ABSTRACT
After years of experience, humans become experts at perceiving letters. Is this visual capacity attained by learning specialized letter features, or by reusing general visual features previously learned in service of object categorization? To explore this question, we first measured the perceptual similarity of letters in two behavioral tasks, visual search and letter categorization. Then, we trained deep convolutional neural networks on either 26-way letter categorization or 1000-way object categorization, as a way to operationalize possible specialized letter features and general object-based features, respectively. We found that the general object-based features more robustly correlated with the perceptual similarity of letters. We then operationalized additional forms of experience-dependent letter specialization by altering object-trained networks with varied forms of letter training; however, none of these forms of letter specialization improved the match to human behavior. Thus, our findings reveal that it is not necessary to appeal to specialized letter representations to account for perceptual similarity of letters. Instead, we argue that it is more likely that the perception of letters depends on domain-general visual features.
AUTHOR SUMMARY For over a century, scientists have conducted behavioral experiments to investigate how the visual system recognizes letters, but it has proven difficult to propose a model of the feature space underlying this capacity. Here we leveraged recent advances in machine learning to model a wide variety of features ranging from specialized letter features to general object-based features. Across two large-scale behavioral experiments we find that general object-based features account well for letter perception, and that adding letter specialization did not improve the correspondence to human behavior. It is plausible that the ability to recognize letters largely relies on general visual features unaltered by letter learning.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
This version includes further analyses of the representational spaces of the letter-trained network, additional model comparisons, and some edits to the discussion section.