1 Efficient prediction of a spatial transcriptomics profile better

2 characterizes breast cancer tissue sections without costly

- 3 experimentation
- 4
- 5 Taku Monjo¹⁺, Masaru Koido²⁺, Satoi Nagasawa^{1,3}, Yutaka Suzuki¹, Yoichiro Kamatani^{1*}
- 6
- ⁷ ¹ Department of Computational Biology and Medical Sciences, Graduate School of Frontier
- 8 Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
- ⁹ ² Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, 4-6-1,
- 10 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- ³ Division of Breast and Endocrine Surgery, Department of Surgery, St. Marianna University School
- 12 of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki-shi, Kanagawa, 216-8511, Japan

13

- 14 *+*These authors contributed equally to this work.
- 15 *Corresponding author.
- 16 Yoichiro Kamatani, M.D., Ph.D.
- 17 Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of
- 18 Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- 19 TEL:+81 (0)3-5449-5286 or 5280, E-mail: kamatani.yoichiro@edu.k.u-tokyo.ac.jp

21 Abstract

22	Spatial transcriptomics is an emerging technology requiring costly reagents and considerable skills,
23	limiting the identification of transcriptional markers related to histology. Here, we show that
24	predicted spatial gene-expressions in unmeasured regions and tissues can enhance biologists'
25	histological interpretations. We developed the <u>Deep</u> learning model for <u>Spa</u> tial gene <u>C</u> lusters and
26	Expression, DeepSpaCE and confirmed its performance using the spatial-transcriptome profiles and
27	immunohistochemistry images of consecutive human breast cancer tissue sections. For example,
28	the predicted expression patterns of SPARC, an invasion marker, highlighted a small tumor-invasion
29	region that is difficult to identify using raw data of spatial transcriptome alone because of a lack of
30	measurements. We further developed semi-supervised DeepSpaCE using unlabeled histology
31	images and increased the imputation accuracy of consecutive sections, enhancing applicability for a
32	small sample size. Our method enables users to derive hidden histological characters via spatial
33	transcriptome and gene annotations, leading to accelerated biological discoveries without
34	additional experiments. (150/150 words)

35

36 Introduction

37	Spatial transcriptomics with <i>in situ</i> capturing is an emerging technology that maps gene-expression
38	profiles with corresponding spatial information in a tissue section ^{1–4} . A highly resolved spatial-
39	transcriptome profile is an invaluable resource for revealing biological functions and molecular
40	mechanisms ⁵ . Recently, many histological transcriptome profiles, measured by <i>in situ</i> capturing
41	platforms (numerous spots with barcoded oligonucleotides on a chip), were reported in the field of
42	oncology ^{6,7} . These profiles have helped demonstrate the complexity and heterogeneity of cancer
43	tissues. For example, histological transcriptome profiles were used to identify high-risk invasive
44	populations in ductal carcinoma tissues using an <i>in situ</i> capturing method ^{8,9} . However, the
45	experimental cost of spatial transcriptomics, such as for designed chips, reagents, and sequencing,
46	is currently high. It is also challenging to maintain the balance between the spatial resolution (i.e.,
47	density of spots in a tissue slide) and RNA-detection efficiency with current spatial-transcriptome
48	technology ¹⁰ . In addition, this technique requires practiced skills to obtain high-quality expression
49	profiles for entire tissue slides, even when using a commercial kit such as the 10x Genomics Visium
50	platform.
51	The convolutional neural network (CNN), a deep-learning method, is frequently used for
52	discovering features from imaging datasets and can be used to predict image categories of interest
53	in an end-to-end manner. For example, in the biomedical field, the CNN method has successfully

54	been used to classify lung cancer subtypes from tissue-section images without prior knowledge ¹¹ .
55	Based on these recent advances, we hypothesized that applying the CNN method to spatial-
56	transcriptome profiles would enable expression-level predictions from hematoxylin and eosin
57	(H&E)-stained section images, potentially leading to an increased number of pixels by predicting
58	spatial gene-expression gaps among spots measured by spatial-transcriptome techniques (super-
59	resolution which was inspired by the recent super-resolution technique ¹²) or imputing spatial-
60	transcriptomic patterns in unmeasured consecutive sections (tissue section imputation).
61	Here, we developed the <u>Deep</u> learning model for <u>Spa</u> tial gene <u>C</u> lusters and <u>E</u> xpression
62	(DeepSpaCE), which predicts spatial-transcriptome profiles from H&E-stained images using CNNs.
63	We verified the prediction accuracy of this model by comparing expression profiles from testing
64	datasets and protein-expression patterns in adjacent sections (using immunohistochemistry data),
65	which were consistent with the predictions. Based on these verifications, we applied DeepSpaCE for
66	super-resolution of spatial gene-expression levels and imputation of spatial gene-expression levels
67	in other tissue sections using human breast cancer datasets.
68	

69 **Results**

70 Overview of DeepSpaCE

71 DeepSpaCE is composed of two parts: the training part and gene-prediction part (**Fig. 1**). The CNN

72	(VGG16 architecture) is trained with pairs of cropped section images for each spot (spot image) and
73	its gene-expression profiles. Next, the trained model predicts gene-expression levels for at least one
74	transcript (or transcriptomic cluster type) from spot images. We conducted two types of practical
75	applications of DeepSpaCE using the <i>in situ</i> capturing spatial transcriptome dataset: (a) super-
76	resolution and (b) tissue section imputation.
77	Super-resolution is used to predict unmeasured spots in the same image (e.g., images
78	among spots whose expression profiles were measured using the <i>in situ</i> capturing platform or
79	images on spots with section-permeabilization errors). Tissue section imputation is performed to
80	predict spatial expression profiles of a section from a series of directly measured consecutive
81	sections. These two applications are helpful for reducing experimental costs and clarifying biological
82	functions at higher resolution and in three dimensions. Because substantially fewer labeled spots
83	are available compared with general deep CNN datasets, we implemented the semi-supervised
84	technique in DeepSpaCE to increase prediction accuracy, as described in detail below. All
85	DeepSpaCE codes for Visium, a standardized, commercially available platform for spatial
86	transcriptome, will be available after acceptance on the GitHub repository
87	(https://github.com/tmonjo/DeepSpaCE).

89 Preprocessing of spatial expression data

90	We preprocessed the spatial expression data from three human breast cancer tissue sections
91	(sections A–C) and their consecutive sections (sections D1–D3) (Supplementary Fig. S1). We
92	excluded spots containing few expressed (or measured) genes to filter out spots with potential
93	permeabilization errors, and normalized the spatial expression data to improve the training
94	efficiency by reducing noise. Particularly, the filtering step was critical because spatial expression
95	profiling requires very practiced skills for handling tissue slides and treating reagents
96	homogeneously, and few expressed genes may reveal permeabilization errors in the spots. Indeed,
97	in our spatial transcriptome datasets of human breast cancer tissues, the right bottom regions in
98	sections D1 and D3, as well as the right upper region in section D2, showed undetected unique
99	molecular identifiers (UMIs), indicating that section-permeabilization errors occurred in these
100	regions (Supplementary Fig. S2a, b). Similarly, such undetected regions were observed in the 10x
101	Genomics Visium demo data of human heart tissue (Supplementary Fig. S2c). We used these
102	undetected spots to evaluate the performance of section imputation by DeepSpaCE, as shown
103	below.
104	
105	Prediction and experimental validation of gene-expression profiles and cluster types

106 We trained the DeepSpaCE models of three breast cancer-marker genes, estrogen receptor 1

107	(ESR1), erb-b2 receptor tyrosine kinase 2 (ERBB2), and marker of proliferation Ki-67 (MKI67) ^{13,14} ,
108	which were not used during the parameter-optimization procedures (see Methods). We performed
109	the 5-fold cross-validation using section D2 as both a training and a testing set. The Pearson's
110	correlation coefficients between the measured and predicted values were 0.588 (standard
111	deviation [SD] = 0.025; <i>ESR1</i>), 0.424 (SD = 0.050; <i>ERBB2</i>), and 0.219 (SD = 0.041; <i>MKI67</i>)
112	(Supplementary Fig. S3). Notably, comparison of ESR1 levels in the D2 section by H&E staining
113	highlighted undetected highly expressed spots in the upper right region of section D2, possibly
114	because of a permeabilization error in the Visium experiment (Fig. 2a). This was further confirmed
115	by determining the protein-expression pattern observed by immunohistochemical staining of the
116	adjacent section using an ESR1 antibody (Fig. 2b), which was consistent with the predicted
117	expression levels, suggesting the applicability of our DeepSpaCE method for section imputation.
118	Next, based on the 5-fold cross-validation in section D2, we assessed the prediction
119	accuracy of transcriptomic cluster type derived from Space Ranger software. By comparing the
120	clusters from Space Ranger with the predicted clusters, we calculated the recall value (see
121	Methods) of the clusters, which ranged from 35% (cluster 4) to 80% (cluster 7) (Fig. 2c). Briefly,
122	although the prediction accuracy was low when comparing non-cancerous regions (e.g., clusters 1
123	and 4), the cluster types between cancer sites and non-cancer sites were clearly distinguishable
124	(e.g., clusters 1 and 3). Similar to the findings described in the previous paragraph, the cluster type

- 125 was predicted in the unmeasured upper right region of section D2, which showed a
- 126 permeabilization error (Fig. 2d). The predicted types of clusters in this region were plausible based
- 127 on the spatial transcriptome and DeepSpaCE analysis using the adjacent sections D1 and D3, which
- 128 could measure the region (**Supplementary Fig. S4**).
- 129
- 130 Super-resolution of spatial gene expression
- 131 We performed super-resolution for *ESR1* in the images of spots measured in section C
- 132 (Supplementary Fig. S5a, b). Section C was used as both a training and test set to generate a super-
- 133 resolved image as an example. The super-resolved image of *ESR1* expression in section C was
- 134 consistent with the results of immunohistochemical staining, supporting that DeepSpaCE enables
- 135 accurate high-resolution observations of expression profiles (Supplementary Fig. S5c). Notably, we
- 136 found a region with low *ESR1* expressions in the super-resolved image, which was not clearly
- 137 observed in the original spatial transcriptome datasets (Supplementary Fig. S5b), confirming the
- 138 importance of super-resolution.
- 139 We focused on secreted protein acidic and cysteine rich (SPARC), a potential cancer-
- 140 invasion marker, and assessed whether the super-resolution method could facilitate biological
- 141 interpretations provided by pathologists based on histology patterns in H&E-stained images. After
- 142 training and validating the DeepSpaCE model (Supplementary Fig. S6), we predicted SPARC-

143	expression levels among the original spots in section D2 (Fig. 3a, b). Although the color tones
144	themselves did not explain the SPARC expression patterns in the H&E-stained images, the patterns
145	were successfully predicted by the DeepSpaCE model. Comparison of the super-resolved image of
146	SPARC with the H&E-stained image showed that the invasive tumor region overlapped substantially
147	with the distribution of SPARC expression (Fig. 3c), whereas such patterns were not apparent from
148	the color tones in the original spatial-transcriptome data. SPARC is secreted into the extracellular
149	matrix from cancer and stromal cells, and high SPARC-mRNA expression is related to metastasis and
150	poor prognosis in several types of cancers ¹⁵ . Thus, the super-resolved SPARC-expression image
151	highlighted the potential tumor-invasion region and made it easier to identify by a non-pathologist
152	in cases where a given transcript's function is known.
152 153	in cases where a given transcript's function is known.
	in cases where a given transcript's function is known. Imputation of a tissue section using semi-supervised learning
153	
153 154	Imputation of a tissue section using semi-supervised learning
153 154 155	Imputation of a tissue section using semi-supervised learning To assess whether semi-supervised learning can improve the prediction accuracy of DeepSpaCE, we
153 154 155 156	Imputation of a tissue section using semi-supervised learning To assess whether semi-supervised learning can improve the prediction accuracy of DeepSpaCE, we performed tissue section imputation for section D2 using the model trained by sections D1 and D3

160 C) as unlabeled images. We selected the most predictive student model in the validation data as the

161	best model. We found an increasing trend in the Pearson's correlation coefficients between the
162	measured and predicted expression levels, as expected (Supplementary Table S1). In the teacher
163	model, the mean Pearson's correlation coefficient for 21 genes was 0.369. The mean Pearson's
164	correlation coefficients progressively increased for student model 1 (0.414), student model 2
165	(0.455), student model 3 (0.438), student model 4 (0.457), and student model 5 (0.458) (Fig. 3d).
166	For SPARC, Pearson's correlation coefficient increased from 0.509 (SD = 0.069; teacher model) to
167	0.616 (SD = 0.067; student model 4). For MXRA5, the Pearson's correlation coefficient was not
168	increased after analysis using student model 1, although it was increased from 0.501 (SD = 0.083;
169	teacher model) to 0.527 (SD = 0.093; student model 1). Thus, the semi-supervised learning method
170	may increase the accuracy of DeepSpaCE through additional computational costs.
171	To verify whether their related unlabeled images could improve the accuracy of the
172	DeepSpaCE model, we performed semi-supervised learning with permutated gene-expression
173	levels or randomized the values as negative controls. The Pearson's correlation coefficients did not
174	increase, but rather decreased, when permutated or randomized values were used. Moreover,
175	Pearson's correlation coefficients did not increase when irrelevant images of dogs or cats (obtained
176	from ImageNet) were used for semi-supervised learning. Furthermore, Pearson's correlation
177	coefficients did not increase when breast cancer section images obtained from The Cancer Genome
178	Atlas (TCGA) were used for semi-supervised learning (Fig. 3e).

Discussion

180	In this study, we proposed performing super-resolution and section imputation with DeepSpaCE
181	and validated the accuracy from cross-validation and immunohistostaining. These approaches made
182	it possible to derive more knowledge from existing spatial transcriptome datasets. As a compelling
183	example, the relationship between SPARC expression and cancer invasion was highlighted via super-
184	resolution, whereas detecting the invasive region using original spatial transcriptome data was
185	difficult because the measured spots were not dense (Fig. 3a, b). The SPARC glycoprotein has a high
186	affinity for albumin, and macrophage-derived SPARC contributes to metastasis by acting at the step
187	of integrin-mediated migration of invasive cells ¹⁵ . Previously, SPARC mRNA expression was reported
188	as a predictor of a pathological complete response after neoadjuvant nab-paclitaxel therapy ¹⁶ . Our
189	study underscored the relationship between SPARC expression and invasive regions, which may be
190	clinically important for treating breast cancer. This interpretation does not require expertise in
191	histology or pathology but requires gene annotations, with should be familiar to researchers of
192	spatial transcriptome. In addition, super-resolution in section C identified the region with low
193	expressed <i>ESR1</i> , the amplification of which is frequently observed in proliferative breast cancers ¹³ .
194	Although it is unclear whether the region indicates the heterogeneity of breast cancer tissues or
195	existence of normal tissues, this region was unclear in the original spatial transcriptome data and
196	expression in adjacent sections was experimentally validated.

197	For super-resolution and section imputation, we developed DeepSpaCE to predict
198	expression levels from spot images from Visium. This spot-level analysis should reveal more
199	detailed patterns than those obtained by CNN using pairs of images of the bulk transcriptome ¹⁷ by
200	resolving spatial expression patterns. DeepSpaCE requires a minimum of a single experiment to
201	analyze the spatial transcriptome; nevertheless, the predictions were well-validated by cross-
202	validation and experimental analysis. DeepSpaCE as well as super-resolution and section imputation
203	methods aim to maximize the value of existing datasets and provide foundations for subsequent
204	experiments from at least a single dataset without additional experimental costs. This is an
205	important difference from the recently proposed STNet study in which trained spatial transcriptome
206	data (not from the Visium platform) was obtained from as many as 23 individuals ¹⁸ .
207	The number of training datasets used for single spatial transcriptome analysis (maximum
208	4,992 spots/slide with the Visium platform) was not sufficient for training the CNN in general, as a
209	previous study used ~557,000 images from 830 slides to predict lung cancer subtypes and ~212,000
210	images from ~320 slides to predict lung cancer gene mutations ¹¹ . To increase the ability to apply
211	DeepSpaCE to many datasets for which it is challenging to train the connections between H&E-
212	stained images and expression levels, we implemented a semi-supervised learning method ¹⁹ in
213	DeepSpaCE. The DeepSpaCE model with semi-supervised learning using sections A–C as unlabeled
214	images showed better performance than a simple prediction model using only experimentally

216	section imputation in this case, the Pearson's correlation coefficients were not improved when
217	using breast cancer H&E-stained images obtained from TCGA as unlabeled images. This may be
218	because the DeepSpaCE model is sensitive to the protocol for obtaining the H&E images (i.e., batch
219	effects disturb the training steps). Therefore, the model that gives the performs the best prediction
220	accuracy when using semi-supervised learning as an option should be determined. In conclusion,
221	DeepSpaCE is an all-in-one package that augments spatial transcriptome data obtained from the in
222	situ capturing platform; its applications can improve the understanding of histological expression
223	profiles.

obtained spatial transcriptome data. Although we increased the predictive accuracy of tissue

224

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.440763; this version posted April 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

225 Methods

226 Ethical approval

- 227 Breast tissue samples and relevant clinical data were obtained from patients undergoing surgery at
- 228 St. Marianna University School of Medicine Hospital after obtaining approval from the Clinical
- 229 Ethics Committee of St. Marianna University (approval number: 2297-i103). The approval allowed
- 230 the retrieval of surgical pathology tissues that were obtained with informed consented or that were
- approved for use with a waiver of consent.
- 232

233 Spatial-transcriptomics datasets

- 234 We used six human breast cancer tissue sections, including sections A–C and consecutive sections
- 235 D1–D3, which were derived from one patient. The spatial transcriptomics experiments were
- 236 conducted with the same protocol reported in Nagasawa et al.⁸. Briefly, the tissue sections were
- 237 stained with H&E, and TIFF images were obtained using a microscope at 10× magnification. Spatial-
- 238 transcriptome profiling was performed using the Visium platform with the standard protocol
- 239 provided by 10x Genomics (Pleasanton, CA, USA). UMI counts were calculated using 10x Genomics
- 240 Space Ranger software (version 1.0.0). Visium demo data (version 1.0.0) for the human heart tissue
- 241 was obtained from the 10x Genomics website
- 242 (https://www.10xgenomics.com/resources/datasets/).

259

244	Preprocessing of spatial gene-expression data
245	Regarding the spatial-transcriptome profiles obtained from the Space Ranger pipeline (10x
246	Genomics), we removed spots with low total UMI counts (<1,000) or a low number of measured
247	genes (<1,000). The SCTransform function of Seurat package (version 3.1.4) ²⁰ was applied to
248	normalize the UMI counts, based on regularized negative binomial regression ²¹ . Min-max scaling
249	was performed to adjust the expression values between zero and one. We trained 24 genes
250	including three breast cancer-marker genes (MKI67, ESR1, ERBB2) and 21 breast cancer-related
251	microenvironment marker genes (SPARC, IFI27, COL10A1, COL1A2, COL3A1, COL5A2, FN1, POSTN,
252	CTHRC1, COL1A1, THBS2, PDGFRL, COL8A1, SULF1, MMP14, ISG15, IL32, MXRA5, LUM, DPYSL3, and
253	CTSK). These 21 genes were manually selected from the cluster of genes overexpressed in the
254	breast cancer-related microenvironment region. These two gene sets of three genes and 21 genes
255	were respectively used in the training part of DeepSpaCE. The graph-based clustering algorithm ²²
256	implemented in Space Ranger was used for transcriptomic cluster type prediction.
257	
258	Preprocessing of tissue section images

Each spot image was cropped from a tissue slide image, based on the position table in the Space

260 Ranger outputs (Supplementary Table S2). We filtered out whitish images in which more than half

of the pixels were the >80% percentiles of mean RGB values, as shown below. For ima	261	of the pixels were the	e >80% percentiles	of mean RGB values,	as shown below.	For image
---	-----	------------------------	--------------------	---------------------	-----------------	-----------

- augmentation, we randomly applied image-transform functions of flipping (RandomRotate90, Flip,
- and Transpose), cropping (RandomResizedCrop), noise (IAAAdditiveGaussianNoise and
- 264 GaussNoise), blurring (MotionBlur, MedianBlur, and Blur), distortion(OpticalDistortion,
- 265 GridDistortion, IAAPiecewiseAffine, and ShiftScaleRotate), contrast (RandomContrast,
- 266 RandomGamma, and RandomBrightness), and color-shifting (HueSaturationValue, ChannelShuffle,
- 267 and RGBShift) in Albumentations library (version 0.4.5)²³.
- 268
- 269 **Preprocessing of images obtained from TCGA and ImageNet**
- 270 We obtained 1,978 images of H&E-stained TCGA breast cancer sections from the GDC Data Portal
- 271 (https://portal.gdc.cancer.gov) on August 05, 2020. As negative controls, we obtained 14,500
- 272 irrelevant images such as dogs and cats (n02106662, n02110341, n02116738, n02123045,
- 273 n02123159, n02123394, n02123597, n02124075, n02497673, and n03218198) from ImageNet
- 274 (http://www.image-net.org) on October 09, 2020. All images obtained from TCGA and ImageNet
- were cropped to 224 × 224 pixels (**Supplementary Fig. S7**). Four thousand cropped images were
- 276 randomly selected as unlabeled images for each semi-supervised learning model.

278 Training and prediction of gene-expression profiles and transcriptomic cluster types

279 All deep-learning models were implemented using deep-learning framework PyTorch (version 2801.5.1)²⁴. We adapted the VGG16 architecture for deep CNN model that has 16 weight layers²⁵. We 281 modified the number of output features in VGG16 from 1,000 to the number of genes or cluster 282 types. We simultaneously trained multi genes such as three genes of breast cancer markers or 21 283 breast cancer-related microenvironment markers. For transcriptomic cluster type predictions, the 284 loss value of the training DeepSpaCE dataset was calculated using the CrossEntropyLoss function. 285 For gene-expression predictions, the loss value was determined as the sum of loss calculated with 286the SmoothL1Loss function for each gene. As an optimizer, we used Adam²⁶ with the 287hyperparameters of learning rate: 1e-4 and weight decay: 1e-4. Each training was repeated for 50 288 epochs to stabilize the loss curves (Supplementary Fig. S8). Early stopping was applied if the loss 289 value for the validation data did not decrease over five continuous epochs. To evaluate the accuracy 290 of cluster type prediction, we used the recall value which reflects the proportion of positives 291 identified correctly among the actual number of positives (recall = true positive / (true positive + 292 False negative)). For section D2, cluster 8 was excluded from the training set because it consists of a 293 region of permeabilization errors.

294

295 Parameter optimization of DeepSpaCE

296	We optimized the parameters of DeepSpaCE, such as the image size, image-filtering threshold, and
297	image-augmentation methods. We performed 5-fold cross-validation using six sections (A–C, and
298	D1–D3) to evaluate the prediction accuracy. We developed prediction models for the expression
299	levels of the 21 breast cancer-related microenvironment marker genes (described above) because
300	these genes are representative markers of heterogeneous ductal carcinoma tissues. First, we
301	assessed the impact of the size of the input images (0%, 50%, 100%, 150%, and 200%; relative to
302	the original spot image size) on the prediction accuracies; the results showed that an image size of
303	150% gave better outcomes than the original and smaller image sizes (Supplementary Fig. S9a).
304	This result is biologically plausible because the surrounding cells can communicate with cells in the
305	spot and affect their gene-expression levels. Second, we assessed the different image-filtering
306	thresholds to exclude uninformative images (i.e., excluding almost white images). We calculated
307	whiteness for each spot by calculating the mean RGB values and obtained the percentiles (50%,
308	60%, 70%, 80%, 90%, and 100%) over spots in a slide. We filtered out images in which more than
309	half of the pixels were the >80% percentiles of mean RGB values as judged from the histogram
310	(Supplementary Fig. S9b). This strategy maximized the prediction accuracy (Supplementary Fig.
311	S9c). Third, to further improve accuracy, we augmented images with various image transformations
312	such as flipping, cropping, blurring, distortion, noise, contrast, and color-shifting (Supplementary

313 Fig. S10). All image augmentation (except for color-shifting) improved the Pearson's correlation

- 314 coefficients compared with using non-augmented images (Supplementary Fig. S9d); however, we
- 315 also used the color-shifting method because H&E-staining on different slides may change the color
- 316 tones.
- 317
- 318 Super-resolution of spatial gene expression
- 319 To impute the expression levels among spots on a slide image, new spot image files were created by
- 320 cropping around three adjacent spots (**Supplementary Fig. S11**). We used sections C and D2 as both
- 321 the training and test sets (randomly selected 80% spots were used as training data and others were
- 322 used as test data). By performing super-resolution, the numbers of spots increased from 2,238 to
- 323 6,733 and from 2,168 to 6,623 in sections C and D2, respectively. We trained the both of three
- 324 breast cancer-marker genes and 21 breast cancer-related microenvironment marker genes,
- 325 respectively. Semi-supervised learning was not used for super-resolution.
- 326

327 Imputation of a tissue section using semi-supervised learning

- 328 Sections D1–D3 were obtained as consecutive sections. Thus, sections D1 and D3 were used as the
- 329 training set. Section D2 was used as the test set to impute gene-expression levels because it was
- 330 located between sections D1 and D3. Sections A–C were used for semi-supervised training as

331	unlabeled images. In the noisy student model ²⁷ , gene-expression levels in unlabeled images were
332	predicted using the first trained model (teacher model). Four thousand predicted proxy labels and
333	the associated images were added to the original dataset and used to train the next model, which
334	was designated as a student model. The training student models were run five times
335	(Supplementary Fig. S12a). In addition to the spot images of section A–C, we used images of breast
336	cancer sections obtained from TCGA as unlabeled images. Irrelevant images obtained from
337	ImageNet were used as negative controls during semi-supervised learning. In addition, we also
338	performed semi-supervised learning with permuted gene expression and random values as
339	negative controls (Supplementary Fig. S12b).
340	
340 341	Immunohistochemistry and measurement of protein expression
	Immunohistochemistry and measurement of protein expression Breast cancer tissues were frozen and embedded in optimal cutting temperature compound (Sakura
341	
341 342	Breast cancer tissues were frozen and embedded in optimal cutting temperature compound (Sakura
341 342 343	Breast cancer tissues were frozen and embedded in optimal cutting temperature compound (Sakura Finetek, Tokyo, Japan). Ten-micrometer-thick sections were cut onto slides using a Leica CM3050 S
341 342 343 344	Breast cancer tissues were frozen and embedded in optimal cutting temperature compound (Sakura Finetek, Tokyo, Japan). Ten-micrometer-thick sections were cut onto slides using a Leica CM3050 S cryostat (Wetzlar, Germany), fixed in methanol at -20°C for 20 min, and air-dried for 60 min.
 341 342 343 344 345 	Breast cancer tissues were frozen and embedded in optimal cutting temperature compound (Sakura Finetek, Tokyo, Japan). Ten-micrometer-thick sections were cut onto slides using a Leica CM3050 S cryostat (Wetzlar, Germany), fixed in methanol at -20°C for 20 min, and air-dried for 60 min. Endogenous peroxidase activity was blocked in phosphate-buffered saline containing 3% H ₂ O ₂ for 5

349 Stain, MULTI (Nichirei Bioscience, Tokyo, Japan) following the manufacturer's protocol, and all

- 350 sections were counterstained with H&E.
- 351
- 352 Data processing and analysis
- 353 Python (version 3.6.5) was used for preprocessing and implementation of DeepSpaCE with the
- libraries, torch (version 1.5.1), torchvision (version 0.6.1), numpy (version 1.19.0), pandas (version
- 355 1.0.5), scikit-learn (version 0.23.1), mlxtend (version 0.17.2), albumentations (version 0.4.5),
- 356 opencv-python (version 4.2.0.34), and matplotlib (version 3.2.2). R (version 3.6.0) was used for
- 357 statistical analysis and visualization with the packages, dplyr (version 1.0.2), data.table (version
- 358 1.12.8), Matrix (version 1.2.17), grid (version 3.6.0), rjson (version 0.2.20), hdf5r (version 0.9.7),
- readbitmap (version 0.1.5), ggplot2 (version 3.3.0), hrbrthemes (version 0.8.0), ggsci (version 2.9),
- 360 ggpubr (version 0.4.0), cowplot (version 1.0.0), and Seurat (version 3.1.4.9904).

361

363 References

364	1.	Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial
365		transcriptomics. Science. 353 , 78–82 (2016).
366	2.	Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at
367		high spatial resolution. Science. 363, 1463–1467 (2019).
368	3.	Maniatis, S. et al. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral
369		sclerosis. <i>Science</i> . 364 , 89–93 (2019).
370	4.	Marx, V. Method of the Year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).
371	5.	Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. bioRxiv
372		(2020).
373	6.	Thrane, K., Eriksson, H., Maaskola, J., Hansson, J. & Lundeberg, J. Spatially resolved
374		transcriptomics enables dissection of genetic heterogeneity in stage III cutaneous malignant
375		melanoma. <i>Cancer Res.</i> 78 , 5970–5979 (2018).
376	7.	Berglund, E. et al. Spatial maps of prostate cancer transcriptomes reveal an unexplored
377		landscape of heterogeneity. Nat. Commun. 9, 1–13 (2018).
378	8.	Nagasawa, S. et al. Genomic profiling reveals heterogeneous populations of ductal carcinoma in
379		situ of the breast. Commun. Biol. 4, 1–13 (2021).
380	9.	Yoosuf, N., Navarro, J. F., Salmén, F., Ståhl, P. L. & Daub, C. O. Identification and transfer of

spatial transcriptomics signatures for cancer diagnosis. Breast Cancer Res. 22, 1–10 (2020).

382	10.	Asp, M., Bergenstråhle, J. & Lundeberg, J. Spatially resolved transcriptomes—next generation
383		tools for tissue exploration. <i>BioEssays</i> 42 , 1–16 (2020).
384	11.	Coudray, N. et al. Classification and mutation prediction from non-small cell lung cancer
385		histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).
386	12.	Nasrollahi, K. & Moeslund, T. B. Super-resolution: a comprehensive survey. Machine Vision and
387		Applications 25 , 1423-1468 (2014).
388	13.	Holst, F. et al. Estrogen receptor alpha (ESR1) gene amplification is frequent in breast cancer.
389		Nat. Genet. 39 , 655–660 (2007).
390	14.	Goldhirsch, A. et al. Personalizing the treatment of women with early breast cancer: Highlights
391		of the st gallen international expert consensus on the primary therapy of early breast Cancer
392		2013. Ann. Oncol. 24 , 2206–2223 (2013).
393	15.	Sangaletti, S. et al. Macrophage-derived SPARC bridges tumor cell-extracellular matrix
394		interactions toward metastasis. Cancer Res. 68, 9050–9059 (2008).
395	16.	Nakazawa, Y. et al. The pathological complete response and secreted protein acidic and rich in
396		cysteine expression in patients with breast cancer receiving neoadjuvant nab-paclitaxel
397		chemotherapy. Oncol. Lett. 19, 2705–2712 (2020).
398	17.	Schmauch, B. et al. A deep learning model to predict RNA-Seq expression of tumours from

399		whole slide images. Nat. Commun. 11, 1–15 (2020).
400	18.	He, B. et al. Integrating spatial gene expression and breast tumour morphology via deep
401		learning. Nat. Biomed. Eng. 4 , 827–834 (2020).
402	19.	Ouali, Y., Hudelot, C. & Tami, M. An overview of deep semi-supervised learning. arXiv (2020).
403	20.	Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).
404	21.	Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data
405		using regularized negative binomial regression. Genome Biol. 20, 1–15 (2019).
406	22.	Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in
407		large networks. <i>arXiv</i> (2008).
408	23.	Buslaev, A. <i>et al.</i> Albumentations: Fast and flexible image augmentations. <i>Information</i> 11 , 1–20
409		(2020).
410	24.	Stevens, E., Antiga, L. & Viehmann, T. Deep learning with PyTorch. <i>Manning Publications</i> (2020).
411	25.	Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image
412		recognition. <i>arXiv</i> (2015).
413	26.	Kingma, D. P. & Ba, J. L. Adam: A method for stochastic optimization. <i>arXiv</i> (2015).
414	27.	Xie, Q., Luong, M. T., Hovy, E. & Le, Q. V. Self-training with noisy student improves ImageNet
415		classification. arXiv (2020).
416		

417 **Code availability**

- 418 All codes for DeepSpaCE are available on GitHub (<u>https://github.com/tmonjo/DeepSpaCE</u>) (*will be*
- 419 *available after acceptance*). These codes include image-preprocessing procedures and expression
- 420 data produced from Space Ranger.
- 421

422 **Data availability**

- 423 All sequencing data and pathological images for Visium have been deposited in the DNA Data Bank
- 424 of Japan under the accession number xxx (*under registration*).
- 425

426 Acknowledgments

- 427 The super-computing resource provided by the Human Genome Center (The University of Tokyo)
- 428 and AI Bridging Cloud Infrastructure (ABCI), provided by the National Institute of Advanced
- 429 Industrial Science and Technology (AIST), were used to develop and validate DeepSpaCE.
- 430

431 Author Contributions

- 432 TM, MK, and YK conceived the study and analyzed the data. TM developed and implemented the
- 433 DeepSpaCE algorithm. SN and YS contributed to the Visium data acquisition. SN contributed to the
- immunohistochemistry experiments. TM and MK wrote the manuscript with critical input from SN,
- 435 YS, and YK.

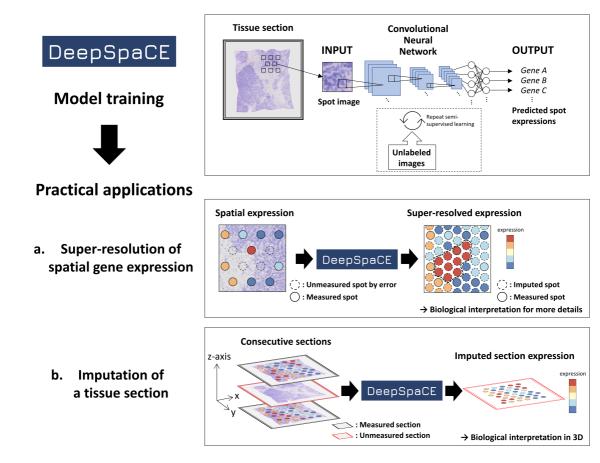
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.440763; this version posted April 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

436 **Competing Interests**

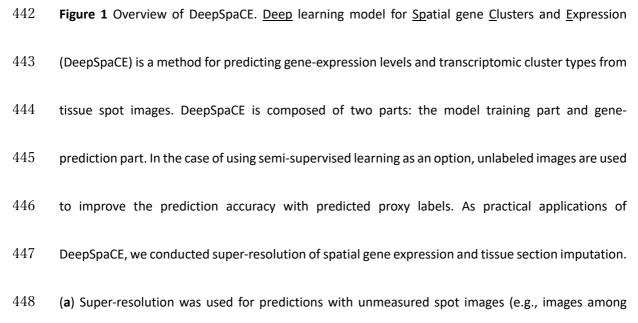
437 The authors declare no conflicts of interest.

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.440763; this version posted April 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

439 Figures

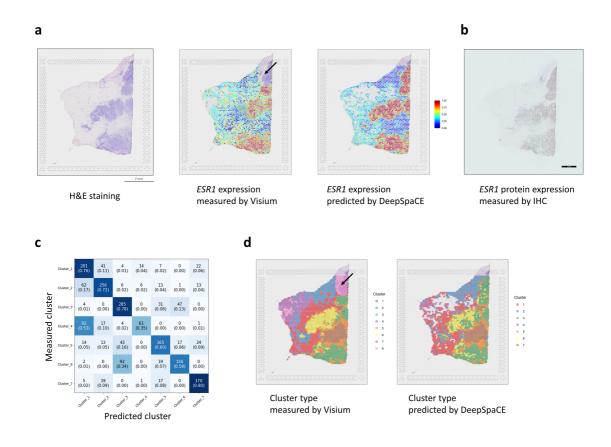


440

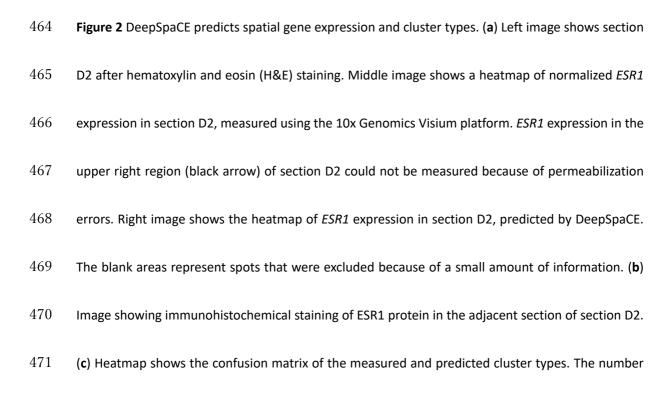


449	spots whose expression profiles were measured using the <i>in situ</i> capturing platform or images on
450	spots with technical errors). Left spatial expression pattern shows that some spots are lacks of
451	expression value because of a technical problem such as permeabilization error (dotted circle). Right
452	image shows an additional spatial expression pattern imputed by DeepSpaCE, and its highly
453	expressed region in the center of the section (dotted line). It is challenging to infer a functional
454	boundary such as cancer infiltration from spatial expression profiles of sparse spots (left). Spatial
455	expression profiles of dense spots imputed by DeepSpaCE and their gene annotations enable to
456	delineate a functional boundary clearly. (b) Tissue section imputation was used to predict gene-
457	expression levels in one of tissue section within consecutive sections. By using DeepSpaCE, the
458	unmeasured spatial expression profiles of the slide (red frame) can be imputed by at least one
459	adjacent slide (black frame) whose expression profiles were measured using the in situ capturing
460	platform.
461	

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.440763; this version posted April 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

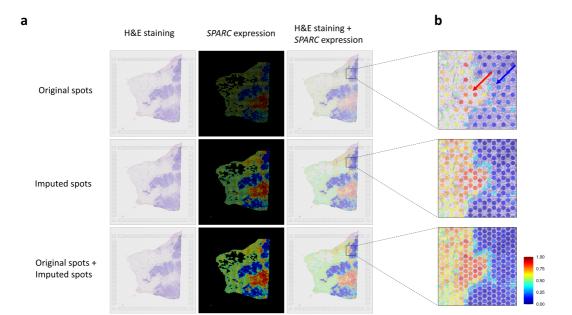


462

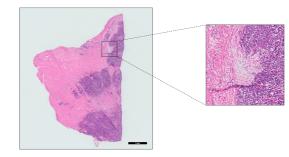


- 473 (d) Left image shows a heatmap of transcriptomic cluster types in section D2, as measured using the
- 474 Visium platform. The cluster types in the upper right region (black arrow) of section D2 were not
- 475 determined because of permeabilization errors. Right image shows the heatmap of cluster types in
- 476 section D2, predicted by DeepSpaCE. Blank areas represent spots that were excluded because of low
- 477 information. For training and gene prediction parts, we excluded cluster 8 because most of the region
- 478 belonging to the cluster showed permeabilization errors.

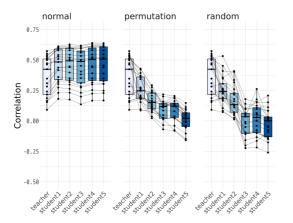
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.440763; this version posted April 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

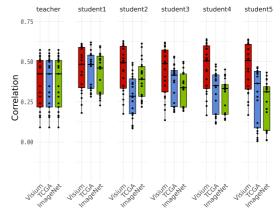


С



d





480

481

е

482	Figure 3 Super-resolution and section imputation as practical applications of DeepSpaCE. Super-
483	resolution of SPARC expression using DeepSpaCE highlights tumor invasion more clearly and semi-
484	supervised learning for tissue section imputation using DeepSpaCE improves prediction accuracy.
485	(a) Nine images show the super-resolved results for SPARC expression. Three images in the left
486	column show section D2 after H&E staining. Three images in the middle column show the heatmaps
487	of predicted SPARC expression by DeepSpaCE for the original spots (top), imputed spots (middle),
488	and both original and imputed spots (bottom). Three images in the right column show overlays of
489	predicted SPARC expression by DeepSpaCE and H&E staining for section D2. (b) Three enlarged
490	images on the right area show tumor cell invasion (blue arrow) and the microenvironment (red
491	arrow). Spot size is adjusted to smaller than the exact spot size of the Visium platform to show the
492	background image. (c) Left image shows the H&E-stained section adjacent to section D2. Right
493	enlarged image is the same region as Fig.3b . Enlarged image shows the invasion of tumor cells. (d)
494	Box plots show Pearson's correlation coefficients between the measured and predicted gene-
495	expression levels of 21 breast cancer-related microenvironment markers. Left box plot displays the
496	results of semi-supervised learning, which showed increasing Pearson's correlation coefficients.
497	Middle and right box plots show the semi-supervised learning results with permutated and
498	randomized values. For the box plot, the box indicates the first and third quartiles; horizontal center
499	line marks the medians; upper whisker extends from the hinge to the highest value that is within

500	1.5 × interquartile range (IQR) of the hinge; lower whisker extends from the hinge to the lowest
501	value within 1.5 × IQR of the hinge; and data were plotted as points. Black lines between boxes
502	connect the same gene. (e) Box plots show Pearson's correlation coefficients between the
503	measured and predicted gene-expression levels of 21 breast cancer-related microenvironment
504	markers. Three types of image sets were compared for semi-supervised learning, namely sections
505	A–C (red); data from The Cancer Genome Atlas (TCGA) (blue); and ImageNet data (green). For the
506 507	box plot, the box indicates the first and third quartiles; horizontal center line marks the medians;
508	upper whisker extends from the hinge to the highest value that is within 1.5 × IQR of the hinge; lower whisker extends from the hinge to the lowest value within 1.5 × IQR of the hinge; and data
509	were plotted as points.