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Abstract 
Parkinson’s disease (PD), Parkinson’s disease with dementia (PDD) and dementia with Lewy bodies 

(DLB) are three clinically, genetically and neuropathologically overlapping neurodegenerative 

diseases collectively known as the Lewy body diseases (LBDs). A variety of molecular mechanisms 

have been implicated in PD pathogenesis, but the mechanisms underlying PDD and DLB remain 

largely unknown, a knowledge gap that presents an impediment to the discovery of disease-

modifying therapies. Transcriptomic profiling can contribute to addressing this gap, but remains 

limited in the LBDs. Here, we applied paired bulk-tissue and single-nucleus RNA-sequencing to 

anterior cingulate cortex samples derived from 28 individuals, including healthy controls, PD, PDD 

and DLB cases (n = 7 per group), to transcriptomically profile the LBDs. Using this approach, we (i) 

found transcriptional alterations in multiple cell types across the LBDs; (ii) discovered evidence for 

widespread dysregulation of RNA splicing, particularly in PDD and DLB; (iii) identified potential 

splicing factors, with links to other dementia-related neurodegenerative diseases, coordinating this 

dysregulation; and (iv) identified transcriptomic commonalities and distinctions between the LBDs 

that inform understanding of the relationships between these three clinical disorders. Together, 

these findings have important implications for the design of RNA-targeted therapies for these 

diseases and highlight a potential molecular “window” of therapeutic opportunity between the 

initial onset of PD and subsequent development of Lewy body dementia.  
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Introduction 
The Lewy body diseases (LBDs) comprise three neurodegenerative diseases, which are characterised 

by accumulation of Lewy bodies (α-synuclein-containing aggregates) in neurons and neuronal 

processes [1,2]. These disorders, which include Parkinson’s disease (PD), Parkinson’s disease with 

dementia (PDD) and dementia with Lewy bodies (DLB), have a prevalence in the general population 

aged ≥ 65 years of 2-3% [3], 0.3-0.5% [4] and 1-2% [1], respectively. Together, PDD and DLB are 

collectively known as the Lewy body dementias and they are second only to Alzheimer’s disease (AD) 

in prevalence among people with dementia[5]. All three LBDs are associated with disability and 

reduced quality of life; DLB is associated with earlier mortality and a higher cost of care compared 

with AD [6–8]. With no disease-modifying therapies available for any of the LBDs, these diseases 

present a major unmet clinical need [9].  

While a variety of mechanisms, including mitochondrial and lysosomal dysfunction, oxidative stress, 

α-synuclein misfolding and neuroinflammation, have been implicated in PD pathogenesis [3,10], less 

is known about the mechanisms underlying PDD and DLB. Elucidating these mechanisms could 

provide a biological basis for the clinical distinction between PDD and DLB, which remains 

controversial in the field [1,11–14]. Clinically, PDD and DLB are arbitrarily separated by the 

diagnostic "1-year rule": if dementia is diagnosed before or within one year of the onset of 

parkinsonism, it is considered to represent DLB, whereas PDD is defined by dementia first presenting 

more than one year after the onset of parkinsonism [15,16]. Thus, PDD and DLB are clinically 

distinguished based only on the relative timing of motor and cognitive impairments, despite sharing 

many symptoms (e.g. dementia, depression, parkinsonism, REM sleep behaviour disorder and visual 

hallucinations). Arguably, two of the core clinical features of DLB, fluctuating cognition and visual 

hallucinations, are more prevalent in DLB compared with PD/PDD [17,18], suggesting two separate 

disorders. However, the overlap of these core clinical features could also be evidence that the 

disorders are on a spectrum of disease, where DLB represents a more severe form of PDD. 
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Neuropathologically, all three LBDs are classed as synucleinopathies, but at the end stage of disease 

they often present with concomitant pathologies such as tau neurofibrillary tangles and amyloid-β 

[19–21]. It has been argued that PDD and DLB can be neuropathologically distinguished from PD on 

the basis of (i) Lewy body pathology extending beyond the brainstem to limbic and neocortical 

regions, (ii) a higher α-synuclein load, and (iii) tau and amyloid-β pathology at a more advanced 

stage [15,16,21]. However, while neuropathological differences have been reported, the extent to 

which they permit confident distinction between the LBDs when no clinical diagnosis is present 

remains contentious. Genetically, the differences between PDD and DLB are not well-characterised, 

although APOE, GBA and SNCA mutations have been implicated in both [14,22]. More is known 

about the genetic risk factors contributing to PD and DLB, which share some risk loci (GBA, 

TMEM175 and SNCA) and pathways (lysosomal and endocytic pathways) [23–27]. However, there is 

also evidence that association signals at SNCA may be distinct in PD and DLB (i.e. located at the 3’ 

and 5’ end of the SNCA gene, respectively) [23,24,26,28], and while risk pathways are shared, PD 

genetic risk factors only explain a small portion of DLB phenotypic variance [26,29]. 

Identifying therapeutic targets that could modify the development of PDD or DLB requires an 

understanding of the cellular and molecular features of these diseases. Transcriptomic profiling, 

through RNA-sequencing of patient-derived tissue, would aid in the identification of such targets, 

but remains limited in all three LBDs. Of all transcriptomic studies of PD and Lewy body dementia 

highlighted in two recent systematic reviews (33 and 31 gene expression studies in brain, 

respectively [10,30]), only 5 used RNA-sequencing. Furthermore, among transcriptomic studies of 

the three LBDs, few have addressed possible alternative splicing or the confounding of bulk-tissue 

transcriptomic profiling by differences in cellular composition.  

Here, we pair bulk-tissue and single-nucleus RNA-sequencing to gain a comprehensive view of cell-

type-specific transcriptional changes in the LBDs. This combined approach is used because, while 

single-nucleus RNA-sequencing can address confounding by cellular composition, providing 

previously unattainable insight into cell-type-specific transcriptomic pathology [31,32], compared 
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with bulk-tissue RNA-sequencing it has little ability to resolve transcriptomic diversity via splicing. 

This limitation arises due to the trade-off that exists between choosing a single-nucleus RNA-

sequencing protocol that has high throughput but only sequences 3’ ends of transcripts versus a 

protocol whose library construction permits sequencing full-length transcripts but has reduced 

throughput [33]. Using this combined sequencing approach, we found transcriptional changes in 

multiple cortical cell types across the LBDs, with more differentially expressed genes and pathways 

identified in PDD and DLB than in PD. We also observed widespread alternative splicing, particularly 

in PDD and DLB, with evidence suggesting that specific splicing factors play a role in orchestrating 

the disease-related splicing changes. Collectively, these results identify common and distinct 

molecular pathology in the LBDs across several cell types and provide insight into the extent to 

which the LBDs represent discrete diseases with unique pathogenic processes.  
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Results 

Paired single-nucleus and bulk-tissue RNA sequencing of anterior cingulate cortex in 
individuals with Lewy body disease  
We applied single-nucleus and bulk-tissue RNA-sequencing to adjacent anterior cingulate cortex 

tissue sections from 28 individuals, including non-neurological control individuals and individuals 

with Lewy body disease (Figure 1). The latter were split into three disease groups, consisting of 

Parkinson’s disease without cognitive impairment (PD), Parkinson’s disease with dementia (PDD) and 

dementia with Lewy bodies (DLB), based on clinical assessments of retrospectively-reviewed case 

records (n = 7 per group). We sampled from the anterior cingulate cortex, as it is one of the first 

cortical areas to be affected by α-synuclein pathology [34,35] and a region where Lewy body 

densities correlate with cognitive impairment in PD [36]. Although selected individuals were 

matched, where possible, for demographic and pathologic factors, there were significant differences 

in the proportions of sexes between the groups in keeping with previous literature describing a male 

bias in DLB [37] (proportion female: control = 1/7, PD = 5/7, PDD = 2/7, DLB = 0/7; p-value = 0.020; 

Chi-squared test; Supplementary Figure 1, Supplementary Table 1). Disease duration also differed 

significantly between groups, with DLB cases having a shorter duration of disease before death, 

reflecting the fact that PDD cases have PD motor symptoms for several years before development of 

dementia (median disease duration in years: PD = 12, PDD = 11, DLB = 6; p-value = 0.0099; Kruskal-

Wallis rank sum test; Supplementary Figure 1, Supplementary Table 1). Using this sample set, we 

report a total of 205,948 droplet-based single-nucleus and 24 bulk-tissue transcriptomic profiles, 

with an average of 1,398 genes per nucleus and 27,802 genes per bulk-tissue sample detected, 

respectively (Error! Reference source not found., Supplementary Figure 3, Supplementary Table 1).  

Increased proportions of microglia and vascular cells across Lewy body diseases  
Quality control, clustering and classification of major cell types in the anterior cingulate cortex was 

first performed on nuclear RNA from each of the 28 individuals, after which we used the Conos 

framework to generate a joint graph of nuclei across all individuals [38]. Clusters were assigned to 7 

broad cell types by significant overlap (Fisher’s exact test, p-value < 2.2 x 10-16) with a merged list of 
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marker genes derived from two human single-cell datasets (Error! Reference source not found.c) [39,40]. In 

total, we identified 75,826 excitatory neurons, 26,467 inhibitory neurons, 46,662 oligodendrocytes, 

25,726 astrocytes, 13,788 microglia, 12,497 oligodendrocyte-precursors (OPCs), and 4,532 vascular 

cells (which represented a merge of endothelial cells and pericytes), with each cell type consistently 

identified across all individuals in each disease group (Figure 2a, Supplementary Figure 4a-b).  

Next, we sought to identify significant changes in the proportions of these major cell types across all 

disease groups. Although single-nucleus RNA-sequencing shows less sampling bias than single-cell 

sequencing [41], its suitability for estimation of cell-type proportions remains in question [42]. Thus, 

we used Scaden [43], a deep-learning-based deconvolution algorithm that can train on artificial bulk-

tissue RNA-sequencing samples simulated from tissue-matched single-nucleus RNA-sequencing data, 

to estimate cell-type proportions across disease groups. Importantly, Scaden permitted pairing of 

our single-nucleus and bulk-tissue transcriptomic profiles and modelling of inter-subject variability. 

We observed a low overall correlation between single-nucleus-estimated and Scaden-predicted cell-

type proportions (Spearman’s ρ = 0.25, p-value = 0.0009), although per-cell-type correlations were 

higher for some cell types (highest in microglia, Spearman’s ρ = 0.79, p-value = 8.2 x 10-6; 

Supplementary Figure 4c).   

Using Scaden predictions, we identified a significantly increased proportion of microglia in all disease 

groups compared with the control group, and a significantly increased proportion of OPCs and 

vascular cells in DLB cases compared with controls (Figure 2b, FDR-corrected p < 0.05, Wilcoxon rank 

sum test). Additionally, we observed a nominally significant increase in vascular proportions in PDD 

and PD cases compared with controls (FDR-corrected p < 0.1, Figure 2b). By applying Scaden to a 

second, larger independent PD case-control bulk-tissue RNA-sequencing dataset [44], we were able 

to replicate the observed increase in microglial and vascular proportions in PD cases compared with 

controls (FDR-corrected p < 0.05, Supplementary Figure 5). 
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Differential gene expression analysis highlights transcriptional alterations in multiple cell 
types and differentiates Lewy body dementias from PD  
Differential gene expression analyses were separately performed with bulk-tissue and single-nucleus 

RNA-sequencing data to characterise molecular changes across the disease groups (Materials and 

methods). Following correction for changes in Scaden-predicted cell-type proportions in bulk-tissue 

gene expression, only 60 genes (53 unique genes) were found differentially expressed (DE) across 

the six pairwise comparisons (FDR < 0.05, Supplementary Table 3). Despite the low number of bulk-

tissue DE genes identified, we noted that gene expression adjusted for cell type and experimental 

covariates resulted in much clearer clustering of samples by disease group (as determined through 

visual inspection) compared with uncorrected gene expression and gene expression adjusted for 

experimental covariates alone (Supplementary Figure 6a-c). Notably, separation of disease groups 

was primarily observed on the same axis of variation (i.e. the first principal component, PC1), 

suggesting that (i) the genes contributing most to variation between groups are similar across 

disease groups, and thus PD, PDD and DLB may represent a neuropathological continuum and (ii) 

that there are gene expression changes between disease groups that are independent of differences 

in cell-type proportions (Supplementary Figure 6a-c). Using pathway enrichment, we found that the 

top 100 genes contributing to PC1 were associated with immune-related GO terms (e.g. peptide 

antigen binding and MHC protein complex), as well as terms relating to endocytic vesicles and 

unfolded protein binding (Supplementary Figure 6d, Supplementary Table 4). 

Consistent with the view that gene expression changes exist between disease groups independent of 

differences in cell-type proportions, using single-nucleus RNA-sequencing data, 9,242 unique genes 

were found DE across cell-type-specific pairwise comparisons (all six pairwise comparisons, 

|log2(fold change)| > log2(1.5), FDR < 0.05, Supplementary Table 5). Focusing only on comparisons 

with the control group, these analyses highlighted three main themes.  

First, differential gene expression was widespread and involved glia and neurons. While we found 

that DE genes were detected across all three case-control comparisons and across all major cell 
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types, the largest numbers of DE genes were observed in excitatory neurons, followed by 

oligodendrocytes (Figure 3a). In fact, across case-control comparisons, the number of DE genes 

identified in oligodendrocytes exceeded that in inhibitory neurons by a factor of up to 11.4-fold 

(depending on the case-control comparison; Figure 3a). Comparison of the Lewy body diseases to 

each other yielded similar results; that is, transcriptional alterations across all major cell types, but 

with the largest number of DE genes observed in excitatory neurons, followed by oligodendrocytes 

(Supplementary Figure 7).  

Second, DE genes were commonly specific to a cell type. Indeed, of the 1,131, 2,535 and 4,816 

down-regulated DE genes identified across comparisons of PD, PDD and DLB with control, 79%, 66% 

and 67%, respectively, were DE in only one cell type (Figure 3b). Among up-regulated DE genes, 

these percentages ranged from 74-76% across the three case-control comparisons.  

Third, the Lewy body dementias, as distinct from PD, were characterised by the predominant down-

regulation of gene expression relative to control in most cell types; the only exception were 

inhibitory neurons in PDD, where the number of up-regulated DE genes exceeded the number of 

down-regulated DE genes (Figure 3a-b). Furthermore, the transcriptomic profile of the two Lewy 

body dementias was very similar, with 303 down-regulated and 87 up-regulated DE genes identified 

in a comparison of DLB with PDD (Supplementary Figure 7). In contrast, comparisons of the two 

Lewy body dementias with PD identified > 2,000 down-regulated and > 1,000 up-regulated DE genes, 

suggesting that while there are transcriptional commonalities between PDD and DLB, PD is 

transcriptionally distinct from the Lewy body dementias in the anterior cingulate cortex.  

Pathway enrichment was used to explore the biological implications of cell-type-specific differential 

gene expression. Focusing on case-control comparisons, we found that down- and up-regulated DE 

gene sets were enriched for 306 and 272 GO terms, respectively (each pathway was only counted 

once, even if it appeared across > 1 case-control comparison). Using measures of semantic similarity 

to cluster GO terms, and thus reduce pathway redundancy, we identified 29 down-regulated and 27 
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up-regulated GO terms (Figure 3c, Supplementary Table 6). Despite the high proportion of cell-type-

specific DE genes, we identified GO terms that were perturbed across multiple cell types in a given 

case-control comparison. For example, in comparisons of PD with control, terms related to 

glutamatergic synapses, the mitochondrial inner membrane, and post-translational protein 

modification were enriched across ≥ 5 cell types . These commonalities in GO term enrichment were 

a feature of both down- and up-regulated DE gene sets but were more apparent among (i) down-

regulated DE gene sets and (ii) comparisons of PDD and DLB with control, with pathway 

perturbations affecting a median of 3-5 cell types, as compared with 1-3 in comparisons of PD with 

control (Supplementary Figure 8a). Furthermore, we noted that consistent with the high number of 

DE genes detected for excitatory neurons, a high number of enriched pathways were observed in 

this cell type across all case-control comparisons, particularly in PDD and DLB (Supplementary Figure 

8b). This observation was even more pronounced in comparisons of the Lewy body dementias with 

PD, where the number of enriched pathways identified in excitatory neurons was almost 2-fold 

higher than the second most-affected cell type. Overall, this analysis served to highlight 

disproportionately large transcriptional differences in PDD and DLB, as compared with PD, 

particularly in excitatory neurons and, to a lesser extent, oligodendrocytes.  

Genes and pathways genetically associated with PD implicate physiological variability of SNCA 
expression in selective vulnerability of neurons  
Many of the GO terms enriched among down- and up-regulated genes, such as receptor-mediated 

endocytosis, have been previously implicated in PD. With this in mind, we narrowed our focus to the 

cell-type specific expression of genes and pathways genetically associated with PD pathogenesis 

[45,46].  

PD-associated genes were derived from a recent review of mutations that have been reported to 

cause PD, including well-known examples such as SNCA [45]. Of the 21 genes considered, 13 were DE 

in at least one major cell type and one case-control comparison (Figure 4a). For example, excitatory 

neurons, inhibitory neurons, astrocytes and oligodendrocytes all showed significant up-regulation of 
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SNCA in PD cases when compared with controls (fold change: 0.64 – 1.30; FDR: 2.6 x 10-7 – 7.2 x 10-

157, Figure 4a).  

There is robust genetic evidence linking increased SNCA dosage to PD pathogenesis, including (i) 

duplication and triplication events in the SNCA gene that underlie autosomal dominant forms of PD 

[47,48] and (ii) the association of PD risk loci with increased SNCA expression [49,50]. In view of this 

evidence, we further explored SNCA expression, finding that, while SNCA expression was up-

regulated in PD in all four cell types with a similar fold change (Figure 4a), SNCA expression in control 

individuals was highly variable across cell types (Supplementary Figure 9). This variability in control 

SNCA expression extended to (i) the proportion of nuclei expressing SNCA, with 61% of excitatory 

neurons expressing SNCA, as compared with < 22% across all other cell types, and (ii) the range of 

observed SNCA expression, which was wider in excitatory neurons compared with all other cell types 

(Supplementary Figure 9). These differences in cell-type-specific SNCA expression were particularly 

apparent between inhibitory and excitatory neurons, irrespective of disease group, with a higher 

proportion of excitatory neurons expressing SNCA (Figure 4b, Supplementary Figure 9). 

Furthermore, these differences were visible in a cell type across disease groups. Indeed, SNCA 

expression in excitatory neurons from the Lewy body dementias, as compared with the control 

group, was marked by (i) a decrease in the proportion of SNCA-expressing nuclei in PDD and (ii) a 

shift in the expression range of the top 10% highest-expressing nuclei to lower levels of SNCA 

expression (Figure 4c). This was not, however, the case for PD, which maintained a similar 

distribution of SNCA expression to the control group, with a slight shift in the expression range of the 

top 10% highest-expressing nuclei to higher levels of SNCA expression. The absence of a population 

of cells expressing higher levels of SNCA suggests that variability in SNCA expression within control 

ranges may contribute to the selective vulnerability of subpopulations of excitatory neurons to Lewy 

body pathology. 

PD-associated pathways were leveraged from a recent study identifying 46 pathways implicated in 

PD through pathway-specific polygenic risk score and rare variant burden analyses [46]. Based on 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.22.440800doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440800
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

case-control comparisons, we found that pathways that have been genetically associated with PD 

causation (such as terms related to synaptic transmission and vesicle-mediated transport) were 

dysregulated in all major cell types, with the exception of vascular cells, wherein only 3 pathways 

were implicated (Figure 4d, Supplementary Figure 10, Supplementary Table 7). We noted that the 

number of dysregulated pathways tended to increase with increasing clinical disease severity (i.e. PD 

< PDD < DLB) in excitatory neurons and glia, but not inhibitory neurons and vascular cells, supporting 

the notion of a disease spectrum. In general, fewer pathways were dysregulated in inhibitory 

neurons, with 12/46 pathways dysregulated in at least one case-control comparison, as compared 

with excitatory neurons, astrocytes and oligodendrocytes (23-27/46 pathways).  

Differentially expressed genes in glia enrich for heritability of PD age of onset and risk 
To identify cell types through which common genetic variants associated with PD risk and dementia 

may be acting, we used Hi-C-coupled Multi-marker Analysis of GenoMic Annotation (H-MAGMA) [51] 

and stratified LD score regression (sLDSC) [52]. As age of PD onset is correlated with clinical 

progression [53–55], and there is a significant negative genetic correlation between the GWAS for 

PD age of onset (AOO) and PD risk [56], we included both GWASs in our analysis. Further, given the 

potential cooccurrence of Alzheimer’s disease (AD) pathology in the Lewy body dementias, we used 

a recent late-onset AD GWAS [57].  

Genetic association analyses with H-MAGMA and sLDSC were run with two sets of annotations: (i) 

the top 10% most cell-type-specific genes from each disease group and (ii) cell-type-specific DE 

genes (|log2(fold change)| > log2(1.5), FDR < 0.05). The latter were tested on the basis that DE genes 

better capture gene expression signatures representative of a given disease state. Using the top 10% 

most cell-type-specific genes, we observed a significant association between AD genetic risk and 

genes highly expressed in microglia derived from control, PD and PDD groups (control, FDRLDSC = 

0.038; PD, FDRLDSC = 0.019; PDD, FDRLDSC = 0.035; Figure 5a; Supplementary Table 8), replicating 

previous literature [57–59]. Furthermore, we observed a significant association between genetic 

determinants of PD age of onset and genes highly expressed in OPCs derived from the DLB group 
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(FDRHMAGMA = 0.022) and PD genetic risk and genes highly expressed in oligodendrocytes (a cell type 

of increasing interest to the PD field [58,59]) derived from the control group (FDRHMAGMA = 0.013). 

Using cell-type-specific DE genes, we identified a significant association between genetic 

determinants of PD age of onset and genes found DE in astrocytes and OPCs from comparisons of PD 

with control (astrocytes, FDRLDSC = 0.0085; OPCs, FDRLDSC = 0.0085; Figure 5b). Splitting differentially 

expressed genes by their direction of effect showed that this signal was driven by up-regulated 

genes (Supplementary Figure 11). In addition, we identified a nominal association using both 

methods between PD genetic risk and genes found DE in oligodendrocytes from comparisons of PD 

with control (PHMAGMA = 0.011, PLDSC = 0.041; Figure 5b), which was driven by up-regulated genes 

(FDRHMAGMA = 0.013, PLDSC = 0.044; Supplementary Figure 11). Finally, we noted that genes up-

regulated in excitatory neurons from comparisons of PDD with control were significantly associated 

with PD genetic risk (FDRLDSC = 0.040; Supplementary Figure 11).  

Differential splicing distinguishes PDD from DLB and highlights the role of specific RNA-
binding proteins  
Given the limitations of single-nucleus RNA-sequencing in the detection of splicing, we applied 

Leafcutter to our bulk-tissue RNA-sequencing to assess differential splicing (DS) [60]. Leafcutter 

captures changes in local splicing events through construction of intron clusters, wherein 

overlapping introns are connected by the splice junction(s) they share. We identified a total of 4,656 

DS intron clusters in 3,751 genes (FDR < 0.05, |∆PSI| ≥ 0.1; Supplementary Table 9) across all 

pairwise comparisons, with the highest number identified in comparisons of DLB with control or PD 

(Supplementary Figure 12a). Notably, between 28-32% of DS events were partially annotated with 

respect to the reference transcriptome, with splicing events including novel donor or acceptor splice 

sites, novel exon skip and novel combination events (Supplementary Figure 13a-b). We were, 

however, able to detect these events in larger control cohorts suggesting that they represent 

biologically relevant splicing (Supplementary Note, Supplementary Figure 13c-d). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.22.440800doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440800
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

DS genes showed a significant enrichment in oligodendrocytes across comparisons of all disease 

groups with the control group (i.e. these genes had higher expression in oligodendrocytes than 

expected by chance), an observation that we replicated using the same external PD case-control 

bulk-tissue RNA-sequencing dataset used in replication of deconvolution results (Figure 6a, 

Supplementary Note, Supplementary Figure 15a, Supplementary Table 10). In contrast, 

enrichments in other cell types appeared to be disease specific (Figure 6a). For example, only genes 

found DS in comparisons of PD with control or DLB with PD enriched in astrocytes. Notably, as the 

only pairwise comparison, DS genes from DLB compared with PDD consistently enriched in all 

excitatory neuron annotations. Pathway enrichments were observed across 4/6 pairwise 

comparisons (no enrichments were observed in comparisons of PD or PDD with control; 

Supplementary Figure 12b, Supplementary Table 11). Pathways that were shared across 

comparisons of DLB with control, PD and PDD, included terms related to endosomes and enzyme 

activity (in particular, GTPase activity), mirroring terms highlighted both by replication analyses and 

by pathway analysis of single-nucleus DE genes (Figure 6b, Supplementary Note, Supplementary 

Figure 12b, Supplementary Figure 15b). 

Visualisation of pathway sharing across gene sets derived from the three analyses (bulk-tissue 

differential splicing, gene contributions to bulk-tissue gene expression PC1 and single-nucleus 

differential expression) demonstrated limited sharing between the two bulk-tissue analyses (the 

exceptions being “presynapse”, “transport vesicle”, “coated vesicle”, and “endosome membrane”; 

Figure 6b; Supplementary Figure 16). Notably, pathway analysis of DS genes from DLB compared 

with PDD implicated a much wider breadth of pathways compared with pathway analysis of single-

nucleus DE genes from the same comparison, and indeed, no pathways overlapped between the two 

analyses in this pairwise comparison (Supplementary Figure 16). This observation suggests that 

differences between PDD and DLB are not sufficiently captured by consideration of gene expression 

alone. 
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Patterns of pathway sharing between each of the bulk-tissue analyses and single-nucleus differential 

expression highlighted highly shared terms related to synaptic function, unfolded protein binding, 

and vesicle transport. Of note, RNA splicing was (i) jointly implicated by differential splicing and 

single-nucleus differential expression derived from excitatory neurons, oligodendrocytes, astrocytes 

and microglia in comparisons of DLB with control and (ii) separately implicated by single-nucleus 

differential expression derived from excitatory neurons and oligodendrocytes in comparisons of PDD 

with control (Figure 6b). Together with the abundant differential splicing observed, these results 

indicated that dysregulation of splicing factors may play a role in the pathogenesis of LBDs.   

To further investigate this observation, we used a catalogue of known RNA-binding protein (RBP) 

binding motifs from the ATtRACT database [61], and defined introns by their proximal intronic 

regions (the 50 nt of an exon and 500 nt of an intron flanking the 5’ and 3’ splice sites), which are an 

important region for splicing regulation [62]. Proximal intronic regions from DS introns were 

compared with non-DS introns across each pairwise comparison, identifying a total of 4 RBP binding 

motifs with a significant enrichment in DS proximal intronic regions from at least one pairwise 

comparison (Supplementary Table 12). Among these was the consensus sequence GGGGGGG in DS 

proximal intronic regions from PDD comparisons with control (Bonferroni-adjusted p-value = 

0.000601; Supplementary Table 12). This sequence is targeted by 17 RBPs from the ATtRACT 

database (including several members of the hnRNP family, such as HNRNPC and FUS), as well as RBPs 

not included in the database, such as RBM25 [63,64]. Notably, RBM25 was found DS across 

comparisons of PDD with control in our own dataset and the validation dataset (in-house, 

clu_26788, FDR-adjusted p-value = 0.00653; SRP058181, clu_12260, FDR-adjusted p-value = 0.0499; 

Supplementary Table 9). Furthermore, the consensus sequence GAAGGAA, targeted by HNRNPM, 

was enriched in DS proximal intronic regions from comparisons of DLB with control and PD 

(Bonferroni-adjusted p-values, control vs DLB = 0.0141, PD vs DLB = 0.00133). Finally, two consensus 

sequences, CUGGAUU and CUAACCCUAA targeted by SRSF9 and PCBP2, respectively, were enriched 

in DS proximal intronic regions from comparisons of DLB with PDD (Bonferroni-adjusted p-values, 
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CUGGAUU = 0.000958, CUAACCCUAA = 0.0174). Of note, SRp30c (encoded by SRSF9) has been 

shown to interact with hTRA2-β (encoded by TRA2B) [65,66], which targets the consensus sequence 

AAGAAGAAGAA, which we also found to be nominally enriched in DS proximal intronic regions from 

comparisons of DLB with PDD (Bonferroni-adjusted p-value = 0.0865).  

Overall, these results highlighted (i) the abundant levels of alternative splicing, particularly in PDD 

and DLB, with evidence to suggest that certain splicing factors may play a role in orchestrating these 

disease-related splicing changes and (ii) that differential splicing, particularly in comparisons of DLB 

with PDD, captures additional features of disease-related perturbations, which were not captured by 

single-nucleus differential gene expression.  
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Discussion 
Here, we applied paired bulk-tissue and single-nucleus RNA-sequencing to transcriptomically profile 

PD, PDD and DLB. Using this approach, we (i) found transcriptional differences relative to controls 

for multiple cell types across the LBDs, with PDD and DLB more severely affected than PD; (ii) 

observed high levels of alternative splicing, particularly in PDD and DLB; and (iii) identified splicing 

factors, with links to other dementia-related neurodegenerative diseases, that may coordinate these 

disease-related splicing changes. Together, these results highlight transcriptomic commonalities and 

distinctions between the LBDs, which can be used to inform our understanding of the relationship 

between these three clinical disorders.  

Existing transcriptomic studies of the LBDs have relied on bulk-tissue analyses and profiled each 

disease separately, limiting our understanding of the molecular landscape of these diseases 

individually and in relation to one another. In addition, few initiatives have addressed genome-wide 

assessment of splicing in this context, despite studies implicating alternative splicing as a disease 

mechanism in monogenic and sporadic forms of PD [50,67], and complex disease, in general [68]. 

Using multiple sequencing and analytic approaches, our analyses had the potential to identify 

differences between the LBDs attributable to changes in cell-type proportions, cell-type-specific 

gene expression and bulk-tissue splicing. While we found that increases in microglial and vascular 

cell-type proportions were a feature of LBDs, with the microglial increase mirroring results from an 

RNA-sequencing-based study of PD modelling cellular composition [69], these increases did not 

distinguish among the LBDs. In contrast, cell-type-specific differential gene expression and bulk-

tissue differential splicing distinguished PD from the Lewy body dementias, with PDD and DLB 

demonstrating a higher degree of commonality. These results suggest that irrespective of when 

dementia onset occurs in the disease process it gives rise to similar end-stage, post-mortem 

transcriptomic signatures in the anterior cingulate cortex.  

It is notable that bulk-tissue differential splicing (i) was a prominent feature of the LBDs, (ii) 

discriminated between PD and the Lewy body dementias and (iii) provided evidence of relationships 
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with other neurodegenerative diseases clinically associated with dementia. Enrichment analyses 

using DS genes associated with each of the three LBDs revealed shared cell-type associations, such 

as the differential splicing of genes highly expressed in oligodendrocytes, as well as disease-specific 

cell-type and pathway associations. Indeed, splicing analyses highlighted pathways relating to 

GTPase activity and regulation across several pairwise comparisons involving DLB, perhaps due to 

their role in a range of cellular processes that have been implicated in PD, such as clearance of Golgi-

derived vesicles through the autophagy-lysosome system, mitochondrial fission and fusion, and p38 

MAPK signalling [46,70]. RNA splicing was additionally associated with the Lewy body dementias, by 

both differential splicing and single-nucleus differential expression. To further investigate these 

observations, we assessed RBP binding motif enrichment to identify potential upstream regulators of 

splicing. All four significantly enriched RBP binding motifs were targeted by RBPs that have been 

implicated to varying degrees in neurodegenerative diseases, with HNRNPC implicated in AD [71], 

and FUS, HNRNPC, HNRNPM and PCBP2 associated with frontotemporal dementia (FTD) [72]. 

Furthermore, not only has PCBP2 (encoding hnRNP E2) been found to TDP-43 pathology in specific 

pathological subtypes of FTD [73], but SRSF9 together with TRA2B are implicated in tau splicing [66]. 

Given that both Lewy body dementias are characterised by co-pathology [20,21], including tau and 

TDP-43 pathology, we speculate whether dysregulation of splicing might be one of the drivers of this 

co-pathology. Further studies will be required to understand whether this is the case. 

Looking at cell-type-specific differential gene expression, the most prominent difference between 

the LBDs was the widespread down-regulation of genes and pathways in the Lewy body dementias, 

as compared with PD. In genetic association analyses, these genes did not enrich for genetic 

determinants of PD age of onset or PD risk, suggesting that this down-regulation is a consequence of 

the disease process, as opposed to a cause. In contrast, up-regulated genes (identified primarily in 

comparisons of PD with control) enriched for genetic determinants of PD age of onset and PD risk,  

highlighting known (OPCs/oligodendrocytes [58,59]) and new (astrocytes) cell types in PD 

pathogenesis. In fact, common to all three LBDs was the presence of transcriptional alterations 
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across multiple cell types. While DE genes were found to be largely cell-type-specific (i.e. DE in only 

one cell type), these genes converged on similar pathways, with GO terms found to be perturbed 

across multiple cell types in a given case-control comparison. Restricting to genes and pathways 

genetically associated with PD (which arguably are more likely to be causal), we similarly saw 

multiple cell-type involvement across all three LBDs, albeit with some suggestion of a hierarchy 

of increasing perturbation in excitatory neurons and glia (i.e. PD < PDD < DLB). Together, these 

results suggest the involvement of multiple cell types in LBD pathogenesis, and potentially indicate a 

common regulatory response across cell types in each disease. 

While we observed transcriptional alterations in multiple cell types, some cell types, such as 

excitatory neurons and oligodendrocytes, were more strongly impacted than others (most notably, 

inhibitory neurons), implying some degree of selective vulnerability. In support of this observation, 

expression of SNCA (encoding α-synuclein, the major component of Lewy bodies [74]) in excitatory 

neurons from the Lewy body dementias, as compared with the control group, was marked by a 

decrease in the proportion of SNCA-expressing nuclei in PDD and a shift in the expression range of 

the top 10% highest-expressing nuclei to lower values. While we recognise that this is an 

observational study, it is tempting to speculate that (i) variability in physiological levels of SNCA may 

impact on pathogenesis, an area of research that has received far less attention as compared with 

increased SNCA dosage [47–50], and (ii) that the absence of cells expressing high physiological levels 

of SNCA may contribute to the selective vulnerability of subpopulations of excitatory neurons to 

Lewy body pathology. 

There are several limitations to this work that emphasise key areas for future work; the most 

important are the study of one brain region in diseases that gradually affect multiple brain regions 

and the small size of the cohort used. Where possible, we attempted to validate results in larger 

independent control and case-control studies, but larger studies covering more brain regions will be 

needed in the continuing assessment of the LBDs.  
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Among technological limitations, a known issue in single-nucleus RNA-sequencing is the depletion of 

transcripts that preferentially enrich in the cytoplasmic compartment, such as transcripts that 

localise to neuronal dendrites [41] and signatures of microglial activation [75]. This limitation has 

implications both for differential gene expression, but also downstream deconvolution and indeed, 

the use of single-nucleus RNA-sequencing as a reference was found to decrease the performance of 

three deconvolution algorithms (including Scaden) on post-mortem human brain data [43]. This 

limitation stresses the importance of relating cell types defined by single-nucleus RNA-sequencing 

back to their spatial phenotypes, a process for which the emerging field of spatial transcriptomics 

will be instrumental in resolving [76]. Our results provide clear hypotheses to test using spatial 

transcriptomics both for cell-type-specific DE analysis and analysis of differential cell-type 

proportions.  

Among methodological limitations, we recognise that RBP binding motif enrichment oversimplifies 

the biology of RBPs. A common feature of RBPs is the presence of multiple RNA-binding domains, 

which are thought to interact with repeating motifs spaced apart on pre-mRNA transcripts [64,77]; 

this feature is not captured in the current analysis. Similarly, our analyses do not account for 

sequence context [64] (e.g. flanking nucleotide composition, repeated motifs, RNA structure) and 

thus cannot distinguish between RBPs that bind similar motifs. Developing tools that could address 

this in silico represents an opportunity to identify additional regulators of splicing in the LBDs. 

In summary, our comprehensive transcriptomic analysis of all three LBDs highlights the complex, 

multi-cell-type transcriptional response to Lewy body pathology and LBD co-pathologies. 

Furthermore, it identifies post-mortem molecular signatures in the anterior cingulate cortex that 

distinguish PD from the two Lewy body dementias, such as perturbation of RNA splicing, a 

mechanism linked to several dementia-related neurodegenerative diseases. Together, these findings 

have important implications for the design of RNA-targeted therapies for these diseases and 

highlight a potential molecular “window” of therapeutic opportunity between the initial onset of PD 

and subsequent development of Lewy body dementia.  
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Materials and methods 

Sample selection 
Individuals with clinical parkinsonism and/or Dementia with Lewy Bodies (DLB) and pathologically 

confirmed PD were obtained from the Parkinson’s UK Tissue Bank. Clinical assessment of individuals 

was carried out on clinical notes collated retrospectively using records from movement disorder 

neurologists, neurosurgeons, psychiatrists, geriatricians, PD nurse specialists and general 

practitioners. Clinical parkinsonism was defined using the current MDS task force criteria [78] and 

Lewy body dementia by the most recent clinical diagnostic criteria for PDD and DLB [15,16]. The one-

year rule, alongside positive clinical features for DLB (spontaneous parkinsonism, REM-sleep 

behaviour disorder, fluctuating cognition and complex visual hallucinations) were used to separate 

individuals with PDD and DLB. Pathologic assessment was performed on representative tissue 

sections from recommended brain regions in the Braak α -synuclein [79] and Braak tau [80] staging 

systems as part of the routine diagnostic process for the Parkinson’s UK Tissue Bank. A maximum 

Braak tau stage of 3 was used to filter out individuals with excessive Alzheimer’s pathology, thus 

ensuring that dementia in these individuals arose from α-synucleinopathy. PD without cognitive 

impairment was defined either by (i) a lack of evidence of positive cognitive features, such as 

memory impairment, executive dysfunction and visuo-spatial dysfunction in retrospective clinical 

case notes, or (ii) where positive cognitive features were reported present cognitive impairment was 

ruled out based on objective cognitive testing, or were proven to be as adverse effects of 

medication. Additionally, where possible, individuals were selected based on post-mortem interval 

less than 24 hours to ensure optimal tissue quality for nuclear extraction. In total, 7 PD, 7 PDD and 7 

DLB individuals were selected, matched where possible for demographic and pathologic factors, 

along with 7 age-matched non-neurological control individuals. Control individuals were defined by a 

lack of clinical neurological features and no definitive pathological diagnoses. To ensure consistency, 

a cut-off of Braak tau stage 3 was also used for control individuals. The severity of α-synuclein 

pathology in the anterior cingulate was graded semi-quantitatively from 0-3 based on the validated 

scoring system from Alafuzoff et al. [34] For each individual, a tissue block of cortical grey matter 
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from the anterior cingulate was sectioned at 80 µm thickness. Adjacent sections were subsequently 

used for bulk-tissue RNA isolation (2 sections per sample) or isolation of nuclei for single-nuclei RNA-

sequencing. Clinical, pathological and sample measures for the cohort are available in 

Supplementary Table 1. 

Isolation of nuclei  
Nuclei were isolated using buffers prepared as in Krishnaswami et al. [31], including nuclei isolation 

medium #1 (NIM1), nuclei isolation medium #2 (NIM2), Homogenisation Buffer (HB), 29% and 50% 

vol/vol iodixanol dilutions. Briefly, brain tissue sections were suspended in 800 µL HB and 

homogenised in a pre-cooled 2 mL dounce homogeniser, with five strokes of the loose pestle, 

followed by 10-15 strokes with the tight pestle. The homogenate was filtered through a BD Falcon 

tube with a cell strainer cap (35 µm) and centrifuged at 1000 g for 8 minutes. Thereafter, nuclei were 

subjected to an additional clean-up step (density gradient centrifugation), as detailed in 

Krishnaswami et al., albeit with centrifugation of the layered nuclei/29% iodixanol solution at 13,000 

g for 40 minutes at 4°C. The supernatant was carefully removed, and the nuclei pellet washed with 

PBS buffer (PBS + 1% BSA + 0.2 U/ml RNAseIn), filtered through a BD Falcon tube with a cell strainer 

cap, centrifuged at 500 g for 5 minutes at 4 °C and washed again. Nuclei were counted using a LUNA-

FL Dual Fluorescence Cell Counter (Logos Biosystems, L20001) using Acridine orange dye to stain 

nuclei.  

Nuclei encapsulation and single-nucleus RNA-sequencing data generation 
All samples were processed as per 10X Genomics Chromium Single Cell Reagent Kits Protocol, 

(chemistry: Single Cell 3' v2). Following manufacturer’s guidelines, the samples were processed to 

target 10,000 nuclei per sample. Briefly, we performed 8 cycles of cDNA amplification and 14 cycles 

of final indexing PCR. cDNA concentrations were measured using Qubit dsDNA HS Assay Kit 

(ThermoFisher, Q32851), and cDNA and library preparations were assessed using the Bioanalyzer 

High-Sensitivity DNA Kit (Agilent, 5067-4627). All samples were pooled to equimolar concentration 

and sequenced together across twenty-eight lanes on an Illumina Hi-Seq 4000.  
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Single-nucleus RNA-sequencing data processing  
Sequenced reads were demultiplexed and processed using Cell Ranger (v 3.0.2) and thereafter 

mapped to the GRCh38 human reference genome using gene annotations from Ensembl v93 [81,82]. 

Across each of the 28 sequenced samples, reads mapped to primary transcripts were summarised as 

counts. Droplets containing nuclei were distinguished from empty droplets (containing ambient 

RNA) using the EmptyDrops algorithm, as implemented in the R package DropletUtils (v 1.6.1) [83]. 

An ambient profile threshold of 300 UMI was used to determine the background RNA content of the 

empty droplets. Thereafter we removed nuclei with > 5% mitochondrial content and genes 

expressed in < 5 nuclei. Once low-quality nuclei had been filtered out, the dataset was normalised 

using the NormalizeData() function in Seurat (v 3.2.0) [84]. The default normalising method used 

by Seurat (version 3) is a global-scaling normalisation method, “LogNormalize”. The method 

normalises the gene expression values in each cell (n) by multiplying n by the total expression of the 

cell (a size factor of 10,000 for each cell is used by default) and log-transforming the result. After this 

normalisation step, we used Seurat’s pipeline to cluster the nuclei. First, distances were calculated 

between two nuclei with similar gene expression patterns using Euclidean algorithm and edges were 

drawn. Second, a Louvain algorithm was used to cluster the nuclei. Finally, clustering was carried out 

using the FindClusters() function using 30 principal components (PCs) and a resolution parameter 

of 2. The clustered cells were tested to remove barcodes with more than 1 nuclei encapsulated in 

the droplet using DoubletFinder (v 2.0.2), with the expected proportion of doublets set at ~7% [85].  

Cell-type identification  
The remaining nuclei were visualised using a non-linear dimensionality reduction algorithm known 

as Uniform Manifold Approximation and Projection (UMAP, v 0.1.10) [86]. We then used the 

Wilcoxon rank sum test (FDR < 0.05) implemented in the Seurat function FindAllMarkers() to 

identify genes differentially expressed in one cluster compared with all other clusters. Cell types 

were assigned by testing genes differential to a particular cell-type for enrichment (Fisher’s exact 

test) for cell-type markers from two human single-cell datasets [32,87]. Nuclei classified as 

endothelial cells and pericytes were merged into one class referred to as vascular cells. 
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A joint graph of 205,498 nuclei from across all individuals from each of their respective filtered 

datasets (referred to as the panel of datasets) was generated using the R package, Clustering On 

Network Of Samples (Conos, v 1.1.2) [38]. This was done to bring panel datasets into a common 

expression space accounting for technical differences between datasets, which could be used for 

downstream cell-type-specific differential expression analyses between disease groups. buildGraph() 

was used to construct a graph with parameters for nearest neighbour parameters set at k=30, 

k.self=5, in space of 30 CPCA (common principal component). embedGraph() function was used to 

partition cells into 7 clusters for the 7-broad cell-types. 

Bulk-tissue RNA-sequencing data generation 
RNA isolation was performed by the commercial company, BioXpedia A/S. Samples were lysed with 

QIAzol and RNA extracted using the RNeasy 96 Kit (Qiagen) with an optional on-membrane DNase 

treatment, as per manufacturer instructions. Samples were thereafter quantified by absorption on 

the QIAxpert (Qiagen) and their RNA integrity number (RIN) assessed using the Agilent 4200 

Tapestation (Agilent). RIN ranged from 1.6-7.8, with a median of 6.5. Only samples derived from 

tissue-sections with a RIN ≥ 4.2 were included in downstream RNA sequencing. As a result, only 24 

samples were sequenced (5 controls, 7 PD, 6 PDD and 6 DLB; Supplementary Table 1). 250 ng of 

total RNA was used as input for cDNA library construction with the TruSeq Stranded mRNA Sample 

Preparation Kit (Illumina), as per manufacturer instructions. To minimise read mis-assignment in 

downstream sample de-multiplexing, xGen UDI-UMI Adapters (Integrated DNA Technologies, Inc.) 

were used. Libraries were multiplexed on the NovaSeq S2 Flow Cell (the same 24 libraries were run 

across both lanes) for paired-end 100 bp sequencing on the NovaSeq 6000 Sequencing System 

(Illumina) to obtain an average read depth of ~180M paired-end reads per sample.   

Bulk-tissue RNA-sequencing data processing 
Fastp (v 0.20.0), a fast all-in-one FASTQ pre-processor, was used for adapter trimming, read filtering 

and base correction [88]. Fastp default settings were used for quality filtering and base correction. 

Processed reads were mapped to the GRCh38 human reference genome via STAR (v 2.7.0a) using 
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gene annotations from Ensembl v97 [81,82]. Multi-sample 2-pass mapping was used, wherein two 

rounds of mapping were performed to improve the sensitivity of novel splice junction detection. 

ENCODE standard options for long RNA-seq were used, with the exception of (i) --

outFilterMultimapNmax, which was set to 1, thus retaining only uniquely mapped reads, and (ii) --

alignSJDBoverhangMin, which was set to the STAR default of a minimum 3 bp overhang required 

for an annotated spliced alignment. Processed reads were also quantified with Salmon (v 0.14.1) 

using the mapping-based mode, with sequence-specific, fragment GC-content and positional bias 

correction options enabled (--seqBias, --gcBias, --posBias) [89]. A decoy-aware transcriptome 

file based on GRCh38 and Ensembl v97 was generated using MashMap2 (v 2.0) [90] and used as a 

reference together with the appropriate option for the sequencing library type (--libType ISF). 

The R package tximport (v 1.14.2) was used to transform Salmon transcript-level abundance 

estimates to gene-level abundance estimates [91]. Genes found to overlap ENCODE blacklist regions 

were removed from downstream analyses (Key resources) [92]. Pre-alignment quality control 

metrics were generated using Fastp and FastQC (v 0.11.8) [93], and post-alignment quality control 

metrics using RSeQC (v 2.6.4) [94]. Pipeline source code can be found in 

https://github.com/RHReynolds/RNAseqProcessing.  

Processing of PD case-control replication dataset 
Replication of several downstream bulk-tissue RNA-sequencing analyses were performed using a PD 

case-control bulk-tissue RNA-sequencing dataset provided by Dumitriu et al. [44] and processed for 

re-use by recount2 [95]. The dataset was accessed via recount2 (recount accession ID: SRP058181). 

The original study contained RNA-sequencing of prefrontal cortical samples (Brodmann Area 9) 

derived from 44 control individuals and 29 individuals with PD. Paired-end 101-bp sequencing was 

applied to each sample, with a mean depth of 83.3 million read pairs per sample. All samples were of 

a reasonably high quality with RIN values ranging from 5.8-9.1 and a median of 7.6. Accessed 

samples were checked for any mismatch between the reported sex of brain donors and the sex as 

determined by the expression of sex-specific genes (XIST and DDX3Y). As a result, one control sample 
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was removed (recount sample ID: SRR2015746; study sample ID: C0061); the sample was reported 

to be male, but notable expression of XIST was observed. Further, as sample demographics from the 

original study included whether PD patients were diagnosed with dementia, the 29 PD cases were 

split into those with and without dementia (PD, n = 18; PDD, n = 11). 

Deconvolution 
Cell-type proportions in bulk-tissue RNA-sequencing samples were estimated using Scaden (v 0.9.2), 

a deep-learning-based deconvolution algorithm [43]. Unlike linear-regression-based deconvolution 

algorithms, Scaden does not require cell-type-specific expression profiles. Instead, Scaden trains on 

artificial bulk-tissue RNA-sequencing samples simulated from tissue-specific single-cell RNA-

sequencing data, after which the model is used to predict cell-type proportions from real bulk-tissue 

RNA-sequencing samples. In this study, training data was generated separately for each individual 

with paired single-nucleus RNA- and bulk-tissue RNA-sequencing, allowing Scaden to capture cross-

subject heterogeneity. This yielded a total of 24,000 artificial bulk-tissue RNA-sequencing samples 

(1,000 samples per subject). Prior to generation of training data, single-nucleus RNA-sequencing 

counts per cell were normalised using the total counts over all genes, ensuring that every cell had 

the same total count after normalisation. Thereafter, artificial bulk-tissue RNA-sequencing samples 

were simulated using the Scaden bulk_simulation.py script, which sub-samples cells from input 

single-nucleus RNA-sequencing data and then aggregates expression across sub-sampled cells. Here, 

1,000 cells were used per simulated sample. Artificial bulk-tissue RNA-sequencing samples were 

combined and stored in a h5ad file, using the Scaden create_h5ad_file.py script. To ensure 

generated training data and bulk-tissue RNA-sequencing samples (in the form of counts normalised 

by library size) for prediction shared the same features (genes) and feature scale, both datasets were 

pre-processed with scaden process (the two datasets shared a total of 13,191 genes following 

processing). Following this, each of the three Scaden ensemble models was independently trained 

(scaden train) for 5,000 steps, as recommended by the developers to prevent overfitting, using the 
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default values for batch size and learning rate[43]. Finally, predictions for cell-type proportions were 

made with scaden predict.  

Replication of predicted cell-type proportions was performed using a second independent PD case-

control dataset accessed from recount2 (see Processing of PD case-control replication dataset). As 

the Scaden algorithm requires that training data and prediction data have a perfect overlap of 

features, it was necessary to re-perform pre-processing with scaden process (using library-

normalised counts from the replication dataset; the two datasets shared a total of 14,094 genes 

following processing) and to train a new model (using the same parameters as previously). In both 

datasets, significant differences in cell-type proportions between disease groups were a two-sided 

Wilcoxon rank sum test, with FDR-correction for multiple testing.  

Bulk-tissue RNA-sequencing covariate selection 
Sources of variation in bulk-tissue RNA-sequencing data were identified using principal component 

analysis (PCA) performed on gene-level expression filtered to include only genes with count > 0 in all 

samples (28,692 genes) and transformed with DESeq2’s vst(), which applies a variance stabilising 

transformation. RIN and age of death were significantly correlated with the first and second PC, 

respectively. Furthermore, cell-type proportions for excitatory and inhibitory neurons, microglia and 

astrocytes were significantly correlated with the first, third and fourth PC, respectively. Thus, the 

final model for differential expression and splicing (referred to as the “cell-type- and covariate-

corrected” model) consisted of the disease group and the top 4 PCs (which collectively explained 

52.6% of the total variance). 

To explore the effect of accounting for cell-type proportions, vst-transformed gene expression was 

batch-corrected using the final “cell-type- and covariate-corrected” model or a minimised 

“covariate-corrected” model consisting of disease group, age of death, RIN and sex. Samples were 

thereafter plotted by their first two principal components to determine how well disease groups 

separated (Supplementary Figure 6). Batch correction was performed using the 

removeBatchEffect() function from the R package, limma (v 3.42.2) [96]. Prior to correction, 
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covariates to be used in the model were scaled to ensure that variables that are measured on 

different scales (e.g. age of death vs RIN) are comparable. 

As in the original study [44], the final model for the replication dataset (see Processing of PD case-

control replication dataset) included disease group and the covariates age of death, RIN and post-

mortem interval (PMI). In addition, cell-type proportions for all cell types were included in the final 

model, as these were significantly correlated with several of the top 8 PCs. 

Differential gene expression 

Single-nucleus RNA-sequencing 
We used Model-based Analysis of Single-cell Transcriptomics (MAST, v 1.12.0), a method specifically 

designed to carry out differential expression analysis on our single-nucleus RNA-sequencing data 

[97]. MAST is a two-part, generalized linear model. The first part of the model uses logistic 

regression to model whether a gene is expressed i.e. the discrete rate of expression of each gene 

over the background of other transcripts. The second part of the model models the level of 

expression (conditional on whether a gene is expressed in a cell) using a Gaussian linear model. 

Information from both parts of the model are combined to model changes in gene expression levels 

and with control for multiple sources of variation such as cell-cell variation. MAST also models the 

cellular detection rate, which is defined as the fraction of genes that are detectably expressed in 

each cell. The cellular detection rate acts as a substitution for both technical and biological factors 

such as dropout, cell volume and other extrinsic factors that could influence gene expression. 

Controlling for the cellular detection rate improves the sensitivity (true positive rate) and specificity 

(true negative rate) of MAST in the presence of confounding between the cellular detection rate and 

true biological signals.  

To perform differential expression, cell-type-specific nuclei from each of the 28 filtered sample count 

matrices (see Single-nucleus RNA-sequencing data processing) were merged to create 7 cell-type 

count matrices. Genes that were expressed in ≤ 3 nuclei were removed from the analysis. Following 

this, differential expression analysis was performed separately for each cell type, across all pairwise 
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combinations of the disease groups (n = 6). A likelihood ratio test was used, with age of death, post-

mortem interval (PMI), and sex included as covariates. Genes with FDR < 0.05 and absolute fold-

change > 1.5 were considered significant.  

Bulk-tissue RNA-sequencing 
Bulk-tissue differential gene expression was assessed using the DESeq2 R package (v 1.26.0) and 

gene-level expression filtered to include only genes with count > 0 in all samples (28,692 genes) [98]. 

With one exception (the maximum number of iterations allowed for convergence, maxit = 1000), 

default parameters were used, including the default Wald test of significance. Differentially 

expressed genes were identified in a pairwise manner, controlling for covariates identified using 

gene-level expression (see Bulk-tissue RNA-sequencing covariate selection). Multiple testing was 

performed by FDR-correction, with a cut-off of FDR < 0.05 applied for significance. 

Differential splicing analysis 
Differential splicing was assessed using Leafcutter (v 0.2.8), which detects splicing variation using 

sequencing reads with a gapped alignment to the genome (here, termed junction reads) [60]. 

Junction reads, which are presumed to represent intron excision events, are used to quantify intron 

usage across samples without any reliance on existing reference annotation. Importantly, Leafcutter 

does not estimate isoform abundance or exon inclusion levels, but rather captures changes in local 

splicing events through construction of intron clusters, wherein overlapping introns are connected 

by the splice junction(s) they share. As input, splice junctions outputted by STAR (SJ.out.tab) were 

first filtered to remove any regions that overlap ENCODE blacklist regions (Key resources) [92] and 

thereafter converted to the .junc files used by Leafcutter for intron clustering. The conversion was 

performed using custom R code (convert_STAR_SJ_to_junc() in 

https://github.com/RHReynolds/RNAseqProcessing). Intron clusters were defined using Leafcutter’s 

leafcutter_cluster.py with thresholds ensuring that (i) introns supported by < 30 junction reads 

across all 24 samples or < 0.1% of the total number of junction read counts for the entire cluster and 

(ii) introns of more than 1Mb were removed. This yielded a total of 43,544 clusters encompassing 
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152,298 introns that were used for further analysis. Differentially spliced (DS) clusters were 

identified in a pairwise manner, controlling for covariates identified using gene-level expression (see 

Bulk-tissue RNA-sequencing covariate selection), and annotated to genes using exon files generated 

from GRch38 Ensembl v97 (with the Leafcutter helper script gtf_to_exons.R). As per Leafcutter 

default filters, only introns detected in ≥ 5 samples were tested and an intron cluster was only tested 

if detected in ≥ 3 individuals in each comparison group with an overall coverage of ≥ 20 junction 

reads. P-values were FDR-corrected for multiple testing and an intron cluster and its overlapping 

gene were considered differentially spliced if (i) FDR < 0.05 and (ii) the intron cluster contained at 

least one intron with an absolute delta percent-spliced-in value (|∆PSI|) ≥ 0.1. The latter filter was 

applied to improve the specificity of Leafcutter [99]. 

Annotation of differential splicing events 
Introns within intron clusters were annotated using annotate_junc_ref()from the R package 

Detecting Aberrant Splicing Events from RNA-sequencing (dasper, v 1.1.4) [100], which categorises 

junctions based on (i) whether the junction is present within the entire set of annotated introns or 

(ii) whether both, one of, or neither the donor and acceptor splice site precisely overlap the 

boundary of a known exon. For both checks, Ensembl v97 was used. When defining and clustering 

introns, leafcutter_cluster.py adds 1 bp to the end of a junction read; thus, to ensure optimal 

mapping to reference annotation, 1 bp was removed from all intron ends prior to use of 

annotate_junc_ref() using custom code (convert_leafcutter.R from 

https://github.com/RHReynolds/LBD-seq-bulk-analyses). Junctions (and the introns they represent) 

were then classified into one of the following categories: annotated, novel exon skip, novel 

combination, novel acceptor, novel donor, ambiguous gene and unannotated (“none”) 

(Supplementary Figure 13). Annotated junctions are those that match the boundaries of an existing 

intron. Unannotated junctions have neither end overlapping a known exon. Novel acceptors and 

novel donors are junctions where one end (acceptor or donor) matches the boundary of a known 

exon. Novel exon skip and novel combination junctions have both ends overlapping known exon 
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boundaries, which are not part of the set of annotated introns. They are distinguished by whether 

their start or end overlaps exons derived from the same transcript. That is, for an event to be a novel 

exon skip, both the start and end must overlap an exon contained in the same transcript, whereas to 

be a novel combination, the start and end overlap exons are from different transcripts. Junctions 

that mapped to more than one gene (“ambiguous gene”) were not considered in downstream 

analyses. 

Gene set enrichment 

Functional enrichment of cell-type-specific differentially expressed genes 
Functional term enrichment analysis for cell-type-specific differentially expressed genes from each 

pairwise comparison was performed using the overrepresentation analysis module from the R 

package implementation of WEB-based Gene SeT AnaLysis Toolkit (WebGestaltR, v 0.4.4) [101]. Two 

separate analyses were performed using (i) only non-redundant Gene Ontology (GO) terms (which 

are generated by selecting the most general terms in each branch of the GO directed acyclic graph 

structure from all terms with 20-500 genes) and (ii) 46 biological pathways associated with PD risk in 

a large-scale pathway-specific polygenic risk analysis [46]. For both analyses, default values for 

WebGestalt parameters were used, which include a minimum and maximum overlap of 10 and 500, 

respectively. FDR-correction for multiple testing was performed, and significant pathways were 

those with FDR < 0.05. 

Functional enrichment of differentially spliced genes 
Gene set enrichment for GO terms was performed using enrichGO() and clusterCompare() from 

clusterProfiler (v 3.14.3), which permit GO enrichment analysis (based on a hypergeometric 

distribution) and comparison across multiple gene lists [102]. Two separate analyses were run using 

(i) all differentially spliced genes (FDR < 0.05, |∆PSI| >= 0.1) across each pairwise comparison in the 

discovery dataset and (ii) genes overlapping validated intron clusters with ≥ 1 intron that shared the 

same direction of effect. In both analyses, default parameters were used; these included FDR-

correction for multiple testing and filtering for terms with FDR < 0.05.  
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Functional enrichment of genes associated with bulk-tissue gene expression principal components 
Genes contributing to PC1, following batch correction of cell-type proportions (as described in Bulk-

tissue RNA-sequencing covariate selection), were extracted using get_pva_var() from the R 

package, factoextra (v 1.0.7). The top 100 genes contributing to gene-expression-derived PC1 were 

used for gene set enrichment with enrichGO() from clusterProfiler [102]. Default parameters were 

used, which included FDR-correction for multiple testing and filtering for terms with FDR < 0.05. 

Visualisation of GO term overlaps between analyses 
Overlapping GO-derived pathway enrichments from each of the three analyses (i.e. single-nucleus 

differential expression, bulk-tissue differential splicing, and gene expression contributions to bulk-

tissue PC1) were visualised using the ComplexHeatmap R package (v 2.7.7) [103]. Pathways from all 

three analyses were filtered to include only those that were shared across more than one type of 

analysis. Pathways were encoded by a binary 1 and 0 for present and absent, respectively, 

permitting clustering of gene sets by Pearson correlation. Gene sets derived from differential splicing 

were collapsed across our own dataset and the validation dataset, resulting in one gene set per 

pairwise comparison. Likewise, gene sets derived from up- and down-regulated single-nucleus DE 

gene sets were collapsed across cell types, resulting in 7 gene sets per pairwise comparison.  

Reduction of GO terms using semantic similarity 
To reduce redundancy across GO-derived pathway enrichment analyses derived from various 

analyses (i.e. single-nucleus differential expression, bulk-tissue differential splicing, genes 

contributing to bulk-tissue PC1), two steps were taken. First, GO terms were filtered to exclude 

terms with ≥ 20 genes or ≤ 2000 genes. Second, semantic similarity of all enriched GO terms was 

calculated using mgoSim() from the GOSemSim R package (v 2.17.1) [104] and a graph-based 

measure of semantic similarity (measure = “Wang”) [105]. Thereafter, reduceSimMatrix() from 

the rrvgo R package (v 1.1.4) was used to reduce terms [106]. This function reduces terms by 

generating a distance matrix from the semantic similarity scores, which is hierarchically clustered 

using complete linkage (a “bottom-up” clustering approach). Both steps were combined into the 

function go_reduce(), available at: https://github.com/RHReynolds/rutils. The hierarchical tree was 
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then cut at a threshold of 0.9 (leading to fewer groups), and the term with the highest semantic 

similarity score was used to represent each group of terms. This reduction was performed separately 

for each of the three analyses. 

Cell-type enrichment of differentially spliced genes 
Expression-weighted cell-type enrichment (v 0.99.2) was used to determine whether differentially 

spliced genes demonstrate higher expression in certain cell types than would be expected by chance 

[107]. EWCE requires two inputs: a gene list and gene cell-type specificity values derived from single-

cell/nucleus data (here, termed a specificity matrix). Two sets of gene lists were run. The first set of 

gene lists included the top 100 differentially spliced genes (FDR < 0.05, |∆PSI| >= 0.1, ranked by p-

value) across each pairwise comparison in the discovery dataset. In the case where a gene had 

multiple significant intron clusters, the most significant cluster with the highest |∆PSI| was used for 

ranking. The second set of gene lists included genes overlapping validated intron clusters with ≥ 1 

intron that shared the same direction of effect. Both sets of gene lists were run together with gene 

cell-type specificity values separately derived from each disease group (i.e. Control, PD, PDD and 

DLB); specificity matrices were generated for cell types in each disease group using the 

generate.cell.data() function of the EWCE package. For each combination of gene list and 

specificity matrix, 100,000 bootstrap replicates were used. Transcript length and GC-content biases 

were controlled by selecting bootstrap replicates with comparable properties to the target gene 

lists. Data are displayed as standard deviations from the mean, which indicate the distance of the 

mean expression of the target gene list from the mean expression of the bootstrap replicates. 

RNA-binding protein binding motif analysis 

Generating sequences 
Two sets of sequences were generated per pairwise comparison. These sets included all 

differentially spliced introns (FDR < 0.05, |∆PSI|) and non-differentially spliced introns (FDR > 0.05), 

as defined by their 5’ and 3’ proximal intronic regions (500 nucleotides of proximal intron and 50 

nucleotides of exon flanking the 5’ and 3’ splice sites). A 5’ or 3’ splice site could be associated with 

more than one intron (e.g. in the case of two introns with the same 5’ splice site, but varying 3’ 
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splice sites), and thus could be associated with more than one |∆PSI| value. In these cases, the 

highest |∆PSI| was assigned to the proximal intronic region. 

Enrichment of RBP binding motifs 
The position weight matrices (PWMs) of RBP binding motifs in humans were collected from the 

ATtRACT database (v 0.99β) [61]. Motifs < 7 nucleotides in length and with a quality score of < 1 

were removed to reduce false positives in the motif matches (quality score estimates the binding 

affinity between RBPs and binding sites). Furthermore, to remove redundancy between multiple 

motifs for one RBP, the longest available motif was selected. Finally, RBPs that had a median TPM of 

0 in GTEx (v 8) anterior cingulate cortex samples were removed (e.g. RBMY1A1) [108]. This resulted 

in 82 unique PWMs, which were used to identify enrichment of RBP binding motifs. Analysis of Motif 

Enrichment (AME, v 5.1.1) [109] was used with default parameters (--scoring avg) to compare 

enrichment of RBP binding motifs between differentially spliced and non-differentially spliced 

proximal intronic regions. RBP binding motifs with an enrichment-optimised and Bonferroni-

adjusted p < 0.05 were considered to be significantly over-represented in differentially spliced 

proximal intronic regions compared with non-differentially proximal intronic regions. 

Integration with GWAS 
To test for enrichment of genetic association of a gene set to a trait we employed two orthogonal 

methods, Hi-C-coupled Multi-marker Analysis of GenoMic Annotation (H-MAGMA) [51] and stratified 

LD score regression (sLDSC) [52]. Both methods were run with two sets of annotations: (i) the top 

10% most cell-type-specific genes, as determined using specificity values derived from EWCE (see 

Cell-type enrichment of differentially spliced genes) and (ii) cell-type-specific differentially 

expressed genes (FDR < 0.05, |log2(fold change)| > log2(1.5)). These annotations were run with 3 

genome-wide association studies (GWASs), including Alzheimer’s disease (AD), Parkinson’s disease 

(PD) and Parkinson’s disease Age of Onset (PD AOO) (Table 1) [27,56,57] In both analyses, p-values 

were FDR-corrected for the number of cell types tested. 
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H-MAGMA 
Hi-C-coupled MAGMA (H-MAGMA) (v 1.08b of MAGMA[110]) was used to carry out gene-set 

enrichment analysis using three GWAS summary statistics. Gencode v26 (Key resources) was used to 

assign exonic SNPs and promoter SNPs, which is defined as 2kb upstream of the transcription start 

site (TSS), to their target genes based on their genomic location. Chromatin interactions to exons 

and promoters generated from Hi-C performed on adult dorsolateral prefrontal cortex, were used to 

assign intergenic and intronic SNPs to their cognate genes [51]. Gene-level association statistics were 

computed using window coordinates of 10kb downstream and 35kb upstream.  

sLDSC 
Stratified LDSC (v 1.0.1) was used to test whether cell-type specific DE genes or the top 10% most 

cell-type-specific genes contributed to the common SNP heritability of AD, PD or PD AOO [111,112]. 

To ensure gene lists were sufficiently large, only gene lists with more than 20 genes were run. Gene 

coordinates (Ensembl v97, GRCh38) were extended by 100kb upstream and downstream of their 

transcription start and end site, in order to capture regulatory elements that might contribute to 

disease heritability [112]. All annotations were constructed in a binary format (1 if the SNP was 

present within the annotation and 0 if not), using all SNPs with a minor allele frequency > 5%. 

Annotations were then added individually to the baseline model of 53 annotations provided by 

Finucane et al. (v 1.2, GRCh38), comprising genome-wide annotations reflecting genetic architecture. 

As annotations and the baseline model were mapped to GRCh38, all GWAS summary statistics were 

converted from GRCh37 to GRCh38 using the R implementation of the LiftOver tool, which is 

available from the rtracklayer package (v 1.46.0) [113]. HapMap Project Phase 3 (HapMap3) SNPs  

and 1000 Genomes Project Phase 3 European population SNPs were used for the regression and LD 

reference panels, respectively [114,115]. The MHC region (chr6: 25000000 – 34000000, GRCh38) 

was excluded from all analyses owing to the complex and long-range LD patterns in this region. For 

all stratified LDSC analyses, we report a one-tailed p-value (coefficient p-value) based on the 

coefficient z-score outputted by stratified LDSC. A one-tailed test was used as we were only 
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interested in annotation categories with a significantly positive contribution to trait heritability, 

conditional upon the baseline model.  

Key resources 

Resource Source/Reference Identifier/URL 

Biological Samples   

Frozen human anterior cingulate cortex samples Parkinson’s UK Tissue 
Bank 

 

Critical Commercial Assays 

Chromium Single Cell 3’ Gene Expression Kit, v2 10x Genomics PN-120237 
Qubit dsDNA HS Assay Kit ThermoFisher Q32851 
Bioanalyzer High-Sensitivity DNA Kit Agilent 5067-4627 
QIAzol Qiagen 79306 

RNeasy 96 Kit Qiagen 74181 

TruSeq Stranded mRNA Library Prep Kit Illumina 20020594 

xGen UDI-UMI Adapters, 1-96 Integrated DNA 
Technologies 

10005903 

Deposited Data 

ATtRACT database (v 0.99β)  Giudice et al., 2016 
[61] 

https://attract.cnic.e
s/index  

Cell-type marker genes  
 

Wang et al., 2018 [40] http://resource.psyc
hencode.org/  
(DER-
21_Single_cell_mark
ergenes_UMI.xlsx) 

ENCODE blacklist regions (v 2) Amemiya et al., 2019 
[92] 

https://github.com/
Boyle-
Lab/Blacklist/blob/m
aster/lists/hg38-
blacklist.v2.bed.gz  

Ensembl GRCh38 Ensembl v97 Ensembl genome 
browser 

ftp://ftp.ensembl.or
g/pub/release-
97/gtf/homo_sapien
s/Homo_sapiens.GR
Ch38.97.gtf.gz  

H-MAGMA: Hi-C gene-SNP pairs for adult dorsolateral 
prefrontal cortex  

Sey et al., 2020 [51] https://github.com/t
hewonlab/H-
MAGMA/blob/mast
er/Input_Files/Adult
_brain.genes.annot  

Gencode v26  https://www.genco
degenes.org/human
/release_26lift37.ht
ml 

GTEx portal (v 8) GTEx Consortium, 
2015 [108] 

https://www.gtexpo
rtal.org/  
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LDSC baseline annotations (v 1.2) Finucane et al., 2015 
[52] 

https://data.broadin
stitute.org/alkesgro
up/LDSCORE/ 

PD-associated genes Blauwendraat et al., 
2020 [45] 

 

PD- associated pathways Bandres-Ciga et al., 
2020 [46] 

https://pdgenetics.s
hinyapps.io/pathwa
ysbrowser/  

Recount2 Collado-Torres et al., 
2015 [95] 

https://jhubiostatisti
cs.shinyapps.io/reco
unt/  

Software and Algorithms 

Analysis of Motif Enrichment (AME, v 5.1.1) McLeay et al., 2010 
[109] 

http://meme-
suite.org/doc/ame.h
tml?man_type=web    

Bulk-tissue RNA-sequencing pipeline  https://github.com/
RHReynolds/RNAseq
Processing 

Cell Ranger (v 3.0.2) 10x Genomics https://support.10xg
enomics.com/single-
cell-gene-
expression/software
/pipelines/latest/ins
tallation    

clusterProfiler (v 3.14.3) Yu et al., 2012 [102] https://github.com/
YuLab-
SMU/clusterProfiler  

Conos (v 1.1.2) Barkas et al., 2019 
[38] 

https://github.com/
kharchenkolab/cono
s  

ComplexHeatmap (v 2.7.7) Gu et al., 2016 [103] https://github.com/j
okergoo/ComplexHe
atmap  

DESeq2 (v 1.26.0) Love et al., 2014 [98]  https://github.com/
mikelove/DESeq2  

Detecting Aberrant Splicing Events from RNA-
sequencing (dasper, v 1.1.4) 

Zhang et al., 2021 
[100] 

https://github.com/
dzhang32/dasper  

DoubletFinder (v 2.0.2) McGinnis et al., 2019 
[85] 

https://github.com/
chris-mcginnis-
ucsf/DoubletFinder    

DropletUtils (v 1.6.1) Lun et al., 2019 [83] https://github.com/
MarioniLab/Droplet
Utils  

EWCE (v 0.99.2) Skene et al., 2016 
[107] 

https://github.com/
NathanSkene/EWCE 

Factoextra (v 1.0.7)  https://github.com/
kassambara/factoex
tra  

Fastp (v 0.20.0) Chen et al., 2018 [88] https://github.com/
OpenGene/fastp  
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FastQC (v 0.11.8) Andrews et al., 2010 
[93] 

http://www.bioinfor
matics.babraham.ac.
uk/projects/fastqc/  

GoSemSim (v 2.17.0) Yu et al., 2010 [104] https://github.com/
YuLab-
SMU/GOSemSim  

ggplot2 (v 3.3.2)  https://ggplot2.tidyv
erse.org/  

LDSC (v 1.0.1) Bulik-Sullivan et al., 
2015 [116] 

https://github.com/
bulik/ldsc 

Leafcutter (v 0.2.8) Li et al., 2018 [60] https://github.com/
davidaknowles/leafc
utter/  

Limma (v 3.42.2) Ritchie et al., 2015 
[96] 

https://github.com/
cran/limma  

MAGMA (v 1.0.8b) de Leeuw et al., 2015 
[110] 

https://ctg.cncr.nl/s
oftware/magma  

MashMap2 (v 2.0) Jain et al., 2018 [90] https://github.com/
marbl/MashMap  

MAST (v 1.12.0) Finak et al., 2015 [97] https://github.com/
RGLab/MAST/  

recount (v 1.11.8) Collado-Torres et al., 
2015 [95] 

https://github.com/l
eekgroup/recount  

rrvgo (v 1.1.4) Sayols et al., 2020 
[106] 

https://ssayols.githu
b.io/rrvgo/  

RSeQC (v 2.6.4) Wang et al., 2012 [94] http://rseqc.sourcef
orge.net/  

rtracklayer (v 1.46.0) Lawrence et al., 2009 
[113] 

https://github.com/l
awremi/rtracklayer  

rutils (v 0.99.2)  https://github.com/
RHReynolds/rutils  

Salmon (v 0.14.1) Patro et al., 2017 [89] https://salmon.read
thedocs.io/en/latest
/index.html  

Seurat (v 3.2.0) Stuart et al. 2019 [84] https://github.com/
satijalab/seurat/  

Scaden (v 0.9.2) Menden et al., 2020 
[43] 

https://github.com/
KevinMenden/scade
n  

STAR (v 2.7.0a) Dobin et al., 2013 [81] https://github.com/
alexdobin/STAR  

Tximport (v 1.14.2) Soneson et al., 2015 
[91] 

https://github.com/
mikelove/tximport  

UMAP (v 0.1.10) McInnes et al., 2018 
[86] 

https://github.com/l
mcinnes/umap  

WebGestaltR (v 0.4.4) Liao et al. [101] https://github.com/
bzhanglab/WebGest
altR  
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Figures 

 

Figure 1. Overview of approach.  

In this study, anterior cingulate cortex was sampled from a cohort of 28 individuals divided equally between 
four groups: non-neurological controls; Parkinson’s disease without cognitive impairment (PD); Parkinson’s 
disease with dementia (PDD); and dementia with Lewy Bodies (DLB) (Supplementary Figure 1, Supplementary 
Table 1). For each individual, a frozen tissue block derived from the anterior cingulate was sectioned, with 
adjacent sections used for single-nucleus or bulk-tissue RNA-sequencing (Error! Reference source not found., 
Supplementary Figure 3, Supplementary Table 1). Following data pre-processing, single-nucleus RNA-
sequencing data was used to generate cell-type-specific differential gene expression profiles and to 
deconvolute bulk-tissue RNA-sequencing data. Bulk-tissue RNA-sequencing was used in differential gene 
expression and splicing analyses, with cell-type proportions included as model covariates in both analyses. 
Results from single-nucleus RNA-sequencing and bulk-tissue RNA-sequencing were used in downstream gene 
set enrichment analyses to identify disease-relevant pathways. Furthermore, common risk variants for 
Alzheimer’s disease (AD), PD risk and PD age of onset (PD AOO) were mapped to cell-type-specific expression 
profiles and cell-type-specific differential expression.  
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Figure 2. Cellular diversity of the anterior cingulate cortex across disease states.  

(a) Joint graph of all nuclei derived from all individuals visualised using UMAP embedding. Nuclei are coloured 
by cell type. (b) Cell-type proportions derived from Scaden deconvolution (available in Supplementary Table 
2). Cell-type proportions (upper panel) are grouped by cell type and disease status and displayed relative to 
the median of controls (within a cell type). Significant differences in cell-type proportions between disease 
groups (lower panel) were determined using the Wilcoxon rank sum test, with FDR correction for multiple 
testing. Non-significant results (FDR > 0.1) were coloured white; **, FDR < 0.05; *, FDR <= 0.1.   
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Figure 3. Cell-type-specific gene expression changes and pathway enrichments across disease states.  

(a) Number of differentially expressed (DE) genes across each cell type in pairwise comparisons of disease 
groups to the control group (|log2(fold change)| > log2(1.5), FDR < 0.05). The intensity of the grey colour is 
proportional to the number of DE genes. (b) Binary plot indicating with bars whether a gene (column) is down-
regulated (upper panel) or up-regulated (lower panel) in a given cell type (rows). Number of DE genes in each 
comparison indicated on the x-axis. (c) Reduced GO terms associated with cell-type-specific down- and up-
regulated DE genes identified across pairwise comparisons of disease groups with the control group. Due to 
the magnitude of pathway enrichments, original GO term enrichments (referred to as “child terms”) were 
grouped using semantic similarity. The number of enriched child GO terms assigned to each reduced parent 
term across all cell types and comparisons in the panel is indicated in parentheses on the y-axis. Reduced GO 
terms were ordered on the y-axis by the number of cell types and comparisons in which the term was found 
enriched. The fill of each tile indicates the -log10(FDR) of the most significant child term associated with the 
parent term within that comparison/cell type. Non-significant results (FDR > 0.05) were coloured white. 
Results for pairwise comparisons between disease groups are displayed in Supplementary Figure 7. All cell-

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.22.440800doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440800
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

type-specific DE genes and pathway enrichments are available in Supplementary Table 5 and Supplementary 
Table 6, respectively.  
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Figure 4. Cell-type-specific alterations of PD-associated genes and pathways. 

(a) Differential expression of PD-associated genes (associated by mutations reported to cause PD [45]) across 
cell types and pairwise comparisons of disease groups with the control group. Fill of the tile indicates the 
log2(fold change), with non-significant results (FDR > 0.05) coloured grey. (b) UMAP plot of excitatory and 
inhibitory neurons (upper panel, 102,293 nuclei), with SNCA expression levels (lower panel). (c) Ridgeline plot 
of distribution of SNCA expression levels in excitatory neurons across disease groups. Distributions have been 
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split into 3 cumulative quantiles, highlighting where 0-50%, 50-90% and 90-100% of the nuclei in each disease 
group lie. (d) Number of enriched pathways (FDR < 0.05) identified using cell-type-specific down- and up-
regulated DE genes from each pairwise comparison together with 46 PD-associated pathways (associated in a 
large-scale polygenic risk score-based assessment of 2,199 gene sets [46]).   
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Figure 5. Genetic associations with top 10% most cell-type-specific genes and cell-type-specific differentially 
expressed genes.  

Genetic associations using (a) the top 10% most cell-type-specific genes in each disease group and (b) cell-
type-specific differentially expressed genes in disease comparisons with controls. Two methods were used to 
identify associations: Hi-C-coupled MAGMA (H-MAGMA) and stratified LD score regression (sLDSC). The 
heatmap is coloured by degree of significance with both or either method, with * and ** indicating nominal 
significance (unadjusted p-value < 0.05) or significance (FDR-corrected p-value < 0.05; corrected for number of 
cell types tested). Results available in Supplementary Table 8. AD, Alzheimer’s disease; PD, Parkinson’s 
disease.    
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Figure 6. Cell-type enrichments of differentially spliced genes and pathway sharing across analyses.  

(a) Enrichment of the top 100 DS genes (FDR < 0.05, |∆PSI| >= 0.1, with rank determined by |∆PSI|) in cell 
types derived from each disease group. Enrichments were determined using EWCE. The x-axis denotes the 
disease status of the cell type in question, while the y-axis denotes the groups compared in the differential 
splicing analysis. Pairwise comparisons have been grouped by whether diseased individuals are compared with 
control individuals (Ref: control) or other diseased individuals (Ref: disease). Tiles were coloured by standard 
deviations from the mean, which indicate the distance (in standard deviations) of the target list from the mean 
of the bootstrapped samples. Multiple test correction was performed across EWCE results using FDR. Non-
significant results (FDR > 0.05) were coloured white. ***, FDR < 0.001; **, FDR < 0.01; *, FDR < 0.05. All results 
available in Supplementary Table 10. (b) Clustering of shared pathway enrichments using genes identified 
across the three main analyses (represented by grey bar entitled, “Analysis”). These included: bulk-tissue 
differential splicing (“Bulk DS”, Supplementary Figure 12); gene contributions to bulk-tissue gene expression 
PC1 (“Bulk PC”, Supplementary Figure 6); and single-nucleus differential expression (“snRNA DEG”, Figure 3). 
Pathways (in rows) from all three analyses were filtered to include only those that appear across more than 
one type of analysis. Pathways are ordered from highest to lowest by the number of gene sets in which they 
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are enriched (as displayed in the bar plot on the right-hand side). Gene sets (in columns) are clustered using 
hierarchical clustering on the Pearson correlation between gene sets (pathways were encoded with a binary 1 
for “Present” or 0 for “Absent”, represented on the plot by black and white, respectively). Gene sets derived 
from differential splicing (Bulk DS) were collapsed across our own dataset and the validation dataset, resulting 
in one gene set (column) per pairwise comparison. Likewise, gene sets derived from up- and down-regulated 
single-nucleus DE gene sets were collapsed across cell types (represented by the coloured bar entitled, “Cell 
type”), such that each cell type was represented by a single column. Pathway overlaps using pairwise 
comparisons between disease groups are displayed in Supplementary Figure 16.  
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Tables 
Table 1. Summary of GWAS datasets. AD, Alzheimer’s disease; PD, Parkinson’s disease. 

Disease First author, Year N cases N controls PMID Reference 

AD Jansen, 2019 71,880 383,378 30617256 [57] 

PD – 

risk 

Nalls, 2019 (excluding 

23andMe contributions) 

33,674  

(18,618 proxy cases 

from UK Biobank)  

449,056 31701892 [27] 

PD – 

age of 

onset 

Blauwendraat, 2019 17,415 
 

30957308 [56] 
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Supplementary Figures 

 

Supplementary Figure 1. Subject demographics, sample information and pathological measures. 

Continuous (a) and categorical (b) subject demographics, sample measures and pathological measures are 
shown for each disease group. (c) Significant differences in groups were tested using either the Kruskal-Wallis 
rank sum test (for continuous variables) or the Chi-squared test (for categorical variables). Significant 
differences (p < 0.05) are shown in a bold face. All measures per individual are available in Supplementary 
Table 1. 
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Supplementary Figure 2. Single-nucleus RNA-sequencing metrics, quality control and cell-type classification. 
(a) Single-nucleus sequencing metrics from Cell Ranger, grouped by the type of quality control (QC) metric they 
represent i.e. base call, alignment or other. All metrics per sample are available in Supplementary Table 1. (b) 
Workflow illustrating the steps taken to filter the raw data to only include true nuclei of high quality. These 
steps were independently applied across each of the 28 sequenced samples. (c) Violin plots of expression 
values (y-axis) for known cell-type marker genes in each of the cell-type clusters identified (x-axis). 
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Supplementary Figure 3. Bulk-tissue RNA-sequencing metrics.  

(a) Bulk-tissue RNA-sequencing metrics from Fastp, STAR, Salmon and RSeQC. (b) Number of genes detected in 
bulk-tissue RNA-sequencing of each sample before and after filtering. Detection of a gene before filtering was 
defined as a count > 0 in at least one sample across a disease group, while detection of a gene after filtering 
was defined as a count > 0 in all samples across a disease group. Only genes that were detected after filtering 
were used for bulk RNA-sequencing differential gene expression analyses. (c) Descriptive statistics for (b). All 
metrics per sample are available in Supplementary Table 1.  
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Supplementary Figure 4. Consistency of cell types across individuals. 

(a) Proportion of nuclei of each cell type isolated across all individuals in each disease group (n = 7 per group) 
and (b) across each individual. (c) Scatterplot of cell-type proportions (%) derived from Scaden deconvolution 
and cell-type labelling of single nuclei. In each panel, Spearman’s rho (ρ) and associated p-value (p) are 
displayed. Proportions are available in Supplementary Table 2. 
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Supplementary Figure 5. Replication of cell-type proportions. 

Cell-type proportions derived from Scaden deconvolution of our bulk-tissue RNA-sequencing or the recount 
dataset, SRP058181. Cell-type proportions (upper panel) are grouped by cell type and disease status and 
displayed relative to the median of controls (within a cell type). Significant differences in cell-type proportions 
between disease groups (lower panel) were determined using the Wilcoxon rank sum test, with FDR correction 
for multiple testing. Non-significant results (FDR > 0.1) were coloured white; **, FDR < 0.05; *, FDR <= 0.1. 
Results are available in Supplementary Table 2.  
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Supplementary Figure 6. Effect of different batch-correction strategies on sample clustering by gene 
expression.  

Samples were plotted by the first two principal components derived from (a) uncorrected gene expression, (b) 
gene expression adjusted for age of death, sex and RIN and (c) gene expression adjusted for cell-type and 
experimental covariates. Principal component analyses were performed on gene-level expression filtered to 
include only genes with count > 0 in all samples (28,692 genes). Ellipses represent the 95% confidence level 
around group mean points (not displayed). (d) Reduced GO terms associated with the top 100 genes that 
contribute to PC1 in (c). Original GO term enrichments (referred to as “child terms”) were grouped using 
semantic similarity. The number of enriched child GO terms assigned to each parent term is indicated in 
parentheses on the y-axis. Each parent term is represented by the most significant child term associated with 
it. Top 100 genes, their contributions to PC1 and results of pathway enrichment are available in 
Supplementary Table 4.   
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Supplementary Figure 7. Cell-type-specific gene expression changes and pathway enrichments between 
disease states.  

(a) Number of differentially expressed (DE) genes (|log2(fold change)| ≥ log2(1.5), FDR < 0.05) across each cell 
type in pairwise comparisons between disease groups. The fill of the square is proportional to the number of 
DE genes. (b) Binary plot indicating with bars whether a gene (column) is down-regulated (upper panel) or up-
regulated (lower panel) in a given cell type (rows). Number of DE genes in each comparison indicated on the x-
axis. (c) Reduced GO terms associated with cell-type-specific down- and up-regulated DE genes identified 
across pairwise comparisons between disease groups. Due to the magnitude of pathway enrichments, original 
GO term enrichments (referred to as “child terms”) were grouped using semantic similarity. The number of 
enriched child GO terms assigned to each reduced parent term across all cell types and comparisons in the 
panel is indicated in parentheses on the y-axis. Reduced GO terms were ordered on the y-axis by the number 
of cell types and comparisons in which the term was found enriched. The fill of each tile indicates the -
log10(FDR) of the most significant child term associated with the parent term within that comparison/cell type. 
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Non-significant results (FDR > 0.05) were coloured white. All cell-type-specific DE genes and pathway 
enrichments are available in Supplementary Table 5 and Supplementary Table 6, respectively.  
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Supplementary Figure 8. Reduced GO term counts across cell types and pairwise comparisons.  

(a) Number of cell types each GO term was associated with using cell-type-specific down- and up-regulated DE 
genes identified across pairwise comparisons. (b) Number of enriched GO terms identified using cell-type-
specific down- and up-regulated DE genes from each pairwise comparison. Within each panel, cell types are 
ordered by the total number of enriched GO terms, irrespective of direction of effect, from highest to lowest. 
Excitatory and inhibitory neurons have been marked with a black border.   

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.22.440800doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440800
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Supplementary Figure 9. SNCA expression across cell types in each disease group. 

Cumulative distribution plot comparing SNCA expression levels in each disease group across cell types. 
Cumulative distribution plots display the proportion of data (y-axis) less than or equal to a specified value (x-
axis). The horizontal dashed line denotes where 50% of the data lies.   
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Supplementary Figure 10. Cell-type-specific pathway enrichments across pathways genetically associated 
with PD.  

Pathway enrichments for all 46 PD-associated pathways (associated in a large-scale polygenic risk score-based 
assessment of 2,199 gene sets)[46]. The fill of each tile indicates the -log10(FDR) of enrichment. Non-significant 
results (FDR > 0.05) were coloured white. Pathway enrichment results are available in Supplementary Table 7.  
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Supplementary Figure 11. Genetic associations with cell-type-specific differentially expressed genes split by 
direction of effect. 

Genetic associations using down- and up-regulated cell-type-specific differentially expressed genes in disease 
comparisons with controls. Two methods were used to identify associations: Hi-C-coupled MAGMA (MAGMA) 
and stratified LD score regression (sLDSC). The heatmap is coloured by degree of significance with both or 
either method, with * and ** indicating nominal significance (unadjusted p-value < 0.05) or significance (FDR-
corrected p-value < 0.05; corrected for number of cell types tested). Only 2 genes were up-regulated in 
vascular cells from Control vs DLB, thus no results were returned from either analysis. Results available in 
Supplementary Table 8. AD, Alzheimer’s disease; PD, Parkinson’s disease.    
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Supplementary Figure 12. Differential splicing across disease groups. 

(a) Number of clusters that were successfully tested and found differentially spliced (DS) following correction 
for changes in cell-type proportions. (b) Reduced GO terms associated with genes found DS across pairwise 
comparisons (FDR < 0.05, |∆PSI| >= 0.1). The number of DS genes is indicated in parentheses on the x-axis. 
Original GO term enrichments (referred to as “child terms”) were grouped using semantic similarity. The 
number of enriched child GO terms assigned to each parent term across pairwise comparisons is indicated in 
parentheses on the y-axis. Size of dot indicates the proportion of enriched child terms within a pairwise 
comparison, which is derived by dividing the number of enriched child terms by the total number of child 
terms assigned to a parent term. Fill of dot indicates the -log10(FDR) of the most significant child term 
associated with the parent term within that pairwise comparison. Results available in Supplementary Table 11.  
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Supplementary Figure 13. Annotation of differentially spliced introns. 

(a) Schematic illustration of the different categories of splicing event. Junction reads used to define Leafcutter 
introns were annotated based on their relationship to the annotated transcriptome (Ensembl v97). Here, the 
annotated transcriptome is illustrated by the grey-filled boxes. Annotated junctions have donor and acceptor 
splice sites that match the boundaries of an existing intron. Likewise, novel exon skip and novel combination 
junctions have donor and acceptor splice sites that overlap known exon boundaries derived from exons 
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contained within the same transcript, but they represent introns which are not found in the set of annotated 
introns. They are distinguished by whether or not their donor and acceptor splice sites overlap exons derived 
from the same transcript. Novel donors and novel acceptors are junctions where only one end (3' or 5', 
respectively) matches the boundary of a known exon. All novel events are considered partially annotated. 
Unannotated junctions ("None") have neither end overlapping a known exon. (b) Number of introns assigned 
to each category of splicing event as a proportion of all introns within the subset of differentially spliced intron 
clusters (FDR < 0.05, |∆PSI| ≥ 0.1). The total number of junctions in each comparison is indicated in 
parentheses on the x-axis. (c) Number of DS introns that were undetected in a GTEx sample as a proportion of 
all DS introns within a category of splicing event. (d) Number of GTEx-derived anterior cingulate cortex (BA24) 
samples where a DS intron was detected as a proportion of the total number of BA24 samples (n = 99). 
Proportions in (c) and (d) are ordered by median from highest to lowest.  
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Supplementary Figure 14. Defining replication across intron clusters and datasets. 

(a) Cluster definitions across datasets may vary; thus, comparisons of cluster definitions between datasets can 
yield exact, partial or no matches (no matches not illustrated). An exact match is defined as an intron cluster 
that contains the same introns, as determined by their splice donor and acceptor sites, across both datasets. In 
replication analyses, only exact matches between our dataset and the replication dataset from recount2 
(recount ID: SRP058181) were carried forward. (b) Contingency table of differential splicing in our bulk-tissue 
RNA-sequencing and in the recount2 dataset, SRP058181. Only clusters that matched exactly across the two 
datasets were used to construct the contingency table. This yielded a total of 13,433 exactly matching intron 
clusters, 836 of which passed FDR < 0.05 in the discovery dataset. Unadjusted p-values in the replication 
dataset for these 836 overlapping clusters were then FDR-corrected, and any of the 836 that passed FDR < 0.05 
in the replication dataset were considered validated. For gene-level analyses, only those validated intron 
clusters with ≥ 1 intron that shared the same direction of effect across both datasets were carried forward. 
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Supplementary Figure 15. Cell-type and pathway enrichment analyses of validated differentially spliced 
genes.  

(a) Enrichment of validated differentially spliced (DS) genes in cell types derived from each disease group. 
Enrichments were determined using EWCE. DS at a gene-level was considered validated provided intron 
clusters matched exactly between our bulk-tissue RNA-sequencing and the SRP058181 dataset, passed FDR < 
0.05 in both datasets, and at least one intron in the cluster shared the same direction of effect across both 
datasets. The x-axis denotes the groups compared in the differential splicing analysis, while the y-axis denotes 
the cell type and the disease status of specificity matrix from which it is derived. Standard deviations from the 
mean indicate the distance (in standard deviations) of the target list from the mean of the bootstrapped 
samples. No results survived FDR correction (FDR < 0.05); displayed are unadjusted p-values. Results with 
unadjusted p > 0.05 were coloured white. (b) Reduced GO terms associated with validated DS genes; the 
number of DS genes is indicated in parentheses on the x-axis. Original GO term enrichments (referred to as 
“child terms”) were grouped using semantic similarity. The number of enriched child GO terms assigned to 
each parent term across pairwise comparisons is indicated in parentheses on the y-axis. Size of dot indicates 
the proportion of enriched child terms within a pairwise comparison, which is derived by dividing the number 
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of enriched child terms by the total number of child terms assigned to a parent term. Fill of dot indicates the -
log10(FDR) of the most significant child term associated with the parent term within that pairwise comparison. 
Results of EWCE and pathway analyses are available in Supplementary Table 10 and Supplementary Table 11, 
respectively.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.22.440800doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440800
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Supplementary Figure 16. Pathway sharing between disease states.  

Clustering of shared pathway enrichments using genes identified across the three main analyses (represented 
by grey bar entitled, “Analysis”). These included: bulk-tissue differential splicing (“Bulk DS”, Supplementary 
Figure 12); gene contributions to bulk-tissue gene expression PC1 (“Bulk PC”, Supplementary Figure 6); and 
single-nucleus differential expression (“snRNA DEG”, Figure 3). Pathways (in rows) from all three analyses were 
filtered to include only those that appear across more than one type of analysis. Pathways are ordered from 
highest to lowest by the number of gene sets in which they are enriched (as displayed in the bar plot on the 
right-hand side). Gene sets (in columns) are clustered using hierarchical clustering on the Pearson correlation 
between gene sets (pathways were encoded with a binary 1 for “Present” or 0 for “Absent”, represented on 
the plot by black and white, respectively). Gene sets derived from differential splicing (Bulk DS) were collapsed 
across our own dataset and the validation dataset, resulting in one gene set (column) per pairwise comparison. 
Likewise, gene sets derived from up- and down-regulated single-nucleus DE gene sets were collapsed across 
cell types (represented by the coloured bar entitled, “Cell type”), such that each cell type was represented by a 
single column.  
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Supplementary Tables 
Supplementary Table 1. Subject demographics, sample information, pathological measures and sequencing 
metrics. 

Supplementary Table 2. Cell-type proportions from snRNA-sequencing and Scaden.  

Supplementary Table 3. List of bulk-tissue differentially expressed genes. 

Supplementary Table 4. List of top 100 genes associated with gene expression PC1 following correction for 
cell-type proportions and experimental covariates. 

Supplementary Table 5. List of cell-type-specific differentially expressed genes. 

Supplementary Table 6. List of cell-type-specific GO pathway enrichments. 

Supplementary Table 7. List of cell-type-specific pathway enrichments using pathways genetically associated 
with PD. 

Supplementary Table 8. H-MAGMA and sLDSC results. 

Supplementary Table 9. List of differentially spliced intron clusters. 

Supplementary Table 10. EWCE results for differentially spliced genes. 

Supplementary Table 11. Pathway enrichments for differentially spliced genes. 

Supplementary Table 12. List of RBPs binding motifs with a significant enrichment in differentially spliced 
proximal intronic regions compared with non-differentially spliced proximal intronic regions.  
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Supplementary Note 

Validation of differentially spliced introns in GTEx 

Methods 
Junction read counts from 99 GTEx-derived anterior cingulate cortex samples were accessed from 

recount2 (recount accession ID: SRP012682; GTEx v6) [95,108]. Paired-end 76-bp sequencing was 

applied to each sample, with a mean depth of 94.5 million read pairs per sample. All samples were of 

high quality with RIN values ranging from 5.5-8.9 and a median of 6.8. A DS intron was considered 

“detected in a GTEx sample” if its donor and acceptor splice sites precisely matched that of a 

junction with a count > 0 in a GTEx sample. Thereafter, two proportions were calculated: (i) the 

proportion of DS introns not detected in a single GTEx sample and (ii) the proportion of GTEx 

samples in which a DS intron was detected. The first proportion was calculated separately for each 

pairwise comparison by dividing the number of undetected DS introns by the total number of DS 

introns within a category of splicing event. The second proportion was calculated separately for each 

intron in a pairwise comparison by dividing the number of GTEx samples in which the intron was 

detected by the total number of GTEx samples. 

Results 
To determine whether DS introns were commonly observed in unaffected control tissue, a reference 

set of 99 control anterior cingulate cortex samples derived from the GTEx project was used. Across 

comparisons, between 3.8-5.4% of all DS introns went entirely undetected in GTEx samples. 

Detection rates varied across different categories of splicing event. Depending on the category of 

splicing event, anything between 1.8-26% of DS introns assigned to the category went entirely 

undetected in GTEx samples (Supplementary Figure 13c). This proportion was lowest for annotated 

and highest for unannotated categories, as might be expected under the assumption that an event 

that does not exist in the reference transcriptome remains unannotated by virtue of the low 

likelihood of detecting it. Of those DS introns that were detected in GTEx samples, 50% of 

annotated, partially annotated and unannotated events were observed in greater than 85.9%, 

28.3%, and 21.2% of GTEx samples, respectively (Supplementary Figure 13d). Thus, despite the 
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relatively high proportion of partially annotated DS introns, the ability to detect these events in 

larger control cohorts suggested these were biologically relevant splicing events. 

Replication of differentially spliced introns in GTEx 

Methods 
Replication of differential splicing was performed using a replication dataset (see Processing of PD 

case-control replication dataset). Junction read counts were accessed from recount2, filtered to 

remove any regions that overlap ENCODE blacklist regions [92], and converted to .junc files. Intron 

clustering (which yielded 37,021 clusters encompassing 128,800 introns) and differential splicing 

were performed using the same parameters as above. As intron cluster definitions are dataset-

dependent, only those intron clusters that matched exactly between the discovery and replication 

dataset were used for replication purposes. An exact match was defined as an intron cluster that 

contained the same introns, as determined by their splice donor and acceptor sites, across both 

datasets. This yielded a total of 13,433 exactly matching intron clusters, 836 of which passed FDR < 

0.05 in the discovery dataset. Unadjusted p-values in the replication dataset for these 836 

overlapping clusters were then FDR-corrected, and any of the 836 that passed FDR < 0.05 in the 

replication dataset were considered validated (Supplementary Figure 14). For gene-level analyses, 

only those validated intron clusters with ≥ 1 intron that shared the same direction of effect across 

both datasets were carried forward. 

Results 
Replication of differential splicing was performed using the same external PD case-control bulk-

tissue RNA-sequencing dataset used in replication of deconvolution results. Only those intron 

clusters that were found to exactly match between datasets were used for replication (n = 13,433 

intron clusters). Of these, 836 and 765 were DS (in at least one pairwise comparison) in our dataset 

and the replication dataset, respectively, with 69 shared between both (p-value = 0.001956; odds 

ratio = 1.53; 95% CI = 1.17-1.99; Fisher’s exact test; Supplementary Figure 14). We performed cell-

type and pathway enrichments on genes containing a shared validated DS intron cluster with at least 

1 intron with the same direction of effect in both datasets (n unique = 15 genes). Among cell-type 
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enrichment tests, no gene sets passed FDR correction. However, nominally significant enrichments 

were observed in oligodendrocytes using genes found DS in PDD compared with control, similar to 

what we observed with our own dataset (Supplementary Figure 15a). Furthermore, several pathway 

enrichments observed were related to phospholipid binding, endosomes and GTPase activity 

(Supplementary Figure 15b).  
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