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Abstract The major histocompatibility (MHC)
molecules are capable of presenting neoantigens result-

ing from somatic mutations on cell surfaces, potentially
directing immune responses against cancer. This led to
the hypothesis that cancer driver mutations may oc-

cur in gaps in the capacity to present neoantigens that
are dependent on MHC genotype. If this is correct, it
has important implications for understanding oncoge-
nesis and may help to predict driver mutations based

on genotype data. In support of this hypothesis, it has
been reported that driver mutations that occur fre-
quently tend to be poorly presented by common MHC

alleles and that the capacity of a patient’s MHC alle-
les to present the resulting neoantigens is predictive of
the driver mutations that are observed in their tumour.

Here we show that these reports of a strong relation-
ship between driver mutation occurrence and patient
MHC alleles are a consequence of unjustified statistical
assumptions. Our reanalysis of the data provides no ev-
idence of an effect of MHC genotype on the oncogenic
mutation landscape.

Keywords Cancer · Driver mutations · MHC ·
Adaptive immune response

1 Introduction

The immune system has evolved to recognize aberrant
and non-self molecules, resulting from pathogen infec-
tion, somatic mutations and malformed proteins. The
major histocompatibility complex (MHC) plays a key
role in this process. There are two classes of MHC
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molecules, class I (MHC-I) and class II (MHC-II), en-
coded, in human, by a cluster of genes on chromosome

6. The human MHC genes and proteins, which are of-
ten termed Human Leukocyte Antigens (HLA), are di-
verse, with over 15,000 alleles identified [1]. Somatic

mutations in genes encoding self proteins can result in
an altered amino acid sequence, thereby generating so-
called neo-antigens that have the potential to elicit an
immune response upon presentation by the MHC to T-

cells [2]. Through the killing of cells carrying immuno-
genic neoantigens, the immune system has been pro-
posed to a play key role in shaping the cancer genome

in a process referred to as immuno-editing [3,4].

Dunn et al. first proposed the term immuno-editing
to describe the dual ability of the immune system to
defend the host by suppressing tumour growth and to
shape the immunogenicity of tumours [5]. It is charac-
terised by three phases – elimination, equilibrium and
escape, collectively termed the three Es of cancer immuno-
editing [5,6]. The elimination phase involves the recog-

nition and destruction of tumour cells by the immune
system, before it is clinically detectable. Some cells are
thought to escape elimination and enter into the equi-
librium phase during which the immune system keeps
tumour growth in check but cannot fully eliminate it.
The tumour may continue to develop mutations that

enable it to evade immune responses, resulting in a
population of cells that are resistant to the immune
response [6,4]. The final stage occurs when the cancer
escapes immune control, leading to uncontrolled prolif-
eration, due potentially to reduced immunogenicity of
cancer cells or to mutations that create an immunosup-
pressive environment [6,3].

One of the mechanisms through which cancer evades
the immune response is to acquire mutations that al-
ter antigen presentation [7]. The most selective step of
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the process of antigen presentation to the immune cells
is the binding of antigenic peptides to the MHC. This
has been inferred by a variety of studies of the impli-
cations of mutating the HLA genes or the B2M gene,
whose product, β2m, forms an integral part of MHC
Class I molecules [8–12]. Loss or mutation of HLA or
B2M genes is associated with an increase in tumour
mutation burden [12]. A lack of neoantigens capable
of eliciting an immune response could also allow can-
cers to avoid immune responses and several studies have
reported selection against immunogenic somatic muta-
tions in cancer [13,9,14], though the evidence for de-
pletion of mutations that give rise to neoantigens has
recently been questioned [15].

Here, we reanalyzed the data from two high-profile
studies [16,17] that reported that the driver mutations
that are found in cancer patients can be predicted from
the capacity of the patient’s MHC molecules to bind
the resulting neoantigens. The patient harmonic mean
best rank (PHBR) score was proposed in [16] and [17]
as a measure of whether a neoantigen resulting from

a somatic mutation can be bound by MHC molecules,
given the HLA genotype of a patient. The score is de-
rived from predicted binding affinities of the patient’s

MHC molecules for the peptides spanning the muta-
tion. The conclusions of both studies are based on an
analysis of 1,018 cancer driver mutations in patients

from the cancer genome atlas (TCGA). The focus of
the 2017 study is on MHC class I alleles and the pri-
mary focus of the 2018 study is on presentation of can-
cer neoantigens by MHC class II molecules. The data

for both comprised a binary matrix of mutation occur-
rences (indicating whether the driver mutation in each
column has been observed in the patient in each row)

and a matrix of PHBR scores corresponding to 9,176
and 5,942 patients for MHC class I and class II alle-
les, respectively. We reanalyzed these data and found
that the conclusion of both papers, that cancer driver
mutations emerge preferentially in gaps in the patient’s
capacity to present neoantigens on MHC molecules, are
not robust. We found that there is no evidence from
the data that the driver mutations seen in a patient
are influenced by the patient’s MHC class I or class II
genotypes.

2 Methods

Data

We performed a reanalysis of cancer driver mutations in
TCGA and their predicted immunogenicities, reported
in [16] and [17]. Both papers calculate a score that is
used to predict the extent to which neoantigens are

presented on MHC-I or MHC-II molecules, given the
patient genotype. The score is calculated by consider-
ing all peptides of a specific length or range of lengths
that contain the mutation. A rank-based presentation
score was obtained for each peptide using NetMHC-
pan3.0 [18] and for each of the patient’s HLA alleles
the best rank value was retained. The PHBR score is
then the harmonic mean (across the patient’s HLA al-
leles) of these best-rank scores (see [16] and [17] for
details). This score was calculated for class I MHC al-
leles in [16] where it was based on peptides with lengths
ranging from 8 – 11 amino acids and for class II alle-
les in [17], where it was based on peptides of length 15
amino acids. We applied the methodology as described
to the TCGA data to obtain a binary matrix of driver
mutation occurrences across patients and matrices of
PHBR-I and PHBR-II scores across patients for each
driver mutation. In order to ensure our results were
precisely comparable to the published results we also
requested the data matrices that were the basis of the
original studies and these were kindly provided by the

authors (following confirmation of the appropriate data
access permissions).

Logistic regression models relating mutation occurrences
to PHBR scores

Following the notation of [16], consider a mutation ma-

trix, with entries yij ∈ {0, 1}, indicating the presence or
absence of driver mutation j in patient i and a matrix
of PHBR-I or PHBR-II scores with real-valued entries,

xij , corresponding to the score of mutation j, given the
MHC alleles of individual i. Two mixed effects logistic
regression models were used in [16] to relate the log-

odds of yij = 1 to the log of xij . The first model, re-
ferred to as the within-mutation model, has a normally-
distributed random effect,βj , that models differences in
the frequencies of different driver mutations:

logit(P (yij = 1|xij)) = βj + γlog(xij) (1)

The second model, referred to as the within-patient
model, uses a random effect, ηi, to model differences
in the abundance of driver mutations between patients,
but does not model differences in the frequencies with
which different driver mutations occur:

logit(P (yij = 1|xij)) = ηi + γlog(xij) (2)

Simulation

We designed a simple simulation scenario to illustrate
how spurious results can be obtained from the within-
patient model due to a failure to account for non-independence
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of the PHBR scores across patients (some driver muta-
tions tend to have higher scores across patients, while
others have lower scores, leading to the high degree of
correlation in the scores of driver mutations between
patients seen in Fig. 1A). The simulation consisted of
100 driver mutations, one of which had a high frequency
(20% of 500 patients) and a relatively high PHBR score
(normally distributed across patients with mean 10 and
standard deviation 2). The remaining mutations oc-
curred at low frequency (1%) and had normally dis-
tributed PHBR scores with mean 5 and standard devi-
ation 2. We then fitted the within-patient model to this
simulated dataset.

Relationship between MHC-I coverage and cancer risk
in UK Biobank

We retrieved HLA class I alleles from participants in

the UK Biobank. These alleles were inferred using
HLA*IMP:02 [19]. Only alleles that were called with
imputation posterior probability greater than 0.5 and

only participants with six HLA class I alleles called were
retained. This left a total of 377,790 individuals. For
each individual we determined the driver mutation cov-
erage as the number of driver mutations with PHBR-I

scores < 2, given the individual’s HLA genotype. We re-
trieved the self-reported cancer status (data field 20001)
for these individuals. Treating the self-report of any

cancer type as a case, we fitted a logistic regression
model to case status as a function of age, sex and PHBR-
I coverage.

3 Results

Using the predicted immunogenicities of driver muta-
tions derived by [16] and [17], we re-investigated the

relationship between immunogenicity and driver muta-
tion occurrence across patients. In both [16] and [17]
the predicted capacity of the MHC to present cancer
driver mutations was compared between patients with
and without the mutation. Higher values of the PHBR
score (corresponding to low predicted capacity to bind
neoantigens resulting from the mutation) in the pa-

tients in which the driver mutations occur was pre-
sented as evidence that driver mutations preferentially
arise in patients who lack the MHC alleles that are ca-
pable of presenting them to T cells. In these compar-
isons of groups of PHBR scores, one group consists of
the scores of driver mutations in patients in which the
mutation is present (the Mutation group) and the other
group (the No Mutation group) consists of PHBR scores

of the driver mutations in the patients without the mu-
tation. A given driver mutation can appear many times
in the Mutation group in these comparisons - once for
each patient in which it occurs. This is problematic,
because the PHBR scores of mutations are highly cor-
related (Fig. 1A) and, thus, the data points are not
independent. For example, a driver mutation that oc-
curs in 500 patients will contribute 500 PHBR scores to
the Mutation group and N – 500 scores to the No Mu-
tation group, where N is the total number of patients.
If the PHBR score of the mutation is generally high
or generally low across patients, it will clearly have a
disproportionate impact on the distribution of PHBR
scores in the Mutation group.

The correlation in PHBR scores between patients
is not solely due to sharing of HLA alleles. Even the
PHBR scored using HLA alleles from different allele
groups are significantly correlated (Fig. S1), but the
scores of driver mutations were effectively treated as
independent observations by the studies that reported

an effect of HLA alleles on driver mutations. [17] used a
statistical test (the Mann-Whitney U test) to compare
the median PHBR-II score between the Mutation and

No Mutation groups and reported a higher median score
in the mutation group with a p-value < 2.2 × 10−16.
This was interpreted as evidence that the patient HLA

genotype influences the driver mutations that occur in
cancer patients. However, the fundamental assumption
of the test is that the observations in each group are in-
dependent and this assumption is clearly violated. We

found that the differences between the Mutation and
No Mutation groups are, in fact, just as large when the
MHC genotypes are randomized between patients, indi-

cating that this difference is not driven by patient geno-
type (Fig. 1B). Moreover, when we compared PHBR
scores, grouped by driver mutation frequency (so that
each driver mutation contributes the same number of
observations to the Mutation group in each compari-
son), we saw no consistent differences (Fig. 1C).

In 100 randomizations of the HLA class I genotypes
the median PHBR-I score of the Mutation group in the
randomized data in fact exceeded the median of the Mu-

tation group in the real data 94 times (p = 0.94 for the
one-sided randomization-based test for a higher PHBR-
I score in the Mutation group). Similarly, when we shuf-
fled the HLA class II genotypes, the median PHBR-II
score of the Mutation group in the shuffled data ex-
ceeded that of the real data 36 times (p = 0.34). Thus,
comparison of PHBR scores between the Mutation and
No Mutation group does not provide any support for
the hypothesis that driver mutations occur preferen-
tially in patients with MHC molecules that are not ca-

pable of binding the resulting neoantigens. In [16] and
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Fig. 1 (A) Scatterplot of log PHBR-I scores of all driver mutations, calculated using the HLA genotypes of two randomly
selected patients from TCGA. (B) Median and interquartile range of PHBR-I score in the No Mutation (blue) and Mutation
(orange) groups for the real data and for data in which the MHC genotypes have been randomized between patients. (C)
Median and interquartile range of PHBR-I scores in the No Mutation (blue) and Mutation (orange) groups in bins of mutation
recurrence.

[17] PHBR scores of driver mutation occurrences were
also compared against scores of occurrences for different

mutation classes (e.g. germline mutations and passen-
ger mutations). Because they contribute many times to
the Mutation group, the existence of a small number

of highly recurrent cancer driver mutations with high
PHBR scores (i.e. low binding affinity) may be suffi-
cient to skew all of these comparisons. This problem
is compounded by the fact that the 1,018 driver muta-
tions that are the basis of this study occur on just 168
different genes and PHBR scores are statistically signif-
icantly correlated between mutations in the same gene,
particularly for class II alleles (Fig. S2). The number of
distinct genes among the most highly recurrent cancer
driver mutations is smaller still (Fig. 2A).

Regression models relating log-PHBR score to mutation
probability

In addition to comparing PHBR scores between the
Mutation and No Mutation groups [16] proposed two
mixed effects logistic regression models to relate the

log-odds that a driver mutation is found in a patient to
the log of the PHBR-I score for the mutation, given pa-

tient MHC genotype. In one model (referred to as the
within-mutation model) a random effect is used to cor-

rect for differences in the frequency with which different
driver mutations occur. In the other model (referred to
as the within-patient model) the random effect mod-

els differences in the abundance of driver mutations be-
tween patients, but there is no correction for differences
in the frequency of different driver mutations. Mathe-
matical descriptions of both models are reproduced in

the Methods.

In [16] there was no significant effect of log PHBR-I
on the log-odds of driver mutations using the within-
mutation model. Although the results of the within-
mutation model are not reported in [17], log PHBR-
II is not significantly associated with driver mutation
occurrence with this model either. The failure of the
within-patient model to detect an effect of log PHBR-I

on the probability of a driver mutation was explained
in [16] as resulting from the fact that the impact of
immune presentation on the probability of a mutation
was captured by the random effect. In other words, the
tendency for a driver mutation not to be recognized by
common HLA alleles resulted in a high driver mutation
frequency and this was captured by the random effect in
the model. This is not a strong argument, however, be-
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Fig. 2 (A) The blue line shows the logarithm of the number of driver mutations that recur across patients at least as often
as the recurrence threshold on the x-axis. The red line shows the logarithm of the number of distinct genes in which these
mutations occur. (B), (C) Hexbin plots illustrating the relationship between the logarithm of median PHBR-I (B) and PHBR-II
(C) scores and driver mutation frequency (across patients).

cause the median PHBR score does not explain much,
if any, of the variance in driver mutation frequency in
the cancer patients (Fig 2B,C). Even if the variation
in driver mutation frequency was entirely driven by

MHC class I genotype, it should not fully capture the
relationship between driver mutation occurrence and
MHC genotype. I.e. the rare driver mutations should

still be found associated with the rare MHC genotypes
that are not capable of presenting them and the com-
mon driver mutations should be found associated with
the relatively more common MHC genotypes that can-

not present them. This should be detectable with the
within-mutation model, even after accounting for dif-
ferences in driver mutation frequencies.

In contrast to the lack of a signal from the model
that accounted for differences in frequencies between
driver mutations, Marty and colleagues [16] reported
a very strong effect of log PHBR-I on the log odds of
driver mutations using the within-patient model (which
accounts for differences in driver mutation burden be-
tween patients). Quoting a P-value of < 2.2 × 10−16,
the authors estimate an increase of 28% in the log odds
of occurrence of a mutation with each unit increase in
log PHBR-I (95% CI: [25%, 31%]). However, this result
is affected by the same failure to take account of the
non-independence of observations of the same driver
mutation that led to the spurious between-group com-

parisons of PHBR scores discussed above. This can be
seen from the fact that the results are not affected by
randomization of the patient genotypes. We randomly
shuffled the patient genotypes for the real data so that,
for each patient, driver mutations were scored with the

HLA genotypes of a randomly selected patient. We then

fitted the within-patient model to the shuffled data.
When we did this we found that the increase in the
log odds of a driver mutation occurrence per unit in-

crease in log PHBR-I was 25.1% (standard error 1%),
slightly higher than we obtained using the real data (we
obtained an estimate of 24.7% when we implemented
the within-patient model on the PHBR-I data, a lit-

tle below the 28% reported by [16]). Similarly, the re-
lationship between PHBR-II was just as strong using
the shuffled and unshuffled data (27.0% and 26.9% in-

crease in the log odds of mutation occurrence per unit
log PHBR-II for the shuffled and unshuffled data, re-
spectively). Again, these results provide no indication

of a relationship between the patient HLA genotypes
and driver mutation occurrence.

We performed a simple simulation to demonstrate

how the spurious results obtained with the within-patient
model can come about. We simulated the case of a sin-
gle driver mutation that occurs at high frequency and
has a high PHBR score across patients. The remain-
ing mutations occurred at lower frequency and had a
lower PHBR score distribution (details of the simu-
lation are provided in Methods). Because the within-
patient model of [16] and [17] treats PHBR scores of a
given mutation as though they were independent obser-
vations (despite the strong correlation in the scores of
different mutations between patients seen in Figure 1A)
this single common driver mutation with a high PHBR
score was sufficient to give a highly significant associa-
tion between PHBR score and driver mutation occur-

rence (P = 2 x 10-52). This trivial example illustrates
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how failure to account for the high degree of correla-
tion in the immunogenicities of driver mutations across
patients can give highly misleading results.

No evidence that driver mutations in cancer patients
are adapted to patient MHC genotypes

Under a null model of no effect of MHC genotype on
driver mutation occurrence, the probability that the pa-
tient can present a given driver mutation can be es-
timated from the proportion of all patients that can
present that mutation. This provides a straightforward
means to compare the observed to expected total num-
ber of driver mutations with PHBR scores below the
threshold for presentation. If the driver mutation land-
scape is shaped by patient-specific MHC binding ca-
pacity and if this is captured by PHBR scores, then the
observed number of driver mutations that can be pre-
sented in the patients in which they occur should be
smaller than the expected number. For MHC-I the ob-

served number of driver mutations with PHBR-I scores
below the threshold of 2 applied in [16] was slightly
larger than the expected number (3,669 compared to
3,657.5 ± 68.8). For MHC-II the observed number of

driver mutations with PHBR-II scores below the thresh-
old of 10 applied in [17] was slightly below the expected
number (1,119 compared to 1,142.3 ± 36.4). Both ob-

served values lay within one standard deviation of the
expected values. These results provide no suggestion
that driver mutations occur less often in patients with

MHC alleles that are capable of binding them.

Prediction of driver mutation occurrence from MHC

genotype

The study of [16] includes the claim that the PHBR
scores derived from patient MHC-I genotype could be

used to predict the driver mutations that are observed
in cancer patients; however, this claim is never tested
directly. For each driver mutation, we fitted a logistic
regression model to relate the log-odds of a driver mu-
tation occurring as a function of the patient-specific log
PHBR-I score. For example, the most common driver
mutation in the dataset, V600E in BRAF, occurs in 561

individuals. When we fitted a logistic regression model,
treating the log-odds of occurrence of this mutation as
the response variable and with log PHBR-I for V600E,
cancer type and population of origin of the patient as
predictor variables, there was no significant effect of
log PHBR-I on the occurrence of this mutation (P =
0.67). It could be argued that common mutations are
common because they cannot be presented by common

HLA alleles (i.e. they have generally high PHBR scores
across patients). While it is the case that V600E in
BRAF has a high mean PHBR-I score, there were still
704 patients whose MHC-I alleles were predicted to be
capable of presenting this mutation (PHBR-I < 2, the
threshold used in [16] to indicate MHC class I binding).
Of these patients, 5.5% actually carried the V600E mu-
tation in BRAF, almost identical to the frequency of
the mutation in the patients with PHBR-I ≥ 2 (6.2%;
P = 0.57 from a Fisher’s exact test). We fitted lo-
gistic regression models for each driver mutation and
found that no driver mutation was significantly pre-
dicted by log PHBR-I, after correction for multiple test-
ing (minimum P value = 0.003; adjusted P = 1, using
the Holm method). We repeated this procedure using
PHBR-II scores and again found no significant associa-
tion with driver mutation occurrence following correc-
tion for multiple testing (minimum P value = 0.004;
adjusted P = 1). There is, therefore, no evidence that
patient HLA alleles are predictive of the driver muta-
tions that occur in the patient.

The association between driver mutation frequency and
PHBR scores

The strong associations previously reported between
driver mutations and immune presentation scores could
be explained by a small number of driver mutations

with high frequencies that have high PHBR scores (and
therefore are not well presented by HLA alleles). [16]
implies that the high frequency of some driver muta-
tions is caused by the fact that these mutations are not

well presented by common HLA alleles, thus enabling
them to occur in many individuals. This is illustrated
by a significant correlation between the frequency of

driver mutation occurrence (within bins of driver mu-
tation frequency) and median PHBR-I scores in the bin
(this relationship can be seen in the upward trend of the
median values from left to right in Figure 1C). Although
1,018 driver mutations were included in the studies of
[16] and [17], they are associated with just 168 different
genes. Based on an analysis of 1,000 randomly sampled

pairs of germline mutations from the same genes, we
found that the PHBR scores of mutations in the same
gene are positively correlated (Fig. S2), likely reflecting
amino acid or domain content of the proteins. For exam-
ple, peptides of proteins with a large proportion of hy-
drophobic residues may be more likely to be presented
on MHC molecules [20,15,21]. The driver mutations
with the highest frequencies across patients are dom-
inated by a relatively small number of genes (Fig. 2A).
If a subset of these genes tend to have relatively high
PHBR scores this could induce a correlation between
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driver mutation frequency across patients and median
PHBR score. Indeed, when we restricted to only the
highest frequency driver mutation for each driver gene
the relationship between PHBR-I score and driver mu-
tation frequency was no longer significant (Spearman
ρ= 0.24; P = 0.28). Thus, the reported association be-
tween driver mutation frequency and median PHBR-I
score is not robust.

No evidence that driver mutation coverage predicts can-
cer risk

If the frequency of driver mutations across cancer pa-
tients was determined to a large extent by the bind-
ing affinities of common HLA alleles, we would expect
the number of recurrent cancer driver mutations that
can be bound by a patient’s MHC molecules to be as-
sociated with cancer risk. In [17] the driver mutation

coverage is defined as the number of driver mutations
that can be presented by the patient’s MHC molecules.
This can be calculated for MHC-I (for which a threshold

of PHBR-I < 2 was used to indicate binding) and for
MHC-II (for which the threshold was PHBR-II < 10).
MHC-I (but not MHC-II) coverage was found to be cor-
related with age of diagnosis for TCGA patients [16,17].

Interestingly, the strongest correlations between PHBR-
I coverage and age at diagnosis are for cervical and liver
cancers, two cancers that are strongly associated with

viral infections [22–24], suggesting that the relationship
between coverage and age at diagnosis may reflect HLA-
dependent differences in susceptibility to these viral in-
fections. To test, more generally, whether there is any

relationship between PHBR-I coverage and cancer risk
we fitted a logistic regression model to the log-odds of
cancer status (a binary variable to indicate whether the
individual has self-reported a diagnosis of cancer of any
type) to PHBR-I coverage for 377,790 participants from
the UK Biobank. Treating age and sex as covariates, we
found no significant association between PHBR-I cov-
erage and cancer risk (p = 0.15). The lack of an associ-
ation between cancer risk and driver mutation coverage
does not support a model in which cancer driver muta-
tions occur in gaps in the capacity of the individual’s
MHC molecules to bind the associated neoantigens.

Discussion

The relationship between MHC genotype and the driver
mutations that are found in cancer patients, reported

by [16] and [17], are unchanged when the MHC geno-
types of patients are shuffled. This includes the effect

of log PHBR score on the occurrence of a driver muta-
tion, as inferred from the within-patient model, as well
as the difference in median PHBR scores between the
Mutation and No Mutation groups. It is therefore clear
that any effect of PHBR scores on the driver mutation
landscape is not dependent on individual level MHC
genotypes. It is still conceivable that MHC genotype
affects the driver mutation landscape at the popula-
tion level, such that poorly presented driver mutations
are relatively common; however, it is implausible that
the population level effect could arise in the absence of
any association between PHBR score and driver muta-
tion occurrence within individual patients. If immune
responses cause driver mutations that can be recognized
by common MHC alleles to be rare, we would expect
these driver mutations to be more frequent among indi-
viduals with MHC alleles that are incapable of present-
ing them. No such effect of MHC genotype on driver
mutation occurrence within individuals was apparent
from the data. Furthermore the relationship that was
reported between driver mutation frequency and me-

dian PHBR score of the mutation is weak and no longer
significant when we restricted to a single driver muta-
tion per driver gene. This restriction is necessary, given
the correlation we observed between PHBR scores de-

rived from the same gene, even for germline mutations.

If, as [16] suggests, cancer arises in gaps in an indi-

vidual’s capacity to present driver mutations, then we
would expect the number of such gaps that an individ-
ual has for cancer driver mutations to be a strong risk

factor for cancer development. Indeed, [17] reports an
effect of MHC-I driver mutation coverage on age at can-
cer diagnosis, where coverage was defined as the number
of driver mutations in the study that were predicted
to be bound by the patient’s MHC class I molecules.
We tested this using data from the UK Biobank. Given
the size of the data set (377,790 individuals, includ-

ing 32,802 with a self-reported cancer diagnosis) even a
weak relationship between MHC-I coverage and cancer
risk should be detectable; however, we found no signif-
icant effect of coverage on cancer status when we fitted
a logistic regression model that included sex and age
as covariates. If the reported effect of MHC genotype

on driver mutation landscape was robust, this would be
an important negative result, as it addresses the pro-
posal by [16] that PHBR-I scores of driver mutations
may prove useful for assessing risk of development of
certain cancers. This negative result has not previously
been reported, to the best of our knowledge.

Several studies have reported a depletion of immuno-
genic nonsynonymous mutations in cancer [13,9,14].
However, a recent reanalysis of somatic mutations in

cancer that took account of the cancer mutation profiles
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found no evidence of selection against cancer neoanti-
gens [15], raising questions about whether the avail-
ability of neoantigens is the limiting factor in the im-
mune response against cancer. In support of this, a
previous study reported that the quantity of neoanti-
gens is not the limiting variable in immunologically
cold tumors [25]. This contrasts with studies of the effi-
cacy of immunotherapy which have generally reported a
positive association with tumour mutation burden [26–
28]. The reported depletion of cancer neoantigens [13,
9,14] applies to all nonsynonymous immunogenic mu-
tations and not specifically to driver mutations. How-
ever, [16] and [17] reported no evidence of an influence
of patient MHC on passenger mutations. This finding
is surprising, given that both driver and passenger mu-
tations (particularly clonal, nonsynonymous, immuno-
genic passenger mutations) should have the capacity to
elicit immune responses. In principle, this could be ex-
plained by downregulation of genes carrying immuno-
genic mutations. Indeed, a recent study [29] suggested
that the extent of depletion of neoantigens depends on

the expression level of the gene. While for neoantigens
resulting from passenger mutations, this downregula-
tion might be accomplished without affecting cancer

cell proliferation, the requirement of the cancer cells for
continued expression of genes carrying driver mutations
may prevent downregulation of these genes. One diffi-

culty in attempting to reconcile these findings in this
way is that the effect of MHC genotype on the driver
mutation landscape was reported for both oncogenes
and tumour suppressor genes (and was stronger for the

latter group in [17]). It is not clear that the require-
ment for expression of the gene that carries the driver
mutation should apply to driver mutations in tumour

suppressor genes, where loss of function is the expected
mode of action.

Our reanalysis of cancer driver mutations from the
TCGA indicates that there is no evidence that selec-

tion exerted by the immune response influences the
driver mutations observed in cancer. This result com-
plements the recently reported lack of overall depletion
of neoantigens among somatic mutations observed in
cancer [15]. It remains possible, however, that the ca-
pacity of the MHC to present neoantigens at the cell
surface does have an appreciable influence on the driver

mutations observed in cancer, but that this capacity is
not sufficiently well captured by the PHBR score. Given
the experimental evidence for the capacity of PHBR-
I and PHBR-II scores to predict MHC-I and MHC-II
binding affinity [16,17], this seems unlikely. Alterna-
tively, it is possible that the availability of immunogenic
non-synonymous mutations is not what limits the ca-
pacity of the immune response to prevent cancer de-

velopment. The wide range of mutation burdens in hu-
man cancers [30] and the relationship between muta-
tion burden and the efficacy of immune checkpoint in-
hibitors [26–28] argue against this suggestion, unless the
immune response to the developing cancer is distinct
to the response following immune checkpoint inhibitor
therapy. The lack of a relationship between MHC geno-
type and driver mutation content suggests that if the
immune system plays a major role in cancer prevention
this does not involve the prevention of specific driver
mutations in a way that depends strongly on MHC
genotype.
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