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Abstract 21 

Spatial transcriptomics is an emerging technology requiring costly reagents and considerable skills, 22 

limiting the identification of transcriptional markers related to histology. Here, we show that 23 

predicted spatial gene-expressions in unmeasured regions and tissues can enhance biologists’ 24 

histological interpretations. We developed the Deep learning model for Spatial gene Clusters and 25 

Expression, DeepSpaCE and confirmed its performance using the spatial-transcriptome profiles and 26 

immunohistochemistry images of consecutive human breast cancer tissue sections. For example, 27 

the predicted expression patterns of SPARC, an invasion marker, highlighted a small tumor-invasion 28 

region that is difficult to identify using raw data of spatial transcriptome alone because of a lack of 29 

measurements. We further developed semi-supervised DeepSpaCE using unlabeled histology 30 

images and increased the imputation accuracy of consecutive sections, enhancing applicability for a 31 

small sample size. Our method enables users to derive hidden histological characters via spatial 32 

transcriptome and gene annotations, leading to accelerated biological discoveries without 33 

additional experiments. (150/150 words) 34 
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Introduction 36 

Spatial transcriptomics with in situ capturing is an emerging technology that maps gene-expression 37 

profiles with corresponding spatial information in a tissue section1–4. A highly resolved spatial-38 

transcriptome profile is an invaluable resource for revealing biological functions and molecular 39 

mechanisms5. Recently, many histological transcriptome profiles, measured by in situ capturing 40 

platforms (numerous spots with barcoded oligonucleotides on a chip), were reported in the field of 41 

oncology6,7. These profiles have helped demonstrate the complexity and heterogeneity of cancer 42 

tissues. For example, histological transcriptome profiles were used to identify high-risk invasive 43 

populations in ductal carcinoma tissues using an in situ capturing method8,9. However, the 44 

experimental cost of spatial transcriptomics, such as for designed chips, reagents, and sequencing, 45 

is currently high. It is also challenging to maintain the balance between the spatial resolution (i.e., 46 

density of spots in a tissue slide) and RNA-detection efficiency with current spatial-transcriptome 47 

technology10. In addition, this technique requires practiced skills to obtain high-quality expression 48 

profiles for entire tissue slides, even when using a commercial kit such as the 10x Genomics Visium 49 

platform. 50 

The convolutional neural network (CNN), a deep-learning method, is frequently used for 51 

discovering features from imaging datasets and can be used to predict image categories of interest 52 

in an end-to-end manner. For example, in the biomedical field, the CNN method has successfully 53 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.22.440763doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440763


4 
 

been used to classify lung cancer subtypes from tissue-section images without prior knowledge11. 54 

Based on these recent advances, we hypothesized that applying the CNN method to spatial-55 

transcriptome profiles would enable expression-level predictions from hematoxylin and eosin 56 

(H&E)-stained section images, potentially leading to an increased number of pixels by predicting 57 

spatial gene-expression gaps among spots measured by spatial-transcriptome techniques (super-58 

resolution which was inspired by the recent super-resolution technique12) or imputing spatial-59 

transcriptomic patterns in unmeasured consecutive sections (tissue section imputation). 60 

Here, we developed the Deep learning model for Spatial gene Clusters and Expression 61 

(DeepSpaCE), which predicts spatial-transcriptome profiles from H&E-stained images using CNNs. 62 

We verified the prediction accuracy of this model by comparing expression profiles from testing 63 

datasets and protein-expression patterns in adjacent sections (using immunohistochemistry data), 64 

which were consistent with the predictions. Based on these verifications, we applied DeepSpaCE for 65 

super-resolution of spatial gene-expression levels and imputation of spatial gene-expression levels 66 

in other tissue sections using human breast cancer datasets. 67 

 68 

Results 69 

Overview of DeepSpaCE 70 

DeepSpaCE is composed of two parts: the training part and gene-prediction part (Fig. 1). The CNN 71 
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(VGG16 architecture) is trained with pairs of cropped section images for each spot (spot image) and 72 

its gene-expression profiles. Next, the trained model predicts gene-expression levels for at least one 73 

transcript (or transcriptomic cluster type) from spot images. We conducted two types of practical 74 

applications of DeepSpaCE using the in situ capturing spatial transcriptome dataset: (a) super-75 

resolution and (b) tissue section imputation. 76 

Super-resolution is used to predict unmeasured spots in the same image (e.g., images 77 

among spots whose expression profiles were measured using the in situ capturing platform or 78 

images on spots with section-permeabilization errors). Tissue section imputation is performed to 79 

predict spatial expression profiles of a section from a series of directly measured consecutive 80 

sections. These two applications are helpful for reducing experimental costs and clarifying biological 81 

functions at higher resolution and in three dimensions. Because substantially fewer labeled spots 82 

are available compared with general deep CNN datasets, we implemented the semi-supervised 83 

technique in DeepSpaCE to increase prediction accuracy, as described in detail below. All 84 

DeepSpaCE codes for Visium, a standardized, commercially available platform for spatial 85 

transcriptome, will be available after acceptance on the GitHub repository 86 

(https://github.com/tmonjo/DeepSpaCE). 87 

 88 
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Preprocessing of spatial expression data 89 

We preprocessed the spatial expression data from three human breast cancer tissue sections 90 

(sections A–C) and their consecutive sections (sections D1–D3) (Supplementary Fig. S1). We 91 

excluded spots containing few expressed (or measured) genes to filter out spots with potential 92 

permeabilization errors, and normalized the spatial expression data to improve the training 93 

efficiency by reducing noise. Particularly, the filtering step was critical because spatial expression 94 

profiling requires very practiced skills for handling tissue slides and treating reagents 95 

homogeneously, and few expressed genes may reveal permeabilization errors in the spots. Indeed, 96 

in our spatial transcriptome datasets of human breast cancer tissues, the right bottom regions in 97 

sections D1 and D3, as well as the right upper region in section D2, showed undetected unique 98 

molecular identifiers (UMIs), indicating that section-permeabilization errors occurred in these 99 

regions (Supplementary Fig. S2a, b). Similarly, such undetected regions were observed in the 10x 100 

Genomics Visium demo data of human heart tissue (Supplementary Fig. S2c). We used these 101 

undetected spots to evaluate the performance of section imputation by DeepSpaCE, as shown 102 

below. 103 

 104 

Prediction and experimental validation of gene-expression profiles and cluster types 105 

We trained the DeepSpaCE models of three breast cancer-marker genes, estrogen receptor 1 106 
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(ESR1), erb-b2 receptor tyrosine kinase 2 (ERBB2), and marker of proliferation Ki-67 (MKI67)13,14, 107 

which were not used during the parameter-optimization procedures (see Methods). We performed 108 

the 5-fold cross-validation using section D2 as both a training and a testing set. The Pearson’s 109 

correlation coefficients between the measured and predicted values were 0.588 (standard 110 

deviation [SD] = 0.025; ESR1), 0.424 (SD = 0.050; ERBB2), and 0.219 (SD = 0.041; MKI67) 111 

(Supplementary Fig. S3). Notably, comparison of ESR1 levels in the D2 section by H&E staining 112 

highlighted undetected highly expressed spots in the upper right region of section D2, possibly 113 

because of a permeabilization error in the Visium experiment (Fig. 2a). This was further confirmed 114 

by determining the protein-expression pattern observed by immunohistochemical staining of the 115 

adjacent section using an ESR1 antibody (Fig. 2b), which was consistent with the predicted 116 

expression levels, suggesting the applicability of our DeepSpaCE method for section imputation. 117 

Next, based on the 5-fold cross-validation in section D2, we assessed the prediction 118 

accuracy of transcriptomic cluster type derived from Space Ranger software. By comparing the 119 

clusters from Space Ranger with the predicted clusters, we calculated the recall value (see 120 

Methods) of the clusters, which ranged from 35% (cluster 4) to 80% (cluster 7) (Fig. 2c). Briefly, 121 

although the prediction accuracy was low when comparing non-cancerous regions (e.g., clusters 1 122 

and 4), the cluster types between cancer sites and non-cancer sites were clearly distinguishable 123 

(e.g., clusters 1 and 3). Similar to the findings described in the previous paragraph, the cluster type 124 
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was predicted in the unmeasured upper right region of section D2, which showed a 125 

permeabilization error (Fig. 2d). The predicted types of clusters in this region were plausible based 126 

on the spatial transcriptome and DeepSpaCE analysis using the adjacent sections D1 and D3, which 127 

could measure the region (Supplementary Fig. S4). 128 

 129 

Super-resolution of spatial gene expression 130 

We performed super-resolution for ESR1 in the images of spots measured in section C 131 

(Supplementary Fig. S5a, b). Section C was used as both a training and test set to generate a super-132 

resolved image as an example. The super-resolved image of ESR1 expression in section C was 133 

consistent with the results of immunohistochemical staining, supporting that DeepSpaCE enables 134 

accurate high-resolution observations of expression profiles (Supplementary Fig. S5c). Notably, we 135 

found a region with low ESR1 expressions in the super-resolved image, which was not clearly 136 

observed in the original spatial transcriptome datasets (Supplementary Fig. S5b), confirming the 137 

importance of super-resolution. 138 

We focused on secreted protein acidic and cysteine rich (SPARC), a potential cancer-139 

invasion marker, and assessed whether the super-resolution method could facilitate biological 140 

interpretations provided by pathologists based on histology patterns in H&E-stained images. After 141 

training and validating the DeepSpaCE model (Supplementary Fig. S6), we predicted SPARC-142 
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expression levels among the original spots in section D2 (Fig. 3a, b). Although the color tones 143 

themselves did not explain the SPARC expression patterns in the H&E-stained images, the patterns 144 

were successfully predicted by the DeepSpaCE model. Comparison of the super-resolved image of 145 

SPARC with the H&E-stained image showed that the invasive tumor region overlapped substantially 146 

with the distribution of SPARC expression (Fig. 3c), whereas such patterns were not apparent from 147 

the color tones in the original spatial-transcriptome data. SPARC is secreted into the extracellular 148 

matrix from cancer and stromal cells, and high SPARC-mRNA expression is related to metastasis and 149 

poor prognosis in several types of cancers15. Thus, the super-resolved SPARC-expression image 150 

highlighted the potential tumor-invasion region and made it easier to identify by a non-pathologist 151 

in cases where a given transcript’s function is known. 152 

 153 

Imputation of a tissue section using semi-supervised learning 154 

To assess whether semi-supervised learning can improve the prediction accuracy of DeepSpaCE, we 155 

performed tissue section imputation for section D2 using the model trained by sections D1 and D3 156 

(randomly selected 80% spots were used as training data and others were used as validation data). 157 

After training the teacher model (first trained model), we developed student models 1–5 by 158 

performing five rounds of semi-supervised learning using breast cancer section images (section A–159 

C) as unlabeled images. We selected the most predictive student model in the validation data as the 160 
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best model. We found an increasing trend in the Pearson’s correlation coefficients between the 161 

measured and predicted expression levels, as expected (Supplementary Table S1). In the teacher 162 

model, the mean Pearson’s correlation coefficient for 21 genes was 0.369. The mean Pearson’s 163 

correlation coefficients progressively increased for student model 1 (0.414), student model 2 164 

(0.455), student model 3 (0.438), student model 4 (0.457), and student model 5 (0.458) (Fig. 3d). 165 

For SPARC, Pearson’s correlation coefficient increased from 0.509 (SD = 0.069; teacher model) to 166 

0.616 (SD = 0.067; student model 4). For MXRA5, the Pearson’s correlation coefficient was not 167 

increased after analysis using student model 1, although it was increased from 0.501 (SD = 0.083; 168 

teacher model) to 0.527 (SD = 0.093; student model 1). Thus, the semi-supervised learning method 169 

may increase the accuracy of DeepSpaCE through additional computational costs. 170 

To verify whether their related unlabeled images could improve the accuracy of the 171 

DeepSpaCE model, we performed semi-supervised learning with permutated gene-expression 172 

levels or randomized the values as negative controls. The Pearson’s correlation coefficients did not 173 

increase, but rather decreased, when permutated or randomized values were used. Moreover, 174 

Pearson’s correlation coefficients did not increase when irrelevant images of dogs or cats (obtained 175 

from ImageNet) were used for semi-supervised learning. Furthermore, Pearson’s correlation 176 

coefficients did not increase when breast cancer section images obtained from The Cancer Genome 177 

Atlas (TCGA) were used for semi-supervised learning (Fig. 3e). 178 
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Discussion 179 

In this study, we proposed performing super-resolution and section imputation with DeepSpaCE 180 

and validated the accuracy from cross-validation and immunohistostaining. These approaches made 181 

it possible to derive more knowledge from existing spatial transcriptome datasets. As a compelling 182 

example, the relationship between SPARC expression and cancer invasion was highlighted via super-183 

resolution, whereas detecting the invasive region using original spatial transcriptome data was 184 

difficult because the measured spots were not dense (Fig. 3a, b). The SPARC glycoprotein has a high 185 

affinity for albumin, and macrophage-derived SPARC contributes to metastasis by acting at the step 186 

of integrin-mediated migration of invasive cells15. Previously, SPARC mRNA expression was reported 187 

as a predictor of a pathological complete response after neoadjuvant nab-paclitaxel therapy16. Our 188 

study underscored the relationship between SPARC expression and invasive regions, which may be 189 

clinically important for treating breast cancer. This interpretation does not require expertise in 190 

histology or pathology but requires gene annotations, with should be familiar to researchers of 191 

spatial transcriptome. In addition, super-resolution in section C identified the region with low 192 

expressed ESR1, the amplification of which is frequently observed in proliferative breast cancers13. 193 

Although it is unclear whether the region indicates the heterogeneity of breast cancer tissues or 194 

existence of normal tissues, this region was unclear in the original spatial transcriptome data and 195 

expression in adjacent sections was experimentally validated. 196 
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For super-resolution and section imputation, we developed DeepSpaCE to predict 197 

expression levels from spot images from Visium. This spot-level analysis should reveal more 198 

detailed patterns than those obtained by CNN using pairs of images of the bulk transcriptome17 by 199 

resolving spatial expression patterns. DeepSpaCE requires a minimum of a single experiment to 200 

analyze the spatial transcriptome; nevertheless, the predictions were well-validated by cross-201 

validation and experimental analysis. DeepSpaCE as well as super-resolution and section imputation 202 

methods aim to maximize the value of existing datasets and provide foundations for subsequent 203 

experiments from at least a single dataset without additional experimental costs. This is an 204 

important difference from the recently proposed STNet study in which trained spatial transcriptome 205 

data (not from the Visium platform) was obtained from as many as 23 individuals18. 206 

The number of training datasets used for single spatial transcriptome analysis (maximum 207 

4,992 spots/slide with the Visium platform) was not sufficient for training the CNN in general, as a 208 

previous study used ~557,000 images from 830 slides to predict lung cancer subtypes and ~212,000 209 

images from ~320 slides to predict lung cancer gene mutations11. To increase the ability to apply 210 

DeepSpaCE to many datasets for which it is challenging to train the connections between H&E-211 

stained images and expression levels, we implemented a semi-supervised learning method19 in 212 

DeepSpaCE. The DeepSpaCE model with semi-supervised learning using sections A–C as unlabeled 213 

images showed better performance than a simple prediction model using only experimentally 214 
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obtained spatial transcriptome data. Although we increased the predictive accuracy of tissue 215 

section imputation in this case, the Pearson’s correlation coefficients were not improved when 216 

using breast cancer H&E-stained images obtained from TCGA as unlabeled images. This may be 217 

because the DeepSpaCE model is sensitive to the protocol for obtaining the H&E images (i.e., batch 218 

effects disturb the training steps). Therefore, the model that gives the performs the best prediction 219 

accuracy when using semi-supervised learning as an option should be determined. In conclusion, 220 

DeepSpaCE is an all-in-one package that augments spatial transcriptome data obtained from the in 221 

situ capturing platform; its applications can improve the understanding of histological expression 222 

profiles. 223 

  224 
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Methods 225 

Ethical approval 226 

Breast tissue samples and relevant clinical data were obtained from patients undergoing surgery at 227 

St. Marianna University School of Medicine Hospital after obtaining approval from the Clinical 228 

Ethics Committee of St. Marianna University (approval number: 2297-i103). The approval allowed 229 

the retrieval of surgical pathology tissues that were obtained with informed consented or that were 230 

approved for use with a waiver of consent. 231 

 232 

Spatial-transcriptomics datasets 233 

We used six human breast cancer tissue sections, including sections A–C and consecutive sections 234 

D1–D3, which were derived from one patient. The spatial transcriptomics experiments were 235 

conducted with the same protocol reported in Nagasawa et al.8. Briefly, the tissue sections were 236 

stained with H&E, and TIFF images were obtained using a microscope at 10× magnification. Spatial-237 

transcriptome profiling was performed using the Visium platform with the standard protocol 238 

provided by 10x Genomics (Pleasanton, CA, USA). UMI counts were calculated using 10x Genomics 239 

Space Ranger software (version 1.0.0). Visium demo data (version 1.0.0) for the human heart tissue 240 

was obtained from the 10x Genomics website 241 

(https://www.10xgenomics.com/resources/datasets/). 242 
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 243 

Preprocessing of spatial gene-expression data 244 

Regarding the spatial-transcriptome profiles obtained from the Space Ranger pipeline (10x 245 

Genomics), we removed spots with low total UMI counts (<1,000) or a low number of measured 246 

genes (<1,000). The SCTransform function of Seurat package (version 3.1.4)20 was applied to 247 

normalize the UMI counts, based on regularized negative binomial regression21. Min-max scaling 248 

was performed to adjust the expression values between zero and one. We trained 24 genes 249 

including three breast cancer-marker genes (MKI67, ESR1, ERBB2) and 21 breast cancer-related 250 

microenvironment marker genes (SPARC, IFI27, COL10A1, COL1A2, COL3A1, COL5A2, FN1, POSTN, 251 

CTHRC1, COL1A1, THBS2, PDGFRL, COL8A1, SULF1, MMP14, ISG15, IL32, MXRA5, LUM, DPYSL3, and 252 

CTSK). These 21 genes were manually selected from the cluster of genes overexpressed in the 253 

breast cancer-related microenvironment region. These two gene sets of three genes and 21 genes 254 

were respectively used in the training part of DeepSpaCE. The graph-based clustering algorithm22 255 

implemented in Space Ranger was used for transcriptomic cluster type prediction. 256 

 257 

Preprocessing of tissue section images 258 

Each spot image was cropped from a tissue slide image, based on the position table in the Space 259 

Ranger outputs (Supplementary Table S2). We filtered out whitish images in which more than half 260 
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of the pixels were the >80% percentiles of mean RGB values, as shown below. For image 261 

augmentation, we randomly applied image-transform functions of flipping (RandomRotate90, Flip, 262 

and Transpose), cropping (RandomResizedCrop), noise (IAAAdditiveGaussianNoise and 263 

GaussNoise), blurring (MotionBlur, MedianBlur, and Blur), distortion(OpticalDistortion, 264 

GridDistortion, IAAPiecewiseAffine, and ShiftScaleRotate), contrast (RandomContrast, 265 

RandomGamma, and RandomBrightness), and color-shifting (HueSaturationValue, ChannelShuffle, 266 

and RGBShift) in Albumentations library (version 0.4.5)23. 267 

 268 

Preprocessing of images obtained from TCGA and ImageNet 269 

We obtained 1,978 images of H&E-stained TCGA breast cancer sections from the GDC Data Portal 270 

(https://portal.gdc.cancer.gov) on August 05, 2020. As negative controls, we obtained 14,500 271 

irrelevant images such as dogs and cats (n02106662, n02110341, n02116738, n02123045, 272 

n02123159, n02123394, n02123597, n02124075, n02497673, and n03218198) from ImageNet 273 

(http://www.image-net.org) on October 09, 2020. All images obtained from TCGA and ImageNet 274 

were cropped to 224 × 224 pixels (Supplementary Fig. S7). Four thousand cropped images were 275 

randomly selected as unlabeled images for each semi-supervised learning model. 276 

 277 
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Training and prediction of gene-expression profiles and transcriptomic cluster types 278 

All deep-learning models were implemented using deep-learning framework PyTorch (version 279 

1.5.1)24. We adapted the VGG16 architecture for deep CNN model that has 16 weight layers25. We 280 

modified the number of output features in VGG16 from 1,000 to the number of genes or cluster 281 

types. We simultaneously trained multi genes such as three genes of breast cancer markers or 21 282 

breast cancer-related microenvironment markers. For transcriptomic cluster type predictions, the 283 

loss value of the training DeepSpaCE dataset was calculated using the CrossEntropyLoss function. 284 

For gene-expression predictions, the loss value was determined as the sum of loss calculated with 285 

the SmoothL1Loss function for each gene. As an optimizer, we used Adam26 with the 286 

hyperparameters of learning rate: 1e-4 and weight decay: 1e-4. Each training was repeated for 50 287 

epochs to stabilize the loss curves (Supplementary Fig. S8). Early stopping was applied if the loss 288 

value for the validation data did not decrease over five continuous epochs. To evaluate the accuracy 289 

of cluster type prediction, we used the recall value which reflects the proportion of positives 290 

identified correctly among the actual number of positives (recall = true positive / (true positive + 291 

False negative)). For section D2, cluster 8 was excluded from the training set because it consists of a 292 

region of permeabilization errors. 293 

 294 
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Parameter optimization of DeepSpaCE 295 

We optimized the parameters of DeepSpaCE, such as the image size, image-filtering threshold, and 296 

image-augmentation methods. We performed 5-fold cross-validation using six sections (A–C, and 297 

D1–D3) to evaluate the prediction accuracy. We developed prediction models for the expression 298 

levels of the 21 breast cancer-related microenvironment marker genes (described above) because 299 

these genes are representative markers of heterogeneous ductal carcinoma tissues. First, we 300 

assessed the impact of the size of the input images (0%, 50%, 100%, 150%, and 200%; relative to 301 

the original spot image size) on the prediction accuracies; the results showed that an image size of 302 

150% gave better outcomes than the original and smaller image sizes (Supplementary Fig. S9a). 303 

This result is biologically plausible because the surrounding cells can communicate with cells in the 304 

spot and affect their gene-expression levels. Second, we assessed the different image-filtering 305 

thresholds to exclude uninformative images (i.e., excluding almost white images). We calculated 306 

whiteness for each spot by calculating the mean RGB values and obtained the percentiles (50%, 307 

60%, 70%, 80%, 90%, and 100%) over spots in a slide. We filtered out images in which more than 308 

half of the pixels were the >80% percentiles of mean RGB values as judged from the histogram 309 

(Supplementary Fig. S9b). This strategy maximized the prediction accuracy (Supplementary Fig. 310 

S9c). Third, to further improve accuracy, we augmented images with various image transformations 311 

such as flipping, cropping, blurring, distortion, noise, contrast, and color-shifting (Supplementary 312 
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Fig. S10). All image augmentation (except for color-shifting) improved the Pearson’s correlation 313 

coefficients compared with using non-augmented images (Supplementary Fig. S9d); however, we 314 

also used the color-shifting method because H&E-staining on different slides may change the color 315 

tones. 316 

 317 

Super-resolution of spatial gene expression 318 

To impute the expression levels among spots on a slide image, new spot image files were created by 319 

cropping around three adjacent spots (Supplementary Fig. S11). We used sections C and D2 as both 320 

the training and test sets (randomly selected 80% spots were used as training data and others were 321 

used as test data). By performing super-resolution, the numbers of spots increased from 2,238 to 322 

6,733 and from 2,168 to 6,623 in sections C and D2, respectively. We trained the both of three 323 

breast cancer-marker genes and 21 breast cancer-related microenvironment marker genes, 324 

respectively. Semi-supervised learning was not used for super-resolution. 325 

 326 

Imputation of a tissue section using semi-supervised learning 327 

Sections D1–D3 were obtained as consecutive sections. Thus, sections D1 and D3 were used as the 328 

training set. Section D2 was used as the test set to impute gene-expression levels because it was 329 

located between sections D1 and D3. Sections A–C were used for semi-supervised training as 330 
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unlabeled images. In the noisy student model27, gene-expression levels in unlabeled images were 331 

predicted using the first trained model (teacher model). Four thousand predicted proxy labels and 332 

the associated images were added to the original dataset and used to train the next model, which 333 

was designated as a student model. The training student models were run five times 334 

(Supplementary Fig. S12a). In addition to the spot images of section A–C, we used images of breast 335 

cancer sections obtained from TCGA as unlabeled images. Irrelevant images obtained from 336 

ImageNet were used as negative controls during semi-supervised learning. In addition, we also 337 

performed semi-supervised learning with permuted gene expression and random values as 338 

negative controls (Supplementary Fig. S12b). 339 

 340 

Immunohistochemistry and measurement of protein expression 341 

Breast cancer tissues were frozen and embedded in optimal cutting temperature compound (Sakura 342 

Finetek, Tokyo, Japan). Ten-micrometer-thick sections were cut onto slides using a Leica CM3050 S 343 

cryostat (Wetzlar, Germany), fixed in methanol at -20°C for 20 min, and air-dried for 60 min. 344 

Endogenous peroxidase activity was blocked in phosphate-buffered saline containing 3% H2O2 for 5 345 

min. For ESR1 staining, the sections were incubated with an anti-ESR1 antibody (FLEX Monoclonal 346 

Rabbit Anti-Human Estrogen Receptor α, Agilent technologies, Dako, Glostrup, Denmark) at a 1:2 347 

dilution for 60 min at room temperature. Antibody labeling was detected with the Histofine Simple 348 
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Stain, MULTI (Nichirei Bioscience, Tokyo, Japan) following the manufacturer’s protocol, and all 349 

sections were counterstained with H&E. 350 

 351 

Data processing and analysis 352 

Python (version 3.6.5) was used for preprocessing and implementation of DeepSpaCE with the 353 

libraries, torch (version 1.5.1), torchvision (version 0.6.1), numpy (version 1.19.0), pandas (version 354 

1.0.5), scikit-learn (version 0.23.1), mlxtend (version 0.17.2), albumentations (version 0.4.5), 355 

opencv-python (version 4.2.0.34), and matplotlib (version 3.2.2). R (version 3.6.0) was used for 356 

statistical analysis and visualization with the packages, dplyr (version 1.0.2), data.table (version 357 

1.12.8), Matrix (version 1.2.17), grid (version 3.6.0), rjson (version 0.2.20), hdf5r (version 0.9.7), 358 

readbitmap (version 0.1.5), ggplot2 (version 3.3.0), hrbrthemes (version 0.8.0), ggsci (version 2.9), 359 

ggpubr (version 0.4.0), cowplot (version 1.0.0), and Seurat (version 3.1.4.9904). 360 

 361 
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Code availability 417 

All codes for DeepSpaCE are available on GitHub (https://github.com/tmonjo/DeepSpaCE) (will be 418 

available after acceptance). These codes include image-preprocessing procedures and expression 419 

data produced from Space Ranger. 420 

 421 

Data availability 422 

All sequencing data and pathological images for Visium have been deposited in the DNA Data Bank 423 

of Japan under the accession number xxx (under registration). 424 
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Figures 439 

 440 

 441 

Figure 1 Overview of DeepSpaCE. Deep learning model for Spatial gene Clusters and Expression 442 

(DeepSpaCE) is a method for predicting gene-expression levels and transcriptomic cluster types from 443 

tissue spot images. DeepSpaCE is composed of two parts: the model training part and gene-444 

prediction part. In the case of using semi-supervised learning as an option, unlabeled images are used 445 

to improve the prediction accuracy with predicted proxy labels. As practical applications of 446 

DeepSpaCE, we conducted super-resolution of spatial gene expression and tissue section imputation. 447 

(a) Super-resolution was used for predictions with unmeasured spot images (e.g., images among 448 
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spots whose expression profiles were measured using the in situ capturing platform or images on 449 

spots with technical errors). Left spatial expression pattern shows that some spots are lacks of 450 

expression value because of a technical problem such as permeabilization error (dotted circle). Right 451 

image shows an additional spatial expression pattern imputed by DeepSpaCE, and its highly 452 

expressed region in the center of the section (dotted line). It is challenging to infer a functional 453 

boundary such as cancer infiltration from spatial expression profiles of sparse spots (left). Spatial 454 

expression profiles of dense spots imputed by DeepSpaCE and their gene annotations enable to 455 

delineate a functional boundary clearly. (b) Tissue section imputation was used to predict gene-456 

expression levels in one of tissue section within consecutive sections. By using DeepSpaCE, the 457 

unmeasured spatial expression profiles of the slide (red frame) can be imputed by at least one 458 

adjacent slide (black frame) whose expression profiles were measured using the in situ capturing 459 

platform. 460 
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 462 

 463 

Figure 2 DeepSpaCE predicts spatial gene expression and cluster types. (a) Left image shows section 464 

D2 after hematoxylin and eosin (H&E) staining. Middle image shows a heatmap of normalized ESR1 465 

expression in section D2, measured using the 10x Genomics Visium platform. ESR1 expression in the 466 

upper right region (black arrow) of section D2 could not be measured because of permeabilization 467 

errors. Right image shows the heatmap of ESR1 expression in section D2, predicted by DeepSpaCE. 468 

The blank areas represent spots that were excluded because of a small amount of information. (b) 469 

Image showing immunohistochemical staining of ESR1 protein in the adjacent section of section D2. 470 

(c) Heatmap shows the confusion matrix of the measured and predicted cluster types. The number 471 
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in each box is the number of labels, and the number inside each pair of parentheses is the recall value. 472 

(d) Left image shows a heatmap of transcriptomic cluster types in section D2, as measured using the 473 

Visium platform. The cluster types in the upper right region (black arrow) of section D2 were not 474 

determined because of permeabilization errors. Right image shows the heatmap of cluster types in 475 

section D2, predicted by DeepSpaCE. Blank areas represent spots that were excluded because of low 476 

information. For training and gene prediction parts, we excluded cluster 8 because most of the region 477 

belonging to the cluster showed permeabilization errors. 478 
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Figure 3 Super-resolution and section imputation as practical applications of DeepSpaCE. Super-482 

resolution of SPARC expression using DeepSpaCE highlights tumor invasion more clearly and semi-483 

supervised learning for tissue section imputation using DeepSpaCE improves prediction accuracy. 484 

(a) Nine images show the super-resolved results for SPARC expression. Three images in the left 485 

column show section D2 after H&E staining. Three images in the middle column show the heatmaps 486 

of predicted SPARC expression by DeepSpaCE for the original spots (top), imputed spots (middle), 487 

and both original and imputed spots (bottom). Three images in the right column show overlays of 488 

predicted SPARC expression by DeepSpaCE and H&E staining for section D2. (b) Three enlarged 489 

images on the right area show tumor cell invasion (blue arrow) and the microenvironment (red 490 

arrow). Spot size is adjusted to smaller than the exact spot size of the Visium platform to show the 491 

background image. (c) Left image shows the H&E-stained section adjacent to section D2. Right 492 

enlarged image is the same region as Fig.3b. Enlarged image shows the invasion of tumor cells. (d) 493 

Box plots show Pearson’s correlation coefficients between the measured and predicted gene-494 

expression levels of 21 breast cancer-related microenvironment markers. Left box plot displays the 495 

results of semi-supervised learning, which showed increasing Pearson’s correlation coefficients. 496 

Middle and right box plots show the semi-supervised learning results with permutated and 497 

randomized values. For the box plot, the box indicates the first and third quartiles; horizontal center 498 

line marks the medians; upper whisker extends from the hinge to the highest value that is within 499 
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1.5 × interquartile range (IQR) of the hinge; lower whisker extends from the hinge to the lowest 500 

value within 1.5 × IQR of the hinge; and data were plotted as points. Black lines between boxes 501 

connect the same gene. (e) Box plots show Pearson’s correlation coefficients between the 502 

measured and predicted gene-expression levels of 21 breast cancer-related microenvironment 503 

markers. Three types of image sets were compared for semi-supervised learning, namely sections 504 

A–C (red); data from The Cancer Genome Atlas (TCGA) (blue); and ImageNet data (green). For the 505 

box plot, the box indicates the first and third quartiles; horizontal center line marks the medians; 506 

upper whisker extends from the hinge to the highest value that is within 1.5 × IQR of the hinge; 507 

lower whisker extends from the hinge to the lowest value within 1.5 × IQR of the hinge; and data 508 

were plotted as points. 509 
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