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ABSTRACT
Motivation: Advances in sequencing technologies have triggered the development of many bioinformatic tools aimed to
analyze  these  data.  As  these  tools  need to  be  tested,  it  is  important  to  simulate  datasets  that  resemble  realistic
conditions.  Although  there  is  a  large  amount  of  software  dedicated  to  produce  reads  from  ‘in  silico’  microbial
communities, often the simulated data diverge widely from real situations.
Results: Here, we introduce M&Ms, a user-friendly open-source bioinformatic tool to produce realistic amplicon datasets
from reference sequences, based on pragmatic ecological parameters. This tool creates sequence libraries for ‘in silico’
microbial communities with user-controlled richness, evenness, microdiversity, and source environment. M&Ms allows
the  user  to  generate  simple  to  complex  read datasets  based on  real  parameters  that  can  be  used in  developing
bioinformatic software or in benchmarking current tools. M&Ms also provides additional figures and files with extensive
details on how each synthetic community is composed, so that users can make informed choices when designing their
benchmarking pipelines.
Availability: The source code of M&Ms is freely available from https://github.com/ggnatalia/MMs
Contact: ngarcia@cnb.csic.es 

1 Introduction 
Microorganisms  dwell  every  habitable  environment  in  the  planet’s  biosphere  where  they  play  essential  roles  in

sustaining life. Microbiome studies have sharply increased in the last decades, due in part to a parallel development of

sequencing technologies. First studies were performed in extreme environments such as acid mine drainages, where the

microbial diversity was low; since then, more complex environments such as gut, marine or soils have been studied

(White RA et al., 2016). These microbial communities have different levels of complexity, containing from hundreds to

thousands of distinct taxa. Species have been traditionally considered the most significant units in microbial ecology

(Shappiro & Polz,  2014) but, lately, individuals classified within the same species have been involved in different

ecological tradeoffs or in different niches (Rasko et al., 2008, Eren et al., 2013, Kashtan et al., 2014, García-García et

al.,  2019).  Thus,  in  the  last  decade,  the  way  of  study  microbial  communities  has  evolved  and  factors  such  as

microdiversity, referred to the structural and functional diversity below the species level (Schloter  et al., 2000), are

increasingly relevant. 

The most significant technologies for inspecting the profile and function of microbial communities are based on DNA

sequencing, like metagenomics and metatranscriptomics. To analyze such amount of data, sophisticated bioinformatic

tools have emerged. These new computational methods must be evaluated to ensure a proper functioning. This allows

developers to benchmark and compare their software (Baxter et al., 2006, Mangul et al., 2019, Weber et al., 2019). One

way to assess the performance of the different algorithms is using simulated data generated on the computer (Engle et

al., 1993, Alosaimi et al., 2020), because often appropriate, real data, are not available. However, choosing an artificial

dataset that guarantees an optimal performance is not trivial: the simulated data can be biased by the algorithms, cannot

capture true experimental variability or can be less complex than real data (Mangul et al., 2019). 

There is a large amount of sequencing simulators such as MetaSIM (Richter  et al., 2008), Grinder (Angly  et al.,

2012), insilicoSeqs (Gourlé  et al., 2019), PBSIM2 (Ono  et al., 2020), SimuSCoP (Yu  et al., 2020) (for a thorough
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review see ref. Alosaimi et al., 2020). These tools are specially designed for simulating read-level artifacts related with

sequencing runs or read quality. Their aim is to mimic DNA sequences according to the different sequencing platforms,

but  not  all  of  them are  prepared  to  simulate  realistic  microbial  communities,  or  to  emulate  microbial  population

heterogeneity.

Other  tools  are  prepared  to  simulate  the  dynamics  of  realistic  microbial  communities,  but  they  are  focused  on

providing  a  synthetic  16S  rDNA-seq  count  table  that  resembles  the  structure  of  a  microbial  community  under

fluctuating environmental conditions. These tools do not produce simulated sequencing data. Some examples are: the

Community  Simulator  (Marsland  et  al.,  2020)  whose  aim  is  simulating  microbial  population  dynamics  including

environmental conditions throughout time; metaSPARSIM (Patuzzi et al., 2019), a software to generate count matrices

resembling real  16S rDNA-seq data; or SPIEC-EASI (Kurz  et al., 2015) a sophisticated synthetic microbiome data

generator with controllable underlying species interaction topology.

To  our  knowledge,  the  first  tool  designed  to  produce  simulated  data  from  realistic  microbial  communities  is

CAMISIM (Fritz et al. 2019). CAMISIM produces automatically metagenomic samples emulating different microbial

abundance profiles, multi-sample time series, and differential abundance studies (Fritz et al. 2019). It also includes real

and simulated strain-level diversity, and generates sequencing data using taxonomic profiles, or completeley de novo

(Fritz et al. 2019). However, CAMISIM does not allow to control community features such as diversity or correlations

between taxa.

Selecting the most appropriate bioinformatic tool can be challenging (Mangul  et al., 2019) and depends to a large

extent on the objectives. The performance tests can contribute the most to the development process and eventually

consolidate the tool to handle pragmatic situations (Baxter et al., 2006, Weber et al., 2019). One alternative is the use of

the  gold standard datasets, usually composed of most known taxa in well characterized environments, but these can

hinder the genuine performance of the different tools and lead to overfitting (Mangul et al., 2019).

Here, we describe M&Ms, a user-friendly tool originally written to generate from simple to complex simulated 16S

rDNA  reads  from  metagenomic  datasets  based  on  desired  microbial  community’s  characteristics  such  as  the

microdiversity.

2 Methods
M&Ms  models  a  multi-sample  microbial  abundance  profile,  includes  simulated  microdiversity,  and  generates

sequencing data from taxonomic profiles or without them using InSilicoSeqs (Gourlé  et al., 2019). M&Ms aims to

produce ecologically  meaningful  artificial  microbial  communities  by means of  an abundance  profile  based on the

evenness and richness of real microbial communities, as well as its microdiversity. It also allows for most frequent taxa

per environment thanks to a previous study (Tamames  et  al.,  2016).  The software produces a FASTQ file and an

abundance profile per sample. Also, it produces a FASTQ file that collects the reads of all the samples and a a mothur-

formatted groups file with the name of the reads and the sample they belong to. 

Simulation with M&Ms has four stages (Figure 1):

1. Selection of the community members

2. Microdiversity simulation

3. Microbial abundance distribution assignment

4. Sequencing data simulation using InSilicoSeqs (Gourlé et al., 2019) to produce realistic Illumina reads.
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The software accepts one of the following five independent types of inputs:

 A list  of  sequences from a particular  DB e.g.  SILVA database (Yilmaz  et  al.,  2014) from which M&Ms

generates a FASTA file, an abundance profile and the simulated sequencing data.

 A list of taxa from the reference database (and optionally their abundances).

 A pre-existing FASTA file with the desired sequences, on the basis of which M&Ms produces the simulated

abundance profile and the data.

 A list of 16S rRNA gene sequences and their abundances,  so that only simulated sequencing data will be

generated. 

 A particular environment, so most of the taxa will be selected from that environment, according to a reference

table with most frequent taxa (at the genus level) per environment. M&Ms will produce a  FASTA file with

sequences from species from that environment, an abundance profile and the simulated sequencing data.

To select taxa from a particular environment, M&Ms uses a genus per environment matrix derived in a previous work

(Tamames  et al.,  2016)(see Supplementary Note 1 for details).  For  a given pool of possible reference sequences,

M&Ms simulates its corresponding microdiversity introducing point mutations.

We  use  a  log-normal  distribution  to  predict  the  global  species  abundance  distribution  (SAD)  of  the  artificial

community. Although, since the 1930s, ecologists have developed different models to predict the SAD (McGuill, 2010),

those based on the log-normal are considered to be standards to test new models (Shoemaker  et al, 2017). The log-

normal  is  characterized  by  a  right-skewed  frequency  distribution  that  becomes  approximately  normal  under  log-

transformation. This model reflects the ‘rare biosphere’ (i.e. the fact that most species in a given sample will be present
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Figure 1: M&Ms pipeline
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in very low abundances), which is one of the most intensively studied patterns of microbial diversity (Pedrós Alió,

2012; Shoemaker et al., 2017).

The probability density function of the log normal distribution is defined by the mean μ and standard deviation σ,

which affects the shape of the distribution. Longuet-Higgins and also Edden (Longuet-Higgins, 1971; Edden, 1971)

studied  the  relation  between species  diversity  and  the  log-normal  distribution of  individuals  among species.  Both

proposed the use of the logarithmic standard deviation, σ, as an indicator of the unevenness of species distribution. In

particular, σ and the number of species correlates well with the values given by the Shannon and Weaver diversity

index (Longuet-Higgins 1971; Edden 1971). The Shannon index (H) is an index commonly used to characterize species

diversity in a community that accounts for both abundance and evenness of the species present (Shannon 1948, Hill et

al.,  2002).  We  calculate  the  standard  deviation  of  the  log-normal  distribution  from  a  specific  Shannon  Index  to

approximate the SAD of the mock community, thus the species abundance distribution is more realistic and allow

M&Ms to design ecologically meaningful mock communities unlike other equivalent tools. A more detailed explanation

of this approximation between Shannon diversity index and the standard deviation of a log-normal distribution can be

found in Supplementary Note 2.

We then determine the abundance distribution of the different simulated individuals using the Zero-Inflated Negative

Binomial  Distribution (ZINBD).  We use  the NORmal-To-Anything (NORTA) approach,  which is  an approximate

technique to generate arbitrary continuous and discrete multivariate distributions from a target correlation matrix, using

a multivariate  normal  (Yahav & Shmuelli,  2011;  Kurz  et  al.,  2015).  First,  we sample from a multivariate  normal

distribution  with  zero  mean  and  standard  deviation  one  using  a  randomly  created  correlation  matrix.  For  each

probability, the Normal cumulative distribution function (CDF) is transformed to the target distribution, in this case, the

ZINBD via its inverse CDF (Yahav & Shmuelli, 2011; Kurz et al., 2015). The target distribution is the ZINBD which

has been observed to fit properly microbiome data, characterized by having an increasing number of zeros at lower

taxonomic levels (Xu et al., 2015; Xia & Sun, 2017). 

Finally, M&Ms runs InSilicoSeqs (Gourlé et al., 2019) to simulate metagenomic Illumina sequencing samples with

the designed abundance profiles. 

3 Results

M&Ms has been designed to produce artificial communities, which can be used to test new software in different

stages of development and benchmarking. We envisage three different situations: simple mock communities with few

sequences  (useful  in initial  stages  of  software  development),  complex  artificial communities  but  just  one or  more

samples,  convenient  in  intermediate  steps  of  software  development.  Additionally,  it  also  facilitates  the  option  of

working with the same mock community but with different simulated sequencing parameters in a straightforward way. 

M&Ms provides also plots and extra files to effortlessly visualize the main characteristics of the mock community.

With all this information, the user can handily establish comparisons among the initial composition of the community

and the results of applying any tool. Also, M&Ms have been develop to be flexible, so adding extra improvements such

as a better algorithm to simulate microdiversity can be effortlessly implemented. 

Therefore, the main advantage of M&Ms consists of automatically obtaining realistic microbial mocks with ease. A

comparison with similar tools that apart from generating DNA data, are able to simulate microorganisms distribution is

displayed in Supplementary Note 3.
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