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Abstract

We develop a parameter estimation method based on approximate Bayesian computation (ABC) for a

stochastic cell invasion model using fluorescent cell cycle labeling with proliferation, migration, and crowding

effects. Previously, inference has been performed on a deterministic version of the model fitted to cell density

data, and not all the parameters were identifiable. Considering the stochastic model allows us to harness

more features of experimental data, including cell trajectories and cell count data, which we show overcomes

the parameter identifiability problem. We demonstrate that, whilst difficult to collect, cell trajectory data

can provide more information about the parameters of the cell invasion model. To handle the intractability

of the likelihood function of the stochastic model, we use an efficient ABC algorithm based on sequential

Monte Carlo. Rcpp and MATLAB implementations of the simulation model and ABC algorithm used in

this study are available at https://github.com/michaelcarr-stats/FUCCI.

Keywords: Sequential Monte Carlo; SMC-ABC; Cell proliferation; Cell motility; Random walk model;

1 Introduction

Australia and New Zealand have the highest incidence rates of melanoma in the world, followed by northern

America and northern Europe (Parkin et al., 2005). In Australia, melanoma is the third most common diagnosed

form of cancer (Australian Institute of Health and Welfare, 2018). Since the 1960s, Australia’s primary strategy

to reduce overall mortality rates has been targeted at early prevention and detection (Giblin & Thomas, 2007).

However, a better understanding of the mechanisms which control cell invasion is necessary in order to improve

or establish new treatment measures.

The underlying mechanisms of cell invasion we consider are combined cell proliferation and cell migration. Cell

proliferation is a four-stage sequence consisting of gap 1 (G1), synthesis (S), gap 2 (G2), and mitosis (M) where

the cell divides into two daughter cells, each of which return to the G1 phase (Haass et al., 2014). Improvements

in technology have enabled us to visualise different phases of the cell cycle in real time using Fluorescent

Ubiquitination-based Cell Cycle Indicator (FUCCI) technology (Sakaue-Sawano et al., 2008). FUCCI technology

involves two fluorescent probes which emit red fluorescence when the cells are in G1 phase and green fluorescence

when in S/G2/M phases. During the transition between G1 and S phase, both probes are active (giving the

impression that the cell fluoresces yellow), allowing the visualisation of the early S phase, which we refer to

as eS. Experiments using FUCCI-transduced melonama cells are becoming increasingly important in cancer

research because many drug treatments target different phases of the cell cycle (Haass & Gabrielli, 2017).
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The development of simulation models offer us a quick and inexpensive alternative to in vitro experiments.

In this study, we adopt the cell invasion model of scratch assay experiments developed by Simpson et al.

(2018). This model describes a discrete exclusion based random walk on a two-dimensional (2D) hexagonal

lattice. Furthermore, this model involves treating the entire population of agents as three subpopulations that

correspond to the red, yellow and green phases of the cell cycle as identified by FUCCI. Agents transition

through the cell cycle, while simultaneously undergoing a nearest neighbour random walk, with exclusion, to

model cell migration. This previous study did not perform any parameter inference or calibrate the model to

experimental data. The primary focus of this present work is to apply Bayesian methods to recover parameter

estimates for the model and the associated distribution of uncertainly around them. However, standard Bayesian

approaches rely on the computation of the likelihood function which is often intractable in complex stochastic

models. We overcome this limitation by applying Approximate Bayesian Computation (ABC) methods.

Simpson et al. (2020) investigate parameter identifiability in a deterministic partial differential equation of

FUCCI scratch assay experiments. By using a simpler model, their study is able to adopt standard Bayesian ap-

proaches to parameter estimation since the likelihood function is tractable. Using a Markov Chain Monte Carlo

(MCMC) framework and cell density data, this study found cell diffusivities were practically non-identifiable

when they considered the case where cell migration rate depends on the cell cycle phase. Although, this study

does not consider other types of data which may be more informative of the underlying mechanisms. Here, we

address the limitations Simpson et al. (2020) identify by modelling individual cell behaviour with a stochastic

model which allows the generation of numerous data types. Indeed, we take full advantage of the flexibility of

the stochastic model in this study and combine multiple data types (the number of cells in each phase and cell

trajectory data accounting for different phases) to improve parameter identifiability. However, working with

cell trajectory data can be challenging, and these challenges include time consuming effort to manually track

cells and the need for the cell density to be low to make cell tracking easier. Models which can avoid using cell

trajectory data is an active area of research (Hywood et al., 2021), but we find using the Simpson et al. (2018)

model which incorporates cell trajectory data leads to a good outcome.

Many other studies have explored modelling and/or parameter estimation in cell invasion models (Cai et al.,

2007; Maini et al., 2004; Savla et al., 2004; Swanson, 2008; Takamizawa et al., 1997; Vo et al., 2015). Notably,

Vo et al. (2015) estimate the parameters of a stochastic cell spreading model of an expanding population of

fibroblast cells in a 2D circular barrier assay without cell cycle labelling. While ABC methods have previously

been considered in stochastic cell spreading models, such as the Vo et al. (2015) study, they have never before

been considered with FUCCI models and/or data. Prior to Vo et al. (2015), cell invasion models were usually

defined by deterministic partial differential equation and when performing parameter inference, they usually

used trial and error based approaches (Takamizawa et al., 1997) or non-linear least squares estimation (Cai et al.,

2007; Maini et al., 2004; Savla et al., 2004; Swanson, 2008). However, these approaches to parameter estimation

are unable to quantify the uncertainty around the point estimates. Rcpp and MATLAB implementations of the

simulation model and ABC algorithm used in this study are available at https://github.com/michaelcarr-stat-

s/FUCCI.

The paper is structured as follows. In Section 2, we introduce the experimental data and the process by

which it is collected. Section 3 describes the simulation model, the parameter inference method used, and our

prior knowledge on the model parameters. In Section 4 we explain the image analysis process and present

the inference results when using synthetic and experimental data sets. Discussion of results, future work and

concluding remarks are presented in Section 5.
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2 Data

2D scratch assay experiments are a good screening tool for more complex experimental models, as they are

low cost, allow for easy data interpretation and readily allow control of oxygen, nutrients and drug supply

(Beaumont et al., 2014; Santiago-Walker et al., 2009). We adopt data from a study conducted by Vittadello et

al. (2018) where a scratch assay is used to examine melanoma cell proliferation and migration in real time with

FUCCI technology. The experiment is initialised by placing a small population of cells and a growth medium in

a culture dish (Figure 1 (a)) to create a uniform 2D monolayer of cells. Next, a sharp-tipped instrument is used

to make a scratch is made in the monolayer of cells (Figure 1 (b)). Finally, the cells are observed at regular

intervals as they proliferate and migrate into the newly created gap over the following 48 hours. For this study,

we adopt the data from the experiments with WM983C FUCCI-transduced melonoma cells and present still

images captured at 0 and 48 hours in Figure 1 (c)-(d), respectively. A major advantage of 2D scratch assay

experiments is the multitude of different data types which can be easily recovered. The data types which we

explore later include the number of cells in each population, position of cell populations, and cell trajectory data

(Figure 1 (e)). It is important to consider the size of the imaged region compared to the culture plate (Figure

1 (b)) because the boundaries of the imaged region are not physical boundaries. Since the cell density outside

of the scratched region is approximately uniform, with no macroscopic density gradients away from the leading

edge, the net flux of cells across the boundary will be zero (Simpson et al., 2018). Therefore, the appropriate

mathematical boundary conditions along the vertical boundaries will be zero net flux.
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Figure 1: Experimental procedure and data. (a)-(b) Explains the experimental procedure and boundary con-

ditions for simulation models. (a) Photograph of 6 culture plates commonly used with a uniform monolayer

of cells. (b) Schematic showing the uniform cell monolayer (shaded), scratched region (white), and imaged

region (outlined in red) in a 35 mm culture plate. (c)-(d) Experimental images, both 1309.09 x 1745.35 µm,

of WM983C FUCCI-transduced melanoma cells at 0 and 48 hours, respectively. Images reproduced with per-

mission from Vittadello et al. (2018) (e) Cell trajectory data of a select few cells recorded through red to green

phases travelling inward to fill scratched region.

3 Methods

3.1 Simulation model

We adopt the random walk model developed by Simpson et al. (2018) on a 2D hexagonal lattice. Each lattice

site has diameter ∆ = 20 µm (the average cell diameter (Treloar et al., 2013)) and is associated with a set of

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 21, 2021. ; https://doi.org/10.1101/2021.04.20.440712doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440712


unique Cartesian coordinates,

(xi, yj) =


(
(j − 1/2)∆

√
3/2, i∆

)
if i is even,(

(j − 1)∆
√

3/2, i∆
)

if i is odd,
(1)

where i and j are the respective row and column indices. To mimic scratch assay experiments, cells in G1 phase

are represented by red agents, cells in eS phase are represented by yellow agents, and cells in S/G2/M phase are

represented by green agents. Agents are permitted to transition through phases of the cell cycle and undergo a

nearest neighbour random walk by simulating from a Markov process using the Gillespie algorithm (Gillespie,

1977) which is presented in Appendix A.

To simulate cell migration, agents undergo a nearest neighbour random walk at rates Mr,My,Mg per hour

for red, yellow and green agents, respectively (Figure 2 (a)-(f)). Potential movement events involve randomly

selecting the target site from the set of six nearest-neighbouring lattice sites, with the movement event being

successful only if the target site is vacant. In this way crowding effects are simply accommodated. To simulate

transitions through the cell cycle, red agents are allowed to transition into yellow agents at rate Rr per hour

(Figure 2 (h)-(i)), yellow agents to green agents at rate Ry per hour (Figure 2 (i)-(j)) and green agents into

two red daughter agents at rate Rg per hour (Figure 2 (j)-(k)). While we assume that the red-to-yellow and

yellow-to-green transitions are unaffected by crowding, we model crowding effects for the green-to-red transition

by aborting transitions where the additional red daughter agent would be placed onto an occupied lattice site.

By prohibiting multiple agents from occupying the same lattice site, we are able to realistically incorporate

crowding effects (Ermentrout & Edelstein-Keshet, 1993; Johnston et al., 2016).

The Simpson et al. (2018) model is dependent on the initial geometry, boundary conditions, the lattice spacing

∆, and the cell cycle transition and motility rates. Since we have reasonable estimates for ∆ (Treloar et al.,

2013) and we calibrate the initial geometry and boundary conditions to the experimental data, our study is

concerned with estimating the unknown cell cycle transition and motility parameters. In a Bayesian setting, the

unknown model parameters, θ = (Rr, Ry, Rg,Mr,My,Mg), and the uncertainty around them can be quantified

by the posterior distribution; which is dependent on the likelihood and the prior distribution. However, while the

Markov process model can capture the stochastic nature of cell proliferation and migration, when the dimension

of the generator matrix (a matrix of rate parameters which describe the rate of transitioning between states) is

too high the likelihood function consequently becomes intractable due to the computational cost of computing

the matrix exponential (see Ho et al., 2018; Moler and Van Loan, 2003; Sidje, 1998). Since conventional Bayesian

approaches to parameter estimation are no longer feasible, we are motivated to use likelihood-free methods.
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Figure 2: Cell migration and proliferation. (a-f) An agent at lattice site L will attempt to migrate to the

six neighbouring lattice sites, successfully migrating if the selected site is vacant. (g) Schematic showing the

progression through the G1 phase (red), early S phase (yellow) and S/G2/M phase (green) for FUCCI. (h-k)

Agent transition through the cell cycle and proliferation. (k) A green agent (S/G2/M phase) at lattice site L

will successfully divide and transition if the randomly selected neighbouring site is vacant.

3.2 Approximate Bayesian Computation

Using a Bayesian framework, the uncertainty about the unknown parameter θ with respect to the data y can

be quantified by sampling from the posterior distribution π(θ|y) ∝ π(y|θ)π(θ); where π(y|θ) is the likelihood

function and π(θ) is the prior. However, the likelihood function for sufficiently complex models becomes in-

tractable (see examples in biology (Johnston et al., 2016; Vo et al., 2015), ecology (Guillemaud et al., 2010;

Toni et al., 2009) and cosmology (Weyant et al., 2013)). Rather than reverting to simpler models with tractable

likelihoods, these types of problems can be instead analysed using likelihood-free methods that avoid evaluating

the likelihood function.

One popular likelihood-free approach is ABC (Sisson et al., 2018). ABC involves simulating data from the

model x ∼ f(·|θ) instead of evaluating the intractable likelihood; accepting configurations of θ which produce

simulated data x that is close to the observed data y. It can be impractical to compare the full data sets of x

and y, so ABC often relies on reducing the full data sets to summary statistics by some summarising function

S(·), where the summary statistics for x and y are denoted Sx = S(x) and Sy = S(y), respectively. Provided

the summary statistics are highly informative about the model parameters, then π(θ|y) ≈ π(θ|Sy) is a good

approximation (Blum et al., 2013). In effect, ABC samples from the approximate posterior:

πε(θ|Sy) ∝ π(θ)

∫
x

Kε(ρ(Sy, Sx))f(x|θ) dx, (2)

where ρ(Sy, Sx) is the discrepancy function which measures the difference between the two data sets and Kε(·)
is the kernel weighting function which weighs ρ(Sy, Sx) conditional on the tolerance ε. A common choice for the
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discrepancy function is the Euclidean distance, ρ(Sy, Sx) = ‖Sy − Sx‖2, and for the kernel weighting function

is the indicator function, 1(·), which is equal to one if ρ(Sy, Sx) ≤ ε and is zero otherwise. The approximate

posterior in Equation 2 converges to the posterior conditional on the observed summary (often referred to as

the partial posterior) in the limit as ε→ 0 (Beaumont et al., 2002).

To sample from the approximate posterior, commonly ABC-rejection (Pritchard et al., 1999; Tavaré et al.,

1997), Markov Chain Monte Carlo ABC (MCMC-ABC) (Marjoram et al., 2003), or Sequential Monte Carlo

ABC (SMC-ABC) (Drovandi & Pettitt, 2011; Sisson et al., 2007) algorithms are used. ABC-rejection samples

particles from the prior distribution and accepts particles with a discrepancy measure ρ(Sy, Sx) less than the

desired tolerance ε. In cases when the prior distribution is relatively diffuse compared to the posterior density

(such as our application), lower acceptance rates are common because particles are predominantly sampled in

regions of low posterior density (Sisson et al., 2007). To increase acceptance rates, one could instead use MCMC-

ABC which constructs a Markov chain with a stationary distribution identical to the approximate posterior

by proposing particles from a carefully-tuned proposal distribution, θi ∼ q(·|θi−1), and accepting those with

probability

pacc = min

(
1,

π(θi)q(θi−1|θi)Kε(ρ(Sy, S
i
x))

π(θi−1)q(θi|θi−1)Kε(ρ(Sy, S
i−1
x ))

)
, (3)

which is based on the Metropolis-Hastings ratio (Hastings, 1970; Metropolis et al., 1953). While MCMC-ABC

tends to be more computationally efficient compared to ABC-rejection (Marjoram et al., 2003), it is possible for

the Markov chain to spend many iterations in areas of low posterior probability. In our application we found

MCMC-ABC to take a considerable effort to tune the proposal distribution while still being computationally

cumbersome. However, SMC-ABC or more specifically the SMC-ABC replenishment algorithm (Drovandi &

Pettitt, 2011) requires very little tuning comparatively and allows for simulations to be performed in parallel

to increase computational efficiency.

The SMC-ABC replenishment algorithm traverses a set of distributions defined by T non-increasing tolerance

levels ε1 ≤ · · · ≤ εT to sample from the approximate posterior:

πεt(θ|Sy) ∝ π(θ)

∫
x

1(‖Sy − Sx‖2 ≤ εt)f(x|θ) dx, for t = 1, ..., T

where the first target distribution is constructed by sampling from the prior distribution to attain a collection

of parameter values (called particles) and their discrepancies, {θi, ρi}Ni=1. The first tolerance threshold, ε1, is set

as the maximum of the set of discrepancies. Thereafter, to propagate particles through the sequence of target

distributions, particles are first sorted in ascending order by their discrepancy and the new tolerance is set as

εt = ρN−Nα where Nα = bαNc, α is the proportion of particles discarded and b·c is the floor function. Particles,

{θi}Ni=N−Nα+1, which do not satisfy the new tolerance are discarded and resampled, with replacement, from the

remaining particles to replenish the population. To prevent sample degeneracy (too many duplicated particles),

resampled particles are then perturbed according to an MCMC kernel Rt times with an invariant distribution

given by the current approximate posterior πεt(θ|Sy). In each of the Rt iterations, the proposed particles are

drawn from an automatically tuned proposal distribution θi ∼ q(·|θi−1) and accepted with probability pi,jacc

(Equation 3) where i denotes the ith particle and j the jth MCMC iteration. To ensure sample diversity, Rt

can be dynamically set based on the overall MCMC acceptance rate, pacc = 1
Nα×Rt

∑Nα
i=1

∑Rt
j=1 p

i,j
acc, such that

there is a 1− c chance that all particles are moved at least once and is given by

Rt =

⌈
log(c)

log(1− pacc)

⌉
,

where the ceiling function d·e is used to be conservative and an estimate for pacc is calculated from Rt−1/2

pilot MCMC iterations. A popular choice for the proposal distribution is the multivariate normal distribution,

q(θi|θi−1) = N (θi; θi−1,Σ), where Σ is the tuning parameter which can be adaptively tuned from the {θ}N−Nai=1
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particles which are already distributed according to the current target distribution. The algorithm finally stops

once the overall MCMC acceptance rate, pacc, is unreasonably low (≤ 1%) or the desired tolerance threshold

is reached. For the two tuning parameters, Drovandi and Pettitt (2011) suggest setting α = 0.5 and c = 0.01.

The SMC-ABC replenishment algorithm is presented in Algorithm 1. A crucial limitation of ABC methods is

the curse of dimensionality, where despite the addition of more data, the approximation to the posterior can

become distorted as a result of the discrepancy between observed data and simulated data ρ(Sy, Sx) naturally

increasing with the dimension (Beaumont et al., 2002). In applications where increasing the dimension of

the summary statistics cannot be avoided, the discrepancy between observed and summary statistics can be

accounted for, at least approximately, with regression adjustment (Beaumont et al., 2002; Blum et al., 2013).

Regression adjustment involves explicitly modelling the parameters against the discrepancy between observed

and simulated data. Assume for the moment that θ is a scalar parameter. Consider the following regression

model

θi = β0 + (Six − Sy)>β + εi,

where i = 1, . . . , N is the parameter sample index, β is the regression coefficients, β0 is the intercept and

εi is the error term. Estimates for β0 and β can be computed by minimising the weighted least squares

criterion
∑N
i=1 w

i(θi−β0− (Six−Sy)>β)2. Here we choose to use the popular Epanechnikov weighting function

(Epanechnikov, 1969), defined as wi = 0.75(1− (ρi/max({ρi}Ni=1))2), but other weighting functions could also

be used. Using the estimated regression coefficients β̂, we then make the adjustment

θi
∗

= θi − (Six − Sy)>β̂ for i = 1, . . . , N.

The adjusted sample {θi∗}Ni=1 can often give a more accurate approximation of the posterior. To ensure that the

adjusted parameters remain within the support of the prior distribution (if bounded), Hamilton et al. (2005)

suggest transforming parameter values before applying the regression adjustment. We use a logit transformation,

θ̃ = log((θ − a)/(b − θ)), where a and b are the respective lower and upper bounds of the prior. Given that

we have a vector of parameters, we apply a regression adjustment to each component of the parameter vector

separately.
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Algorithm 1 SMC-ABC (Drovandi & Pettitt, 2011)

1: Set tacc, εT and Nα = bαNc
2: Set St the initial number of pilot MCMC iterations

3: for i = 1 to N do

4: Draw θi ∼ π(·)
5: Simulate xi ∼ f(·|θi)
6: Compute Six = S(xi)

7: Compute ρi = ρ(Sy, S
i
x)

8: end for

9: Sort θ by ρ such that ρ1 ≤ ρ2 ≤ ... ≤ ρN

10: Set εt = ρN−Nα

11: while pacc > tacc OR ρN > εT do

12: Compute tunning parameters of MCMC kernel qt(·|·) using {θi}N−Nαi=1

13: for j = N −Nα + 1 to N do

14: Resample θj from {θi}N−Nαi=1

15: for k = 1 to St do

16: Propose θ∗ ∼ qt(·|θj)
17: Simulate x ∼ f(·|θ∗)
18: Compute Sx = S(x)

19: Compute MH ratio r =
π(θ∗)q(θj |θ∗)
π(θj)q(θ∗|θj)

1(ρ(Sy, Sx) < εt)

20: if U(0, 1) < r then

21: Set θj = θ∗, ρj = ρ(Sy, Sx) and Sjx = Sx

22: end if

23: end for

24: end for

25: Calculate pacc based on the overall acceptance rate from the pilot MCMC runs

26: Set Rt =
log(c)

log(1− pacc)
27: Repeat steps 13-24 with St = max(0, Rt − St)
28: Set εt = ρN−Nα and St = dRt/2e
29: end while

30: Implement regression adjustment (optional)

3.3 Prior Knowledge

To quantify the cell cycle transition rates R ∈ {Rr, Ry, Rg}, commonly the cell doubling time td is used, where

td = ln(2)/R. Estimates for the cell doubling time for melanoma cells range from 16-46 h (Haass et al., 2014;

Simpson et al., 2020). Furthermore, Simpson et al. (2020) estimate the average time 1205Lu FUCCI-transduced

melanoma cells spend in the G1 and S/G2/M phases to be between 8-30 h and 8-17 h, respectively, and estimate

the transition rates between phases to be in the range from 0.03-0.125/h. Therefore, we propose that our prior

information of the transition rates is uniform over the range 0− 1/h to be conservative.

Cell diffusivity, D, the measurement of motility rate for particles undergoing random diffusive migration, can

be used to quantify the cell motility rate M ∈ {Mr,My,Mg}, by D = M∆2/4 (Codling et al., 2008), where

∆ is the cell diameter. Empirical evidence finds estimates for cell diffusivity to range from 0 − 3304 µm2/h

(Cai et al., 2007; Maini et al., 2004; Treloar et al., 2013). Furthermore, Simpson et al. (2018) suggest the cell

diffusivity to be approximately 400 µm2/h, so that the rates are approximately 4/h. We propose that the prior

information of the motility rates to be uniform over the range 0 − 10/h; attributing the larger interval to the
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greater variation of cell diffusivity estimates in existing literature.

4 Results

For SMC-ABC we generate samples from the approximate posteriors using N = 1000 particles. From prelim-

inary trials, we found it more useful to use the overall MCMC acceptance rate as the stopping rule for the

SMC-ABC algorithm and adopt the sensible choice for the target acceptance rate as tacc = 1% and εmax = 0

for the target tolerance.

4.1 Developing summary statistics and validation with synthetic data

The accuracy and precision of ABC methods in approximating the posterior distribution is sensitive to the

quality of the summary statistics used (Beaumont et al., 2002). We first trial and validate different summary

statistics with multiple synthetic data sets such that the true parameter values are known. In this way, we are

able to compare the performance of different summary statistics and determine which are the most effective.

While trying to replicate the environment of the experimental data as close as possible, such as domain size,

boundary conditions and initial number of cells, we do not calibrate the initial location of cells but rather

randomly distribute the cells within a 200 µm by 1745.35 µm region on either side of the scratch. We attain

the initial cell counts of red, yellow, and green cells by using the procedure outlined in section 4.2 (steps 1-4)

and report them here to be 119, 35 and 121, respectively.

In our analysis of the simulation model, agents with relatively higher transition rates were found to correspond to

lower population sizes, and vice versa. Therefore, we use the number of agents in each population (Nr, Ny, Ng)

at the end of the experiment as summary statistics for the transition rates Rr, Ry, Rg, respectively. We test

the suitability of this summary statistic on four synthetic data sets produced by varying the transition rates

amongst biologically plausible values and keeping the motility rates known and constant. The four parameter

configurations we choose to generate the synthetic data sets are θ = {(0.04, 0.17, 0.08, 4, 4, 4), (0.25, 0.15, 0.22,

4, 4, 4), (0.12, 0.07, 0.03, 4, 4, 4), (0.3, 0.36, 0.28, 4, 4, 4)}. In Appendix B we present the marginal posterior

distributions produced and confirm the suitability of this summary statistic.

For the motility parameters we explore and compare two sets of summary statistics, namely cell density and

cell trajectory data. Of these two data sets, cell density data is desirable due to less manual effort needed to

generate the data while cell trajectory data could offer more information but is more challenging to collect. For

the cell density data, we first segment the imaged region at the end of the experiment (t = 48 h) directly down

the centre of the image in the y direction and calculate the median position and interquartile ranges of the red,

yellow, and green agent populations in the x direction for cells on the left and right sides. For the cell trajectory

data, we record the distance the cell travels through each cell phase until the cell returns to the initial phase

or the simulation is terminated. We select cells to be tracked provided that the cell is initially in G1 (red)

phase and the cell is located on the leading edge of the cell monolayer toward the gap in the scratch assay. In

Appendix B, we draw samples from the posterior distribution using 10, 20, 30, 40 and 50 cell trajectories with

four synthetic data sets generated from θ = {(0.04, 0.17, 0.08, 4, 4, 4), (0.04, 0.17, 0.08, 2, 5, 8), (0.04, 0.17,

0.08, 8, 2, 5), (0.04, 0.17, 0.08, 5, 8, 2)}. Our analysis concludes 20 cells to be the minimum number of cells

necessary to produce a well defined posterior. Using the same four synthetic data sets we also attempt to draw

samples from the posterior distribution using cell density data in Appendix B, however, we found the motility

parameters to be non-identifiable when the transition rates are held constant.

We now combine the summary statistics formulated to estimate the cell cycle transition and motility rates

together with four synthetic data sets. Due to the consistency in estimates for cell cycle transition rates in

existing literature (see Haass et al., 2014; Simpson et al., 2020), we adopt estimates for the cell cycle transition
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rates from Haass et al. (2014) for all four parameter configurations. Since estimates for motility rates have

been reported to vary by two orders of magnitude (see Cai et al., 2007; Maini et al., 2004; Treloar et al., 2013),

we choose to vary the motility rates over the range of the prior for the four parameter configurations. That

is, we generate four synthetic data sets with θ = {(0.04, 0.17, 0.08, 4, 4, 4), (0.04, 0.17, 0.08, 2, 5, 8), (0.04,

0.17, 0.08, 8, 2, 5), (0.04, 0.17, 0.08, 5, 8, 2)}. In Figure 3 we present the marginal posterior distributions

produced when using the number of cells in each subpopulation and cell density data as summary statistics. In

Figure 4 we present the marginal posterior distributions when using cell trajectory data in place of cell density

data. Again, we see that the motility estimates are unidentifiable when cell density data is used while both cell

cycle transition and motility estimates are identifiable when cell trajectory data is included. Furthermore, it is

clear from the concentration of the marginal posterior distributions around the true parameter values (dashed

line) in Figure 4 that the cell count and cell trajectory data are highly informative about the transition and

motility parameters, respectively. We note that the precision of these distributions is greater for the cell cycle

transition parameters than the motility parameters. Importantly, these results show for the first time that

practical parameter inference on both transition and motility parameters of a FUCCI scratch assay experiment

using Bayesian inference techniques is possible. These results justify the choice of the Markov process model

compared to simpler continuum models which do not give insight into cell trajectory data (see Simpson et al.,

2020).
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Figure 3: Estimating cell cycle transition and cell motility parameters, θ = (Rr, Ry, Rg,Mr,My,Mg), with the

number of cells in each phase at t = 48 h and cell density data as summary statistics across several synthetic

data sets. Synthetic data sets were produced from simulations with true parameter values indicated by dashed

line. (a,e) Estimated marginal posteriors produced with θ = (0.04, 0.17, 0.08, 4, 4, 4). (b,f) Estimated marginal

posteriors produced with θ = (0.04, 0.17, 0.08, 2, 5, 8). (c,g) Estimated marginal posteriors produced with θ =

(0.04, 0.17, 0.08, 8, 2, 5). (d,h) Estimated marginal posteriors produced with θ = (0.04, 0.17, 0.08, 5, 8, 2).
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Figure 4: Estimating cell cycle transition and cell motility parameters, θ = (Rr, Ry, Rg,Mr,My,Mg), with the

number of cells in each phase at t = 48 h and cell tracking data as summary statistics across several synthetic

data sets. Synthetic data sets were produced from simulations with true parameter values indicated by dashed

line. (a,e) Estimated marginal posteriors produced with θ = (0.04, 0.17, 0.08, 4, 4, 4). (b,f) Estimated marginal

posteriors produced with θ = (0.04, 0.17, 0.08, 2, 5, 8). (c,g) Estimated marginal posteriors produced with θ =

(0.04, 0.17, 0.08, 8, 2, 5). (d,h) Estimated marginal posteriors produced with θ = (0.04, 0.17, 0.08, 5, 8, 2).
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4.2 Image analysis of experimental data

We analyse the experimental images using ImageJ (Rueden et al., 2017) to record the Cartesian coordinates

of cells. Of primary interest is processing the initial frame such that we can replicate the experimental settings

as accurately as possible in the simulation but we also repeat this procedure for the final frame to retrieve the

final cell counts and cell density data, which we use as summary statistics. The process is as follows:

Step 1: Read in image: File > Open > select image (Figure 5 (a)).

Step 2: Convert image to 8-bit: Image > Type > 8-bit (Figure 5 (b)).

Step 3: Identify cell edges: Convert the image to black and white (Process > Binary > Convert to Mask) and

then distinguish conjoined cells (Process > Binary > Watershed) (Figure 5 (c)).

Step 4: Compute Cartesian coordinates: Analyze > Analyze Particles... > OK.

(a) (b) (c) (d)

x μm

y 
μ

m

0                   500                1000    

1500

1000

500

0

Figure 5: ImageJ procedure. (a) Original image loaded (WM983C FUCCI-transduced melanoma cells). (b)

Image after compression to 8-bit. (c) Image after converting to black and white and watershedding. (d)

Simulation initial geometry recovered from data processing of WM983C FUCCI-transduced melanoma cells in

ImageJ and R

A limitation of using the watershed tool is that we must convert the image to black and white. In doing so, we

lose the cell phase identity associated with the cell coordinates recovered from ImageJ. To overcome this, we use

R (R Core Team, 2020) to retrieve the RGB decimal color code and Cartesian coordinates of pixels. Matching

pixel coordinates recovered from R and the coordinates of the centroid of the cells recovered in ImageJ, we

create a data set of cell coordinates and their associated RGB decimal codes. To classify the RGB coordinates

into one of the three cell cycle phases we use the conditions outlined in Table 1.

Table 1: Cell phase classification rule using RGB decimal codes.

State
RGB decimal code

Red Green

G1 >100 ≤100

eS >100 >100

S/G2/M ≤100 >100

To extract summary statistics from the experimental data, we repeat the image processing procedure previously

outlined above with the final frame (t = 48 h) and extract the final cell counts and cell density data. Additionally,
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we extract cell trajectory data by processing the entire sequence of still images in ImageJ with the “Multi-point”

tool to manually track cell coordinates between frames. We use a similar process as before to identify cell phases

in these summary statistics using R and present them in Table 2 and the cell trajectory data in Figure 6.

Finally, we calibrate the hexagonal lattice used in the simulation model with the data set of Cartesian coordinates

recovered previously by rearranging Equation 1 to find their associated lattice row and column indices denoted

(i, j) =

(
b 2x√

3∆
+ 1e, b y

∆
e
)
,

where b·e rounds to the nearest integer. We treat the rare instances (<1%) where multiple coordinates are

mapped to the same lattice space as duplicated values and omit them rather than place them on the next

closest lattice site. The result from this translation of data is presented in Figure 5 (d). We repeat this process

for the initial frame of the cell trajectory data to identify the starting position. However, due to manually

tracking cell trajectories, often the coordinate retrieved was not centred on the cell which in some cases caused

the starting position to be mapped to an unoccupied lattice site. We intervene prior to transforming the starting

position and adjust the coordinate values to the closest occupied lattice site which is chosen such that the radial

distance between the coordinate and the lattice site is minimised.

Table 2: Observed summary statistics of WM983C FUCCI-transduced melanoma cells

Summary Statistic Description Value

S1 Number of red cells at 48 hours 566 cells

S2 Number of yellow cells at 48 hours 111 cells

S3 Number of green cells at 48 hours 166 cells

S4 Average distance travelled through red phase by 20 cells 105 µm

S5 Average distance travelled through yellow phase by 20 cells 40 µm

S6 Average distance travelled through green phase by 20 cells 100 µm

S7 Median position of red cells on the left and right side (155, 1170) µm

S8 Median position of yellow cells on the left and right side (158, 1189) µm

S9 Median position of green cells on the left and right side (177, 1129) µm

S10 Interquartile range of the red cells position on the left and right side (196, 197) µm

S11 Interquartile range of the yellow cells position on the left and right side (164, 144) µm

S12 Interquartile range of the green cels position on the left and right side (213, 207) µm
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Figure 6: Trajectories of WM983C FUCCI-transduced melanoma cells where each box ((a)-(t)) corresponds to

one of the twenty cell trajectories. Tracking begins in red phase (red circles) then progresses through the yellow

phase (yellow triangles) and is terminated at end of green phase (green squares).

4.3 Estimating Model Parameters with Experimental Data

After calibrating the simulation to the experimental data of WM983C FUCCI-transduced melanoma cells, we

first attempt to sample from the posterior distribution using the number of cells in each subpopulation and cell

density data (summary statistics S1 to S3 and S7 to S12 in Table 2, respectively) and present the samples from

the posterior distribution in Figure 7. Consistent with results found in Section 4.1 and Simpson et al. (2020),

estimates for the motility rates are non-identifiable when cell density data is used.

Next, we attempt to sample from the posterior distribution using the number of cells in each subpopulation

and cell trajectory data (summary statistics S1 to S3 and S4 to S6 in Table 2, respectively). We present the

marginal posterior distributions produced in Figures 8 (a)-(b) along with the mean, standard deviation, (2.5%,

50%, 97.5%) quantiles, and the coefficient of variation (CV) in Table 3. The identifiability in the transition and
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Figure 7: Marginal posterior distributions using number of cells in each subpopulation and cell density data.

(a) Marginal posterior distributions for transition rates of WM983C FUCCI-transduced melanoma cells. (b)

Marginal posterior distributions for motility rates of WM983C FUCCI-transduced melanoma cells.

motility parameters clearly shows the benefits of using cell tracking data as the distributions are unimodal and

concentrated. We estimate the cell cycle transition rates to be between 0.0411 − 0.193/h which is consistent

with estimates in existing literature (Haass et al., 2014; Simpson et al., 2020). Our estimates for cell motility

were found to range between 0.316 − 1.12/h which corresponds to estimates of cell diffusivity between 31.6

and 112 µm2/h which is reasonable considering the degree of uncertainty in existing estimates which can vary

between 0 and 3304 µm2/h (Cai et al., 2007; Maini et al., 2004; Treloar et al., 2013). The precision in parameter

estimates can be quantified by the CV which is a standard measure for the dispersion of data around the mean.

Using the CV, the dispersion in the transition rates range from 2.65 − 5.31% and the motility rates range

from 10.9 − 18.4%. To validate the parameter estimates recovered, we also present the posterior predictive

distributions for the summary statistics retained from each parameter value in the posterior in Figures 8 (c)-

(d). These distributions are formed by plotting the distribution of simulated summary statistics produced from

the posterior samples and is compared to the observed summary statistics (dashed line). These results suggest

that the Markov process model developed by Simpson et al. (2018) is appropriate as it is able to recover the

observed summary statistics of the experimental data.

Table 3: Posterior summaries (3 significant figures): mean, standard deviation, (2.5%, 50%, 97.5%) quantiles,

and the coefficient of variance (CV).

Parameter Mean Std. Dev. (2.5%, 50%, 97.5%) CV (%)

Rr 0.0411 0.00109 (0.039, 0.0411, 0.0432) 2.65

Ry 0.192 0.0102 (0.173, 0.191, 0.214) 5.31

Rg 0.193 0.00957 (0.177, 0.192, 0.213) 4.96

Mr 0.316 0.0343 (0.256, 0.313, 0.385) 10.9

My 0.514 0.0945 (0.353, 0.502, 0.725) 18.4

Mg 1.12 0.169 (0.836, 1.10, 1.48) 15.1
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Figure 8: Marginal posterior distributions using number of cells in each subpopulation and cell trajectory data.

(a) Marginal posterior distributions for transition rates of WM983C FUCCI-transduced melanoma cells. (b)

Marginal posterior distributions for motility rates of WM983C FUCCI-transduced melanoma cells. (c) Distribu-

tion of simulated summary statistics (informative of transition rates) compared to observed summary statistics

(dashed line). (d) Distribution of simulated summary statistics (informative of motility rates) compared to

observed summary statistics (dashed line).

5 Discussion

In this study, we calibrate the 2D hexagonal-lattice random walk model developed by Simpson et al. (2018) to

scratch assay data where the cell cycle is revealed in real time using FUCCI technology. While this model is well

suited to describing the stochastic nature of cell proliferation and migration, the likelihood function consequently

becomes intractable. This makes conventional Bayesian approaches to parameter inference infeasible. We resort

to using the class of Bayesian methods known as ABC which bypass evaluating the likelihood function. After

evaluating the appropriateness of different ABC algorithms we find the SMC-ABC replenishment algorithm

developed by Drovandi and Pettitt (2011) to be suitable.

The accuracy of ABC methods in approximating the posterior distribution is sensitive to the quality of the

summary statistics used (Beaumont et al., 2002). We trial various summary statistics with multiple synthetic

data sets to determine which summary statistics are the most informative. We find using the number of cells

in each cell cycle phase at the end of the experiment to be highly informative about the cell cycle transition

rates. We trial and compare two sets of summary statistics for the motility parameters: the median position

and interquartile range of the cells in the x direction on the left and right side of the scratch assay (which we

refer to as cell density data); and the average distance travelled through each cell phase by 20 individual cells

(which we refer to as cell trajectory data). Using these two sets of summary statistics in conjunction with the

cell cycle transition summary statistics, we attempt to draw samples from the posterior distribution using the

SMC-ABC replenishment algorithm with multiple biologically plausible synthetic data sets. We find that when

using cell trajectory data as summary statistics the parameter estimates were identifiable; however this was

not the case when cell density was used. Importantly, this is the first time practical parameter identifiability

for both cell cycle transition and motility has been successfully conducted with fluorescent cell cycle labelling

scratch assay experiments.

We extend on the work of previous studies (Simpson et al., 2020; Simpson et al., 2018) by calibrating our model

to real data and performing Bayesian inference. Using experimental data of WM983C FUCCI-transduced
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melanoma cells, we estimate the approximate posterior using the SMC-ABC algorithm with our cell cycle

transition rate summary statistics and our two sets of motility summary statistics. Under the experimental

setting, our results again find the estimates for the motility parameters to be non-identifiable when cell density

data is used but identifiable when cell trajectory data is used. These results are consistent with Simpson et al.

(2020) and justify the motivation to use a more complex model capable of generating multiple data types. When

using the number of cells in each subpopulation and cell trajectory data, we find estimates for the average cell

cycle transition rates to range between 0.0411−0.193/h and estimates for average cell motility to range between

0.316 − 1.12/h. We quantify the precision of these estimates through the CV which is a standard measure of

dispersion about the mean. We find the CV to be suitably small for all parameters as it ranges from 2.65−5.31%

and 10.9−18.4% for the transition and motility marginal posteriors, respectively. To validate our results we also

draw samples from the posterior predictive to determine whether the simulated data sets recovered accurately

reflect the observed data sets. These results confirm that the model and summary statistics are recovering the

underlying mechanisms present in the experiment.

Now that the recovery of precise parameter estimates from a fluorescent cell cycle labelling model has been

demonstrated, further models can be built which are more biologically realistic. For instance, the Markov

process model we used in this study describes a discrete exclusion based random walk on a 2D hexagonal

lattice. However, a more biologically realistic and meaningful model would incorporate a three-dimensional

(3D) environment (e.g. Jin et al., 2021). By constraining our model to a 2D hexagonal lattice, we ultimately

omit realistically modelling: the spatial supply of oxygen, nutrients and drugs; the orientation in 3D space; and

interactions with the extracellular matrix (Beaumont et al., 2014; Smalley et al., 2006). Although, increasing

model complexity tends to require additional parameters in the model which in some applications may render

ABC methods ill suited to inference due to their poorer performance in higher dimensions (Fearnhead & Prangle,

2012). Such modeling and inference implications would need to be considered in future work. Nevertheless, we

demonstrate that the 2D stochastic model developed by Simpson et al. (2018) is able to recover key features of

the experimental data set we examined and can be used to provide a quick and inexpensive alternative to in

vitro experiments.
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Appendix

A Gillespie Algorithm

Algorithm 2 Simulation Model utilising Gillespie Algorithm (Gillespie, 1977) with input parameter θ =

(Rr, Ry, Rg,Mr,My,Mg)

1: Calculate number of red, yellow and green agents in system as Nr, Ny, Ng

2: while t < tmax do

3: Set ar = Mr ×Nr and tr = Rr ×Nr
4: Set ay = My ×Ny and ty = Ry ×Ny
5: Set ag = Mg ×Ng and tg = Rg ×Ng
6: Set a0 = ar + ay + ag + tr + ty + tg

7: Draw R ∼ U(0, 1)

8: if R < ar/a0 then

9: Do red migration

10: else if R < (ar + ay)/a0 then

11: Do yellow migration

12: else if R < (ar + ay + ag)/a0 then

13: Do green migration

14: else if R < (ar + ay + ag + tr)/a0 then

15: Do red transition

16: Set Nr = Nr − 1

17: Set Ny = Ny + 1

18: else if R < (ar + ay + ag + tr + ty)/a0 then

19: Do yellow transition

20: Set Ny = Ny − 1

21: Set Ng = Ng + 1

22: else if R < (ar + ay + ag + tr + ty + tg)/a0 then

23: Do green transition

24: Set Ng = Ng − 1

25: Set Nr = Nr + 1

26: end if

27: end while

B Developing Summary Statistics

Cell Cycle Transition Rates

The summary statistic we explore for the cell cycle transition rates is the number of agents within each phase of

the cell cycle (red, yellow, green) at time t = 48 hours. We believe that the count of each cell type to be a good

choice because the transition rates will only influence the number of cells. Therefore, we expect higher relative

transition rates to correlate to lower cell counts and vice versa. For simplicity, we will assume the motility rates

to be known and equal while we estimate the cell cycle transition parameters using multiple synthetic data sets

generated from θ = {(0.04, 0.17, 0.08, 4, 4, 4), (0.25, 0.15, 0.22, 4, 4, 4), (0.12, 0.07, 0.03, 4, 4, 4), (0.3, 0.36,

0.28, 4, 4, 4)}. Using the SMC-ABC algorithm with the same summary statistics for the simulated data, we

present the marginal posterior distribution of the cell cycle transition rates in Figure 9. Since the posterior

distributions are all centred on the “true” value we confirm the summary statistics suitability at identifying the
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cell cycle transition parameters when the motility parameters are held constant and known.
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Figure 9: Using number of cells in each cell cycle phase as summary statistics for the transition rates. (a)-(d)

Posterior distributions produced using synthetic data sets generated from θ = {(0.04, 0.17, 0.08, 4, 4, 4), (0.25,

0.15, 0.22, 4, 4, 4), (0.12, 0.07, 0.03, 4, 4, 4), (0.3, 0.36, 0.28, 4, 4, 4)} (respectively) with true parameter values

indicated by vertical dotted line.

Cell Motility Rates

We analyse the effectiveness of two summary statistics which are used to estimate the motility parameters with

four synthetic data sets generated with θ = {(0.04, 0.17, 0.08, 4, 4, 4), (0.04, 0.17, 0.08, 2, 5, 8), (0.04, 0.17,

0.08, 8, 2, 5), (0.04, 0.17, 0.08, 5, 8, 2)} where the transition rates are held constant. The first summary statistic

we consider is the median position and interquartile range of each cell type on the left and right side of the

scratched region; which we refer to as cell density data. The marginal posterior distributions are presented in

Figure 10. We see that the estimates for cell motility are non-identifiable when cell density data is used, which

is consistent with findings from Simpson et al. (2020). We believe that this may be due to interference from

cells transitioning between phases and the associated difficulty in attributing the distance travelled in a phase

with a single time point.

We next consider the average distance cells travels through each cell phase of the cell cycle until the cell returns

to the G1 phase or the simulation is terminated. We refer to this summary statistic as cell trajectory data and

test its effectiveness with the same four synthetic data sets which were used with the cell density data with

10, 20, 30, 40 and 50 individual cell trajectories. We present the marginal posterior distributions in Figure

11. We see from the concentration of the distributions around the true value (dashed line) that cell trajectory

data is highly informative about the motility rates. Furthermore, we analyse the marginal benefit of increasing

the number of cells to track by 10 and find that the benefit plateaus after 20 cells. Therefore, we chose the

minimally suitable number of cell trajectories which produced well defined distributions to be 20 (corresponding

to Figure 11 (b,g,l,q)).
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Figure 10: Using cell density data as summary statistics for the motility rates. (a)-(d) Posterior distributions

produced using synthetic data sets generated from θ = {(0.04, 0.17, 0.08, 4, 4, 4), (0.04, 0.17, 0.08, 2, 5, 8),

(0.04, 0.17, 0.08, 8, 2, 5), (0.04, 0.17, 0.08, 5, 8, 2)} (respectively) with true parameter values indicated by

vertical dotted line.
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Figure 11: Using cell tracking data as summary statistics for the motility rates. Synthetic data sets generated

from θ = {(0.04, 0.17, 0.08, 4, 4, 4), (0.04, 0.17, 0.08, 2, 5, 8), (0.04, 0.17, 0.08, 8, 2, 5), (0.04, 0.17, 0.08, 5, 8,

2)} are varying down the rows and number of cells tracked increases by 10 across the columns.
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