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Abstract
Structural variants (SVs) are associated with cancer progression and Mendelian disorders, but challenges with
estimating SV frequency remain a barrier to somatic and de novo classification. In particular, variability in
filtering and variant calling heuristics limit our ability to use SV catalogs from large cohorts. We present a
method to index and search the raw alignments from thousands of samples that overcomes these limitations
and supports robust SV analysis.

Main
Structural variants (SVs), which include large deletions, duplications, insertions, inversions, and

translocations1, are increasingly associated with cancer progression and Mendelian disorders2–5. Copy number
variants and gene fusions have received the most attention, but recent large-scale SV studies such as the
Pan-Cancer Analysis of Whole Genomes6 (PCAWG), the 1000 Genome Project7 (1KG), gnomAD SV8, and the
Centers for Common Disease Genomics9 (CCDG) have expanded our understanding of the depth and diversity
of somatic SVs in cancer and polymorphic SVs in humans. Despite the importance of SVs, many barriers
remain to the wide-scale adoption in disease analysis1. In particular, limitations to short-read SV calling,
reference biases, and variability in the heuristics and filtering strategies between cohorts lead to an incomplete
understanding of SV population frequency that limits our ability to assess a variant's severity and impact10.

In cancer studies, SVs interpretation requires classifying variants as either germline or somatic. The
gold standard is to call variants in the tumor and control tissue from the same individual together. SVs found
only in the tumor are deemed somatic. This method is susceptible to the completeness and the purity of the
normal sample calls, which are often sequenced at lower coverage. When a germline SV is missed in the
normal tissue (e.g., due to a stochastic reduction in DNA sequence coverage), it can be incorrectly classified
as somatic in chase where the variant is inherent yet missing owing to a lack of coverage. These somatic false
(caused by false negatives in the control tissue) positives are wide-spread. An alternative strategy is to
substitute a matched normal tissue with a panel of unrelated normal samples (e.g., 1KG, Simons Diversity
Panel11 (SGDP)), but the time and computational costs associated with joint-calling large numbers of samples
can be prohibitively high.

SV catalogs from large DNA sequencing projects (e.g., 1KG, gnomAD SV, CCDG) are used to filter
tumor-only calls as a shortcut to joint calling. Variants found in both the tumor and the reference catalog can be
classified as inherited since we can reasonably assume that somatic variants in general, and driver mutations
in particular, are likely to be rare and unlikely to share SV breakpoints with polymorphic SVs segregating in
humans. The analysis is more complicated for variants found only in the tumor calls. In principle, SVs that are
not in the cohort are rare and could potentially be somatic. In practice, several SV-specific factors, including
limitations in short-read calling12, complexities in genotyping (see Supplementary Note 1), and aggressive
filtering to minimize false positive calls, exclude many real SVs from appearing in these reference catalogs. For
example, among the thousands of cancer-related SVs that are recoverable in 1KG, an order of magnitude
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fewer are present in either the 1KG SV call set7. Given these issues, it is impossible to determine whether an
SV observed in a patient and not in a reference cohort is absent from the population (i.e., a true negative) or
removed in the filtering step (i.e., a false negative).

Similarly, in Mendelian disease analyses, causal variants should be either absent or are at very
low-frequency in the reference population13. Using allele frequencies from gnomAD14, a catalog of single
nucleotide variants (SNVs) from 141,546 human genomes, can reduce the number of variants under diagnostic
consideration by two orders of magnitude13. Unfortunately, no equivalent resource exists for SVs since, as with
the cancer analysis, static call sets from large populations are inadequate.

Pangenomes can help by identifying and genotype SVs in large populations15. By extending the linear
reference to a graph that includes alternative haplotypes, variants, including SVs, are detected and genotyped
by aligning reads directly to the sequence created by the variant. While this approach is promising, there are
three major limitations. First, the standard pangenome approach to augmenting the reference involves directly
adding SV sequences, which requires SV detection. As discussed above, relying on detection can be
problematic. Second, graph-based methods require precise breakpoints, and in most cases short read
SV-callers do not provide single-base resolution breakpoints16. Third, adding SVs to a pangenome is complex
and including rare variants decreases performance significantly17. Considering these issues, pangenomes are
better suited for common variants and are less useful for somatic and pathogenic variant classification.

Our solution to ensure comprehensive and accurate SV detection and allele frequency assignment is to
search the raw alignments across thousands of samples using our structural variant index (STIX). For a given
SV (currently deletions, duplications inversions, and translocations), STIX reports a per-sample count of every
alignment that supports a given variant (Fig. 1). From these counts, we can, for example, conclude that a SV
with high-level evidence in many healthy samples is likely a common germline variant or the product of
systematic noise (e.g., reference bias), and it is unlikely to be pathogenic. By relying on the raw alignments,
STIX avoids the previously described false negative issues, and recovers thousands of variants that could
have otherwise been considered disease associated in seconds.

Figure 1. The STIX structural variant index. (A,B) The STIX indexing and query process for three samples and a polymorphic
deletion. (A) Alignments tile the genome. Only a small fraction of paired end reads are discordant (designated by a dotted line
connected read pairs) because of either an SV or other nonspecific causes (e.g., mapping artifacts). (B) Discordant alignments are
extracted from all samples and indexed using GIGGLE. Query SVs are mapped to regions and alignments that reside in both regions
are returned and aggregated. The first query returns three alignments in two samples and the second returns zero alignments. (C)
The distribution of evidence depths for a deletion searched in the SGDP cohort through the http://stix.colorado.edu interface.

STIX is built on top of the GIGGLE genome search engine18, which enables fast queries of thousands
of genomes. Sequence alignment files (BAMs and CRAMs) contain mostly normal alignments and some
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(typically less than 5%) “discordant” alignments (split-reads and paired-end reads with further or shorter than
expected aligned distance between pairs or an unexpected strand configuration) due to either the presence of
a SV or some noise in the sequencing or alignment process (Fig. 1A). These alignment signals are used for
detection by all current methods. STIX extracts and tracks all discordant alignments from each sample’s
genome (Figure 1A), then creates a unified GIGGLE index for all samples. With the GIGGLE index, a user
simply provides the SV type and the coordinates of its breakpoints and confidence intervals (e.g., deletion from
chr10:105053143 to chr10:105054173, +/- 200), and STIX returns a sample-specific count of all alignments
that support the variant. In Figure 1B, the first query would return two (blue reads), zero (green reads), and
one (orange reads) evidence across the 3 samples. Query two would return zero evidence as no alignment
supports this SV. We further have deployed web interfaces for STIX queries of 1KG and SGDP aligned to
GRCh37 at http://stix.colorado.edu (Figure 1C). The interface takes SV coordinates as input (e.g. DEL
10:105053143-105054173) and returns the population SV evidence depth distribution in the form of a
histogram and a table with the per sample SV evidence depths. The backend server that powers these
interfaces also supports direct access for integrating STIX into other programs such as a VCF annotation tool.

STIX is accurate, space efficient, and fast. Considering all of the deletions, duplications, and inversions
in the 1KG SV catalog, STIX identified the non-reference samples with an accuracy of 0.998, 0.995, and 0.988
respectively(see Methods, Supplementary Table 1). This result is consistent with previous reports showing
STIX outperformed DELLY, SVTyper and SV219. Since STIX focuses on discordant alignments, its index is a
fraction of the size of the original alignments. For example, the alignments of the 1KG cohort (BAM files)
required 60 terabytes of storage. The total STIX index was more than 500X smaller (110 gigabytes). Given a
STIX index, population-scale queries are fast enough to scale to thousands of SVs. For example, a single SV
search of the 1KG cohort using STIX completed in about 1.5 seconds while a direct extraction of the
alignments alone took over 16 minutes (see Methods).

Given its scalability, we can use STIX to improve somatic SV calls by scanning thousands of genomes
for corroborating evidence. Among the 46,185 deletions in the Catalogue of Somatic Mutations in Cancer20

(COSMIC), 12,270 (26.5%) appeared in 1KG (Fig. 2A), 12,902 (27.9%) were in SGDP (Fig. 2B), and 13,295
(28.8%) were in the combined cohort (see Supplementary Table 2). Despite having matched normal tissues
for every sample, 1,732 (2.1%) of the 84,083 somatic deletions found by PCAWG were in 1KG(Fig. 2D), 2,833
(3.4%) were in SGDP (Fig. 2E), and 3,237 (3.8%) appeared in either populations (see Supplementary Table
3). The SVs found by STIX are either germline or recurrent mutations and are unlikely to be driving tumor
evolution. These results highlight the importance of using STIX for future studies to incorporate larger
reference populations to prioritize SVs.

Scanning a large population for recurring SVs can improve somatic calling, but relying on an SV call set
of the population is insufficient. While STIX found that the 12,270 COSMIC SVs had some evidence in the 1KG
cohort, the published 1KG SV call set7 only recovered 454 variants (Fig. 2C). Similarly, only 193 PCAWG
variants were in the 1KG catalog versus the 1,668 found by STIX (Fig. 2F). In both cases, many of the SVs
that are missing in the catalogs were at high frequency in the populations (x=0 for Figs. 2C and 2F) . While the
1KG cohort is small in comparison to more recent calls sets, larger and more deeply sequenced cohorts still
lag in SV recovery. For example, the gnomAD SV call set8 considered 27X more genomes than 1KG but only
found about 2X more SVs in COSMIC and PCAWG. To fully leverage the data from these projects, we must
search for evidence among the raw alignments.

In addition to somatic SVs, we used STIX to study de novo variation in a large family study 21. Since de
novo SVs are new events, they should be rare in the population if a random process drives them. Our analysis
found strong evidence (at least 3 supporting reads) for 57 of 698 de novo SVs in either 1KG or SGDP (8.7%
deletions, 5.6% duplications, 30% inversions) (see Supplementary Table 4). Most (47) de novo SVs were
observed in a single 1KG sample, and one dnSV was observed in six 1KG samples. Given the massive
number of possible SV combinations (size, type, location) and the low de novo SV rate (0.16 events per
genome21), finding any evidence in these populations highlights the plausibility of re-emerging alleles, which
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has been shown in other species22, and hotspots. Only five of the reported de novo deletions appear in the
1KG catalog. STIX again shows its utility and importance in uncovering novel insights into SV dynamics by
enabling an accessible and comprehensive assessment from population data for variants often not reported in
SV catalogs.

Figure 2. Ostensibly somatic variants appear in STIX datases. COSMIC contains 46,185 somatic deletions. Many of these SVs
appear in samples from (A) SGDP (12,902) and (B) 1KG (12,2709) at high frequency and at high per-sample depth. (C) Only 454
COSMC SVs appear in the 1KG SV callset. (D-F) Similarly, PCAWG found 84,083 deletions, 2,883 of which were in SGDP and
1,732 were in 1KG. The 1KG call set contained only 193 PCAWG SVs.

STIX enables fast and accurate SV frequency estimates directly from population-scale sequencing
data, which wasn't possible in previous SV studies due to inconsistent filtering and calling strategies. STIX
overcomes these limitations by indexing all SV evidence (abnormally spaced or orientated reads) directly from
the raw alignment files, avoiding detection bias, and compressing large consortia data sets down to a few
gigabytes. With STIX, we indexed 2,504 samples from the 1,000 Genomes Project and 279 samples from the
Simons Genome Diversity Project. These indexes helped improve somatic SV calls, highlighted the potential
for recurrent de novo SVs, and are freely available for any other SV analysis at http://stix.colorado.edu. The
code is freely available and open source and available at https://github.com/ryanlayer/stix.

STIX has some limitations that will be addressed in our future work, including support for insertions and
long-read sequencing data and a more concise and statistically rooted population-frequency estimate. We are
also exploring how STIX may enable data access with lower consent and privacy issues. By only reporting
summary statistics such as population-level SV support or non-zero sample counts, the likelihood of
re-identifying samples or co-occurring variants is low, which would help reconcile different consent rights
across patients cohorts. With better privacy protections in place, we could pursue indexing disease genome
cohorts (e.g., tumors) to help identify recurring mutations that could assist in diagnosis and treatment
decisions. In any of these cases, STIX is a fast and reliable method to enable accurate genotyping of SVs
across huge data collections.

Methods
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SV evidence extraction and STIX index creation

SV alignment evidence (discordant reads and split reads) are extracted from BAM and CRAM files using
excord (https://github.com/brentp/excord). Excord scans each alignment to determine if it contains a
split read, has a strand configuration that is not +/-, the two aligned ends are not on the same chromosome,
and the distance between the two aligned ends is further away than expected (set by the
--discordantdistance command line parameter). The expected distance between two reads depends on the
size and variance of fragments and can be measured by finding the mean and standard deviation of normal
alignments in the BAM file. We recommend using the mean plus two times the standard deviation for the
discordant distance. If any of these conditions is true, then the alignment is recorded as a possible piece of SV
evidence. For each piece of evidence, excord stores the position and orientation of the two ends into a
sample-specific BED file. For example:

1 10022 10122 1 1 249240455 249240538 1 0
1 10031 10131 1 4 191044177 191044238 1 0
1 10036 10136 1 2 243153001 243153102 -1 0
1 10054 10154 -1 19 59097998 59098033 -1 0
1 10066 10166 -1 1 249239980 249240049 -1 0

Excord was written in the Go programming language. Pre-compiled binaries are available under releases in its
GitHub repository.

Each sample BED file is sorted and bgziped. For example :

samtools view -b NA12812.bam \
| excord \
--discordantdistance 500 \
--fasta hs37d5.fa.gz \
/dev/stdin \

| LC_ALL=C sort --buffer-size 2G -k1,1 -k2,2n -k3,3n \
| bgzip -c > alt/NA12812.bed.gz

Once all sample BED files have been processed an index is created using giggle. For example:

giggle index -i "alt/*gz" -o alt_idx -s -f

The last step is to create a sample database from a cohort pedigree file (PED). At a minimum, this file must
contain a file header, and one line per sample where each line must contain the sample name and the name of
its associated BED file. The following example has three extra fields:

SampleSex Population Super_Population Alt_File
NA12812 1 CEU EUR NA12812.bed.gz
HG00672 2 CHS EAS HG00672.bed.gz
NA12878 2 CEU EUR NA12878.bed.gz
HG00674 1 CHS EAS HG00674.bed.gz
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Creating the sample database requires the giggle index, input PED file name, output database name, and the
column number that contains the name of the sample BED file. For example:

stix -i alt_idx -p four.ped -d four.ped.db -c 5

Once the BED files have been indexed and the sample database has been created from the PED file, STIX
can now query the samples for SV evidence. For each query, the user must specify the index location (-i),
sample database (-d), SV type (-t),left (-l) and right (-r) breakpoint coordinates, and window size (-s) to
consider around each breakpoint. The window size will depend on the size and variance of the sample
fragments. We recommend using the same value used for the discordant distance parameter in the excord
extraction. The output of STIX is a per-sample count of alignments that support the existence of the SV in the
sample. For example:

stix \
-i alt_idz \
-d four.ped.db \
-s 500 \
-t DEL \
-l 14:68603030-68603035 \
-r 14:68603738-68603743

Id Sample  Sex Population Super_Population Alt_File Pairend Split
0 HG00672 2   CHS EAS HG00672.13.14.bed.gz 8 0
1 HG00674 1   CHS EAS HG00674.13.14.bed.gz 7 0
2 NA12812 1   CEU EUR NA12812.13.14.bed.gz 7 0
3 NA12878 2   CEU EUR NA12878.13.14.bed.gz 11 0

1,000 genomes phase three STIX index

2,504 low-coverage BAMs (GRCh37) and the PED file were downloaded from the 1,000 genomes AWS S3
bucket (s3://1000genomes/phase3/data/). Excord was run on each sample with --discordantdistance
set to 500.

Simons Genome Diversity Panel STIX index

252 30X-coverage FASTQ files and PED file were downloaded from the Simons Foundation
(https://www.simonsfoundation.org/simons-genome-diversity-project/) and aligned to the human
reference genome (GRCh37) using BWA-MEM. Excord was run on each sample with --discordantdistance
set to 500.

STIX speed measurement

To test the speed of STIX versus any other alternative genotyping method that accesses the BAMs directly, we
compared the time required for STIX to query a specific SV (DEL, 10:105053143-105054173) across the full
1KG cohort versus how much time was required to read the alignments in the same region of each BAM in the
1KG cohort. The assumption being that any genotyping method would need to at least read the alignments,
and the I/O time would be a lower bound for any such method.
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$ time stix \
-i 1kg_stix_idx \
-d 1kg.ped.db \
-s 500 \
-t DEL \
-l 10:105053143-105053143 \
-r 10:105054173-105054173 -S > /dev/null

real    0m1.531s

$ time ls 1000G_phaseIII_whole_genome/*.mapped.*.low_coverage.*.bam \
| gargs 'samtools view {} 10:105052643-105053143 > /dev/null'
real    16m45.827s

Accuracy measurement

To determine STIX’s classification performance we considered the 1KG cohort and the phase 3 SVs identified
by Sudmant et al.7. For each reported deletion, duplication, and inversion, we collected the samples that were
identified by 1KG as being non-reference. This analysis only included SVs with the CIEND and CIPOS values
specified.

bcftools view \
-i 'SVTYPE=="DUP"' \

ALL.wgs.integrated_sv_map_v2.20130502.svs.genotypes.vcf.gz \
| bcftools query \

-f "%CHROM %POS %END %CIPOS %CIEND [\t%GT,%SAMPLE]\n" \
| python get_non_ref.py > 1kg.DUP.nonref_samples.bed

bcftools view \
-i 'SVTYPE=="DEL"' \

ALL.wgs.integrated_sv_map_v2.20130502.svs.genotypes.vcf.gz \
| bcftools query \

-f "%CHROM %POS %END %CIPOS %CIEND [\t%GT,%SAMPLE]\n" \
| python get_non_ref.py > 1kg.DEL.nonref_samples.bed

bcftools view \
-i 'SVTYPE=="INV"' \

ALL.wgs.integrated_sv_map_v2.20130502.svs.genotypes.vcf.gz \
| bcftools query \

-f "%CHROM %POS %END %CIPOS %CIEND [\t%GT,%SAMPLE]\n" \
| python get_non_ref.py > 1kg.INV.nonref_samples.bed

get_non_ref.py
import sys
for l in sys.stdin:

samples = []
A = l.strip().split()
for s in A[5:]:

if '0|1' in s or '1|0' in s or '1|1' in s:
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samples.append(s.split(',')[1])
print '\t'.join(A[0:5] + [','.join(samples)])

For each of those SVs, we then constructed a similar list of samples where STIX found evidence of the same
variant.

cat 1kg.DUP.nonref_samples.bed \
| awk '$4!="." && $5!="."' \
| gargs -p 64 'echo -en "{}\t";bash qdupciv.sh {0} {1} {2} {3} {4}' \
> 1kg.DUP.nonref_samples.bed.stix_1kg

cat 1kg.DEL.nonref_samples.bed \
| awk '$4!="." && $5!="."' \
| gargs -p 64 'echo -en "{}\t";bash qdelciv.sh {0} {1} {2} {3} {4}' \
> 1kg.DEL.nonref_samples.bed.stix_1kg

cat 1kg.INV.nonref_samples.bed \
| awk '$4!="." && $5!="."' \
| gargs -p 64 'echo -en "{}\t";bash qinvciv.sh {0} {1} {2} {3} {4}' \
> 1kg.INV.nonref_samples.bed.stix_1kg

qdupciv.sh
if [[ $# -eq 0 ]]
then

echo $0 c s e cipos ciend
exit

fi
c=$1
s=$2
e=$3
cipos=$4
cdend=$5
cipos_u=$( echo $cipos | cut -d"," -f1 )
cipos_d=$( echo $cipos | cut -d"," -f2 )
ciend_u=$( echo $ciend | cut -d"," -f1 )
ciend_d=$( echo $ciend | cut -d"," -f2 )
stix \

-d 1kg.ped.db \
-t DUP \
-s 500 \
-i alt_sort_b  \
-l $c:$((s+cipos_u))-$((s+cipos_d)) \
-r $c:$((e+ciend_u))-$((e+ciend_d)) \

| tail -n+3 \
| awk '$7>0' \
| cut -f2 \
| paste -sd ","
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Given the list of non-reference samples from the 1KG catalog and the list of samples with supporting evidence
from STIX, we computed the following values for deletions, duplications, and inversions separately.

- positives (P): Number of non-reference samples in the 1KG catalog
- negatives (N): Number of reference samples in the 1KG catalog (total samples minus positives)
- true positives (TP): Number of samples with evidence from STIX that were non-reference in the 1KG

catalog
- true negatives (TN): Number of samples with no evidence from STIX that were reference in the 1KG

catalog
- false positives (FP): Number of samples with evidence from STIX that were reference in the 1KG

catalog
- false negatives (FN): Number of samples with no evidence from STIX that were non-reference in the

1KG catalog

From these values we computed:
- accuracy = (TP + TN) / (P+N)
- precision = TP/(TP + FP)
- sensitivity = TP/P
- specificity = TN/N
- F1 = 2TP/(2TP+FP+FN)

COSMIC SV evaluation

The COSMIC SV catalog was downloaded from the COSMIC website
(https://cancer.sanger.ac.uk/cosmic/download, Structural Genomic Rearrangements, login required). The
chromosomal position of the deletions (intrachromosomal deletion), duplications (intrachromosomal
tandem duplication), and inversions (intrachromosomal inversion) were extracted and sorted into a
compressed BED file.

zcat CosmicBreakpointsExport.tsv.gz  \
| awk -F "\t" '$10=="intrachromosomal deletion" && $13==37' \
| awk -F "\t" '{ OFS="\t"; print $14,$15,$20,$2; }' \
| awk '$3>$2' \
| sort -u \
| bedtools sort -i stdin \
| bgzip -c \
> cosmic.DEL.bed.gz

zcat CosmicBreakpointsExport.tsv.gz  \
| awk -F "\t" '$10=="intrachromosomal tandem duplication" && $13==37' \
| awk -F "\t" '{ OFS="\t"; print $14,$15,$20,$2; }' \
| awk '$3>$2' \
| sort -u \
| bedtools sort -i stdin \
| bgzip -c \
> cosmic.DUP.bed.gz

zcat CosmicBreakpointsExport.tsv.gz  \
| awk -F "\t" '$10=="intrachromosomal inversion" && $13==37' \
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| awk -F "\t" '{ OFS="\t"; print $14,$15,$20,$2; }' \
| awk '$3>$2' \
| sort -u \
| bedtools sort -i stdin \
| bgzip -c \
> cosmic.INV.bed.gz

To determine the overlap between the COSMIC SVs and the 1KG catalog, we converted the 1KG SV VCF to
SV-type specific BED files and intersected these files with the corresponding COSMIC BED files. Intersections
required a reciprocal overlap of 90%. From these intersections we compute the 1KG allele frequency.

bcftools view \
-i 'SVTYPE="DEL"' \
ALL.wgs.integrated_sv_map_v2.20130502.svs.genotypes.vcf.gz \

| bcftools query -f "%CHROM\t%POS\t%INFO/END\t%ALT[\t%GT]\n" \
> 1kg.DEL.gts.bed

bedtools intersect -wao -r -f 0.9  -a cosmic.DEL.bed.gz -b 1kg.DEL.gts.bed \
| python get_1kg_ac.py \
> cosmic.DEL.1kg.bed

bcftools view \
-i 'SVTYPE="DUP"' \
ALL.wgs.integrated_sv_map_v2.20130502.svs.genotypes.vcf.gz \

| bcftools query -f "%CHROM\t%POS\t%INFO/END\t%ALT[\t%GT]\n" \
> 1kg.DUP.gts.bed

bedtools intersect -wao -r -f 0.9  -a cosmic.DUP.bed.gz -b 1kg.DUP.gts.bed \
| python get_1kg_ac.py \
> cosmic.DUP.1kg.bed

bcftools view \
-i 'SVTYPE="INV"' \
ALL.wgs.integrated_sv_map_v2.20130502.svs.genotypes.vcf.gz \

| bcftools query -f "%CHROM\t%POS\t%INFO/END\t%ALT[\t%GT]\n" \
> 1kg.INV.gts.bed

bedtools intersect -wao -r -f 0.9  -a cosmic.INV.bed.gz -b 1kg.INV.gts.bed \
| python get_1kg_ac.py \
> cosmic.INV.1kg.bed

get_1kg_ac.py
import sys
for l in sys.stdin:

A = l.rstrip().split('\t')
if A[4] == '-1':

continue
ac = 0
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nzc = 0
cn0_alt_i = '1'
if 'CN0' in A[6]:

cn0_alt_i = str(A[6].split(',').index('<CN0>') + 1)
for gt in A[7:-1]:

ac += gt.count(cn0_alt_i)
if cn0_alt_i in gt:

nzc += 1
print '\t'.join([A[0], A[1], A[2], str(nzc), str(ac)])

To determine the overlap between the COSMIC SVs and the gnomAD SV catalog, we retrieved the version 2.1
SV BED file from the gnomAD web site
(https://gnomad.broadinstitute.org/downloads/#v2-structural-variants) and split the BED file into
SV-type specific BED files and intersected these files with the corresponding COSMIC BED files. Intersections
required a reciprocal overlap of 90%.

zcat gnomad_v2.1_sv.sites.bed.gz \
| awk '$5=="DEL"' | awk '{OFS="\t"; print $1,$2,$3,$37;}' \
> gnomad_v2.1.DEL.bed
bedtools intersect -wao -r -f 0.9  -a cosmic.INV.bed.gz -b gnomad_v2.1.INV.bed \
> cosmic.INV.gnomad.bed

zcat gnomad_v2.1_sv.sites.bed.gz \
| awk '$5=="DUP"' | awk '{OFS="\t"; print $1,$2,$3,$37;}' \
> gnomad_v2.1.DUP.bed
bedtools intersect -wao -r -f 0.9  -a cosmic.DEL.bed.gz -b gnomad_v2.1.DEL.bed \
> cosmic.DEL.gnomad.bed

zcat gnomad_v2.1_sv.sites.bed.gz \
| awk '$5=="INV"' | awk '{OFS="\t"; print $1,$2,$3,$37;}' \
> gnomad_v2.1.INV.bed
bedtools intersect -wao -r -f 0.9  -a cosmic.DUP.bed.gz -b gnomad_v2.1.DUP.bed \
> cosmic.DUP.gnomad.bed

To determine the overlap between the COSMIC SVs and the STIX for 1KG and SGDP, we submitted a STIX
query for each SV in the COSMIC SV-type BED files using a 500 base pair window. For each SV we compute
the number of samples with some supporting evidence.

cat cosmic.DEL.bed \
| gargs -p 64 'echo -en "{}\t";bash qdel.sh {0} {1} {2}' \
> cosmic.DEL.bed.stix_1kg

cat cosmic.DUP.bed \
| gargs -p 64 'echo -en "{}\t";bash qdup.sh {0} {1} {2}' \
> cosmic.DUP.bed.stix_1kg

cat cosmic.INV.bed \
| gargs -p 64 'echo -en "{}\t";bash qdup.sh {0} {1} {2}' \
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> cosmic.DUP.bed.stix_1kg

qdel.sh
c=$1
s=$2
e=$3

hit=$( stix -d 1kg.ped.db -t DEL -s 500 -i alt_sort_b -l $c:$s-$s -r $c:$e-$e | tail -n+2
| awk '{print $7+$8}'  | paste -sd " " - )
nz=$(echo "$hit" | tr ' ' '\n' | awk '$1>0' | wc -l)
max=$(echo "$hit" | tr ' ' '\n' | sort -n | tail -n 1)
total=$( echo $hit | summation )
echo -e "$nz\t$max\t$total\t$hit"

Pan-Cancer Analysis of Whole Genomes SV evaluation

The PCAWG SV catalogs were downloaded from the ICGC data portal website
(https://dcc.icgc.org/releases/PCAWG/consensus_sv/), and combined SV-type specific call sets.

wget -O pcawg/final_consensus_sv_bedpe_passonly.icgc.public.tgz
https://dcc.icgc.org/api/v1/download?fn=/PCAWG/consensus_sv/final_consensus_sv_bedpe_passo
nly.icgc.public.tgz
wget -O pcawg/final_consensus_sv_bedpe_passonly.tcga.public.tgz
https://dcc.icgc.org/api/v1/download?fn=/PCAWG/consensus_sv/final_consensus_sv_bedpe_passo
nly.tcga.public.tgz
tar -xf pcawg/final_consensus_sv_bedpe_passonly.icgc.public.tgz -C pcawg
tar -xf pcawg/final_consensus_sv_bedpe_passonly.tcga.public.tgz -C pcawg
gunzip -c pcawg/icgc/open/*gz | sort | uniq > pcawg/icgc.svs.bedpe
gunzip -c pcawg/tcga/open/*gz | sort | uniq > pcawg/tcga.svs.bedpe
cat pcawg/tcga.svs.bedpe pcawg/icgc.svs.bedpe \
| awk '{OFS="\t";$7=".";$8=".";$12="."; print $0;}' \
| sort -u \
> pcawg/pcawg.svs.bedpe
cat pcawg/pcawg.svs.bedpe | awk '$11 == "DEL"' > pcawg/pcawg.svs.DEL.bedpe
cat pcawg/pcawg.svs.bedpe | awk '$11 == "DUP"' > pcawg/pcawg.svs.DUP.bedpe
cat pcawg/pcawg.svs.bedpe | awk '$11 == "h2hINV"' > pcawg/pcawg.svs.h2hINV.bedpe
cat pcawg/pcawg.svs.bedpe | awk '$11 == "t2tINV"' > pcawg/pcawg.svs.t2tINV.bedpe

cat pcawg/pcawg.svs.DEL.bedpe | awk '{OFS="\t";print $1,$2,$6,".";}' >
pcawg/pcawg.svs.DEL.bed
cat pcawg/pcawg.svs.DUP.bedpe| awk '{OFS="\t";print $1,$2,$6,".";}' >
pcawg/pcawg.svs.DUP.bed
cat pcawg/pcawg.svs.h2hINV.bedpe| awk '{OFS="\t";print $1,$2,$6,".";}' >
pcawg/pcawg.svs.h2hINV.bed
cat pcawg/pcawg.svs.t2tINV.bedpe| awk '{OFS="\t";print $1,$2,$6,".";}' >
pcawg/pcawg.svs.t2tINV.bed
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Similar to the process in COSMIC SV evaluation, to determine the overlap between the PCAWG SVs and the
1KG catalog, we converted the 1KG SV VCF to SV-type specific BED files and intersected these files with the
corresponding PCAWG BED files. Intersections required a reciprocal overlap of 90%. From these intersections
we compute the 1KG allele frequency.

bedtools intersect -wao -r -f 0.9  -a pcawg/pcawg.svs.DEL.bed -b 1kg/1kg.DEL.gts.bed \
| python src/get_1kg_ac.py \
> pcawg/pcawg.DEL.1kg.bed

bedtools intersect -wao -r -f 0.9  -a pcawg/pcawg.svs.DUP.bed -b 1kg/1kg.DUP.gts.bed \
| python src/get_1kg_ac.py \
> pcawg/pcawg.DUP.1kg.bed

bedtools intersect -wao -r -f 0.9  -a pcawg/pcawg.svs.h2hINV.bed -b 1kg/1kg.INV.gts.bed \
| python src/get_1kg_ac.py \
> pcawg/pcawg.h2hINV.1kg.bed

bedtools intersect -wao -r -f 0.9  -a pcawg/pcawg.svs.t2tINV.bed -b 1kg/1kg.INV.gts.bed \
| python src/get_1kg_ac.py \
> pcawg/pcawg.t2tINV.1kg.bed

To determine the overlap between the PCAWG SVs and the gnomAD SV catalog, we retrieved the version 2.1
SV BED file from the gnomAD web site
(https://gnomad.broadinstitute.org/downloads/#v2-structural-variants) and split the BED file into
SV-type specific BED files and intersected these files with the corresponding PCAWG BED files. Intersections
required a reciprocal overlap of 90%.

bedtools intersect -wao -r -f 0.9 -a pcawg/pcawg.svs.DEL.bed -b gnomad/gnomad.DEL.bed \
> pcawg/pcawg.svs.DEL.gnomad.bed

bedtools intersect -wao -r -f 0.9 -a pcawg/pcawg.svs.DUP.bed -b gnomad/gnomad.DUP.bed \
> pcawg/pcawg.svs.DUP.gnomad.bed

bedtools intersect -wao -r -f 0.9 -a pcawg/pcawg.svs.h2hINV.bed -b gnomad/gnomad.INV.bed \
> pcawg/pcawg.svs.h2hINV.gnomad.bed

bedtools intersect -wao -r -f 0.9 -a pcawg/pcawg.svs.t2tINV.bed -b gnomad/gnomad.INV.bed \
> pcawg/pcawg.svs.t2tINV.gnomad.bed

To determine the overlap between the PCAWG SVs and the STIX for 1KG and SGDP, we submitted a STIX
query for each SV in the PCAWG SV-type BEDPE files using a 500 base pair window. For each SV we
compute the number of samples with some supporting evidence.

cat pcawg/pcawg.svs.t2tINV.bedpe \
| gargs -p 64 'echo -en "{}\t";bash qbedpe.sh {0} {1} {2} {3} {4} {5} INV' \
> pcawg/pcawg.svs.t2tINV.bedpe.stix_1kg

cat pcawg/pcawg.svs.h2hINV.bedpe \
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| gargs -p 64 'echo -en "{}\t";bash qbedpe.sh {0} {1} {2} {3} {4} {5} INV' \
> pcawg/pcawg.svs.h2hINV.bedpe.stix_1kg

cat pcawg/pcawg.svs.DEL.bedpe \
| gargs -p 64 'echo -en "{}\t";bash qbedpe.sh {0} {1} {2} {3} {4} {5} DEL' \
> pcawg/pcawg.svs.DEL.bedpe.stix_1kg

cat pcawg/pcawg.svs.DUP.bedpe \
| gargs -p 64 'echo -en "{}\t";bash qbedpe.sh {0} {1} {2} {3} {4} {5} DUP' \
> pcawg/pcawg.svs.DUP.bedpe.stix_1kg

cat pcawg/pcawg.svs.t2tINV.bedpe \
| gargs -p 64 'echo -en "{}\t";bash qbedpe.sh {0} {1} {2} {3} {4} {5} INV' \
> pcawg/pcawg.svs.t2tINV.bedpe.stix_sgdp

cat pcawg/pcawg.svs.h2hINV.bedpe \
| gargs -p 64 'echo -en "{}\t";bash qbedpe.sh {0} {1} {2} {3} {4} {5} INV' \
> pcawg/pcawg.svs.h2hINV.bedpe.stix_sgdp

cat pcawg/pcawg.svs.DEL.bedpe \
| gargs -p 64 'echo -en "{}\t";bash qbedpe.sh {0} {1} {2} {3} {4} {5} DEL' \
> pcawg/pcawg.svs.DEL.bedpe.stix_sgdp

cat pcawg/pcawg.svs.DUP.bedpe \
| gargs -p 64 'echo -en "{}\t";bash qbedpe.sh {0} {1} {2} {3} {4} {5} DUP' \
> pcawg/pcawg.svs.DUP.bedpe.stix_sgdp

De novo SV evaluation

The de novo SV catalog was retrieved from the GitHub repository referenced in the publication. Those SVs
were reported using the GRCh38 human reference genome. We used the UCSC genome browser tools to lift
the SVs to GRCH37, then split the file into SV type specific BED files.

wget -O denovo/all_dnsv.GRCh38.csv
https://raw.githubusercontent.com/jbelyeu/dnSV-manuscript/main/data/all_dnsv.csv
cat denovo/all_dnsv.GRCh38.csv  | awk -F"," '{OFS="\t"; print $1,$2,$3,$7;}' >
denovo/all_dnsv.GRCh38.bed
## Lift from GRCh38 to GRCh37 using https://genome.ucsc.edu/cgi-bin/hgLiftOver and name
all_dnsv.GRCh37.bed
cat denovo/all_dnsv.GRCh37.bed | sed -e "s/^chr//" | grep DEL > denovo/dnsv.GRCh37.DEL.bed
cat denovo/all_dnsv.GRCh37.bed | sed -e "s/^chr//" | grep DUP > denovo/dnsv.GRCh37.DUP.bed
cat denovo/all_dnsv.GRCh37.bed | sed -e "s/^chr//" | grep INV > denovo/dnsv.GRCh37.INV.bed

Similar to the process in COSMIC SV evaluation, to determine the overlap between the de novo SVs and the
1KG catalog, we converted the 1KG SV VCF to SV-type specific BED files and intersected these files with the
corresponding PCAWG BED files. Intersections required a reciprocal overlap of 90%. From these intersections
we compute the 1KG allele frequency.
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bedtools intersect -wao -r -f 0.9  -a denovo/dnsv.GRCh37.DEL.bed -b 1kg/1kg.DEL.gts.bed \
| python src/get_1kg_ac.py \
> denovo/dnsv.GRCh37.DEL.1kg.bed

bedtools intersect -wao -r -f 0.9  -a denovo/dnsv.GRCh37.DUP.bed -b 1kg/1kg.DUP.gts.bed \
| python src/get_1kg_ac.py \
> denovo/dnsv.GRCh37.DUP.1kg.bed

bedtools intersect -wao -r -f 0.9  -a denovo/dnsv.GRCh37.INV.bed -b 1kg/1kg.INV.gts.bed \
| python src/get_1kg_ac.py \
> denovo/dnsv.GRCh37.INV.1kg.bed

To determine the overlap between the de novo SVs and the gnomAD SV catalog, we retrieved the version 2.1
SV BED file from the gnomAD web site
(https://gnomad.broadinstitute.org/downloads/#v2-structural-variants) and split the BED file into
SV-type specific BED files and intersected these files with the corresponding PCAWG BED files. Intersections
required a reciprocal overlap of 90%.

bedtools intersect -wao -r -f 0.9 -a denovo/dnsv.GRCh37.DEL.bed -b gnomad/gnomad.DEL.bed \
> denovo/dnsv.GRCh37.DEL.gnomad.bed

bedtools intersect -wao -r -f 0.9 -a denovo/dnsv.GRCh37.DUP.bed -b gnomad/gnomad.DUP.bed \
> denovo/dnsv.GRCh37.DUP.gnomad.bed

bedtools intersect -wao -r -f 0.9 -a denovo/dnsv.GRCh37.INV.bed -b gnomad/gnomad.INV.bed \
> denovo/dnsv.GRCh37.INV.gnomad.bed

To determine the overlap between the de novo SVs and the STIX for 1KG and SGDP, we submitted a STIX
query for each SV in the de novo SV-type BED files using a 500 base pair window. For each SV we compute
the number of samples with some supporting evidence.

cat denovo/dnsv.GRCh37.DEL.bed \
| gargs -p 64 'echo -en "{}\t";bash qdel.sh {0} {1} {2}' \
> denovo/dnsv.GRCh37.DEL.bed.stix_1kg

cat denovo/dnsv.GRCh37.DUP.bed \
| gargs -p 64 'echo -en "{}\t";bash qdup.sh {0} {1} {2}' \
> denovo/dnsv.GRCh37.DUP.bed.stix_1kg

cat denovo/dnsv.GRCh37.INV.bed \
| gargs -p 64 'echo -en "{}\t";bash qdup.sh {0} {1} {2}' \
> denovo/dnsv.GRCh37.INV.bed.stix_1kg
cat denovo/dnsv.GRCh37.DEL.bed \
| gargs -p 64 'echo -en "{}\t";bash qdel.sh {0} {1} {2}' \
> denovo/dnsv.GRCh37.DEL.bed.stix_sgdp

cat denovo/dnsv.GRCh37.DUP.bed \
| gargs -p 64 'echo -en "{}\t";bash qdup.sh {0} {1} {2}' \
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> denovo/dnsv.GRCh37.DUP.bed.stix_sgdp

cat denovo/dnsv.GRCh37.INV.bed \
| gargs -p 64 'echo -en "{}\t";bash qdup.sh {0} {1} {2}' \
> denovo/dnsv.GRCh37.INV.bed.stix_sgdp
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Supplementary Notes

1. Challenges with calling and genotyping structural variants

Supplement Note Figure 1. Allele balance (number of reads matching the reference/total reads) for (A) SNVs and (B) SVs for the
HG002 individual from the Genome in a Bottle Consortium.

Part of the challenge when moving from SNVs to SVs is the substantial increase in the uncertainty of the
underlying data. For example, the allele balance for heterozygous SNVs and SVs from the Genome In a Bottle
Consortium23,24 sample shows a shift from the expected peak at 0.5 allele balance in SNVs (Fig. 1A) to 0.3 in
SVs (Fig. 1B). The reason for this shift is that SV detection and genotyping from short-read data is complicated
by evidence that does not provide direct information about the location of the variant (e.g., read depth and
discordant pair-reads). These two issues result in fundamentally different detection and genotyping strategies
for SVs. Instead of explicitly testing for the existence of every possible SV (which is intractable), read alignment
evidence is clustered, and a consensus breakpoint (which is often not at single-base resolution) and genotype
is inferred. The two major issues with this type of clustering are instances where spurious alignments overlap
by chance, causing false positives, and where fluctuations in coverage create false negatives or incorrect
genotypes. Both of these cases produce SVs with a wide range of per-sample evidence depths and
summarizing each sample into just three states (homozygous reference, heterozygous, and homozygous
alternate) hides information that can be important when determining if a newly observed variant is common,
rare, or noise. Genotype quality scores capture some of this uncertainty, but in practice, these scores are only
used to exclude problematic samples from an analysis. This highlights the need for new metrics that can
represent the full extent of structural variant evidence in a population.
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Supplementary Tables

Deletions Duplications Inversions

accuracy 0.989 0.995 0.988

precision 0.955 0.135 0.962

sensitivity 0.645 0.514 0.713

specificity 0.999 0.996 0.999

F1 0.770 0.213 0.819

Supplementary Table 1. STIS performance across SV types considering the 1KG SV calls. In general, STIX
performed well across all SV types and did exceptionally well for accuracy, precision, and specificity. The one
exception was that STIX had a high number of false-positive duplication calls, leading to low precision and
sensitivity. Upon inspection, just seven loci accounted for 95% of the false-positive calls. For these
duplications, STIX estimated a much higher population frequency than what was listed in the 1KG catalog.

Deletions Duplications Inversions

COSMIC SV catalog 46185 8904 18830

STIX SGDP 12902 58 828

STIX 1KG 12270 23 802

STIX SGDP + 1KG 13295 78 1006

1KG SV catalog 454 5 11

gnomAD SV catalog 893 26 50

Supplementary Table 2. The frequency of purportedly somatic SVs from the COSMIC database considering
different SV collections. STIX consistently found evidence for many more COSMIC SVs than other sources
even when considering the same underlying samples (i.e., STIX 1KG versus the 1KG SV catalog).

Deletions Duplications H2H Inversions T2T Inversions

PCAWG catalog 84083 72764 38602 37613

STIX SGDP 2833 790 3091 2893

STIX 1KG 1732 221 2838 2641

STIX SGDP + 1KG 3237 843 3531 3284

1KG catalog 193 40 1 1

gnomAD catalog 433 165 88 101

Supplementary Table 3. The frequency of purportedly somatic SVs identified by the PCAWG study
considering different SV collections.
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Deletions Duplications Inversions

De Novo SV catalog 461 227 10

STIX SGDP 35 13 3

STIX 1KG 6 0 0

STIX SGDP + 1KG 41 13 3

1KG SV catalog 5 0 0

gnomAD SV catalog 19 11 0

Supplementary Table 4. The frequency of purportedly de novo SVs from a large family study. For the STIX
counts, samples had at least three supporting reads.
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