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Abstract 22 

Circadian disruption has been largely overlooked as a developmental exposure. The placenta, a 23 

conduit between the maternal and fetal environments, may relay circadian cues to the fetus. We 24 

have previously shown that developmental chronodisruption causes visual impairment and 25 

increased retinal microglial and macrophage marker expression. Here, we investigated the 26 

impacts of environmental circadian disruption on fetal and placental outcomes in a C57BL/6J 27 

mouse (Mus musculus) model. Developmental chronodisruption had no effect on embryo count, 28 

placental weight, or fetal sex ratio. When measured with RNAseq, mice exposed to 29 

developmental circadian disruption (CD) had differential placental expression of several 30 

transcripts including Serpinf1, which encodes pigment-epithelium derived factor (PEDF). 31 

Immunofluorescence of microglia/macrophage markers, Iba1 and CD11b, also revealed 32 

significant upregulation of immune cell markers in CD-exposed placenta. Our results suggest 33 

that in utero circadian disruption enhances placental immune cell expression, potentially 34 

programming a pro-inflammatory tissue environment that increases the risk of chronic disease in 35 

adulthood.  36 

 37 

Keywords: placenta, developmental chronodisruption, circadian disruption, developmental 38 

programming, DOHaD  39 

 40 

Abbreviations: 41 

BH, Benjamini and Hochberg 42 

CL, control light 43 

CD, circadian disruption 44 

DOHaD, Developmental Origins of Health and Disease  45 
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INTRODUCTION 46 

Environmental light exposure has changed rapidly over the last century with the 47 

introduction of electric lighting. One of the consequences of the modern light environment is 48 

circadian disruption, or misalignment between the internal temporal system and external cues(1). 49 

Circadian disruption can promote the development of chronic diseases, such as diabetes and 50 

dyslipidemia(2-5); night shift work is even categorized by the International Agency for Research 51 

on Cancer as a Group 2A carcinogen, “probably carcinogenic to humans”(6). However, little is 52 

known how circadian disruption affects fetal development.  53 

The Developmental Origins of Health and Disease (DOHaD) hypothesis grew out of 54 

research on in utero undernutrition and later life risk of cardiometabolic disease(7, 8). These 55 

studies found that infants born with low birthweight or small for their gestational age (SGA) had 56 

an increased risk of heart disease and stroke as adults(9-13). Later, the Dutch Hunger Winter 57 

cohort revealed epigenetic(14) and transgenerational(15) effects of in utero exposure to famine 58 

on offspring. DOHaD research has grown to encompass exposure to early life stress and 59 

pollutants(16), such as endocrine disrupting compounds, and outcomes related to neurological 60 

and hormonal programming. Light can also act as an endocrine disruptor(17); however, the 61 

influence of light exposure on developmental programming has not yet been widely assessed in 62 

DOHaD studies.  63 

We have previously shown that developmental chronodisruption in mice (via 64 

environmental light) from embryonic day 0 until weaning at 3 weeks of age has lasting effects on 65 

visual and metabolic outcomes of adult offspring; in particular, mice exposed to developmental 66 

circadian disruption have increased expression of retinal microglia and macrophage markers 67 

accompanied with impaired visual function(18). The placenta, a neuroendocrine organ, regulates 68 

in utero growth, including fetal neuronal growth. Communication between the placenta and fetal 69 

brain, termed the placenta-brain axis(19), influences neurodevelopment. The immune system 70 

plays an important role in the placenta-brain axis, and activation of placental immune signals can 71 

influence development of fetal immune cells, such as microglia, in the fetal brain(20, 21). 72 

Therefore, we investigated the impacts of developmental circadian disruption on overall gene 73 

expression and immune cell phenotypes in the placenta. To do this, we exposed pregnant mice to 74 

developmental chronodisruption and measured fetal and placenta outcomes (count, weight, sex 75 
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ratio), placental gene expression (RNAseq), and placental expression of immune cell markers 76 

CD11b and Iba1 (immunofluorescence). 77 

 78 

MATERIALS and METHODS 79 

Ethical approval 80 

All experimental procedures were approved (#V008-19) by the Institutional Animal Care 81 

and Use Committee of the Atlanta Veterans Affairs Healthcare System in facilities that are 82 

accredited by the Association for the Assessment and Accreditation of Laboratory Animal Care 83 

International (AAALAC).  84 

 85 

Animal handling and experimental design 86 

Wildtype female (~3-4 weeks old) C57BL/6J mice (Mus musculus) were ordered from 87 

Jackson Laboratories (Bar Harbor, ME, USA); wildtype male C57BL/6J mice were ordered or 88 

bred in-house from mice from Jackson Laboratories. Males for breeding were singly housed 89 

whereas female breeders were co-housed in large (6”x9”x18”) wire-top shoebox cages in 90 

standard conditions (ad libitum chow (Teklad Rodent Diet 2018 irradiated 2918, Envigo Teklad, 91 

Madison, WI, USA), 12:12 lighting) and checked daily for well-being. After a 2 week 92 

acclimation period, naïve females were randomized to either control light (CL, 12:12 light:dark) 93 

or a chronodisruption (CD) light paradigm, consisting of weekly inversions of the 94 

photoperiod(18, 22, 23). Light intensity was standardized across groups to be ~50-400 lux (Dual-95 

range light meter 3151CC, Traceable, Webster, TX, USA), with darkest areas at the bottom of 96 

the cage under the food holder and brightest areas near the top of the cage. Females were 97 

exposed to light treatments for 4 weeks prior to timed breeding; during aligned light schedules, 98 

representative females from each light treatment group were introduced to the male’s cage in the 99 

afternoon; females were checked for plugs and returned to their home cages after 2 days. 100 

Females were weighed several days later to confirm pregnancy; if not pregnant, they were placed 101 

with the same male the following week for further rounds of pairing for up to 4 more weeks of 102 

pre-pregnancy light treatment. Dams remained in CD or CL light treatments until tissue 103 

collection at gestational day 15.5 (E15.5). While placental tissue collection was timed to be the 104 

estimated E15.5 and mouse pairings occurred in a restricted time window, we did not evaluate 105 
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vaginal cytology or use in vitro fertilization, and it is therefore possible that embryonic age 106 

varied by a day.  107 

 108 

Tissue collection 109 

Pregnant mice (E15.5) were sacrificed with compressed CO2 gas anesthesia, followed by 110 

cervical dislocation and rapid decapitation for truncal blood collection between 9AM-11AM 111 

(ZT3-5); within this range, tissue collection time did not substantially differ between CL and CD 112 

groups. Position of each placental sample within the uterine horns, placental wet weight, and 113 

reabsorptions were recorded and placentae immediately dissected out after removing uterine 114 

tissue. Placental tissue samples were snap-frozen in liquid nitrogen and stored at -80°C until 115 

further processing for RNA isolation or preserved in 10% neutral buffered formalin for 116 

histological and immunohistochemical analyses. Fetal tail samples were also collected, snap 117 

frozen, and stored at -80°C until later use for sex determination. Samples from 3 dams, all from 118 

the CD group, were excluded due to noted quality issues during collection; for example, in 2 119 

mice, all of the embryos in a uterine horn exhibited blood clots and discoloration. Samples from 120 

a total of 12 dams, 6 CL and 6 CD, were included in the analysis. 121 

 122 

RNA isolation, sequencing, alignment, and generation of count data 123 

Prior to placental RNA isolation, all fetal tail tissue samples were lysed and RNA extracted using 124 

the Qiagen Allprep DNA/RNA Mini Kit according to manufacturer’s instructions and Sry gene 125 

expression measured via PCR to determine sex (SryFWD: 5’ – TGG GAC TGG TGA CAA TTG 126 

TG -3’ and SryREV : 5’ – GAG TAC AGG TGT GCA GCT CT-3’). Samples with faint bands 127 

were re-run. For RNA sequencing, placental samples without any noted collection quality issues 128 

were randomly selected and matched on sex when possible (quality samples of both sexes were 129 

not available for each dam). Two samples from each dam were chosen, for a total of 24 placenta 130 

samples, 12 from each light treatment group, and DNA and RNA isolated using the Qiagen 131 

Allprep DNA/RNA Mini Kit according to manufacturer’s instructions. RNA quality was 132 

measured using the Agilent 2100 Bioanalyzer with Agilent RNA 6000 Nano kit (cat# 5067-133 

1511) following manufacturer’s instructions and RNA concentrations measured with a Thermo 134 

Scientific NanoDrop spectrophotometer. All samples had RIN scores ≥ 9. Placental RNA 135 

samples (n=24) were sent to the Emory Genomics core for PolyA RNA sequencing performed at 136 
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30M read depth. FastQC was performed to check read quality and fastq files aligned to the C57 137 

mouse genome (Ensemble assembly GRCm38.p6) with STAR v2.7 using default settings. Read 138 

counts were derived using the “quantmode” command in STAR. Raw sequencing data FastQ 139 

files, processed gene count data, and sample information have been deposited in GEO (accession 140 

number GSE169266). Code for sample alignment and processing, as well as gene count data, are 141 

available at: https://github.com/dclarktown/CD_mice_placenta (DOI: 10.5281/zenodo.4536522). 142 

  143 

Differential expression (DE) analysis 144 

Count data were read into R (version 3.2) and analyzed for differential expression (DE) 145 

using DESeq2(24). The original 53,801 transcripts measured were limited to transcripts that had 146 

at least 1 count in 10% of samples, leaving a total of 14,739 transcripts for analysis. To confirm 147 

sex of samples, samples were also evaluated for high expression of Xist mRNA, indicative of 148 

female sex. Of the 24 samples, 1 sample was mismatched for sex (sample #9, 1009) and edited to 149 

the correct sex. After 1 sample was found to be an outlier driving many of the DE results (sample 150 

#12, 1012), it was dropped from the analysis. The DE analysis of the remaining 23 samples 151 

adjusted for sex and the first surrogate variable, with developmental light treatment group as the 152 

main exposure. The first surrogate variable was computed using the sva package(25) and “be” 153 

method with 200 iterations. Results were adjusted for false discovery rate using the Benjamini 154 

and Hochberg (BH) method and considered significant if q<0.05.  155 

 156 

Pathway analysis 157 

Transcript enrichment for differentially expressed genes was performed using 158 

EnrichR(26) among the Mouse Gene Atlas, ChEA 2016, KEGG 2019 Mouse, and GO 2018 159 

(Biological Process, Molecular Function, Cellular Component) databases. Results were adjusted 160 

for multiple comparisons using the Benjamini-Hochberg (BH) method and considered significant 161 

if q<0.05.  162 

 163 

Placental immunofluorescence measurement and quantification 164 

Fresh placenta samples were fixed in 10% neutral buffered formalin overnight at 4°C and 165 

then cryoprotected the following day in 30% sucrose after washing with 1x PBS. Samples were 166 

embedded and frozen in optimal cutting temperature compound and sliced into 7-µm-thick 167 
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sections. Placental sections were blocked (with 0.1% Triton X-100) and incubated with primary 168 

antibodies in 5% normal donkey serum in PBS before washing with PBS. Primary antibody 169 

incubations using Iba1 (ab178847; 1:100; Abcam) and CD11b (14-0112-82; 1:100; Invitrogen) 170 

were performed for 16-24 hours at 4°C and secondary antibody incubations were performed for 1 171 

hour at room temperature using Alexa Fluor 488 Donkey anti-mouse IgG (A-21202; 1:500) and 172 

Alexa Fluor 647-conjugated Donkey anti-rabbit IgG (A-31573; 1:500). Tissue nuclei were 173 

visualized with nuclear stain 4′,6-diamidino-2-phenylindole (DAPI, 62247; Thermo Fisher 174 

Scientific). Coverslips were mounted using Prolong Gold (P36934; Thermo Fisher Scientific). 175 

Placental tissue (n=4-6 mice/group; 3 images per sample, averaged for the analysis) was imaged 176 

with an Olympus Fluoview1000 confocal microscope (Center Valley, PA) using a 20x objective 177 

and a Lumenera INFINITY 1-3C USB 2.0 Color Microscope camera (Spectra Services, Ontario, 178 

NY). All images were processed and quantified using ImageJ software by a researcher masked to 179 

treatment group.  180 

 181 

Statistical analysis and data availability 182 

Unless otherwise noted, weight, embryo number, placental weight, sex ratio, and 183 

immunofluorescence data were all analyzed with Student’s 2-tailed unpaired t-tests and 184 

considered significant if p<0.05. Statistical tests were performed in Prism version 9.0.0. Statistics 185 

for placental gene expression analyses are described in the previous sections. All data and code 186 

used for the analyses are available at: https://github.com/dclarktown/CD_mice_placenta (DOI: 187 

10.5281/zenodo.4536522), except for the raw sequencing data which has been deposited in GEO 188 

(accession number GSE169266). 189 

 190 

RESULTS and DISCUSSION 191 

Here, we investigated whether circadian disruption led to gene expression and 192 

immunologic changes in the placenta. We have previously shown that developmental CD light 193 

treatment alters programming of the visual system in offspring(18). CD females did not differ in 194 

pre-pregnancy weight (Student’s unpaired 2-tailed t-test, t=0.83, df=10, p=0.43, Figure 1A) or 195 

pregnancy weight at tissue collection (Student’s unpaired 2-tailed t-test, t=0.72, df=10, p=0.49, 196 

Figure 1B) compared to CL females.  There were also no differences in embryo count, fetal sex 197 

ratio, and placental weight (Figure 1C-F), consistent with previous findings(27) in a rat model 198 
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that additionally found no change in fetal weight or placental:fetal weight ratio. Genetic models 199 

of developmental circadian disruption have found similar null results; knockout of Bmal1 200 

(Arntl), a core circadian clock gene, in fetal tissue does not alter embryo number or fetal or 201 

placental weight(28), whereas knockout in parental male or female tissue causes infertility(29). 202 

However, the exclusion of 2 CD dams from the analysis due to discoloration and blood clots 203 

throughout one uterine horn may have biased results towards a more conservative measure of 204 

effect.  205 

 206 

 207 

Figure 1. Light treatment did not alter dam or fetal outcomes. Body weight (grams) of 208 

female mice (CL n=6, CD n=6) from which placental samples were collected (A) just prior to 209 

pairing for timed breeding (Student’s unpaired 2-tailed t-test, t=0.83, df=10, p=0.43) and (B) 210 

when pregnant at E15.5 just prior to tissue collection (Student’s unpaired 2-tailed t-test, t=0.72, 211 
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df=10, p=0.49). (C) Number of viable embryos per dam counted within the uterine horns 212 

(Student’s 2-tailed unpaired t-test, t=0.18, df=10, p=0.86). (D) Sex ratio of viable embryos per 213 

dam, as determined by PCR of fetal tail snip and subset confirmed by RNA sequencing 214 

(Student’s 2-tailed unpaired t-test, t=1.67, df=10, p=0.12). (E) Average placental wet weight 215 

(grams) per dame (Student’s 2-tailed unpaired t-test, t=0.16, df=10, p=0.87). (F) Average 216 

placental wet weight (grams) per dam, stratified by sex (1-way ANOVA, F (3, 20) = 0.73, 217 

p=0.55). All data are presented as mean ± SEM. 218 

 219 

Placentas were collected at the late stage of pregnancy and sequenced for gene 220 

expression. Among the most highly expressed transcripts across all placenta samples (regardless 221 

of exposure) were Tpbpa, Prl3b1, Tpbpb, Psg21, Prl8a9, and Psg23, gene expression typical of 222 

trophoblasts(30). The EnrichR pathway analysis of the top 100 most highly expressed placental 223 

genes indicated enrichment for mouse placental tissue (q<0.05, Supplemental File 1) in the 224 

Mouse Gene Atlas database, as expected, and, interestingly, for the CLOCK, NELFA, and HSF1 225 

transcription factors in the ChEA database. CLOCK is a core component of the circadian clock, 226 

and as mediator of the maternal and fetal environments, the placenta may function as a peripheral 227 

oscillator; we have previously shown that placental gene expression varies seasonally(31), which 228 

suggests sensitivity to seasonal environmental exposures such as light and temperature. Top 229 

KEGG pathways were: “antigen processing and presentation”, “protein processing in 230 

endoplasmic reticulum”, “lysosome” and “HIF-1 signaling pathway”; likewise, top GO pathways 231 

were related to immune signaling and protein processing, with terms such as “ATF6-mediated 232 

unfolded protein response”, “neutrophil degranulation”, “collagen binding”, “secretory granule 233 

lumen”, and “focal adhesion” (Supplemental File 1).    234 

Principle component analysis of the placental samples revealed relative overlap between 235 

the CL and CD groups (Figure 2A). This pattern was not explained by sample position within 236 

uterine horn, sample collection time, sex ratio, or RNA quality, and samples from the same dam 237 

did not necessarily cluster together. The DE analysis between male and female placental tissue 238 

(adjusting for light treatment) resulted in 77 sex-specific placental transcripts (q<0.05, Figure 239 

2B, Supplemental File 2). A number of these genes were strikingly different; Xist, a non-coding 240 

RNA that silences the extra X-chromosome in females and can be used to identify fetal sex(32), 241 

was highly expressed in female placenta. Ddx3y, Eif2s3y, Kdm5d, and Uty were all highly 242 

expressed in male placenta and have previously been reported as male-specific placental 243 

genes(33, 34); these genes could arguably also be used to identify fetal sex. Sex-specific 244 

placental gene expression (n=113 q<0.1) also displayed enrichment for pathways related to lipid, 245 
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retinoid, and cholesterol metabolism in the KEGG and GO term databases, suggesting sex-246 

specific regulation of these processes in the placenta (Supplemental File 3). Interestingly, 247 

studies of maternal malnutrition and high fat diet exposure have uncovered sex-specific 248 

placental(35-37) and phenotypic outcomes in the offspring(38, 39). These results support 249 

investigation of these pathways in sex-specific development in future studies.  250 

  251 

 252 

Figure 2. Placental gene expression varies by sex and light treatment group. (A) PCA plot of 253 

first 2 principal components comparing treatment groups shows general overlap between CL and 254 
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CD groups. (B) Volcano plot of differential placental gene expression by sex (adjusting for light 255 

treatment group and first surrogate variable). Male is the reference group, so transcripts with 256 

decreased expression in females (or, conversely, increased expression in males) are located to the 257 

left of 0, while transcripts with increased expression in females (or, conversely, decreased 258 

expression in males) are located to the right of the 0. Black dots denote Bonferroni-significant 259 

transcripts (n=22 p<0.05), red dots denote BH-significant transcripts (n=77 q<0.05), and grey 260 

dots denote non-significant transcripts. The top differentially expressed genes are plotted with 261 

their respective gene names. (C) Volcano plot of differential placental gene expression by 262 

treatment (adjusting for sex and first surrogate variable). CL is the reference group, so transcripts 263 

with decreased expression in CD (or, conversely, increased expression in CL) are located to the 264 

left of the 0, while transcripts with increased expression in CD (or, conversely, decreased 265 

expression in CL) are located to the right of the 0. Black dots denote Bonferroni-significant 266 

transcripts (n=2 p<0.05), red dots denote BH-significant transcripts (n=9 q<0.05) and grey dots 267 

denote non-significant transcripts. Plots of raw normalized count data for (D) Serpinf1 and (E) 268 

Sox30 by treatment group.  269 

 270 

Few transcripts exhibited large differences between light treatment groups (Figure 2C). 271 

However, of the differentially expressed genes (n=9 q<0.05, Supplemental File 4), Serpinf1, 272 

Tbx20, Acta2, Cldn6, Cnp, Stx6, and Wipi2 had decreased expression while Sox30 and Irgq had 273 

increased expression in CD placenta (Figure 2C-E). Pathway analysis revealed that 274 

differentially expressed genes were similar to gene expression in osteoblasts in the Mouse Gene 275 

Atlas database (Supplemental File 5). While there was no enrichment for specific transcription 276 

factors within the ChEA database, differentially expressed genes were enriched for “cholesterol 277 

metabolism” in the KEGG database and terms related to tissue development, adhesion, and 278 

cytoplasmic projection in the GO databases. It is perhaps surprising that we did not uncover large 279 

differences in placental gene expression between light treatment groups. However, it is possible 280 

the small sample size limited the ability to measure more subtle differences in gene expression, 281 

especially if such differences occurred in placental cell subpopulations, such as immune cells.  282 

Placenta from CD-exposed dams revealed significantly increased expression of Iba1 and 283 

CD11b microglial/macrophage markers than placenta from dams housed in CL conditions 284 

(p=0.027 and p=0.038, respectively, Figure 3). These results align with the finding of decreased 285 

Serpinf1 (which encodes pigment epithelium-derived factor (PEDF)) expression in CD placenta. 286 

A neurotrophic factor with many roles(40), PEDF inhibits macrophage inflammatory 287 

processes(41), which may have contributed to the increased CD11b and Iba1 marker expression 288 

in CD placenta. These data also coincide with our findings of an increased retinal inflammatory 289 

response and reduced visual function within mice developmentally exposed to CD(18). The 290 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.21.440521doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.21.440521
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

immune system and inflammation govern many of the health outcomes caused by chronic 291 

circadian disruption(42-44). For example, night shift workers were found to have greater 292 

amounts of immune cells, such as T cells and monocytes, than non-shift workers(45); likewise, 293 

we previously reported hypomethylation in immune-related genes, such as CLEC16A, SMPD1, 294 

and TAPBP, in the placentas of mothers who worked the night shift(46). In rodent studies, 295 

chronic circadian disruption increased macrophages and “pro-tumor” CD11b+ MHCII cells(47), 296 

altered inflammatory response in the brain(48), and primed the innate immune response to be 297 

more pro-inflammatory(49).  298 

The placenta is the only organ formed by the interaction of both fetal/embryonic and 299 

maternal tissues and acts as the interface between both circulatory systems(50). Previous 300 

research has found a strong correlation between placental CD11b expression and fetal brain 301 

microglial activation(21). In mice and humans, brain and placental macrophages and microglia 302 

originally derive from the same source: the fetal yolk sac(51, 52). These progenitor macrophage 303 

and microglial cells migrate from the yolk sac to embryonic tissues, where they set up residence; 304 

once settled, they are long-lived and able to replenish themselves(53, 54). Our results suggest 305 

that developmental light environment affects programming of the placental and fetal immune 306 

systems, laying the groundwork for a pro-inflammatory setting later in life. These findings 307 

provide novel evidence linking CD with increased placental inflammatory response and highlight 308 

the need to evaluate the influence of the light environment on health and disease outcomes in 309 

DOHaD studies.  310 

 311 
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 312 

Figure 3. Chronodisruption causes increased macrophage and microglial signaling in the 313 

placenta. Placentas from (A-C) control light (CL) and mice exposed to (D-F) developmental 314 

circadian disruption (CD) were labeled for inflammatory markers labeling microglia and 315 

macrophages. In placenta from CD mice increased placental (G) Iba1 fluorescence (Student’s 2-316 

tailed unpaired t-test, t=2.49, df=8, p=0.038) and increased placental (H) CD11b fluorescence 317 

(Student’s 2-tailed unpaired t-test, t=2.70, df=8, p=0.027) were detected. CL=4 placenta from 318 

different dams, 3 images each; CD=6 placenta from different dams, 3 images each. All data are 319 

presented as mean ± SEM, scale bar = 20 microns, and *=p<0.05. 320 
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