** 0.067** – –
Height -27.0 5.10 710.6** -40.9**
CC2 Element-score -4.28* -0.33** -8.87. 0.70*
Stem width 1.78 0.052 63.4** -0.38*

Table 2: Best models for the projected element scores of the field plants onto the CCA axes
calculated from greenhouse plants.2

On the second CCA axis (associated with phenology and weakly with wider stems),394

projections for field plants again depended on AMF colonization. More colonized plants395

were higher on this axis, in the direction of the main sympatric biota greenhouse effect, but396

patterns across sites were inconsistent with greenhouse patterns. While we were not able to397

measure phenology in the field, stem width patterns partially match changes in the axis: like398

greenhouse plants from colder sites, field plants from colder sites indeed had wider stems,399

especially with AMF colonization (Figure 4d, Table 2), but field plants have much wider400

2βMAT is substituted for βE , as MAT was the only variable tested for field data (see Methods). Sig-
nificance of intercepts is not meaningful, representing 0◦C. –: not in best model, **: pMCMC < 0.01, *:
pMCMC < 0.05, .: pMCMC < 0.1.
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Figure 4: Field plant projected element scores on CCA axis 1 (a), tissue phosphorus (c,
natural log of µg g−1 dry weight), and measured traits (b, d), plotted against either site
mean annual temperature (MAT◦C, a & c) or proportion of field roots colonized by AMF
(b, d) when AMF effects were in best models. Color indicates MAT of the site (redder =
warmer). Predictions (lines) and 95% HPDI intervals (shading) are shown for the mean
across MAT of the sites in gray (a, c), or for the mean across the proportion of root length
colonized by AMF, split into expectations for the warmest and coldest sites (red and blue,
respectively) for height (b), and stem width (d).

stems than inoculated greenhouse plants (11±0.43 and 6.1±0.06 mm, respectively, pMCMC401

< 0.01) despite equivalent scores on this axis (pMCMC > 0.05, Figure S10).402

While the CCA axes showed strongly or marginally similar trends in the field, trends403

for PCA projections (agnostic to trait-element links) did not show any pattern across field404

sites, despite variation in greenhouse plant PCA scores across source sites (Tables S5,S4),405

suggesting that the linked trait-element CCA axes are better, though imperfect, predictors406

of field patterns.407

Discussion408

Abiotic environments play a consistent role in structuring local adaptation in plants and other409

species, but local adapation to biotic environments may be highly variable (Briscoe Runquist410

et al., 2020; Hargreaves et al., 2020). Rampant shifts in the outcomes of species interactions411

across environmental conditions (Bronstein, 1994; Bertness and Callaway, 1994; Chamber-412
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lain et al., 2014; He and Bertness, 2014) perhaps underlie this variable strength of local413

adaptation (e.g. Thompson, 2005; Bronstein, 2009; O’Brien et al., 2018). Like most species414

interactions, plant interactions with rhizosphere biota vary substantially in both outcomes415

(Berg and Smalla, 2009; Smith and Read, 2008; Anacker et al., 2014) and degree of local416

adaptation (Rúa et al., 2016). Further, plant traits are influenced by rhizosphere microbes417

that they associate with (Friesen et al., 2011), especially through changes to plant nutrition418

(Desbrosses and Stougaard, 2011; Paszkowski and Gutjahr, 2013; Lu et al., 2018), suggest-419

ing that adaptive changes in plant-microbiome interactions may alter the concentrations of420

elements in plant tissues. We investigated the influence of rhizosphere biota on plant fitness,421

trait expression, and elemental profiles in teosinte within the context of correlated environ-422

mental gradients of both climate and soil fertility. We found that changes in fitness (via a423

proxy of biomass) and traits were linked to changes in elemental profiles and were affected424

by the source of the rhizosphere biota and the plant population it was paired with.425

Local adaptation is strengthened in cold sites426

Plants from colder sites derived greater specific benefits from their local biota, matching427

one of our predictions based on COCO (O’Brien et al., 2018): increased local adaptation428

between plants and biota from colder sites, which we presume are more stressful (Figure429

1, using biomass as a proxy for fitness, see Methods). However, biota from colder sites430

produced less fit plants, in contrast to our other prediction: that biota from stressful sites431

would provide greater generalized benefits across plants. This prediction of COCO relies on432

at least some benefits provided by biota to plants being independent of plant genotype and433

environment, i.e. if some microbes always provide more phosphorus than others, this would434

likely be beneficial across all hosts and environments. However, our results are consistent435

with most benefits of rhizosphere biota being either host-plant- or environment-dependent:436

i.e. there may be little variation in benefits from rhizosphere biota that is not context437

dependent, and thus limited potential for the evolution of generalized benefits.438

Recent experimental work has suggested that more benefits from plant-microbe inter-439

actions may derive from local adaptation and genotype-dependent effects than previously440

thought (Batstone et al., 2020; Ramı́rez-Flores et al., 2020). Other studies have also sug-441

gested that benefits provided by biota to plants are greatest when experimental conditions442

match the environment to which the biota are adapted (Johnson et al., 2010; Lau and443

Lennon, 2012), and mean greenhouse temperature during our experiment was closer to mean444

annual temperature of our warmest sites (Table S1, Methods). This prevalence of host- and445

environment- dependent effects suggests that efforts to leverage and manipulate organisms446

in the plant rhizosphere for increased resilience to abiotic stress in agricultural crops (e.g.447
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Bouwmeester et al., 2019), must tailor solutions to specific sites and cultivars.448

Indeed, the existence of environment-dependent benefits is an assumption of COCO to449

begin with. Given that we expect benefits of rhizosphere biota to increase in cold, drought,450

and infertile conditions, the benefits we observed in the greenhouse may have been under-451

estimates, especially at cold sites. We used field-measured traits and links between traits,452

elements, and fitness in the greenhouse as a window into benefits of rhizosphere biota in the453

field. In the field, multivariate patterns across sites for elemental profiles and traits matched454

only patterns across plant source sites and sympatric effects observed in the greenhouse.455

Both field and greenhouse plants from colder sites, especially those paired with sympatric456

biota (greenhouse) or more colonized by AMF (field), were taller and higher on CCA axis 1457

(Figures 3b, 4a). We observed opposite relationships between teosinte size and mycorrhizal458

colonization between warmer (slope weakly negative) and colder (slope strongly positive)459

field sites (Figure 4b,d, stem width and height), consistent with increased benefits of biota460

at cold sites, with previous work showing that maize benefits from mycorrhizae increase in461

the cold (Zhu et al., 2009), and with increased benefits of these biota in sympatric contexts462

as observed in the greenhouse. Patterns in the field are thus consistent with greater benefits463

of biota from and at cold sites.464

Plants and biota have both opposing and aligned effects on traits across envi-465

ronmental gradients466

Mechanistically, local adaptation to abiotic environments or biotic interactions must ulti-467

mately be based on genetic differences in the expression of traits, yet biotic interactions468

themselves can alter the expression of traits. For example, microbiomes shape traits from469

obesity to life history in their animal hosts (Turnbaugh et al., 2008; Gould et al., 2018),470

and plant-microbiomes shape a comprehensive range of vegetative and floral traits in plants471

(Friesen et al., 2011; Rebolleda-Gómez et al., 2019). If one species’ influence on another472

species’ phenotype feeds back to affect its own fitness, selection will shape any genetic varia-473

tion in the first species affecting traits in the second (so-called ‘extended’ phenotypes Dawkins474

et al., 1982; Rebolleda-Gómez et al., 2019; O’Brien et al., 2021). Indeed, reciprocal feed-475

backs of traits on the fitness of interacting species is a condition of co-evolution and likely476

to be common (Thompson, 2005). Perhaps unsurprisingly, a growing number of examples477

document evolving extended phenotypes (Lau and Lennon, 2012; Panke-Buisse et al., 2015;478

Rudman et al., 2019) with the implication that extended phenotypes could contribute sub-479

stantially to local adaptation or local co-adaptation between interacting species.480

Here, we observed that the effects of biota and plant source on plant fitness, elemental481

profiles, and phenotypes sometimes opposed, and sometimes matched each other. Plants482
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from cold sites were relatively taller with earlier germination, and tissue concentrations of483

most elements that were low relative to rubidium levels, but biota from cold sites produced484

relatively shorter and later-germinating plants that had opposite shifts in elemental profiles485

(Figures 2,3b, Figure S9). However, the second major axis of trait co-variation instead shows486

similar, or reinforcing effects of plants and rhizosphere biota from the same site. Opposing487

or correlated impacts on trait values between hosts and microbes have been theoretically488

linked to the evolution of extended phenotypes under conflicting or identical trait optima,489

respectively (O’Brien et al., 2021), suggesting that plants and microbes may have different490

fitness optima across sites for traits on the first CCA axis, but similar optima for traits on491

the second axis.492

Potential mechanisms of links between elemental profiles and traits493

We observed that variation in fitness (biomass) was shaped by the influence of biota and494

climate on linked, multivariate axes of plant phenotypes and elemental profiles (CCA, Figures495

1-3). These linked axes primarily included connections between elements and size (height,496

stem width) or elements and phenology (germination, timing of peak growth).497

Phenology is an important trait for ecological adaptation in both maize and teosinte, with498

colder high elevation populations flowering earlier and having less seed dormancy (Rodŕıguez499

et al., 2006; López et al., 2011; Navarro et al., 2017). Elemental profiles can signal physio-500

logical variation (Baxter et al., 2008), but we cannot ascribe causality to particular elements501

here. However, several elements and traits that load heavily onto the CCA axes match502

with known links between phenology and nutrition, and may be worth further investigation.503

Eelays in germination in teosinte from, or growing with biota from, warmer sites were associ-504

ated with multivariate shifts in elements loading strongly onto CCA axes 1 (higher rubidium505

relative to the concentrations molybdenum and most other elements) and 2 (including si-506

multaneously increased sodium and boron, Figures 2,3b-c,S9). Only sodium was at levels507

expected to be limiting (Figure S13, Maron et al., 2014). Sodium toxicity has been previously508

linked to inhibited germination in maize, and maize tolerance to sodium can be impacted by509

rhizosphere biota (Farooq et al., 2015). Likewise, multivariate increases in elements loading510

positively onto CCA axis 2 (primarily boron and sodium) was associated with plants from,511

or growing with biota from, warmer sites that had an earlier burst of growth (Figures 1, 3c,512

S9). Boron is required in large amounts by reproductive tissues of maize (Lordkaew et al.,513

2011; Marschner, 2011), and precocious flowering can be favored by sodium stress (Farooq514

et al., 2015), suggesting possible links between sodium, boron, growth timing and flowering515

in teosinte. In the field, teosinte plants in warmer sites complete flowering earlier (Table S2),516

and a boron transporter was implicated in adaptation to different climatic environments in517
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teosinte (Pyhäjärvi et al., 2013).518

We expected mycorrhizal fungi to drive some linked changes in elemental profiles and size519

traits, as phosphorus deficiency in our experiment should have enhanced both their coloniza-520

tion of teosinte roots and benefits from phosphorus provided (Smith et al., 2010). Indeed521

phosphorus and rubidium (which can also indicate increased AMF colonization, Hawkes522

and Casper, 2002) increased significantly from uninoculated to inoculated plants (Table S3).523

However, phosphorus patterns in the field (Figure 4c) do not match with spore counts or524

colonization rates (Table S2, Figures 4b,d, S13), and other changes in our leaf elemental525

profiles only partially reflect changes observed in maize profiles following inoculation with526

mycorrhizal fungi (Kothari et al., 1990; Ramı́rez-Flores et al., 2017). Trade-offs that we527

observed between small plants with more concentrated elements versus plants that grow528

larger despite low, or even deficient concentrations of elements (CCA axis 1, Figures 1, S9,529

S13) could instead be driven by other microbes: a wide array of root-associated bacteria can530

synthesize, metabolize or interfere with plant hormones (Duca et al., 2014; Gamalero and531

Glick, 2015) and many soil bacteria alter plant-available nitrogen or phosphorus (Bulgarelli532

et al., 2013). Indeed, the rhizosphere biota we manipulated here certainly include microbes533

beyond mycorrhizal fungi.534

Conclusions535

Our results highlight the co-influence of abiotic and biotic factors on plant phenotypes. We536

observed that environment patterned the extent of local adaptation between plants and537

rhizosphere biota, and the effects of plant-biota interactions on phenotypes. Going a step538

further, we also know that rhizosphere community composition and function commonly shift539

across climatic gradients (Veen et al., 2017; Van Nuland et al., 2017; Praeg et al., 2019;540

Karray et al., 2020; Vieira et al., 2020). As species colonize new habitats in response to541

global change, the turnover from locally adapted to novel species interactions may drive542

unexpected phenotypic changes and have implications for successful range shifts.543
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Figure S1: Locations of source sites for teosinte and rhizosphere biota (points), with respect
to Mexico City (asterisk), and elevation (color scale, meters above sea level). Inset shows
zoom for detail of geographic features around sites, as well as circling the sites from which
rhizosphere biota was applied to all plants (see Figure S2, and O’Brien et al., 2019; elevation
data from Hijmans et al., 2005).
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Table S1: Sampling site abiotic characteristics. Climate and elevation data downloaded from BioClim (Hijmans et al., 2005)
extracted with raster in R (Hijmans, 2015). MAT, mean annual temperature in ◦C; TAP, total annual precipitation in mm;
SWC (%), soil water holding capacity. Soil testing service was purchased from INIFAP in Celaya, Gto, methods as provided.
Inorganic N was KCl extraction with MgO distilation, P was quantified with the Bray method. K, Ca, Mg, and Na were
extracted in ammonium acetate 1N at pH7, while Fe, Mn, Cu, and Zn were extracted with diethylenetriaminepentaacetic acid.
Both metal groups were quantified with atomic absorption or inductively coupled plasma. Elevation is in meters above sea level
Soil elements are in micrograms per gram of dry weight (equivalently, ppm). A * indicates sites used as rhizosphere inocula
across all populations of teosinte. A † indicates measurements or extracted variables also reported in O’Brien et al. (2019).
Growing season for teosinte is in the warmer, wetter, portion of the year. Greenhouse average temperature from first possible
germination day to last harvest day was 23.8 ◦C, average night temperature for the same period was 19.4 ◦C, and relative
humidity average was 61.7.

Calimaya
Upper

Toluca* Calimaya
Lower

San
Mat́ıas
Cuijingo

San
Francisco
Pedregal

Tenango
Del
Aire

San
Mateo
Tezoquipan

Texcoco* Malinalco*Tepoztlán*

Longitude -99.633 -99.722 -99.616 -98.843 -99.127 -98.863 -98.809 -98.922 -99.501 -99.070
Latitude 19.161 19.260 19.151 19.077 19.212 19.146 19.212 19.505 18.954 18.976
MAT† 12.9 13.0 13.2 14.3 14.4 14.7 15.0 15.3 18.6 19.8
TAP† 857 836 828 926 935 817 730 585 928 966
Elevation† 2792 2776 2698 2491.5 2507 2408 2353 2253 1881 1665
P (Bray) 71.1 29.7 39.2 27.1 44.3 48.3 68.5 175 223 33.3
Inorganic N 16.2 17.6 14.1 12.7 13.4 15.5 12.0 13.4 16.9 12.0
SWC† 23.3 33.0 21.8 33.0 33.8 27.8 30.8 40.5 55.5 30.0
K 142 143 96.3 261 498 189 315 1055 827 428
Ca 749 1181 354 1034 966 757 1575 2710 4076 915
Mg 26.2 286 55.5 170 167 240 227 660 527 290
Na 25.9 34.3 26.4 10.3 27.5 10.7 14.8 419 31.5 28.2
Fe 31.8 176 25.9 64.8 34.5 56.0 53.8 29.6 81.8 58.6
Zn 0.67 3.25 0.39 1.24 2.63 1.81 7.17 10.5 48.7 1.94
Mn 4.63 75.0 2.23 5.95 2.51 5.94 6.02 6.28 20.5 15.7
Cu 0.38 1.49 0.23 0.97 1.07 0.88 1.4 2.12 0.96 1
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Table S2: Sampling site biotic characteristics. Coarse phenology was approximate qualitative percentages at two metrics scored
by visually estimating the population at the time of seed collection. Plants that remained at least partly green were “Alive”
(others were fully senesced). Plants with undeveloped fruit (even if also fully dead) were “Immature Fruit”(%Immat Fruit),
while other plants were either empty of fruit or had mature fruits (%Mat Fruit). Spore counts are per gram of soil used to mix
inocula. A * indicates sites used as rhizosphere inocula across all populations of teosinte. Populations are sorted by increasing
MAT, see Table S1

Calimaya
Upper

Toluca* Calimaya
Lower

San
Mat́ıas
Cuijingo

San
Francisco
Pedregal

Tenango
Del
Aire

San
Mateo
Tezoquipan

Texcoco* Malinalco*Tepoztlán*

%Alive 8 5 2 5 5 2 10 0 0 0
%Immat Fruit 45 35 35 15 20 10 10 85 10 5
%Mat Fruit 50 60 60 80 75 80 80 10 75 75
Spore count 1233 159 532 915 762 432 223 174 567 419
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Figure S2: Schematic of experimental design. Outlined columns represent biota sources, outlined rows represent teosinte seed
sources. MAT of the site of collection is given for each source. Blank areas represent a significant gap in MAT of sampled
sources. Treatments included in the experiment are filled in grey squares and represent 12 pots (one pot per each maternal
plant in the field from which seeds were collected), and “2x” denotes double the number of experimental pots (2 pots per field
maternal plant, or 24 pots total). All plant populations were also grown uninoculated.
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Figure S3: Time series of height through time for all measured plants. Plants fall into either
delayed growth pattern (posiive squared term in fitted parabola, top) or early growth pattern
(negative squared term in fitted parabola, bottom), see Methods text.
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Figure S4: Histogram of measured data for traits. W-statistics from Shapiro tests are
included, as well for Shapiro tests for the natural log of the data (plus 1 for Stem Hairs to
retain observations with 0 hairs as datapoints), and an asterisk marks which distribution
(raw or natural log) was used in analyses.
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Figure S5: Histogram of measured data for tissue element concentrations (by weight). W-
statistics from Shapiro tests are included, as well for Shapiro tests for the natural log of the
data, and an asterisk marks which distribution (raw or natural log) was used in analyses.

7

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.20.440703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440703
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.0 3.5 4.0 4.5 5.0 5.5

3.
0

3.
4

3.
8

4.
2

ln(phosphorus) of Biota source

B
io

m
as

s
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temperature, but this figure is included for comparison. Only βEB

is significant.
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Table S3: All element concentrations are in micrograms per gram dry weight, but were
logged where this improved normality (based on the W statistic of a Shapiro test in R, those
not logged marked with †; see main text, Figures S4, S5. Intercepts are significantly different
from 0, unless indicated with “n.s.”. For slopes pMCMC of interest are indicated with: ***
is < 0.001, ** < 0.01, * is < 0.05, . is < 0.1. Models were fit with MCMCglmm (Hadfield,
2010), with 13,000 iterations, 3,000 burn-in, and thining by 10. Note pMCMC values are
not multiple-test corrected.

Trait or element Live intercept Live Slope Sibling Intercept Sibling Slope

Biomass 2.58 0.91*** 3.48 -0.56***
Shoot:Root 1.28 -0.028 1.28 0.008
Height cm 34.20 0.55 28.22 3.02***
Stem width mm 5.48 0.75*** 7.26 -0.79***
Leaf Number 6.34 0.097 6.54 -0.002
Leaf Length cm 13.09 0.28 10.67 0.49***
Leaf Width cm 0.75 0.013 0.59 0.027*
Growth Acceleration 0.0025 -0.0022** 0.0012 n.s. 0.0002
Germination Day† 1.37 0.10 1.15 0.035***
Hairs per cm2† 0.97 0.013 0.80 0.045***
B 2.60 -0.046 2.03 0.18**
Na 5.62 0.011 5.48 0.029
Mg 7.33 0.031 5.30 0.28***
Al 3.76 0.032 3.71 0.020
P 6.32 0.53*** 7.08 -0.037
S† 5778 -172*** 4683 0.16***
K† 33086 -0383 29500 0.097.
Ca 8.71 -0.21*** 6.67 0.21***
Fe 4.61 -0.079* 4.50 0.0065
Mn 4.42 -0.016 3.37 0.23***
Co -2.67 -0.042 -2.59 0.059
Ni -1.34 -0.13* -1.49 0.019
Cu 2.17 -0.31*** 1.63 0.10*
Zn 2.80 -0.039 3.01 -0.087
As† 9.48 0.063 9.27 0.03
Se 2.77 -0.0063 2.19 0.20***
Rb 2.81 0.27*** 2.61 0.17***
Sr 3.53 -0.17** 2.75 0.17***
Mo† 9.78 -4.72*** 3.85 0.11***
Cd -1.78 -0.41*** -1.71 0.27***
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Figure S7: Left, linear discriminant analysis of elemental profiles between inoculated (black)
and uninoculated (grey) plotted against tissue phosphorus (logged values). Projections for
field plants in yellow. Right, correlations of individual element concentrations with the
resulting LDA prediction scores in orange (negative) or purple (positive), with stronger
colors indicating stronger ρ.
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Figure S8: Left, linear discriminant analysis of traits between inoculated (black) and uninoc-
ulated (grey) plants relies primarily on stem width. Right, correlations of individual traits
with the resulting LDA prediction scores in orange (negative) or purple (positive), with
stronger colors matching strength of ρ.
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Figure S9: Visualizng a subset of the multivariate relationships identified by the CCA. CCA
axes identify correlations in highly multivariate space; meaning, they often include shifts
in the relative concentrations of elements to each other, or relative values of traits to each
other. Plots in the upper row some of the relationships identified in the first CCA axis:
rubidium and plant height load strongly on this axis in the positive direction, and most
other elements (potassium here, for example), as well as the log of days until germination
load in the negative direction. Plants that were relatively higher in rubidium for a given
concentration of potassium (points shifted towards the upper left corners of plots) were
taller, germinate earlier, and had higher scores on the CCA axis. Plots in the lower row
show examples of the multivariate relationships identified by the second CCA axis: boron,
sodium, and the log of germination day load strongly in the positive direction on this axis,
while the the timing of vegetative growth loads negatively. Plants that had higher levels
of both boron and sodium in tissues (those in the top right corners only) germinated later
but grew fastest right after germinating. See Figure 2 for complete multivariate CCA axis
loadings. Abbreviations: log(GermDay), natural log of days until germination; GrwTime,
timing of vegetative growth; standard elemental abbreviations. The natural log of elemental
concentrations is shown here when logged data were used in the analyses (Figure S5).
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Figure S10: Projections of field and uninoculated greenhouse plants onto the CCA axes.
CCA plots of both x and y variables for axis 1 (a) and 2 (b), see also 2, showing inoculated
greenhouse plants in black, and uninoculated greenhouse plants in grey. Histograms of x-axis
projections of elements measured in field plants (full trait data were not available for field
plants) for first (c) and second (d) CCA axes.
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Figure S11: Loadings of elements onto the first axis of the PCA of element profile data alone
(a). Loadings of traits onto the first axis of the PCA of trait data alone (b). In (c), scores
for plants on the first axis of each respective PCA are plotted against each other, showing
no strong relationship. Abbreviations of traits and elements are as elsewhere.
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Figure S12: Correlation of multivariate axes with biomass three different ways: within plant
source mean annual temperature (MAT, but across families, replicates and biota source
MAT), within biota source MAT (but across families, replicates and plant source MAT),
and across all data (Grand ρ). Note that correlations within biota source MAT are based on
sympatric combinations only (plants from the same site) for most sites (MAT 15, 14.7, 14.4,
14.3, 13.2, and 12.9◦C). Colors are purple for positive correlations and orange for negative
correlations, with color strength reflecting strength of correlation.
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CC1 elmt CC2 elmt Height Germ StemW LDA elmt LDA trt PCA1 trt PCA1 elmt
Intercept a -0.33 -2.75** 75.7** -0.91** -2.24** 0.18 4.17** 8.22** -0.62
Biota source Env. βB 0.18** 0.068** – 0.0012 0.020** -0.027** -0.019** -0.0097** -0.012**
Plant source Env. βP -0.17** 0.11** -0.26** 0.017** 0.034** 0.0099. -0.0075** -0.044** 0.017**
Sympatry βS 1.63* – – – 2.28* – -2.16** – –
Sympatry×Env. βE×S -0.097* – – – -0.014* – 0.013** – –
Best Env. MAT MAT MAT MAT MAT SWC MAT MAT MAT

Table S4: Biota and plant source effects on plant values for select other response values including: the top trait on each of the
first two CCA axes between trait and element matrices (height and germination), stem width (since it was measured in the
field and somewhat strongly correlated to CCA2), the first axis of each PCA for element and trait values separately (agnostic
approach for trait-ion linkage), and LDA axes. Abbreviations: elmt is element; trt is trait; Germ is the natural log of the
germination day, and StemW is Stem width. Intercepts, representing values for 0 MAT, are not meaningful. –: not included in
best model **: pMCMC < 0.01,*: pMCMC < 0.05.
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Intercept βMAT βC βMAT×C

LDA 2.29* -0.014** -2.05.* –
PCA -2.60** – – –

Table S5: Best models fitted to selected further response variables for plants in the field:
projections of the field elemental profiles onto the LDA axis and first PCA axis for elemental
profiles from the greenhouse data. For each response variable, we report the model coeffi-
cients of the best model in rows. Significance of intercepts is not meaningful, representing
values for 0 ◦C. –: not included in best model, **: pMCMC < 0.01, *: pMCMC < 0.05, .:
pMCMC < 0.1.
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Figure S13: Average measured tissue element concentrations (µg g−1 using dry weight) for
field (yellow), greenhouse inoculated (black) and uninoculated (grey) plants plotted against
mean annual temperature of the field site. Vertical bars indicate one standard error of the
mean. Horizontal lines indicate a value at which that element is very likely (red) or possibly
(orange) limiting growth due to deficiency, or where that element is very likely (dark blue)
or possibly (light blue) limiting growth due to toxicity (values from maize, grasses or plants
broadly as available in Marschner, 2011). In many cases, one or more thresholds are far from
actual tissue concentrations and are not visible. Seven elements (Al, Co, Se, Rb, Sr, and
Cd) have no visible thresholds because they have no, or uncertain, beneficial concentrations
and are not near any toxicity threshold.
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